
Compact Flow Diagrams for State Sequences

Kevin Buchin, Maike Buchin, Joachim Gudmundsson,
Michael Horton, and Stef Sijben

Abstract. We introduce the concept of compactly representing a large
number of state sequences, e.g., sequences of activities, as a flow diagram.
We argue that the flow diagram representation gives an intuitive summary
that allows the user to detect patterns among large sets of state sequences.
Simplified, our aim is to generate a small flow diagram that models the
flow of states of all the state sequences given as input. For a small number
of state sequences we present efficient algorithms to compute a minimal
flow diagram. For a large number of state sequences we show that it is
unlikely that efficient algorithms exist. More specifically, the problem is
W [1]-hard if the number of state sequences is taken as a parameter. We
thus introduce several heuristics for this problem. We argue about the
usefulness of the flow diagram by applying the algorithms to two problems
in sports analysis. We evaluate the performance of our algorithms on a
football data set and generated data.

1 Introduction

Sensors are tracking the activity and movement of an increasing number of
objects, generating large data sets in many application domains, such as sports
analysis, traffic analysis and behavioural ecology. This leads to the question
of how large sets of sequences of activities can be represented compactly. We
introduce the concept of representing the “flow” of activities in a compact way
and argue that this is helpful to detect patterns in large sets of state sequences.

To describe the problem we start by giving a simple example. Consider three
objects (people) and their sequences of states, or activities, during a day. The set
of state sequences T = {τ1, τ2, τ3} are shown in Fig. 1(a). As input we are also
given a set of criteria C = {C1, . . . , Ck}, as listed in Fig. 1(b). Each criterion is
a Boolean function on a single subsequence of states, or a set of subsequences
of states. For example, in the given example the criterion C1 =“eating” is true
for Person 1 at time intervals 7–8am and 7–9pm, but false for all other time
intervals. Thus, a criterion partitions a sequence of states into subsequences, called
segments. In each segment the criterion is either true or false. A segmentation of
T is a partition of each sequence in T into true segments, which is represented
by the corresponding sequence of criteria. If a criterion C is true for a set of
subsequences, we say they fulfil C. Possible segments of T according to the set C
are shown in Fig. 1(c). The aim is to summarize segmentations of all sequences
efficiently; that is, build a flow diagram F , starting at a start state s and ending
at an end state t, with a small number of nodes such that for each sequence of
states τi, 1 ≤ i ≤ m, there exists a segmentation according to C which appears

ar
X

iv
:1

60
2.

05
62

2v
1

 [
cs

.D
S]

 1
7

Fe
b

20
16

Person 1 Person 2 Person 3

8-9am cycle to work cycle to workdrive to work

9am-5pm work work work

5-7pm study dinner shop

7-9pm dinner shop dinner

7-8am breakfast breakfastgym

(a) (b)

s C3

C1

C4 t

C2 C6

C1

C6

(c) (d)

8-9am

9am-5pm

5-7pm

7-9pm

7-8am

Person 1

[C2, C3]

[C4, C5]

[C4]

[C1, C7]

[C1, C7]

Person 2

[C2]

[C4, C5]

[C1]

[C6]

[C3]

Person 3

[C2, C3]

[C4, C5]

[C6]

[C1, C7]

[C1, C7]

C1: Eating {breakfast,dinner}

C3: Exercising {gym,cycle to work}
C4: Working or studying

C5: Working for at least 4 hours

C6: Shopping

C2: Commuting {cycle/drive to work}

C7: At least 2 people eating simultaneously

Fig. 1: The input is (a) a set T = {τ1, . . . , τm} of sequences of states and (b)
a set of criteria C = {C1, . . . , , Ck}. (c) The criteria partition the states into a
segmentation. (d) A valid flow diagram for T according to C.

as an s–t path in F . A possible flow diagram is shown in Fig. 1(d). This flow
diagram for T according to C can be validated by going through a segmentation
of each object while following a path in F from s to t. For example, for Person 1
the s–t path s→ C1 → C2 → C4 → C1 → t is a valid segmentation.

Now we give a formal description of the problem. A flow diagram is a node-
labelled DAG containing a source node s and sink node t, and where all other
nodes are labelled with a criterion. Given a set T of sequences of states and set
of criteria C, the goal is to construct a flow diagram with a minimum number of
nodes, such that a segmentation of each sequence of states in T is represented,
that is, included as an s–t path, in the flow diagram. Furthermore (when criteria
depend on multiple state sequences, e.g. C7 in Fig. 1) we require that the
segmentations represented in the flow diagram are consistent, i.e. can be jointly
realized. The Flow Diagram problem thus requires the segmentations of each
sequence of states and the minimal flow diagram of the segmentations to be
computed. It can be stated as:

Problem 1. Flow Diagram (FD)
Instance: A set of sequences of states T = {τ1, . . . , τm}, each of length at most
n, a set of criteria C = {C1, . . . , Ck} and an integer λ > 2.
Question: Is there a flow diagram F with ≤ λ nodes, such that for each τi ∈ T ,
there exists a segmentation according to C which appears as an s–t path in F?

