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ABSTRACT
Python has been adopted as programming language by a large
number of scientific communities. Additionally to the easy pro-
gramming interface, the large number of libraries and modules
that have been made available by a large number of contributors,
have taken this language to the top of the list of the most popular
programming languages in scientific applications. However, one
main drawback of Python is the lack of support for concurrency or
parallelism. PyCOMPSs is a proved approach to support task-based
parallelism in Python that enables applications to be executed in
parallel in distributed computing platforms.

This paper presents PyCOMPSs and how it has been tailored to
execute tasks in heterogeneous and multi-threaded environments.
We present an approach to combine the task-level parallelism pro-
vided by PyCOMPSs with the thread-level parallelism provided by
MKL. Performance and behavioral results in distributed comput-
ing heterogeneous clusters show the benefits and capabilities of
PyCOMPSs in both HPC and Big Data infrastructures.
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1 MOTIVATION
Python is a duck typed, object oriented, interpreted and easy to
learn programming language that plays well with other languages
(i.e. with C) [35]. Python has been adopted by a large community,
including scientific communities from lots of different areas. This
adoption is not only due to the language features but also because
of the large amount of third-party libraries available for the commu-
nity, such as NumPy [36] and SciPy [26], that offer vectorized data
structures and numerical routines. NumPy automatically maps op-
erations on vectors and matrices to the BLAS [9] and LAPACK [13]
functions present in the system. Indeed, NumPy is a de-facto stan-
dard when working with tensors in Python due to the high perfor-
mance achieved and its ease of use. When a multi-threaded BLAS
version is present in the system (using OpenMP [19] or TBB [10]),
the operations are automatically parallelized.

As mentioned above, Python is an interpreted language, being
CPython its most common interpreter. A very well-known lim-
itation of CPython is the use of a Global Interpreter Lock (GIL)
which disables concurrent Python threads within one process. This
basically means that, although threads are supported in Python,
only one will execute at a time.

Alternatives to provide parallelism in Python are the multipro-
cessing, Parallel Python (PP) and MPI modules. The multiprocess-
ing module provides [2] support for the spawning of processes in
SMP machines using an API similar to the threading module, with
explicit calls to create processes. On the other hand, the Parallel
Python (PP) module [3] provides mechanisms for parallel execution
of Python codes, with an API with specific functions to specify the
number of workers to be used, submit the jobs for execution, get
the results from the workers, etc. Finally, the mpi4py [20] library
allows the user to open parallelism both inter-node and intra-node.
In all cases, the management of the parallelism is the programmer’s
responsibility.

PyCOMPSs [34] is a task-based programming model that offers
an interface based on Python sequential paradigm. It enables the
execution in parallel by means of building, at execution time, a
data dependency graph of the tasks that compose the application.
The syntax of PyCOMPSs is minimal, using decorators to enable
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the programmer to identify those methods that are application
tasks and a small API for synchronization. PyCOMPSs relies on a
runtime that can exploit the inherent parallelism at task level and
execute the application in a distributed parallel platform (clusters
and clouds). The runtime is responsible for scheduling the tasks
in the available computation resources, performing the necessary
data transfers between distributed memory resources when no
shared data system is available, synchronizing all activities, acting
as an interface with different computing resources such as cloud
middlewares, etc.

There are similar libraries and frameworks that enable Python
distributed and multi-threaded executions such as Dask [21] and
PySpark [11]. Dask is a native Python library that allows both the
creation of custom DAG’s and the distributed execution of a set of
operations on NumPy and pandas [30] objects. PySpark is a binding
to the widely extended framework Spark [37]. A previous paper
compares several Big Data algorithms using the native version of
both COMPSs and Spark runtimes [18].

This paper presents PyCOMPSs functionalities through numeri-
cal codes such as matrix multiplication and several matrix factoriza-
tions. The main contributions are the extensions to the PyCOMPSs
programming model to support multi-threaded libraries, a new
scheduling infrastructure, and the support for multiple tasks’ ver-
sions. This set of extensions allows to achieve good performance
with a moderate encoding effort, enabling not expert users to reach
HPC behaviors even under Big Data conditions (i.e. when data is
already present in the infrastructure instead of being initialized
for the computation). Moreover, the same code can be executed
in a multi-threaded way on a single machine, in the cloud or an
heterogeneous cluster, making it highly portable.

