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Abstract

Quantitative games, where quantitative objectives are defined on weighted game arenas, provide nat-
ural tools for designing faithful models of embedded controllers. Instances of these games that recently
gained interest are the so called Energy Games. The fast-known algorithm solves Energy Games in
O(EVW ) where W is the maximum weight. Starting from a sequential baseline implementation, we
investigate the use of massively data computation capabilities supported by modern Graphics Processing
Units to solve the initial credit problem for Energy Games. We present four different parallel implemen-
tations on multi-core CPU and GPU systems. Our solution outperforms the baseline implementation by
up to 36x speedup and obtains a faster convergence time on real-world graphs.

1 Introduction
Classic game theoretic-formulations of the control synthesis problem rely on two player zero-sum games
on graphs, where the system is opposed to an antagonist environment. In this context, the modeling game
arena is a graph, where the vertices are either owned by player 0 (the system) or by the antagonist player 1
(the environment). The two players move a pebble along the vertices of the graph, starting from an initial
position. Whenever the pebble is on a vertex belonging to player 0 (resp. player 1), the latter decides where
to move the pebble next, according to his strategy. The infinite path followed by the pebble is called a play
and represents one possible behavior of the system. The winning objective for player 0 (a set of plays)
encodes exactly the acceptable behaviors of the system. Therefore, the goal of player 0 is to ensure with
his strategy—the synthesized controller—that the outcome of the game is an acceptable behavior of the
system, whatever the strategy played by his adversary.

Quantitative games, where quantitative objectives are defined on weighted game arenas, provide nat-
ural tools for designing faithful models of embedded controllers, since they allow to explicitly handle the
quantitative constraints imposed by the environment, the lack of resources or the targeted parameters of
operability. In the late seventies, traditional game theory developed for economics defined a number of
nowadays classic quantitative objectives, such as meanpayoff (MPG) and discounted-payoff [1, 26], that
have been recently extensively investigated for the specification and design of reactive systems [1]. In
turn, the problem of controller synthesis with resource constraints has inspired new quantitative objec-
tives and quantitative games, such as e.g. so called energy games in [10, 4, 7] and their variants (see e.g.
[12, 13, 16, 5, 25]). The latter turn out to be of broad interest, having applications in computer aided syn-
thesis [12, 13, 8], real-time systems [6, 5], as well as economy, due to their connection with meanpayoff
and discounted-sum objectives [1].

∗This research is supported by INdAM-GNCS grants and by YASMIN (RdB-UniPG2016/17) project
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In energy games, edges are fitted with integer weights aimed at modeling rewards or costs. The ob-
jective of player 0 is to maintain the sum of the weights (called the energy level) always positive along
the play, given a fixed initial credit of energy. Energy games were introduced in [10, 4], where they were
also proven memoryless determined: namely, each vertex is either winning for player 0 or it is winning for
player 1, and memoryless strategies are sufficient to consider. Deciding whether a vertex v is winning for
player 0 in an energy game is equivalent to the corresponding problem in meanpayoff games, and the latter
equivalence has provided faster pseudo-polynomial algorithms for MPGs [7, 14, 15]. The above decision
problems lie notoriously in the complexity class NP ∩ coNP (and even UP ∩ coUP), while finding poly-
nomial time procedures for them is a long standing open problem [26, 1]. The minimum credit problem
on energy game subsumes the corresponding decision problem, and asks the following: to determine, for
each vertex v of an energy game G, whether v is winning for player 0 and which is the minimum credit
to stay alive along each play starting from v. Such a problem can be also solved in pseudo-polynomial
time [26, 7]. Recently, parallel architectures like Graphics Processing Units (GPU) have been successfully
used in accelerating many irregulars and low-arithmetic intensity applications like graph traversal-based
algorithms, in which the control flow and memory access patterns are data-dependent [9, 3]. Motivated
by the large instances that naturally arise from the specification, design and control of reactive systems,
in this work we investigate the use of massively data computation capabilities supported by modern GPUs
for solving the initial credit problem on energy games. Also, to alleviate the workload unbalancing among
threads, we propose a suitable data-thread mapping technique which allows to efficiently solve traditional
Energy Games instances. The contributions of the paper are manifold:

• we provide a parallel implementation, exploiting traditional multi-core architectures, of the state-of-
the-art initial credit procedure for enrgy games in [7];

• we developed a CUDA implementation which relies on a traditional vertex-parallelism approach and
a more suitable variant based on warp-centric parallelism;

• we report experimental results where we compare the performance achieved by the above mentioned
implementations and a completely sequential one.

After reviewing some minimal preliminary notions (Section 2), the theoretical results on Energy Games
(EG) relevant for this paper are recalled in Section 3. Sections 4-5 describe our parallel solutions. The
results of the experimentation activity and a comparison between the solvers are outlined in Section 6. We
finally discuss related works in Section 7 and draw our conclusion in Section 8.

2 Preliminaries
Weighted graphs

A weighted graph is a tuple G = (V,E,w), where V is a set of of vertices, E ⊆ V × V is a set of edges,
and w : E → Z is a weight function assigning an integer weight to each edge. We assume that weighted
graphs are total, i.e. for all v ∈ V , there exists v′ ∈ V such that (v, v′) ∈ E. Given a set of vertices
U ⊆ V in a weighted graph G = (V,E,w), we denote by pre(U) the set of vertices having a successor in
U , i.e. pre(U) = {v | ∃v′ ∈ U : (v, v′) ∈ E}, and by post(U) the set of successors of vertices in U , i.e.
post(U) = {v | ∃v′ ∈ U : (v′, v) ∈ E}.