Even the small example above shows that there can be considerable space
savings by representing a set of state sequences as a flow diagram. This is not
a lossless representation and comes at a cost. The flow diagram represents the
sequence of flow between states, however, the information about an individual
sequence of states is lost. As we will argue in Section 4, paths representing many

2

segments in the obtained flow diagrams show interesting patterns. We will give
two examples. First we consider segmenting the morphology of formations of
a defensive line of football players during a match (Fig. 5). The obtained flow
diagram provides an intuitive summary of these formations. The second example
models attacking possessions as state sequences. The summary given by the flow
diagram gives intuitive information about differences in attacking tactics.

Properties of Criteria. The efficiency of the algorithms will depend on prop-
erties of the criteria on which the segmentations are based. Here we consider
four cases: (i) general criteria without restrictions; (ii) monotone decreasing and
independent criteria; (iii) monotone decreasing and dependent criteria; and (iv)
fixed criteria. To illustrate the properties we will again use the example in Fig. 1.

A criterion C is monotone decreasing [7] for a given sequence of states τ that
fulfils C, if all subsequences of τ also fulfil C. For example, if C4 is fulfilled by a
sequence τ then any subsequence τ ′ of τ will also fulfil C4. This is in contrast to
criterion C5 which is not monotone decreasing.

A criterion C is independent if checking whether a subsequence τ ′ of a
sequence τi ∈ T fulfils C can be achieved without reference to any other sequences
τj ∈ T , i 6= j. Conversely, C is dependent if checking that a subsequence τ ′ of τi
requires reference to other state sequences in T . In the above example C4 is an
example of an independent criterion while C7 is a dependent criterion since it
requires that at least two objects fulfil the criterion at the same time.

Related work. To the best of our knowledge compactly representing sequences
of states as flow diagrams has not been considered before. The only related work
we are aware of comes from the area of trajectory analysis. Spatial trajectories
are a special case of state sequences. A spatial trajectory describes the movement
of an object through space over time, where the states are location points, which
may also include additional information such as heading, speed, and temperature.
For a single trajectory a common way to obtain a compact representation is
simplification [9]. Trajectory simplification asks to determine a subset of the
data that represents the trajectory well in terms of the location over time. If the
focus is on characteristics other than the location, then segmentation [1,2,7] is
used to partition a trajectory into a small number of subtrajectories, where each
subtrajectory is homogeneous with respect to some characteristic. This allows a
trajectory to be compactly represented as a sequence of characteristics.

For multiple trajectories other techniques apply. A large set of trajectories
might contain very unrelated trajectories, hence clustering may be used. Clus-
tering on complete trajectories will not represent information about interesting
parts of trajectories; for this clustering on subtrajectories is needed [5,12]. A
set of trajectories that forms different groups over time may be captured by a
grouping structure [6]. These approaches also focus on location over time.

For the special case of spatial trajectories, a flow diagram can be illustrated
by a simple example: trajectories of migrating geese, see [8]. The individual
trajectories can be segmented into phases of activities such as directed flight,

3

foraging and stop overs. This results in a flow diagram containing a path for the
segmentation of each trajectory. More complex criteria can be imagined that
depend on a group of geese, or frequent visits to the same area, resulting in
complex state sequences that are hard to analyze without computational tools.

Organization In Section 3 we present algorithms for the Flow Diagram problem
using criteria with the properties described above. These algorithms only run in
polynomial time if the number of state sequences m is constant. Below we observe
that this is essentially the best we can hope for by showing that the problem is
W [1]-hard. Both theorems are proved in Section 2. Unless W [1] = FPT , this
rules out the existence of algorithms with time complexity of O(f(m) · (nk)c) for
some constant c, where m,n and k are the number of state sequences, the length
of the state sequences and the number of criteria, respectively. To obtain flow
diagrams for larger groups of state sequences we propose two heuristics for the
problem in Section 3. We experimentally evaluate the algorithms and heuristics
in Section 4.

2 Hardness Results

In this section, the following hardness results are proven.

Theorem 2. The FD problem is NP-hard. This even holds when only two criteria
are used or when the length of every state sequence is 2. Furthermore, for any
0 < c < 1/4, the FD problem cannot be approximated within factor of c logm in
polynomial time unless NP ⊂ DTIME(mpolylogm).

Also for bounded m the running times of our algorithms is rather high. Again,
we can show that there are good reasons for this.

Theorem 3. The FD problem parameterized in the number of state sequences is
W [1]-hard even when the number of criteria is constant.

To obtain the stated results we will perform two reductions; one from the
Shortest Common Supersequence problem and one from the Set Cover problem.

2.1 Reduction from SCS

Problem 4. Shortest Common Supersequence (SCS)
Instance: A set of strings R = {r1, r2, . . . , rk} over an alphabet Σ, a positive
integer λ.
Question: Does there exist a string s ⊂ Σ∗ of length at most λ, that is a
supersequence of each string in R?

The SCS problem has been extensively studied over the last 30 years (see [10]
and references therein). Several hardness results are known, we will use the
following two.

4

s

t

(a)

t

s

(b)

Fig. 2: Examples of flow diagrams produced by the reductions: (a) From Shortest
Common Supersequence. (b) From Set Cover.