Another contribution of this paper is a set of linear algebra
kernels written in PyCOMPSs, which conform a prototype of a
parallel linear algebra library that would be made available for the
community in the near future.

The rest of the paper is organized as follows: Section 2 presents
PyCOMPSs and its features, Section 3 describes the linear alge-
bra kernels, Section 4 presents performance results, and Section 5
concludes the paper and gives some guidelines for future work.

2 PYCOMPSS OVERVIEW
PyCOMPSs is a task-based programming model that aims to make
easier the development of parallel applications, targeting distributed
computing platforms. Tasks are identified by the programmer us-
ing simple annotations in the form of Python decorators, which
indicate that invocations of a given method will become tasks at ex-
ecution time. The @task decorator also contains information about
the directionality of the method parameters specifying if a given
parameter is read (IN), written (OUT) or both read and written in
the method (INOUT).

Figure 1 shows an example of task annotation. In the example,
the parameter c is of type INOUT. The directionality tags are used
at execution time to derive the data dependencies between tasks
and are applied at object level, taking into account its references to
identify when two tasks access the same object. The priority tag
is a hint for the PyCOMPSs’ scheduler that will then execute the
tasks with this tag earlier, always respecting the data dependencies.

@constraint(ComputingUnits="$ComputingUnits")
@task(c=INOUT, priority=True)
def multiply(a, b, c, MKLProc):

os.environ["MKL_NUM_THREADS"]=str(MKLProc)
c += a * b

Figure 1: Sample task annotation

Additionally to the @task decorator, the @constraint decorator
can be optionally defined to indicate some task hardware or soft-
ware requirements. In Figure 1, the task constraint ComputingUnits
shows to the runtime how many resources are consumed by each
task execution. The available resources are defined by the system ad-
ministrator in a separated XML configuration file. Other constraints
that can be defined refer to processor architecture, memory size,
etc. A tiny synchronization API completes the PyCOMPSs syntax.
Concerning the example presented in Figure 2, the API function
compss_wait_on waits until all the tasks modifying the result’s
value are finished and brings the value to the master’s memory.
Once the value is retrieved, the execution of the master’s code is
resumed. Given that PyCOMPSs is used mostly in distributed envi-
ronments, synchronizing may imply a data transfer from a remote
storage or memory space to the master node.

for block in Data:
presult = word_count(block)
reduce_count(result, presult)

finalResult = compss_wait_on(result)

Figure 2: Sample call to synchronization API

Since the PyCOMPSs runtime is written in Java[28], Python
syntax is supported using a binding. This Python binding is sup-
ported by the Binding-commons layer which focuses on enabling
the functionalities of the runtime to other languages (currently,
Python and C/C++). It has been designed as an API with a set of
defined functions. It is written in C and performs the communica-
tion with the runtime through the JNI [27]. The main advantage of
this architecture is the capability to execute the code across several
heterogeneous architectures. The user defines the tasks but is the
runtime who handles all the infrastructure thanks to the several
available connectors.

2.1 PyCOMPSs runtime
The PyCOMPSs runtime handles the execution of the applications
in the computing infrastructure. The computing infrastructure is
composed of several heterogeneous nodes, and the execution is
orchestrated following a master-worker paradigm, where the main
program is started on the master node and tasks are offloaded to
worker nodes. In the most general case, the node allocating the
master node will also allocate a worker node.

Once the application starts, each time a task is invoked, a node
is added to the task graph. The directionality of the parameters is
used to identify the data dependencies between the new task and
previous ones. Each scheduler will analyze the generated graph in
a particular way to execute all the workload among the available
resources. The runtime is also aware of the location of the different
data objects and files in the distributed computing platform. This
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information is taken into account when scheduling to exploit the
data locality and also to decide which objects must be transferred
between different memory spaces to guarantee that all the tasks
can be executed.

When transferences between differentmemory spaces are needed,
the PyCOMPSs binding serializes and writes the objects to disk
using the standard library Pickle, delegating the transfer to the
runtime.

Furthermore, the available computing units seen by the runtime
can be configured to oversubscribe the amount of work, meaning
that more threads than CPUs are created.

2.2 Interaction with external libraries
The PyCOMPSs runtime supports the execution of multi-threaded
tasks using the constraint interface. The number of cores assigned
to a multi-threaded task can be indicated by the programmer in
the ComputingUnits constraint tag. The PyCOMPSs scheduler can
assign several cores to a given multi-threaded task. On the other
hand, although support for tasks that use several nodes has been
added recently, in this work we only consider tasks executing inside
a single node.