A (finite) path p in G = (V,E,w) is a nonempty sequence of vertices v0v1 . . . (resp. v0v1 . . . vn) such
that (vi, vi+1) ∈ E for all 0 ≤ i (resp. 0 ≤ i < n). The length of a finite path p = v0v1 . . . vn is the
number of vertices n+ 1 in p, denoted |p|. Given a (finite) path p and an integer j ≥ 0 (resp. 0 ≤ j ≤ n),
we denote by pj the prefix v0 . . . vj of p up to j and by p[j] the vertex vj . A cycle in G = (V,E,w) is
a finite path p = v0v1 . . . vn such that n ≥ 1 and v0 = vn. We say that a cycle in a weighted graph is
negative (resp. nonnegative) if the sum of its edge weights is less than 0 (resp. not less than 0). Given
v ∈ V , a cycle v0v1 . . . vn is said reachable from v in G if there exists a path u0u1 . . . um in G such that
u0 = v and um = v0. A path v0v1 . . . vn is acyclic if vi 6= vj for all 0 ≤ i < j ≤ n.
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Graph games

A game arena is a tuple Γ = (V,E,w, 〈V0, V1〉) where GΓ = (V,E,w) is a weighted graph and 〈V0, V1〉
is a partition of V into the set V0 of player-0 vertices and the set V1 of player-1 vertices. An infinite game
on Γ is played for infinitely many rounds by two players moving a pebble along the edges of the game
arena GΓ. In the first round, the pebble is on some vertex v ∈ V . In each round, if the pebble is on a vertex
v ∈ Vi (i = 0, 1), then player i chooses an edge (v, v′) ∈ E and the next round starts with the pebble on
v′. A play in the arena Γ = (V,E,w, 〈V0, V1〉) is an infinite path π ⊆ V ω in (V,E,w). An objective for
player 0 is a set O0 ⊆ V ω: the play π ∈ V ω is said to be winning for player 0 if π ∈ O0. In this paper,
we restrict our attention to 0-sum games, i.e. games where the two players are antagonists: therefore, the
objective of player 1 is O1 = V ω \ O0. A game is a tuple G = 〈Γ,O0〉, where Γ is a graph arena, and
O0 ⊆ V ω is the objective of player 0. Given a game 〈Γ,O0〉, the players play according to strategies to
ensure a play that accomplish their objective.

A strategy for player i (i = 0, 1) is a function σ : V ∗ · Vi → V , such that for all finite paths v0v1 . . . vn
with vn ∈ Vi, we have (vn, σ(v0v1 . . . vn)) ∈ E. We denote by Σi (i = 0, 1) the set of strategies for
player i. A strategy σ for player i is memoryless if σ(p) = σ(p′) for all sequences p = v0v1 . . . vn and
p′ = v′0v

′
1 . . . v

′
m such that vn = v′m. We denote by ΣMi the set of memoryless strategies of player i. A

play v0v1 . . . vn . . . is consistent with a strategy σ for player i if vj+1 = σ(v0v1 . . . vj) for all positions
j ≥ 0 such that vj ∈ Vi. Given an initial vertex v ∈ V , the outcome of two strategies σ1 ∈ Σ1 and σ2 ∈ Σ2

in v is the (unique) play outcomeΓ(v, σ0, σ1) that starts in v and is consistent with both σ0 and σ1. Given
a memoryless strategy πi for player i in the game G = 〈Γ,O0〉, we denote by GΓ(πi) = (V,Eπi

, w) the
weighted graph obtained by removing from GΓ all edges (v, v′) such that v ∈ Vi and v′ 6= πi(v).

3 Energy Games
In this section, we introduce energy games [10, 4, 7], that are the main objective of the rest of this paper.
An energy game is a game G = 〈Γ,O0〉 over the arena Γ = (V,E,w, 〈V0, V1〉), where the goal of player 0
is to construct an infinite play v0v1 . . . vn . . . such that for some initial credit c ∈ N, it holds that:

c+

j∑
i=0

w(vi, vi+1) ≥ 0 for all j ≥ 0 (1)

The quantity c+
∑j−1
i=0 w(vi, vi+1) in (1) is called the energy level of the play prefix v0v1 . . . vj , given the

initial credit c. Conversely, player 1 aims at building a play π = v0v1 . . . vn . . . such that for any initial
credit c, there exists a prefix πj of π such that the energy level of πj is negative. Formally, energy games
are defined as follows:

Definition 1 (Energy Games) An energy game (EG) is a game G = 〈Γ,O0〉, where Γ = (V,E,w, 〈V0, V1〉)
and O0 is given by:

O0 = {π| π is a path in GΓ = 〈V,E,w〉 ∧
∃c ∈ N : c+

∑j−1
i=0 w(vi, vi+1) ≥ 0 for all j ≥ 0}

A vertex v ∈ V is winning for player i, i ∈ {0, 1} if there exists an initial credit c(v) and a winning strategy
for player i from v for credit c(v). In the sequel, we denote by Wi the set of winning vertices for player i.

Energy games are memoryless determined [4], i.e. for all v ∈ V , either v is winning for player 0, or
v is winning for player 1, and memoryless strategies are sufficient. Using the memoryless determinacy of
energy games, one can easily prove the following result for EG, characterizing the winning strategies for
player 0 in a EG.

Lemma 2 ([7]) Let G = 〈Γ,O0〉 be an EG, for all vertices v ∈ V , for all memoryless strategies π0 ∈ ΣM0
for player 0, the strategy π0 is winning from v iff all cycles reachable from v in the weighted graph GΓ(π0)
are nonnegative.
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Figure 1: An Energy Game G.