Lemma 5 (Pietrzak [16]). The Shortest Common Supersequence problem pa-
rameterized in the number of Strings is W [1] hard even when the alphabet has
constant size.

Lemma 6 (Räihä and E. Ukkonen [18]). The Shortest Common Superse-
quence problem over a binary alphabet is NP-complete.

Given an instance I = (R = {r1, . . . , rm}, Σ) of SCS construct an instance of
FD as follows. Each character cl in the alphabet Σ corresponds to a criterion cl.
Each string ri corresponds to a state sequence Ti, where Ti[j] = cri[j]. Thus at
any step Ti fulfils exactly one criterion.

An algorithm for FD given an instance outputs a flow diagram F of size f .
Given F one can compute a linear sequence b of the vertices of F using topological
sort, as shown in Fig. 2a. The linear sequence b has f − 2 vertices (omitting the
start and end state of F) and it is a supersequence of each string in R. It follows
that the size of F is λ if the number of characters in the SCS of I has length λ−2.
Note that F contains a linear sequence of vertices (after topological sort), which
correspondence to a supersequence, and a set of directed edges. Consequently a
solution for the FD problem can easily be transformed to a solution for the SCS
problem but not vice versa.

From the above reduction, together with Lemmas 5-6, we obtain Theorem 3
and the following.

Lemma 7. The FD problem is NP-hard even for two criteria.

2.2 Reduction from Set Cover

Problem 8. Set Cover (SC)
Instance: A set of elements E = {e1, e2, . . . , em}, a set of n subsets of E,
S = {S1, S2, . . . , Sn} and a positive integer λ.
Question: Does there exist set of λ items in S whose union equals E?

5

Set Cover is well known to be NP-hard, and also hard to approximate:

Lemma 9 (Lund and Yannakakis [15]). For any 0 < c < 1/4, the Set
Covering problem cannot be approximated within factor of c logm in polynomial
time unless NP ⊂ DTIME(mpolylogm).

Given an instance I = (E = {e1, e2, . . . , em}, S = {S1, S2, . . . , Sn}) of Set
Cover construct an instance of FD as follows. Each item ei in E corresponds to
a state sequence Ti of length two. Each subset Sj corresponds to a criterion Cj .
If a Sj contains ei then the whole state sequence Ti fulfils criterion Cj .

An algorithm for FD given the new instance outputs a flow diagram F of
size f . The output F is depicted in Fig. 2b. Given F the interior vertices of F
corresponds to a set of subsets in S whose union is E. The diagram F has f
vertices if and only there is f − 2 subsets in S that forms a Set Cover of E.

We obtain Theorem 2 from the above reduction, together with Lemma 9.

3 Algorithms

In this section, we present algorithms that compute a smallest flow diagram
representing a set of m state sequences of length n for a set of k criteria. First, we
present an algorithm for the general case, followed by more efficient algorithms for
the case of monotone increasing and independent criteria, the case of monotone
increasing and dependent criteria, and then two heuristic algorithms.

3.1 General criteria

Next, we present a dynamic programming algorithm for finding a smallest flow
diagram. Recall that a node v in the flow diagram represents a criterion Cj that
is fulfilled by a contiguous segment in some of the state sequences. Let τ [i, j],
i ≤ j, denote the subsequence of τ starting at the ith state of τ and ending at
the jth state, where τ [i, i] is the empty sequence. Construct an (n + 1)m grid
of vertices, where a vertex with coordinates (x1, . . . , xm), 0 ≤ x1, . . . , xm ≤ n,
represents (τ1[0, x1], . . . , τm[0, xm]). Construct a prefix graph G as follows:

There is an edge between two vertices v = (x1, . . . , xm) and v′ = (x′1, . . . , x
′
m),

labeled by some criterion Cj , if and only if, for every i, 1 ≤ i ≤ m, one of the
following two conditions is fulfilled: (1) xi = x′i, or (2) all remaining τi[xi + 1, x′i]
jointly fulfil Cj . Consider the edge between (x1, x2) = (1, 0) and (x′1, x

′
2) = (1, 1)

in Fig. 3(b). Here x1 = x′1 and τ2[x2 + 1, x′2] fulfils C2.
Finally, define vs to be the vertex in G with coordinates (0, . . . , 0) and add an

additional vertex vt outside the grid, which has an incoming edge from (n, . . . , n).
This completes the construction of the prefix graph G.

Now, a path in G from vs to a vertex v represents a valid segmentation of
some prefix of each state sequence, and defines a flow diagram that describes these
segmentations in the following way: the empty path represents the flow diagram
consisting only of the start node s. Every edge of the path adds one new node to
the flow diagram, labeled by the criterion that the segments fulfil. Additionally,

6

(a) (b) (c)

2

3

1

τ1

[C1]

[C3]

[C1]

τ2

[C1, C2]

[C3]

[C2]
s

τ2

τ1
0

0

1

1 2

2 vt

vs

C2

C3

C1

C1

C2

C3 t

Fig. 3: (a) A segmentation of T = {τ1, τ2} according to C = {C1, C2, C3}. (b) The
prefix graph G of the segmentation, omitting all but four of the edges. (c) The
resulting flow diagram generated from the highlighted path in the prefix graph.

for each node the flow diagram contains an edge from every node representing a
previous segment, or from s if the node is the first in a segmentation. For a path
leading from vs to vt, the target node t is added to the flow diagram, together
with its incoming edges. This ensures that the flow diagram represents valid
segmentations and that each node represents at least one segment. An example
of this construction is shown in Fig. 3.