Before this work, the coreswere assigned blindly to the tasks. The
performance results observed were relatively poor when running
numerical applications, such as those using the NumPy or SciPy
libraries that link to the Intel®MKL library [1]. It has been shown
that, by default, MKL tends to occupy the entire node when the
multi-threading is enabled. Not considering this fact can result in a
heavy oversubscribing. In addition, each task can be executed in
several NUMA sockets. This fact increases the amount of transfers
between the different NUMA-nodes, decreasing the performance
dramatically. Knowing that this behavior can be found in other
libraries, the problem has been solved in a general way.

We have modified the PyCOMPSs task executor in such a way
that it is currently able to bind multi-threaded tasks to specific
computing units of the infrastructure. This fact, combined with the
capability to define the nodes’ virtual amount of computing units,
allows the user to achieve the desired rate of oversubscribing. How-
ever, this is not done blindly: the PyCOMPSs runtime distributes
the tasks evenly between the different NUMA sockets, avoiding at
the maximum the transfers between memory spaces.

2.3 Scheduling infrastructure
PyCOMPSs runtime has been extended with a scheduling infras-
tructure that supports pluggable scheduling policies. Almost all the
tests presented in this paper are based on a data locality scheduler
that takes into account the node that stores the data accessed by the
tasks. More precisely, a task will have a score equal to the amount
of input data present in a given node.

Defining a new score policy is enough to change the scheduler
behavior. It will prioritize the taskswith the highest score for a given
combination of resource, implementation, and data. In addition
to the data locality score, three more policies have been defined:
First In First Out (FIFO), Last In First Out (LIFO) and data locality
with priority to tasks with a shared edge in the dependency graph
with the finished task (FIFOData). In this last policy, there are
two different scenarios. In the case where there are tasks freed by

the job that has just finished, one of them is scheduled in First In
First Out order; even before treating the tasks that are already free.
Otherwise, data locality is considered between all the available
tasks. The first two policies (LIFO, FIFO) have served to probe the
robustness of the scheduling system. The third one can be seen as
a relaxation of the data locality scheduler to lighten the amount of
needed comparisons to schedule a task.

The available schedulers allow the user to configure the execu-
tion depending on the expected load.

2.4 Python persistent workers
In previous runtime versions, PyCOMPSs was enhanced with a per-
sistent Java worker, meaning that a Java worker process was started
at the beginning of the application execution, communicating with
the master to get information about the tasks to be executed and
data transfers to be performed. However, every time a Python task
was invoked, a new Python interpreter was launched. This process
has been enhanced with the implementation of Python persistent
workers.

More in detail, the PyCOMPSs worker module has been modified
on top of the Python’s built-in multiprocessing library. When the
application execution begins, the primary worker process in each
worker node spawns a set of processes that will be responsible for
executing the tasks. These processes are kept alive during the whole
application execution and communicate with the Java persistent
worker through pipes. The messages that they exchange include
information about the task execution requests, job parameters, and
computation results. This feature improves the overall performance
by reducing the overhead of deploying a new Python interpreter
per task. Besides, modules loaded by previous tasks are already
present in the interpreter and do not need to be reloaded.

2.5 Versioning
GPUs have demonstrated that can sometimes achieve better perfor-
mance than CPUs. In fact, it is not always easy to decide whether it
is better to use one architecture or the other[17]. Also, FPGAs are
gaining some momentum. In this context, projects with the primary
focus of interest on heterogeneous architectures are arising[23].
Hence, it seems reasonable to think that, in both HPC and Big Data
contexts, we are going towards environments with heterogeneous
architectures.