Example 3 Consider the energy game depicted in Figure 1, where round vertices are owned by player 0,
and square vertices are owned by player 1. The set of winning vertices for player 0 is W0 = V . In fact,
the memoryless strategy σ0 : V0 → V for player 0, where σ0(1) = σ0(3) = 4, ensures that any cycle in
a play consistent with σ0—against any (memoryless) strategy σ1 for player 1—is nonnegative. Therefore,
provided a suitable initial credit of energy, each play consistent with σ0 will enjoy a nonnegative energy
level along its run. Given v ∈ W0 = V , the minimum initial credit c(v) that player 0 needs to survive
along a play starting from v is given by c : W0 → N, where c(1) = 2, c(2) = 2, c(3) = 1, c(4) = 1. As a
further example, if the edge (3, 4) is deleted from the energy game in Figure 1, then player 0 does not have
any winning strategy from W1 = {2, 3}, but only from the set of vertices W0 = {1, 4} with initial credit of
energy c(1) = 1, c(4) = 0.

The next definition introduces the initial credit problem.

Definition 4 (Initial Credit Problem) Given an energy game G = 〈Γ,O0〉, the initial credit problem on
G asks to determine, for each vertex v ∈ V , the following:

1. if v is winning for player 0, i.e. if v ∈W0.

2. in case v ∈W0, the minimum initial credit c(v) such that there is a winning strategy σ0 for player 0
in G.

The decision problem for an energy game G = 〈Γ,O0〉 asks to solve only the first one of the two
items above, i.e. to partition V into 〈W0,W1〉. The decision problem on energy games is equivalent to
the decision problem on so called meanpayoff games [26], a game on graphs originally introduced by
game theorists within the economic community, where the objective of player 0 is to minimize the long-
run average weight of plays. Several algorithms exist to solve the decision problem on meanpayoff games
(cf. [1] for a survey of the available algorithms): indeed, it is worth noticing that the best pseudo-polynomial
meanpayoff algorithm is based on its reduction to energy games [7, 14, 15]. Ad-hoc procedures are instead
necessary to solve the initial credit problem on energy games, that is specific to energy objectives. The
latter problem was solved in [7] with a pseudo-polynomial procedure having complexity O(|E |·|V |·W ),
where |E| (resp. |V |) is the number of edges in the game arena and W is the maximum weight labeling
an edge. Energy games were algorithmically studied also in [14], where the authors provide a polynomial
algorithm for solving the initial credit problem on EG with special weights structures. In particular, the
authors of [14] show that solving EG where all the cycles are either ’good’ or significantly ‘bad’1 can be
done in polynomial time.

In the rest of this paper, we will show the design of a CUDA-based parallel EG algorithm based on the
procedure for the EG initial credit problem defined in [7] (which is briefly described in the next subsection).
The latter allows to exploit the computational power offered by modern GPUs.

1Graphs, for instance, where all the negative cycles have weight less than W
2

, where W is the maximum weight in the graph
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3.1 Computing the Minimum Initial Credit of Energy on the CPU
In this subsection, we briefly describe the sequential algorithm in [7] to solve the initial credit problem on
energy games. The procedure in [7] is based on the of so called energy progress measure, which is recalled
in Definition 5 and relies on the following notation.

Let � be the total order onN = N∪ {>}, where x � y if and only if either x ≤ y or y = >. Let 	 be
the operator 	 : N × Z→ N such that, for each a ∈ N and b ∈ Z:

a	 b =

{
max(0, a− b) if a 6= >
> otherwise

Roughly speaking, the local conditions on the nodes of an energy game G imposed by an energy progress
measure f (cf. Definition 5) guarantee that the following property on G holds: for each node v in G, if
f(v) 6= >, then player 0 has a strategy σ0 to ensure that the energy level along each play compatible with
σ0 is not negative, provided the initial credit f(v).

Definition 5 (Energy Progress Measure (EPM) [7]) A function f : V → N is a energy progress mea-
sure for the EG G = 〈Γ,O0〉 iff the following conditions hold:

• if v ∈ V0, then f(v) � f(v′)	 w(v, v′) for some (v, v′)∈E

• if v ∈ V1, then f(v) � f(v′)	 w(v, v′) for all (v, v′) ∈ E

For a game G, let F be the set of functions f : V → N , and consider the partial order v⊆ F ×F , defined
as f v g iff for all v ∈ V , f(v) � g(v). The authors of [7] proved that G admits a least energy progress
measure f w.r.t. v, satisfying the following properties:

1. for each node v ∈W1, f(v) = >

2. for each node v ∈ V0, f(v) ≤MG, where:

MG =
∑
v∈V

max({0} ∪ {−w(v, v′) | (v, v′) ∈ E})

Given an EG G, the initial energy credit algorithm in [7] computes exactly the least energy progress
measure for G:

f : V → CG = {n ∈ N | n ≤MG} ∪ {>}.

More precisely, such an algorithm initializes f to the constant function 0 and relies on the following v-
monotone lifting operator to update f , until a least fixpoint is reached.

Definition 6 (Lifting Operator [7]) Given v ∈ V , the lifting operator δ(·, v) : [V → CG ]→ [V → CG ] is
defined by δ(f, v) = g where:

g(u) =

 f(u) if u 6= v
min{f(v′)	 w(v, v′) | (v, v′) ∈ E} if u = v ∈ V0

max{f(v′)	 w(v, v′) | (v, v′) ∈ E} if u = v ∈ V1

To conclude this subsection we report in Algorithm 1 the exact pseudo-code of the minimum initial
credit algorithm in [7], based on the least energy progress measure described above. Such an algorithm
uses suitable counters to achieve a global worst-case complexity of O(|E| · MG)=O(|E |·|V |·W ).