Hence the length of a path (where length is the number of edges on the path)
equals the number of nodes of the corresponding flow diagram, excluding s and t.
Thus, we find an optimal flow diagram by finding a shortest vs–vt path in G.

Lemma 10. A smallest flow diagram for a given set of state sequences is repre-
sented by a shortest vs–vt path in G.

Proof. We show that every vs–vt path P in G represents a valid flow diagram
F , with the path length equal to the flow diagram’s cost, and vice versa. Thus,
a shortest path represents a minimal valid flow diagram for the given state
sequences.

Let P := (vs =: v1, v2, . . . , v` := vt) be a vs–vt path of length `− 1 in G. As
described in the text, every vs–vt path in G represents a valid flow diagram, and
every vertex visited by the path contributes exactly one node to the flow diagram.
Thus, P represents a valid flow diagram with exactly ` nodes.

For the other direction, let F be a valid flow diagram of a set of state sequences
{T1, . . . , Tm}, each of length n. That is, there are segmentations S1, . . . ,Sm of the
state sequences such that every segmentation is represented in F in the following
way: assume the nodes of F are {s =: f1, f2, . . . , f` := t} according to some
topological sorting. Let Sj consist of the segments sj,1, . . . , sj,σj , where σj is the
number of segments in Sj . Then there exists a path (s =: fj,0, fj,1, . . . , fj,σj

, t)
in F such that each segment sj,i fulfils the criterion C(fj,i) associated with fj,i.

Let bj,i be the index in Tj at which sj,i ends, for 1 ≤ i ≤ σj , and let bj,0 := 1.
Since Sj is a segmentation of Tj , bj,σj

= n. Let Fλ be the subdiagram of F induced
by (f1, . . . , fλ), for 1 ≤ λ ≤ `. We define xj,λ := max{bj,i | fj,i ∈ {f1, . . . , fλ}}.
We show inductively that for each λ ∈ {1, 2, . . . , `}, G contains a path from vs

7

to the vertex vλ := (x1,λ, . . . , xm,λ) with length λ− 1, i.e. the number of nodes
in Fλ excluding s.

– Base case λ = 1: Note that v1 = vs, and thus there is a path of length
λ− 1 = 0 from vs to v1.

– Induction step: The node fλ+1 represents the segments

{Tj [xj,λ, xj,λ+1] | 1 ≤ j ≤ m ∧ xj,λ 6= xj,λ+1}.

Since the flow diagram is valid, these segments fulfil the criterion C(fλ+1),
and thus G contains an edge from vλ to vλ+1. Since a path from vs to vλ of
length λ exists by the induction hypothesis, there is a path from vs to vλ+1

of length λ+ 1.

For every state sequence Tj , there exists an index ϕj ∈ {1, . . . , ` − 1} such
that xj,λ = n for all λ ≥ ϕj . Thus, v`−1 = (n, n, . . . , n) and G contains an edge
from v`−1 to v` = vt. So, there is a path from vs to vt of length `− 1. ut

Recall that G has (n + 1)m vertices. Each vertex has O(k(n + 1)m) outgoing
edges, thus, G has O(k(n+ 1)2m) edges in total. To decide if an edge is present
in G, check if the nonempty segments the edge represents fulfil the criterion.
Thus, we need to perform O(k(n+ 1)2m) of these checks. There are m segments
of length at most n, and we assume the cost for checking this is T (m,n). Thus,
the cost of constructing G is O(k(n+ 1)2m · T (m,n)), and finding the shortest
path requires O(k(n+ 1)2m) time.

Theorem 11. The algorithm described above computes a smallest flow diagram
for a set of m state sequences, each of length at most n, and k criteria in
O((n+ 1)2mk · T (m,n)) time, where T (m,n) is the time required to check if a
set of m subsequences of length at most n fulfils a criterion.

3.2 Monotone decreasing and independent criteria

If all criteria are decreasing monotone and independent, we can use ideas similar
to those presented in [7] to avoid constructing the full graph. From a given vertex
with coordinates (x1, . . . , xm), we can greedily move as far as possible along the
sequences, since the monotonicity guarantees that this never leads to a solution
that is worse than one that represents shorter segments. For a given criterion Cj ,
we can compute for each τi independently the maximum x′i such that τi[xi+1, x′i]
fulfils Cj . This produces coordinates (x′1, . . . , x

′
m) for a new vertex, which is the

optimal next vertex using Cj . By considering all criteria we obtain k new vertices.
However, unlike the case with a single state sequence, there is not necessarily
one vertex that is better than all others (i.e. largest ending position), since there
is no total order on the vertices. Instead, we consider all vertices that are not
dominated by another vertex, where a vertex p dominates a vertex p′ if each
coordinate of p is at least as large as the corresponding coordinate of p′, and at
least one of p’s coordinates is larger.