@implement(source_class="matmul_objects_MKL",
method="multiply")

@constraint (ComputingUnits="$ComputingUnitsKNL",
ProcessorName="KNL")

@task(c=INOUT)
def multiplyKNL(a, b, c, MKLProcXeon, MKLProcKNL):

os.environ["KMP_AFFINITY"]="disabled"
os.environ["MKL_NUM_THREADS"]=str(MKLProcKNL)
c += a * b

@constraint (ComputingUnits="$ComputingUnitsXEON",
ProcessorName="XEON")

@task(c=INOUT)
def multiply(a, b, c, MKLProcXeon, MKLProcKNL):

os.environ["MKL_NUM_THREADS"]=str(MKLProcXeon)
c += a * b

Figure 3: Version handling with PyCOMPSs



Conference’17, July 2017, Washington, DC, USA R. Amela, C. Ramon-Cortes, J.Ejarque, J. Conejero, R. M. Badia

PyCOMPSs can manage those cases by providing support for
the definition of different versions of the same method for different
architectures. The programmer can use the @implements decora-
tor to indicate that a method implements the same behavior than
another. Figure 3 shows an example of versioning, which together
with the @constraint decorator allows to indicate to the runtime
that some tasks can only be executed in a given set of computing
resources. In fact, using versioning and tasks’ constraints, the users
can define CPU, GPU or FPGA versions of the same task.

Internally, at the beginning of the execution, the Runtime will
blindly execute any of the available versions that can run in a
given resource in order to obtain an execution profile per version.
Afterwards, the Runtime is capable to use the profiled information
to choose the implementation with the lowest execution time.

2.6 Profiling
PyCOMPSs generates post-mortem traces under demand using
Extrae[4]. These files can be explored with Paraver[31] [5], ob-
taining visual information to make easier the code performance
fine tuning.

Some specific PyCOMPSs events have been added in order to
differentiate the different steps done by the master and the workers.
More precisely, it is possible to see the different actions performed
by a worker each time that a task is executed.

Finally, the dependency graph generated can be plotted at the
end of the computation or be explored on runtimewith themonitor.

3 LINEAR ALGEBRA CODES
We have evaluated PyCOMPSs with several linear algebra codes. It
is important to keep in mind that PyCOMPSs is a general purpose
programming model, not a specific one for dense linear algebra
computations [16] [12]. Nevertheless, linear algebra algorithms are
the base for several fields such as Machine Learning and Compu-
tational physics. Even if other good options like ScaLAPACK [15]
already do this job, any of them can be called directly from Python.

In general, the matrices are chunked in smaller square matrices
(blocks) to distribute the data easily along the available resources
and take advantage of this fact to consider the square blocks as the
minimum entity to work with [25]. All the operations performed
on the blocks use the multi-threaded library MKL.

The following schema has been pursued for all the computations.
The initialization is performed in a distributed way, defining tasks
to initialize the matrix blocks. These tasks do not take into account
the nature of the algorithm and they are scheduled in a round robin
manner. Next, all the computations are done considering that the
data is already allocated in a given node. The data locality scheduler
will assign the tasks taking into account the locality information
and reducing the data transfers. This methodology shows that
PyCOMPSs is capable of obtaining HPC performance in Big Data
environments, where data is already present in the infrastructure,
and it is not possible to arrange its location depending on the
computation.

The following subsections provide a brief description of the
encoded algorithms.

3.1 Matrix multiplication
The matrix multiplication code performs a matrix multiplication by
blocks. The code has two tasks: one for the creation of the matrices’
blocks and one for the blocks’ multiply-accumulate. Since the blocks
are defined as NumPy arrays, the operations that operate on them
are overridden and the corresponding NumPy operation is invoked,
which calls as well to the MKL operation. Notice that this behavior
happens even when indicated with arithmetic operators.

Figure 1 shows the code used to perform the multiplication task.

3.2 Cholesky factorization
The Cholesky factorization can be applied to Hermitian positive-
defined matrices. This decomposition is a particular case of the LU
factorization, obtaining two matrices of the formU = Lt .

def cholesky_blocked(A):
import os
import numpy as np
for k in range(MSIZE):

# Diagonal block factorization
A[k][k] = potrf(A[k][k], mkl_threads)
# Triangular systems
for i in range(k+1, MSIZE):

A[i][k] = solve_triangular(A[k][k], A[i][k], mkl_threads)
A[k][i] = np.zeros((BSIZE,BSIZE))

# update trailing matrix
for i in range(k+1, MSIZE):

for j in range(i, MSIZE):
A[j][i] = gemm(-1.0, A[j][k], A[i][k],

A[j][i], 1.0, mkl_threads)
return A

Figure 4: Cholesky factorization main function

There are twomain blocked algorithms to perform a Cholesky de-
composition. The right-looking algorithm [14] and the left-looking
version [29]. Figure 4 shows the code used in this case, correspond-
ing to the right-looking approach. It has been chosen because it is
more aggressive, meaning that in an early stage of the computation
there are blocks of the solution that are already computed. Hence,
the runtime can continue performing the following computations
on the matrices.