4 An OpenMP implementation
In order to obtain an immediate way to parallelize the computation of the minimum initial credit on EG ,
let us observe that each application of the lift operation in Definition 6 never decreases the value of f(v)
for any vertex v. Hence, processing all elements in L in parallel is a sound procedure. Moreover, as
motivated in the previous subsection, a bounded number |E| · MG of lift operations suffices to determine

5



Algorithm 1: Minimum Initial Credit Algorithm for Energy Games: Given in input an EG G, it
computes in output the least progress measure f : V → CG

begin
/* Initialize the set L of nodes for which the least EPM f needs

to be lifted */
L← {v ∈ V0 | ∀(v, v′) ∈ E : w(v, v′) < 0} ;1

L← L ∪ {v ∈ V1 | ∃(v, v′) ∈ E : w(v, v′) < 0} ;2

/* Initialize the least EPM f */
foreach v ∈ V do3

f(v)← 0 ;4

if v ∈ V0 ∩ L then count(v)← 0 ;5

if v ∈ V0 \ L then count(v)← |{v′ ∈ post(v) | f(v) ≥ f(v′)	 w(v, v′)}| ;6

/* Apply the lift-operator to update the least EPM f for each
node in L */

while L 6= ∅ do7

Pick v ∈ L ;8

L← L \ {v};9

old← f(v) ;10

f ← δ(f, v) ;11

if v ∈ V0 then count(v)← |{v′ ∈ post(v) | f(v) ≥ f(v′)	 w(v, v′)}| ;12

foreach v′ ∈ pre(v) such that f(v′) < f(v)	 w(v′, v) do13

if v′ ∈ V0 then14

if f(v′) ≥ old	 w(v′, v) then count(v′)← count(v′)− 1 ;15

if count(v′) ≤ 0 then L← L ∪ {v′} ;16

if v′ ∈ V1 then L← L ∪ {v′} ;17

return f ;18

end

a solution. Consequently, a simple way to parallelize the computation of the EPM consists in applying
the lift operation in parallel for each vertex of the graph and in iterating this step until either a fixpoint
or the theoretical bound on loops is reached. Algorithm 2 presents the skeleton of the resulting algorithm
implemented exploiting OpenMP. In particular, the loops starting in lines 1 (performing the initialization
of f ) and 8 (performing the lift step), respectively, are executed in parallel by distributing the computation
among the available OpenMP threads. The while-loop in lines 5–10 iterates until an ending condition is
achieved. We experimented with this implementation by using 1, 2, 4, and 8 threads, always mapped to
different CPUs (see Section 6).

5 A CUDA-Based Solver
This section describes the main design choices made in implementing a CUDA-based parallel solution
to the EG initial credit problem. As concerns data structures, the adjacency matrix of the input EG is
represented in device memory, by exploiting the standard Compressed Sparse Row (CSR) format, usually
employed to store sparse matrices. The progress measure f to be computed is stored in an array of |V |
elements.

By analyzing the pseudo-code of the sequential Algorithm 1, one plainly identifies tasks that could be
executed in parallel. The simplest one is the initialization of the set L of active nodes (those whose least
energy progress measure f needs to be lifted) and the initialization of the least progress measure f (lines 1-
3 in Algorithm 3). The set L is represented by an array of (at most) |V | elements, A specific kernel function

6



Algorithm 2: Naive parallel version of Algorithm 1

begin
/* Initialize the least EPM f */
foreach v ∈ V in parallel do1

f(v)← 0;2

loops← |E| · MG ; /* Bound on number of lifts */3

more← true;4

/* Apply lift-operator until fixpoint or the bound on loops is
reached */

while more ∧ loops > 0 do5

f ′ ← f ;6

loops← loops− 1;7

foreach v ∈ V in parallel do8

f←δ(f, v); /* Each thread lifts a v */9

more←more∨f(v) 6= f ′(v); /* Race condition*/10

return f ;11

end

has been defined for the initialization of such L. In particular, a 1-to-1 mapping (vertex-parallelism [19])
assigns each node to one thread. Each thread determines whether the corresponding node has to be inserted
in L or not (line 3).

The core of the sequential algorithm is in lines 7–17, where elements are extracted from L, one at
a time, and their progress measures are lifted. As mentioned before, processing all elements in L in
parallel is a sound procedure. Therefore, a specific kernel function has been designed to compute, in
parallel, the new values of f(v) for each v in L. In doing this, all elements v′ in the set post(v) have to
be considered. To better exploit the mass parallelism supported by GPUs, each node v in L is assigned
to a set of h = 2k threads of the same warp. Such threads process in parallel all elements in post(v)
and (conjunctively) compute the value of δ(f, v). Information between such threads is exchanged through
warp-shuffle operations, which are enabled because all h threads always belong to the same warp. Acting in
this manner reduces the number of accesses to global and shared memories and this, in turn, speeds-up the
overall computation. Indeed, as mentioned earlier, by means of shuffle operations data are moved directly
between threads’ registers instead of communicating them through global/shared memory operations. The
value h can be heuristically chosen as (a fraction of) the average degree of nodes in V .

Thanks to the use of the CSR format, all members of post(v) are stored in consecutive locations of
the device memory. This optimizes the time needed by the h threads for accessing the initially needed
data. The first of the h threads stores the new value of f(v), after the interaction between the h threads is
completed.

Consider now that, by Definition 6, the computation of lifting operator involves the evaluation of either
a min operation or a max operation of a set of values, depending on the player controlling the active node.
A further optimization is applied in order to minimize thread divergence between threads of the same warp.
The set V is sorted so that all nodes in V0 (resp. V1) correspond to consecutive lines of the adjacency matrix
of the EG. Consequently, in all warps (but at most one) all threads always execute the same sequence of
instructions. Namely, all of them compute the min (resp. max) operation.