8

Let Vi be the set of vertices of G that are reachable from vs in exactly i
steps, and define M(V) := {v ∈ V | no vertex u ∈ V dominates v} to be the set
of maximal vertices of a vertex set V . Then a shortest vs–vt path through G can
be computed by iteratively computing M(Vi) for increasing i, until a value of i
is found for which vt ∈ M(Vi). Observe that |M(V)| = O((n+ 1)m−1) for any
set V of vertices in the graph. Also note that V0 = M(V0) = vs.

Lemma 12. For each i ∈ {1, . . . , `− 1}, every vertex in M(Vi) is reachable in
one step from a vertex in M(Vi−1). Here, ` is the distance from vs to vt.

Proof. Assume there exists a vertex v ∈M(Vi) that has no edge from a vertex in
M(Vi−1). Since v ∈M(Vi), v is also contained in Vi, and thus its distance from vs
is i. Thus, there must be a vertex v′ at distance i− 1 from vs, i.e. v′ ∈ Vi−1, that
has an edge to v representing a criterion Cj . By assumption, v′ is not contained
in M(Vi−1), and thus there is a vertex v′′ ∈ M(Vi−1) that dominates v′. But
then, by the monotonicity of Cj , there must be a vertex reachable from v′′ that
is identical to v or dominates v. Both cases lead to a contradiction. ut

M(Vi) is computed by computing the farthest reachable vertex for each
v ∈ M(Vi−1) and criterion, thus yielding a set Di of O((n + 1)m−1k) vertices.
This set contains M(Vi) by Lemma 12, so we now need to remove all vertices
that are dominated by some other vertex in the set to obtain M(Vi).

We find M(Vi) using a copy of G. Each vertex may be marked as being in
Di or dominated by a vertex in Di. We process the vertices of Di in arbitrary
order. For a vertex v, if it is not yet marked, we mark it as being in Di. When a
vertex is newly marked, we mark its ≤ m immediate neighbours dominated by
it as being dominated. After processing all vertices, the grid is scanned for the
vertices still marked as being in Di. These vertices are exactly M(Vi).

When computing M(Vi), O((n+ 1)m−1k) vertices need to be considered, and
the maximum distance from vs to vt is m(n + 1), so the algorithm considers
O(mk(n+1)m) vertices. We improve this bound by a factor m using the following:

Lemma 13. The total size of all Di, for 0 ≤ i ≤ `− 1, is O(k(n+ 1)m).

Proof. If a vertex v appears in M(Vi) for some i ∈ {0, . . . , ` − 1}, it generates
vertices for Di+1 that dominate v, and thus v 6∈ M(Vi+j) for any j > 0. So,
each of the nm vertices appears in at most one M(Vi) and generates k candidate
vertices for Di+1 (not all unique). Hence the total size of all Di is O(knm). ut

Using this result, we compute all M(Vi) in O((k +m)(n+ 1)m) time, since
O(k(n+ 1)m) vertices are marked directly, and each of the (n+ 1)m vertices is
checked at most m times when a direct successor is marked. One copy of the grid
can be reused for each M(Vi), since each vertex of Di+1 dominates at least one
vertex of M(Vi) and is thus not yet marked while processing Dj for any j ≤ i.

Since the criteria are independent, the farthest reachable point for a given
starting point and criterion can be precomputed for each state sequence separately.
Using the monotonicity we can traverse each state sequence once per criterion and
thus need to test only O(nmk) times whether a subsequence fulfils a criterion.

9

Theorem 14. The algorithm described above computes a smallest flow diagram
for m state sequences of length n with k independent and monotone decreasing
criteria in O(mnk · T (1, n) + (k +m)(n+ 1)m) time, where T (1, n) is the time
required to check if a subsequence of length at most n fulfils a criterion.

3.3 Monotone decreasing and dependent criteria

For monotone decreasing and dependent criteria, we can use a similar approach
to that described above, however, for a given start vertex v and criterion C,
there is not a single vertex v′ that dominates all vertices reachable from v
using this criterion. Instead there may be Θ((n + 1)m−1) maximal reachable
vertices from v for criterion C. The maximal vertices can be found by testing
O((n+ 1)m−1) vertices on or near the upper envelope of the reachable vertices in
O((n+ 1)m−1 · T (m,n)) time. Using a similar reasoning as in Lemma 13, we can
show that the total size of all Di (0 ≤ i ≤ `− 1) is O(k(n+ 1)2m−1), which gives:

Theorem 15. The algorithm from the previous section computes a smallest flow
diagram for m state sequences of length n with k monotone decreasing criteria in
O(k(n+ 1)2m−1 · T (m,n) +m(n+ 1)m) time, where T (m,n) is the time required
to check if a set of m subsequences of length at most n fulfils a criterion.

3.4 Heuristics

The hardness results presented in the introduction indicate that it is unlikely
that the performance of the algorithms will be acceptable in practical situations,
except for very small inputs. As such, we investigated heuristics that may produce
usable results that can be computed in reasonable time.