The functions in bold in the Cholesky code (potrf, solve_triangular,
and gemm) are annotated as tasks. Each of these tasks internally
calls to MKL functions, with a given number of threads.

@constraint(ComputingUnits="$ComputingUnits")
@task(returns=np.ndarray)
def potrf(A):

from scipy.linalg.lapack import dpotrf
import os
os.environ[’MKL_NUM_THREADS’]=str(mkl_threads)
A = dpotrf(A, lower=True)[0]
return A

Figure 5: potrf task in the Cholesky code

Figure 5 shows the code of the potrf task from Cholesky code.
This task has a constraint decorator that indicates the number of
ComputingUnits (CPU’s in this case) required to execute the task
that, during the experimentation, matches the amount of MKL
threads. Notice that the COMPSs runtime can be configured to
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oversubscribe the computing nodes with tasks that involve more
threads than the actual available computing cores.

The other tasks defined in this example look very similar to the
potrf one.

3.3 QR factorization
Traditional QR algorithms use the Householder transformation, but
this method requires accessing a whole column of the matrix, while
our data structures are based on blocks. The approach followed
in our implementation uses a method based on Givens rotations,
which access the data in the matrices by blocks [33].

def qr_blocked(A, MKLProc, overwrite_a=False):
import numpy as np
Q = genIdentity(MSIZE,BSIZE,MKLProc)
if not overwrite_a:

R = copyBlocked(A)
else:

R = A
for i in range(MSIZE):

actQ, R[i][i] = qr(R[i][i], MKLProc, BSIZE, transpose=True)
for j in range(MSIZE):

Q[j][i] = dot(Q[j][i], actQ, MKLProc, transposeB=True)
for j in range(i+1,MSIZE):

R[i][j] = dot(actQ,R[i][j],MKLProc)
#Update values of the respective column
for j in range(i+1,MSIZE):

subQ = [[np.matrix(np.array([0])),np.matrix(np.array([0]))],
[np.matrix(np.array([0])),np.matrix(np.array([0]))]]

subQ[0][0],subQ[0][1],subQ[1][0],subQ[1][1],R[i][i],R[j][i] =
littleQR(R[i][i],R[j][i],MKLProc,BSIZE,transpose=True)

#Update values of the row for the value updated in the column
for k in range(i + 1,MSIZE):

[[R[i][k]],[R[j][k]]] = multiplyBlocked(subQ,
[[R[i][k]],[R[j][k]]], BSIZE, MKLProc)

for k in range(MSIZE):
[[Q[k][i],Q[k][j]]] = multiplyBlocked([[Q[k][i],

Q[k][j]]], subQ, BSIZE, MKLProc,transposeB=True)
return Q,R

Figure 6: QR factorization main function

Figure 6 shows the QR implementation used in this paper. An aux-
iliary matrix, mainly composed of identity and zero blocks except
for the four blocks corresponding to the positions (i, i ), (i, j ), (j, i )
and (j, j ), where (i, j ) is the position that is being rotated (changed
to zero) performs the rotations. Although in our initial version of
the QR algorithm we were allocating this auxiliary matrix, we have
developed a second version where only those blocks different to
identity or zero are actually allocated, and only the multiplications
by values different to identity or zero are performed. With this
second approach (calledmemorySaveQR in the evaluation), we save
memory space and reduce useless computations.

3.4 LU factorization
In this case, an approach without pivoting [24] has been the starting
point. The partial pivoting blocked algorithm [32] was not consid-
ered because requires an entire column to be present in a node to
compute the partial column LU decomposition. Knowing that this
approach is unstable in general [22], one modification has been
done to increase the stability of the algorithm while keeping the
block division and avoiding bringing an entire column into a single
node.