Once the progress measure f(v) of a node v has been updated, the set of predecessors pre(v) of v has
to be considered in order to compute the new set of active nodes. Also this task is performed in parallel
by splitting the work load among the h threads. The set of h threads that computed δ(f, v), process each
node in pre(v) and determine if it has to be inserted in L. Notice that in this phase of the computation it
might be the case that the same element might be inserted in the new L because of different reasons, as it

7



Algorithm 3: CUDA Algorithm for Energy Games

begin
/* Initialize the least EPM f and the set L of nodes to be

lifted */
foreach v ∈ V in parallel do1

f(v)← 0;2

if (v ∈ V0 ∧ (∀(v, v′) ∈ E : w(v, v′) < 0)) ∨ (v ∈ V1 ∧ (∃(v, v′) ∈ E : w(v, v′) < 0)) then3

L← L ∪ {v};
/* Apply lift-operator until a fixpoint */
while L 6= ∅ do4

L′ ← ∅; f ′ ← f ; /* done in parallel */5

foreach v ∈ L in parallel do6

f←δ(f, v); /* Each thread lifts one v */7

if f(v) 6= f ′(v) then8

foreach v′ ∈ pre(v) do L′ ← L′ ∪ {v′};9

L← L′; /* done in parallel */10

return f ;11

end

is predecessor of different processed active nodes. Repeated insertion of the same element in L is avoided
by marking each inserted node (a suitable vector of flags is used for this purpose).

Similarly to what done in computing δ(f, v), in order to optimize the access patterns exploited to re-
trieve the needed data, the elements of pre(v) are stored in consecutive memory locations. This is achieved
by adopting a redundant representation of E. More specifically, the adjacency matrix of EG is represented
in the device memory using the Compressed Sparse Column (CSC) format too. This representation is easily
computed by transposing the corresponding CSR representation, through standard functions provided by
the CUSPARSE library.

With the differences described so far, the overall structure of the resulting CUDA implementation
essentially reflects the one of the sequential Algorithm 1. The computation starts on the CPU by reading
and parsing a text file specifying the input arena. The EG is then transferred to the device memory and a
conversion from CSR to CSC is executed by the device. Now, the CPU controls the computation by calling
the device functions described earlier. First the initialization of data is performed. Then, the device function
which improves the progress measure is repeatedly called until an empty set of active nodes is obtained
(this corresponds to the while-loop in Algorithm 1). We experimented with different choices for the values
of h (the case h = 1 clearly corresponds to vertex-parallelism, while for h > 1 we have warp-centric
parallelism). Finally, the result is transferred back to the host memory and output.

6 Experimental Results
Numerical experiments have been performed on a server equipped with an Intel Xeon E5-2640 v3 and
four Nvidia K80 GPU. The code has been generated using the GNU C compiler version 4.8.2, CUDA C
compiler version 7.5.

A sequential solver, named “CPU EG1”, following the pseudo-code listed in Algorithm 1 has been
implemented in C. In order to develop a fair comparison with the GPU-based solution, the very same
representation (using both CSR and CSC formats) used in the CUDA implementation has been adopted in
the sequential solver. We refer to “CPU EG2”, “CPU EG4” and “CPU EG8” the codes that implement the
algorithm described in Algorithm 2 with 2,4,8 threads respectively.

The codename “GPU-v” and “GPU-w” denote the code implemented for GPUs based on vertex paral-
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(a) Dataset: Equivalence Checking.

(b) Dataset: Model Checking.

Figure 2: CPU EG scaling experiment. The figures report the performance in seconds (y-axis) required to
solve Energy Games instances by increasing the number of threads on Intel Xeon E5-2640 (x-axis).
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Figure 3: Performance comparison among three different parallel implementations CPU-EG8, GPU-v and
GPU-w on Equivalence Checking data set. The bars show the time-to-solution in seconds of each imple-
mentation.

lelism and warp parallelism respectively. As a source for our benchmark, we consider the suite for games
arena in [20]. In particular, [20] provides a large database of games (over 1000 instances) that originate
from different verification problems and are notable—for experimental purposes—in terms of their diver-
sity and applicative coverability. Table 1 provides references to the filenames of the exact instances used
in the experimentation as well as a succinct description of the characteristics of the graphs. Such instances
encode equivalence checking (E0-E33) model-checking (M0-36) problems into qualitative games with
parity objectives [1]. Standard conversion from qualitative games to quantitative games with meanpayoff
and energy objectives [7] have been used in [22] to generate the final data set.

Performance Analysis

In the present section, we show our experimental results. First, we compared the performance of CPU-EG
over the data set by increasing the number of threads (strong scaling). Due to slow convergence time, CPU-
EG is not able to solve some instances within a given time-out (for our convenience we set up it to 900
seconds). In Figure 2 we only show the most representative results. Please refer to Table 1 for a detailed
analysis. In general, experiments show a good scalability between 2 and 4 threads, after that threads do not
have enough work to do. For some instances (i.e., M33), CPU-EG shows a better scalability since it takes
advantage from the parallelism that a more complex structure exhibits. Other instances, like M28, on the
contrary, do not have a significant benefit from multi-core architectures.

In the second set of experiments, we compare the performance (time-to-solution) between GPU-v and
GPU-w. Furthermore, we also show the time of CPU-EG8 as a baseline. In detail, Figure 3 shows the per-
formance over “equivalence checking” data set, whereas Figure 4 is related to “model checking” instances.
Generally, CPU-EG8 is faster on “easy” instances where the algorithm converges quickly in few itera-
tions. The identification of “easy” instances is hard to do a priori since, as we mentioned, the convergence
strongly depends on the weights and the structure of the graphs. By analyzing final performance we can
say that EG-GPUs are up to 5x than CPU-EG8 (36x faster than EG-CPU1). Concerning the comparison
between GPU-v and GPU-w, we do not observe a significant difference in terms of performance except
for a small number of instance. On average, GPU-w achieves better performance slightly up to a factor of
1.7x.