For monotone decreasing and independent criteria, the heuristics we consider
are based on the observation that by limiting Vi, the vertices that are reachable
from vs in i steps, to a fixed size, the complexity of the algorithm can be controlled.
Given that every path in a prefix graph represents a valid flow diagram, any path
chosen in the prefix graph will be valid, though not necessarily optimal. In the
worst case, a vertex that advances along a single state sequence a single time-step
(i.e. advancing only one state) will be selected, and for each vertex, all k criteria
must be evaluated, so O(kmn) vertices may be processed by the algorithm. We
consider two strategies for selecting the vertices in Vi to retain:
(1) For each vertex in Vi, determine the number of state sequences that are
advanced in step i and retain the top q vertices [sequence heuristic].
(2) For each vertex in Vi, determine the number of time-steps that are advanced
in all state sequences in step i and retain the top q vertices [time-step heuristic].

In our experiments we use q = 1 since any larger value would immediately
give an exponential worst-case running time.

4 Experiments

The objectives of the experiments were twofold: to determine whether compact
and useful flow diagrams could be produced in real application scenarios; and to

10

empirically investigate the performance of the algorithms on inputs of varying
sizes. We implemented the algorithms described in Section 3 using the Python
programming language. For the first objective, we considered the application
of flow diagrams to practical problems in football analysis in order to evaluate
their usefulness. For the second objective, the algorithms were run on generated
datasets of varying sizes to investigate the impact of different parameterisations
on the computation time required to produce the flow diagram and the complexity
of the flow diagram produced.

4.1 Tactical Analysis in Football

Sports teams will apply tactics to improve their performance, and computational
methods to detect, analyse and represent tactics have been the subject of several
recent research efforts [4,11,14,19,20,21]. Two manifestations of team tactics are
in persistent and repeated occurrence of spatial formations of players, and in plays
– a coordinated sequence of actions by players. We posited that flow diagrams
would be a useful tool for compactly representing both these manifestations, and
we describe the approaches used in this section.

The input for the experiments is a database containing player trajectory
and event data from four home matches of the Arsenal Football Club from the
2007/08 season, provided by Prozone Sports Limited [17]. For each player and
match, there is a trajectory comprising a sequence of timestamped location points
in the plane, sampled at 10 Hz and accurate to 10 cm. In addition, for each match,
there is a log of all the match events, comprising the timestamp and location of
each event.

Defensive Formations. The spatial formations of players in football matches
are known to characterize a team’s tactics [3], and a compact representation
of how formations change over time would be a useful tool for analysis. We
investigated whether a flow diagram could provide such a compact representation
of the defensive formation of a team, specifically to show how the formation
evolves during a phase of play. The trajectories of the four defensive players were
re-sampled at one-second intervals and used to compute a sequence of formation
states which were then segmented to model the formation.

The criteria were derived from those presented by Kim et al. [13]. The angles
between pairs of adjacent players (along the defence line) were used to compute
the formation criteria, see Fig 4. We extended this scheme to allow multiple
criteria to be applied where the angle between pairs of players is close to 10◦. The
reason for this was to facilitate compact results by allowing for smoothing of small
variations in contiguous time-steps. The criteria applied to each state is a triple
(x1, x2, x3), computed as follows. Given two player positions p and q, let ∠pq be
the angle between p and q relative to the goal-line. Let R(−1) = [−90◦,−5◦),
R(0) = (−15◦,+15◦), and R(+1) = (+5◦,+90◦] be three angular ranges. The
positions of the four defenders satisfy the criteria (and thus have the formation)
(x1, x2, x3) if ∠pipi+1 ∈ R(xi) for all i ∈ {1, 2, 3}.

11

0 1 2 3 4 5 6 7 8 9 10
Trajectory Timestep

(+1,0,+1)

(+1,-1,+1)

(0,+1,+1)

(0,0,+1)

(0,-1,+1)

(-1,+1,+1)

(-1,0,+1)

(-1,-1,+1)
C

ri
te

ri
a

Fig. 4: Segmentation of a single state sequence. The formation state sequence is
used to compute the segmentation representation, where segments corresponding
to criteria span the state sequence (bottom). The representation of this state
sequence in the movement flow diagram is shaded in Fig. 5.

3

4

2

2
2

2

2

4

2

2s

t

Fig. 5: Flow diagram for formation morphologies of twelve defensive possessions.
The shaded nodes are the segmentation of the state sequence in Fig. 4.

The criteria in this experiment were monotone decreasing and independent,
and we ran the corresponding algorithm using randomly selected sets of the state
sequences as input. The size m of the input was increased until the running
time exceeded a threshold of 6 hours. The algorithm successfully processed up to
m = 12 state sequences, having a total of 112 assigned segments. The resulting
flow diagram, Fig. 5, has a total complexity of 12 nodes and 27 edges.

We believe that the flow diagram provides an intuitive summary of the
defensive formation, and several observations are apparent. There appears to
be a preference amongst the teams for the right-back to position himself in
advance of the right centre-half (i.e. the third component of the triple is +1).
Furthermore, the (0, 0, 0) triple, corresponding to a “flat back four” is not present

12

in the diagram. This is typically considered the optimal formation for teams
that utilise the offside trap, and thus may suggest that the defences here are
not employing this tactic. These observations were apparent to the authors as
laymen, and we would expect that a domain expert would be able to extract
further useful insights from the flow diagrams.