Figure 7 shows a schema with all the steps taken in an iteration
of the LU factorization:

(1) The current principal block, considered the one with the
lowest column and row index (A in the figure) is decomposed
using some underlying library

(2) The first U ’s row (U12 in the figure) is computed using the
row of the current principal block

(3) The column of the present main block is used to calculate
an auxiliary result for the next steps (P22L21)

(4) The LU decomposition of the blocks with a row or column
index larger than the principal one is launched (recursive
step)

(5) The first L’s column (L21 in the figure) is computed using
the column of the current main block as well as the result of
the iterative step

(
A B
C D

)
=

(
P11 0
0 P22

) (
L11 0
L21 L22

) (
U11 U12
0 U22

)
→

(
A B
C D

)
=

(
P11L11U11 P11L11U12
P22L21U11 P22L21U12 + P22L22U22

)
→

P11L11U11 = A,

U12 = L−111 P
−1
11 B,

P22L21 = CU −111 ,

P22L22U22 = D − P22L21U12,

L21 = P−122 CU
−1
11

Figure 7: LU mathematical principles

Finally, Figure 8 shows the code corresponding to the previously
presented algorithm.

4 RESULTS
4.1 Computing infrastructure
The execution results presented in this section have been obtained
in two different clusters located at the Barcelona Supercomputing
Center (BSC).

We have used COMPSs version 2.0 for the initial evaluations,
and the same version with the Python persistent workers to test
these new features. We have also used Intel®Python 2.7.11 and
MKL 2017.

MareNostrum III. This supercomputer was composed by 3056
nodes, each of them with two Intel®SandyBridge-EP E5-2670/1600
20M (8 cores at 2,6 GHz each), main memory that varies from
32 to 128 GB, FDR-10 Infiniband and Gigabit Ethernet network
interconnections, and 3 PB of disk storage [8]. It was providing
service for researchers from a wide range of different areas, such
as life science, earth science and engineering until March 2017.

SSF cluster. This cluster is composed of 8 nodes with two In-
tel®Xeon®CPU E5-2690 v4 @ 2.60GHz and 128 GB of main mem-
ory each (Xeon nodes) and 8 nodes with an Intel®Xeon Phi®CPU
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def lu_blocked(A, MKLProc):
import numpy as np
Pres = [[np.matrix(np.zeros((BSIZE, BSIZE)),dtype=float)]

* MSIZE for _ in range(MSIZE)]
Lres = [[None] * MSIZE for _ in range(MSIZE)]
Ures = [[None] * MSIZE for _ in range(MSIZE)]
for i in range(len(A)):

for j in range(i+1, len(A)):
Lres[i][j] = np.matrix(np.zeros((BSIZE, BSIZE)),dtype=float)
Ures[j][i] = np.matrix(np.zeros((BSIZE, BSIZE)),dtype=float)

Pres[0][0], Lres[0][0], Ures[0][0] = custom_lu(A[0][0], MKLProc)
for j in range(1, MSIZE):

Ures[0][j] = multiply(MKLProc, [1],
invert_triangular(Lres[0][0], MKLProc, lower = True),
Pres[0][0], A[0][j])

for i in range(1, MSIZE):
for j in range(i, MSIZE):

for k in range(i, MSIZE):
mat = invert_triangular(Ures[i - 1][i - 1], MKLProc,

lower=False)
dgemm(-1, A[j][k], multiply(MKLProc, [], A[j][i - 1], mat),

Ures[i-1][k], MKLProc)
Pres[i][i], Lres[i][i], Ures[i][i] = custom_lu(A[i][i], MKLProc)
for j in range(0, i):

Lres[i][j] = multiply(MKLProc, [0], Pres[i][i], A[i][j],
invert_triangular(Ures[j][j], MKLProc, lower = False))

for j in range(i + 1, MSIZE):
Ures[i][j] = multiply(MKLProc, [1],

invert_triangular(Lres[i][i], MKLProc, lower = True),
Pres[i][i], A[i][j])

return Pres, Lres, Ures

Figure 8: LU factorization main function

7210 @ 1.30GHz and 110 GB of main memory each (KNL nodes).
The network technology used is OmniPATH. Also, Lustre [6] is
used as shared file system.

4.2 Matrix multiplication
For the matrix multiplication example, we have first analyzed the
impact of the oversubscription in a single node. The data square
matrices considered had 32K by 32K doubles, organized in blocks of
4K and 8K. Larger blocks have not been tested since there is a limit
on the serialization size for a single block of 4GB for Python 2.7.
This limitation is due to a hardcoded parameter in the save_bytes
function, present in the class _pickle.c of the module in charge of
the serializations.