As a final comment, the results of this initial experimentation seem to witness the advantages offered
even by a plain parallelization of Algorithm 1. Although our results are remarkable, a deeper investigation
has to be conducted in order to identify (if any) those classes of EG where a specific approach may achieve
the best performance. Again, it seems reasonable that particular topologies of the underlying graph game
may reduce the gap between the sequential and the parallel algorithms. On the other hand, various opti-
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Figure 4: Performance comparison among three different parallel implementations CPU-EG8, GPU-v and
GPU-w on Equivalence Checking data set. The bars show the time-to-solution in seconds of each imple-
mentation.
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mizations and refinements can be introduced in the parallel solver. Among the ones under consideration
we just mention here the possibility of partitioning the given arena w.r.t. the strongly connected compo-
nents of the graph game and processing them in parallel, just by imposing a topological order among the
components.

7 Related Works
Similar approaches exist for other kind of games used in the context of computer aided design and formal
verification. For instance, the parallelization of Meanpayoff Games has been dealt with in [11] and in [17].
Whereas in the first case the target architecture is not GPU-based, but it is a common multi-core machine,
[17] proposes an OpenCL implementation suitable to run on AMD devices. A proposal concerning Parity
Games has been described in [22], also based on OpenCL.

Several solutions have been proposed to reduce the workload unbalancing among threads and alleviate
the irregular memory access. Jia et al. [19] evaluated two different data-thread mapping techniques vertex-
parallel and edge-parallel. Due to the difference in the out-degree among vertices in scale-free networks,
vertex-parallel suffers from load imbalance among threads. The edge-parallel approach solves that prob-
lem by assigning edges to threads during the frontier expansion. However, it is not suitable for graphs with
a low average degree, as well as dense graphs [19]. Furthermore, the edge-based parallelism requires much
memory and atomic operations [19, 24] especially for Energy Games instances where an atomic min can be
required. Mclaughlin and Bader [21] discussed two hybrid methods for the selection of the parallelization
strategy. Sarıyüce et al. [23], introduced the vertex virtualization technique based on a relabeling of the
data structure (e.g., CSR, Compressed Sparse Row). The technique replaces a high-degree vertex v with
nv = dadj(v)e/∆ virtual vertices having at most ∆ neighbors. Vertex virtualization technique is not
very effective for graphs with a low average degree. Typical Energy Games instances are characterized by
a low average out degree (cfr. Table 1), therefore a vertex-based parallelism would be more suitable for
such instances. Other efficient data-thread mapping techniques, like active-edge parallelism [2, 3] or other
warp-centric strategies [18], seem to be not very effective for Energy games instances where the average
degree is pretty low.

8 Concluding Remarks
To the best of our knowledge, we present the first GPU-based implementation of a solver for Energy
Games. We investigated the possibility of implementing a solver for the initial credit problem on Energy
Games capable of exploiting the computational power offered by modern Graphics Processing Units. We
illustrated how a first prototype relying on the SIMT conceptual model of parallelism adopted within CUDA
framework can be plainly obtained by parallelizing the different steps of a sequential algorithm. The
proposed CUDA-based solver tersely exhibits great performance and demonstrated the viability of the
approach, when compared against its sequential and CPU multi-core counterpart. However, a detailed
analysis of the topology of the graph is still required in order to design an efficient data-thread mapping
technique on GPUs. Further, a number of improvements and heuristics can be applied to our current
implementation, involving for example a static analysis of the input instance aimed at customizing the
configuration parameters used to launch the CUDA kernels, or aimed at taking advantage of the topological
structure of the graph. These are challenging themes for future work.
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Graph ID Nodes Edges Avg
Degree