Attacking Plays. During a football match, the team in possession of the ball
is attempting to reach a position where they can take a shot at goal. Teams
will typically use a variety of tactics to achieve such a position, e.g. teams can
vary the intensity of an attack by pushing forward, moving laterally, making
long passes, or retreating. We modelled attacking possessions as state sequences,
segmented according to criteria representing the attacking intensity and tactics
employed, and computed flow diagrams for the possessions. In particular, we
were interested in determining whether differences in tactics employed by teams
when playing at home or away [4] are apparent in the flow diagrams.

We focus on ball events, where a player touches the ball, e.g. passes, touches,
dribbles, headers, and shots at goal. The event sequence for each match was
divided into sub-sequences where a single team was in possession, and then
filtered to include only those that end with a shot at goal.

We defined criteria that characterised the movement of the ball - relative to
the goal the team is attacking - between event states in the possession sequence.
The applied criteria are defined as follows. Let xi, yi, ti be the x-coordinate in
metres, y-coordinate in metres and time-stamp in seconds, respectively, for event
i. The velocity of the ball in the x-direction at event i, which is in the direction
of the goal, is thus xv = (xi+1 − xi)/(ti+i − ti) in m/s. The velocity yv of the
ball in the y direction is computed in a similar fashion, and together are used to
specify the following criteria.

– Backward movement (BM): xv < 1, a sub-sequence of passes or touches that
move in a defensive direction.

– Lateral movement (LM): −5 < xv < 5, passes or touches that move in a
lateral direction.

– Forward movement (FM): −1 < xv < 12, passes or touches that move in an
attacking direction, at a velocity in the range achievable by humans, i.e. to
approximately 10m/s.

– Fast forward movement (FFM): 8 < xv, passes or touches moving in an
attacking direction at a velocity generally in exceeds of maximum human
velocity.

– Long ball (LB): a pass travelling 30m in the attacking direction.
– Cross-field ball (CFB): a pass travelling 20m in the cross-field direction, and

that has angle in range [80, 100] or [−80,−100].
– Shot resulting in goal (SG): a successful shot resulting in a goal.
– Shot not resulting in goal (SNG): an unsuccessful shot that does not produce

a goal.

13

s BM41

FM

21

FFM

4

30

3

CFB

2

SG

2

SNG

4

7

1

2

6

BM35

1

LM

15

BM4 FM

2

FM7

t

7

59

3

1

8

FM
23

2 1

8

BM10

LB

2

3

1

1

1

4

BM

2

FM3

1

1

3

2

7

4

FFM

1

2

9

1

10

BM

4

FM2

2

1

1

3

1

BM4
1

FM

3 1

BM

2 2

2

2

BM

1

1

2

Fig. 6: Flow diagram produced for the home team. The edge weights are the
number of possessions that span the edge, and the nodes with grey background
are event types that are significant, as defined in Section 4.1.

For a football analyst, the first four criteria are simple movements, and are
not particularly interesting. The last four events are significant: the long ball
and cross-field ball change the locus of attack; and the shot criteria represent the
objective of an attack.

The possession state sequences for the home and visiting teams were segmented
according to the criteria and the time-step heuristic algorithm was used to
compute the flow diagrams. The home-team input consisted of 66 sequences
covered by a total of 866 segments, and resulted in a flow diagram with 25 nodes
and 65 edges, see Fig. 6. Similarly, the visiting-team input consisted of 39 state
sequences covered by 358 segments and the output flow diagram complexity was
22 nodes and 47 edges, as shown in Fig. 7.

At first glance, the differences between these flow diagrams may be difficult
to appreciate, however closer inspection reveals several interesting observations.
The s–t paths in the home-team flow diagram tend to be longer than those in
the visiting team’s, suggesting that the home team tends to retain possession of
the ball for longer, and varies the intensity of attack more often. Moreover, the

14

s

BM

28

FM

11

21

SNG

3

FFM

2

LB

1

SG

1

7

3

3

BM

17

CFB2

t

37

3

BM

5

FM

4

2

5

2

FM
10

BM

1

LM1

2

BM8

1

1

LM

5

FM1

4

1

1

BM

3 FFM
1

2

4

1
1

1

FM2

2

LM
2

1

1

1

2

1

2

Fig. 7: Flow diagram produced for the visiting team. The edge weights are the
number of possessions that span the edge, and the nodes with grey background
are event types that are significant, as defined in Section 4.1.

nodes for cross-field passes and long-ball passes tend to occur earlier in the s–t
paths in the visiting team’s flow diagram. These are both useful tactics as they
alter the locus of attack, however they also carry a higher risk. This suggests that
the home team is more confident in its ability to maintain possession for long
attack possessions, and will only resort to such risky tactics later in a possession.
Furthermore, the tactics used by the team in possession are also impacted by
the defensive tactics. As Bialkowski et al [4] found, visiting teams tend to set
their defence deeper, i.e. closer to the goal they are defending. When the visiting
team is in possession, there is thus likely to be more space behind the home
team’s defensive line, and the long ball may appear to be a more appealing tactic.
The observations made from these are consistent with our basic understanding
of football tactics, and suggest that the flow diagrams are interpretable in this
application domain.