We have instructed the Runtime to schedule always two tasks
per NUMA socket, where all task threads are bounded to a single
socket as described in Section 2. The number of threads has been
varied in each execution from 4 to 32 threads, in such a way that
the oversubscription ratio varied from 1 (when 4 threads/task are
used) to 8 (when 32 threads/task are used). Figure 9 shows the
results of this evaluation. Notice that PyCOMPSs gets the maximum
performance when using a level of oversubscription 4 and a block
size of 8K. The performance in the best case is around 200 GFLOPS,
which represents the 60% of the peak of a MareNostrum III node
(332 GFLOPS [7]).

Next, we have executed the same PyCOMPSs code in a variable
number of nodes, from 1 to 64 (from 16 to 1024 cores), with an
additional node for the master.

Figure 10 shows the performance obtained with matrices of 64K
by 64K doubles, organized in blocks of 4K by 4K. The runtime was
configured to execute a maximum of four tasks per node, each of

Figure 9: Matrix multiplication evaluation inside one node:
impact of oversubscription

Figure 10: Matrix multiplication performance in a dis-
tributed cluster

them using 16 MKL threads, which represent an oversubscription
ratio of four. The light blue line labeled Ideal distributed scaling
is derived by considering an ideal speedup from the performance
obtained in one node with PyCOMPSs. The red line Sequential
performance corresponds to the performance obtained with MKL
in one node with 16 threads for a single block of 4K by 4K (251
GFLOPS). We observe a very good speedup until 16 nodes. After
that, the efficiency is lower but the system keeps scaling.

The next result worth mentioning concerning the matrix multi-
plication is the heterogeneous execution in the SSF cluster. Figure 11
shows a post-mortem trace file obtained with Extrae and analyzed
with Paraver. More precisely, the execution uses one Xeon node
and one KNL node. Blue tasks correspond to initializations and the
white ones to block multiplications. Green flags point out begin-
ning and end of tasks. Notice that these many-core architectures
allow working with plenty of tasks simultaneously. For instance,
this execution multiplies two matrices of 131K x 131K divided into
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Figure 11: Matrix multiplication heterogeneous execution
trace in SSF cluster

blocks of 4K, with 1024 free tasks in average, and a total amount
of 32768 tasks; showing the capability of the COMPSs runtime to
handle a huge amount of work. Each KNL node executes 4 tasks
concurrently and each Xeon node executes 8 tasks at a time.

Figure 12: Performance of a 131K x 131K doublematrixmul-
tiplication heterogeneous execution in the SSF cluster

In this context, and considering that there is not a dedicated node
to allocate the master (it runs in a Xeon node that also executes
an entire worker), the scalability study has stressed the scheduler.
Figure 12 shows how the data locality scheduler degrades much
faster than the FIFOData scheduler. This is due to the simplification
in the scheduling policy, avoiding a lot of comparisons between
the score of the different free tasks. In this case, the users have two

options to increase the performance, either to change the scheduler
or to dedicate more resources to the Runtime.

4.3 Cholesky factorization
Figure 13 shows the Cholesky performance in MareNostrum III.
The matrix size is again 64K by 64K doubles, and the block size 4k
by 4k doubles. We have used the same values for the maximum
tasks per node and oversubscription than in the previous case (4
tasks per node, 16 threads per task, and an oversubscription ratio
of 4).

Figure 13: Cholesky performance in MareNostrum III

The red line Sequential performance corresponds to the perfor-
mance obtained with MKL potrf with 16 threads for a block of 4K
by 4K doubles (72 GFLOPS) in a single MareNostrum node. The
green line Ideal scaling from sequential is equivalent to the ideal
speedup calculated from the previous value.

The chart shows two PyCOMPSs performance results. On the one
hand, the blue line corresponds to the performance of PyCOMPSs
2.0. On the other hand, the red line corresponds to the performance
of PyCOMPSs 2.0 with the enhancement of the Python persistent
workers described in Section 2.4.

Both lines show a similar behavior, with ideal scaling up to four
nodes and an increasing degradation from there. When inspecting
the post-mortem performance traces, we have observed that the
degradation of the performance is due to themorphology of the task-
graph. As shown in Figure 14, the maximum available parallelism is
already filled with eight nodes. This is a good example of how useful
the profiling tools can be when analyzing the code to understand
the obtained performance.

Moreover, a significant performance improvement is observed
with the new persistent Pythonworker. This improvement is mainly
due to the reduction in the overhead seen in the tasks to start the
Python environment and to import the different Python modules
used by the tasks.