CPU
EG1

CPU
EG2

CPU
EG4

CPU
EG8 GPU-v GPU-w

ABP(BW) Onebit (datasize=2 capacity=1 windowsize=1)eq=branching-bisim.sol E0 12239050 33790242 2.76 900.000 900.000 900.000 900.000 0.673 0.547
ABP(BW) Onebit (datasize=2 capacity=1 windowsize=1)eq=branching-sim.sol E1 12239050 33790242 2.76 900.000 900.000 900.000 900.000 0.557 0.554
ABP(BW) Onebit (datasize=2 capacity=1 windowsize=1)eq=weak-bisim.sol E2 10685466 40545186 3.79 900.000 900.000 900.000 900.000 0.617 0.558
ABP(BW) Onebit (datasize=3 capacity=1 windowsize=1)eq=branching-bisim.sol E3 40556396 112380248 2.77 900.000 900.000 900.000 900.000 1.384 1.480
ABP(BW) Onebit (datasize=3 capacity=1 windowsize=1)eq=branching-sim.sol E4 40556396 112380248 2.77 900.000 900.000 900.000 900.000 1.331 1.481
ABP(BW) Onebit (datasize=3 capacity=1 windowsize=1)eq=weak-bisim.sol E5 35431922 134886692 3.81 900.000 900.000 900.000 900.000 1.542 1.670
ABP Onebit (datasize=2 capacity=1 windowsize=1)eq=branching-bisim.sol E6 9488018 26181506 2.76 900.000 900.000 900.000 900.000 0.473 0.396
ABP Onebit (datasize=2 capacity=1 windowsize=1)eq=branching-sim.sol E7 9488018 26181506 2.76 900.000 900.000 900.000 900.000 0.461 0.396
ABP Onebit (datasize=3 capacity=1 windowsize=1)eq=branching-bisim.sol E8 31611530 87556070 2.77 900.000 900.000 900.000 900.000 1.073 1.078
ABP Onebit (datasize=3 capacity=1 windowsize=1)eq=branching-sim.sol E9 31611530 87556070 2.77 900.000 900.000 900.000 900.000 1.095 1.075
ABP Onebit (datasize=3 capacity=1 windowsize=1)eq=weak-bisim.sol E10 27799634 104694734 3.77 900.000 900.000 900.000 900.000 1.235 1.307
Buffer Onebit (datasize=2 capacity=2 windowsize=1)eq=branching-bisim.sol E11 912641 2762529 3.03 0.116 0.087 0.074 0.050 0.204 0.193
Buffer Onebit (datasize=2 capacity=2 windowsize=1)eq=branching-sim.sol E12 912641 2762529 3.03 0.109 0.083 0.058 0.051 0.205 0.202
Buffer Onebit (datasize=2 capacity=2 windowsize=1)eq=weak-bisim.sol E13 966897 3278913 3.39 0.142 0.110 0.060 0.045 0.209 0.221
Buffer Onebit (datasize=3 capacity=2 windowsize=1)eq=branching-bisim.sol E14 3471553 11083645 3.19 0.507 0.345 0.215 0.209 0.311 0.310
Buffer Onebit (datasize=3 capacity=2 windowsize=1)eq=branching-sim.sol E15 3471553 11083645 3.19 0.513 0.321 0.231 0.226 0.310 0.296
Buffer Onebit (datasize=3 capacity=2 windowsize=1)eq=weak-bisim.sol E16 3644173 12968893 3.56 0.724 0.333 0.297 0.228 0.338 0.311
CABP Onebit (datasize=2 capacity=1 windowsize=1)eq=strong-bisim.sol E17 7626354 30467442 4.00 2.123 1.316 1.162 0.909 1.133 0.804
CABP Onebit (datasize=3 capacity=1 windowsize=1)eq=strong-bisim.sol E18 24812174 100409150 4.05 7.275 4.674 4.061 3.405 0.996 0.997
Hesselink (Implementation) Hesselink (Specification) (datasize=2)eq=branching-bisim.sol E19 33702306 76550466 2.27 900.000 900.000 900.000 900.000 0.996 0.996
Hesselink (Implementation) Hesselink (Specification) (datasize=2)eq=branching-sim.sol E20 33702306 76550466 2.27 900.000 900.000 900.000 900.000 1.038 1.011
Hesselink (Implementation) Hesselink (Specification) (datasize=2)eq=weak-bisim.sol E21 29868274 78747250 2.64 900.000 900.000 900.000 900.000 1.023 0.939
Hesselink (Specification) Hesselink (Implementation) (datasize=2)eq=branching-bisim.sol E22 33702306 76550466 2.27 900.000 900.000 900.000 900.000 0.983 1.033
Hesselink (Specification) Hesselink (Implementation) (datasize=2)eq=branching-sim.sol E23 33702306 76550466 2.27 900.000 900.000 900.000 900.000 0.995 1.006
Hesselink (Specification) Hesselink (Implementation) (datasize=2)eq=weak-bisim.sol E24 29868274 78747250 2.64 900.000 900.000 900.000 900.000 1.002 0.922
Onebit SWP (datasize=2 capacity=1 windowsize=1)eq=strong-bisim.sol E25 5322498 21604226 4.06 1.805 1.131 0.827 0.644 0.786 0.543
Onebit SWP (datasize=3 capacity=1 windowsize=1)eq=strong-bisim.sol E26 19026506 78220622 4.11 7.300 4.187 3.354 2.557 0.825 0.849
Par Onebit (datasize=2 capacity=1 windowsize=1)eq=branching-bisim.sol E27 10927074 30319218 2.78 900.000 900.000 900.000 900.000 0.514 0.427
Par Onebit (datasize=2 capacity=1 windowsize=1)eq=branching-sim.sol E28 10927074 30319218 2.78 900.000 900.000 900.000 900.000 0.526 0.426
SWP SWP (datasize=2 capacity=1 windowsize=2)eq=branching-bisim.sol E29 37636481 120755185 3.21 6.604 2.791 2.567 2.352 1.372 1.305
SWP SWP (datasize=2 capacity=1 windowsize=2)eq=branching-sim.sol E30 37636481 120755185 3.21 6.593 2.970 2.845 2.305 1.402 1.342
SWP SWP (datasize=2 capacity=1 windowsize=2)eq=strong-bisim.sol E31 3782172 11533061 3.05 0.710 0.777 0.525 0.424 0.966 0.551
SWP SWP (datasize=2 capacity=1 windowsize=2)eq=weak-bisim.sol E32 32926785 167527601 5.09 8.404 4.931 3.739 2.812 1.669 1.661
SWP SWP (datasize=3 capacity=1 windowsize=2)eq=strong-bisim.sol E33 14808231 45377590 3.06 3.264 3.058 2.345 1.880 2.720 1.773
BRPdatasize=2 counting.sol M0 2177202 2532590 1.16 0.758 0.751 0.191 0.213 0.274 0.273
Clobberwidth=4 height=4 black has winning strategy.sol M1 564914 2185853 3.87 900.000 900.000 900.000 900.000 690.284 648.927