Figure 15 shows the performance obtained with a heterogeneous
execution in the SSF cluster. The block size is 4K x 4K and the matrix
size is 130K by 130K. For each execution, half of the nodes are Xeon,
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Figure 14: Cholesky dependency graph for a 16 blocks by 16 blocks matrix decomposition

and half are KNL nodes. In this case, only the gemm function can
run on both architectures. The rest can run only in the Xeon nodes.

Figure 15: Cholesky performance in SSF

Figure 16 shows the execution trace of the previous performance
test with 4 Xeon and 4 KNL nodes. Green segments correspond
to initialization tasks, the blue ones to potrf, the red ones to
solve_triangular and the white ones to gemm. Yellow lines sep-
arate the different nodes. While the nodes with a maximum of 4
tasks running at a time are KNLs, the ones with a maximum of 8
are Xeon nodes. In this execution, the KNL nodes are constrained
to execute gemm tasks and readers may notice that the scheduler is
capable of handling the fact that not all the machines can execute
all tasks’ types by only sending the tasks where they can run.

4.4 QR factorization
For the QR evaluation, we used a matrix of size 32K by 32K doubles
organized in blocks of 4K by 4K doubles. We have evaluated the
dense version of the factorization against the memory save version.
As described in Section 3.3, the difference between both versions is
that the sparse version only allocates those blocks of the auxiliary
matrix that are different to the identity or to zero. Additionally, the
operations with this identity or zero blocks are not performed (the
original block or a zero block is directly returned). To accomplish

Figure 16: Matrix multiplication heterogeneous execution
trace in SSF cluster

this behavior, each element is modeled as a list with an integer to
indicate the block type and, if necessary, a NumPy array with its
real content.

Figure 17 shows the dependency graph corresponding to a QR
decomposition of a 4 blocks x 4 blocks execution, manifesting that
the PyCOMPSs runtime is not only able to handle an enormous
amount of tasks but also really complex dependency graphs. The
real execution (8 blocks x 8 blocks) has a much more complicated
graph but is too large to be attached to this paper.

Figure 18 presents the results obtained executing the code in
MareNostrum III. As explained in the previous case, the application
does not scale well beyond 4 nodes because it reaches the parallelism
limit of the application. Nevertheless, the performance until this
point is excellent.
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Figure 17: QR dependency graph for a 4 blocks by 4 blocks matrix decomposition

Figure 18: QR performance in MareNostrum III

4.5 LU factorization
In this case, all the executions have been performed in the SSF
cluster using only Xeon nodes. A matrix with 82K x 82K doubles
has been factorized, obtaining the matrices P, L and U detailed in
Section 3.4.

As shown in Figure 19, the reference execution performance
is the maximum achieved with a threaded code executing pure
NumPy code, corresponding to a 32K x 32K doubles matrix. The
performance obtained with a matrix with 4K x 4K doubles (the
block size used in the distributed execution) is 41 GFLOPS, far away
from the 218 GFLOPS achieved with the 32K x 32K matrix. This
fact suggests that when the matrix is not large enough, not all the
resources are fulfilled. Nonetheless, when executing several tasks
at the same time, PyCOMPSs take advantage of all the available
resources.

5 CONCLUSIONS
PyCOMPSs is a robust programming model that enables the pro-
grammer to achieve remarkable performances with clean and sim-
ple codes. Based on the sequential version and just by adding some

Figure 19: LU performance in SSF cluster with Xeon nodes

decorators skillfully, the code is ready to run on distributed and
heterogeneous clusters thanks to the power of the Runtime that
automatically handles all the tasks’ scheduling and data transfers.
Once the runtime is installed on a given infrastructure, the code
parallelized with PyCOMPSs is easily executed.

This paper has shown that good performances can be achieved
when calling lower level libraries tuned for each particular archi-
tecture. PyCOMPSs allows the users to quickly turn a Python se-
quential code into a highly portable distributed version. Depending
on the code’s nature, PyCOMPSs can so play both the distributed
programming language and orchestrator roles.

Finally, all the executions have been performed with the data
already present in the shared file system. The PyCOMPSs runtime
has shown that it is capable of achieving a good performance level
when the data is already present in the infrastructure. This fact
puts the programming model in the frontier between Big Data and
HPC, fulfilling the needs of both environments.
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