Clobberwidth=4 height=4 white has winning strategy.sol M2 564914 2185853 3.87 900.000 900.000 900.000 900.000 705.454 708.674
Hanoindisks=12 eventually done.sol M3 531443 1594321 3.00 66.898 66.567 12.706 11.051 3.510 3.928
Hanoindisks=13 eventually done.sol M4 1594325 4782967 3.00 489.584 482.419 68.811 68.164 11.757 13.450
Hesselinkdatasize=2 nodeadlock.sol M5 540737 1115713 2.06 0.010 0.009 0.002 0.002 0.179 0.175
Hesselinkdatasize=2 property1.sol M6 1081474 2231426 2.06 0.071 0.072 0.057 0.059 0.218 0.211
Hesselinkdatasize2 property1.sol M7 1081474 2231426 2.06 0.072 0.071 0.070 0.060 0.221 0.208
Hesselinkdatasize=2 property2.sol M8 1093761 2246401 2.05 0.020 0.021 0.003 0.003 0.195 0.184
Hesselinkdatasize=3 nodeadlock.sol M9 13834801 29028241 2.10 0.353 0.355 0.058 0.058 0.455 0.395
Hesselinkdatasize=3 property2.sol M10 27876961 58309201 2.09 0.664 0.669 0.113 0.142 0.711 0.713
IEEE1394nparties=2 datasize=2 headersize=2 acksize=2 property4.sol M11 571378 996970 1.75 0.433 0.423 0.820 1.261 6.926 4.373
IEEE1394nparties=2 datasize=2 headersize=2 acksize=2 property5.sol M12 1411274 2454775 1.74 0.022 0.021 0.005 0.003 0.191 0.187
Lift (Incorrect)nlifts=4 nodeadlock.sol M13 998790 5412890 5.42 0.192 0.189 0.153 0.165 0.237 0.241
Lift (Incorrect)nlifts=4 safety 1.sol M14 788879 4146139 5.26 0.051 0.051 0.006 0.005 0.199 0.200
Onebitdatasize=3 invariantly infinitely many reachable taus.sol M15 867889 4933009 5.68 0.096 0.096 0.020 0.019 0.208 0.207
Onebitdatasize=3 messages read are inevitably sent.sol M16 579745 3354841 5.79 900.001 900.000 900.000 900.000 162.310 201.437
Onebitdatasize=3 no duplication of messages.sol M17 1191962 6907934 5.80 0.126 0.124 0.163 0.158 0.253 0.261
Onebitdatasize=3 no spontaneous messages.sol M18 1278433 7843609 6.14 0.080 0.080 0.008 0.009 0.234 0.230
Onebitdatasize=3 read then eventually send.sol M19 1350433 7068673 5.23 900.000 900.000 900.000 900.000 685.262 644.088
SWPdatasize=2 windowsize=3 infinitely often receive for all d.sol M20 588868 2071109 3.52 0.189 0.196 0.039 0.039 0.198 0.197
SWPdatasize=2 windowsize=3 invariantly infinitely many reachable taus.sol M21 670177 2375809 3.55 900.000 900.000 900.000 900.000 311.157 373.967
SWPdatasize=2 windowsize=3 no duplication of messages.sol M22 944090 3685946 3.90 0.124 0.126 0.069 0.071 0.366 0.269
SWPdatasize=2 windowsize=3 read then eventually send if fair.sol M23 586658 1782434 3.04 0.059 0.060 0.017 0.018 0.191 0.200
SWPdatasize=2 windowsize=3 read then eventually send.sol M24 917713 3283153 3.58 900.000 900.000 900.000 900.000 265.119 298.995
SWPdatasize=2 windowsize=4 infinitely often receive d1.sol M25 3487362 12463874 3.57 1.211 1.207 0.232 0.235 0.329 0.331
SWPdatasize=2 windowsize=4 infinitely often receive for all d.sol M26 6974724 24927749 3.57 3.277 2.539 0.481 0.555 0.478 0.482
SWPdatasize=2 windowsize=4 nodeadlock.sol M27 2589057 11565569 4.47 0.095 0.094 0.015 0.014 0.267 0.262
SWPdatasize=2 windowsize=4 no duplication of messages.sol M28 11488274 45840722 3.99 2.038 2.004 1.677 1.515 2.047 1.388
SWPdatasize=2 windowsize=4 read then eventually send if fair.sol M29 7310722 22667778 3.10 1.116 1.111 0.418 0.442 0.428 0.433
SWPdatasize=4 windowsize=2 infinitely often receive for all d.sol M30 653574 2444297 3.74 0.220 0.218 0.045 0.047 0.204 0.200
SWPdatasize=4 windowsize=2 no duplication of messages.sol M31 858114 3433490 4.00 0.062 0.062 0.058 0.057 0.281 0.235
SWPdatasize=4 windowsize=2 read then eventually send.sol M32 869569 3200129 3.68 900.000 900.000 900.000 900.000 371.087 381.734
SWPdatasize=4 windowsize=3 infinitely often receive d1.sol M33 8835074 34391042 3.89 3.683 3.706 0.757 0.737 0.618 0.658
SWPdatasize=4 windowsize=3 nodeadlock.sol M34 7429633 32985601 4.44 0.309 0.313 0.030 0.043 0.445 0.446
SWPdatasize=4 windowsize=3 no generation of messages.sol M35 6690605 29413398 4.40 0.292 0.292 0.046 0.039 0.432 0.429
SWPdatasize=4 windowsize=3 read then eventually send if fair.sol M36 24565250 73675010 3.00 3.110 3.293 1.212 1.249 0.779 0.790

Table 1: Dataset characteristics and experimental results. The first four columns show the instance name,
a short ID used in the paper to refer to them, as well as some characteristics of the graphs such as size and
vertex degrees. The rightmost six columns report the timings obtained by the different implementations
described in the paper. In particular, the four columns labeled “CPU EGn”, list the results obtained by
the sequential Algorithm 1 implemented in C (“CPU EG1”), and by its OpenMP version (Algorithm 2)
for different number of threads (namely, for n = 2, 4, 8). The columns “GPU-v” and “GPU-w” show the
results obtained by the CUDA based solver (cf., Algorithm 3), exploiting a pure vertex parallelism and
warp parallelism, respectively. All timings are in seconds. A timeout of 15 minutes has been applied (the
values 900.000 denote timeout expiration).
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