4.2 Performance Testing

In the second experiment, we used a generator that outputs synthetic state
sequences and segmentations, and tested the performance of the algorithms on
inputs of varying sizes.

The segmentations were generated using Markov Chain Monte Carlo sampling.
Nodes representing the criteria set of size k were arranged in a ring and a Markov
chain constructed, such that each node had a transition probability of 0.7 to

15

remain at the node, 0.1 to move to the adjacent node, and 0.05 to move to the
node two places away. Segmentations were computed by sampling the Markov
chain starting at a random node. Thus, simulated datasets of arbitrary size m,
state sequence length n, criteria set size k were generated.

We performed two tests on the generated segmentations. In the first, ex-
periments were run on the four algorithms described in Section 3 with varying
configurations of m, n and k to investigate the impact of input size on the
algorithm’s performance. The evaluation metric used was the CPU time required
to generate the flow diagram for the input. In the second test, we compared
the total complexity of the output flow diagram produced by the two heuristic
algorithms with the baseline complexity of the flow diagram produced by the
exact algorithm for monotone increasing and independent criteria.

We repeated each experiment five times with different input sequences for
each trial, and the results presented are the mean values of the metrics over the
trials. Limits were set such that the process was terminated if the CPU time
exceeded 1 hour, or the memory required exceeded 8GB.

The results of the first test showed empirically that the exact algorithms have
time and storage complexity consistent with the theoretical worst-case bounds,
Fig. 8 (top). The heuristic algorithms were subsequently run against larger test
data sets to examine the practical limits of the input sizes, and were able to
process larger input – for example, an input of k = 128, m = 32 and n = 1024 was
tractable – although the cost is that the resulting flow diagrams were suboptimal,
but correct, in terms of their total complexity.

For the second test, we investigated the complexity of the flow diagram induced
by inputs of varying parameterisations when using the heuristic algorithms. The
objective was to examine how close the complexity was to the optimal complexity
produced using an exact algorithm. The inputs exhibited monotone decreasing
and independent criteria, and thus the corresponding algorithm was used to
produce the baseline. Fig. 8 (bottom) summarises the results for varying input
parameterisations. The complexity of the flow diagrams produced by the two
heuristic algorithms are broadly similar, and increase at worst linearly as the input
size increases. Moreover, while the complexity is not optimal it appears to remain
within a constant factor of the optimal, suggesting that the heuristic algorithms
could produce usable flow diagrams for inputs where the exact algorithms are
not tractable.

5 Concluding Remarks

We introduced flow diagrams as a compact representation of a large number of
state sequences. We argued that this representation gives an intuitive summary
allowing the user to detect patterns among large sets of state sequences, and
gave several algorithms depending on the properties of the segmentation criteria.
These algorithms only run in polynomial time if the number of state sequences
m is constant, which is the best we can hope for given the problem is W [1]-hard.
As a result we considered two heuristics capable of processing large data sets in

16

2 4 6 8 10 12 14 16 18 20
Criteria Set Size k

10-4

10-3

10-2

10-1

100

101

102

103

104

Ex
ec

ut
io

n
tim

e
in

 se
c

(lo
g)

2 4 6 8 10 12 14 16 18 20
Number of State Sequences m

10-4

10-3

10-2

10-1

100

101

102

103

104

Ex
ec

ut
io

n
tim

e
in

 se
c

(lo
g)

1 2 3 4 5 6 7 8 9 10
State Sequence Length n

10-4

10-3

10-2

10-1

100

101

102

103

104

Ex
ec

ut
io

n
tim

e
in

 se
c

(lo
g)

General Criteria
Monotone Decreasing and Independent Criteria

Segment Heuristic
Timestep Heuristic

21 22 23 24 25 26 27 28 29 210

Criteria Set Size k
 (log2)

10

12

14

16

18

20

22

Fl
ow

 D
ia

gr
am

 C
om

pl
ex

ity

21 22 23 24 25 26 27 28 29 210

Number of State Sequences m
 (log2)

0
20
40
60
80

100
120
140
160

Fl
ow

 D
ia

gr
am

 C
om

pl
ex

ity

21 22 23 24 25 26 27 28 29 210

State Sequence Length n
 (log2)

0

500

1000

1500

2000

2500

Fl
ow

 D
ia

gr
am

 C
om

pl
ex

ity

Fig. 8: Runtime statistics for generating flow diagram (top), and total complexity
of flow diagrams produced (bottom). Default values of m = 4, n = 4 and k = 10
were used. The data points are the mean value and the error bars delimit the
range of values over the five trials run for each input size.

reasonable time, however we were unable to give an approximation bound. We
tested the algorithms experimentally to assess the utility of the flow diagram
representation in a sports analysis context, and also analysed the performance of
the algorithms of inputs of varying parameterisations.

References

1. S. P. A. Alewijnse, K. Buchin, M. Buchin, A. Kölzsch, H. Kruckenberg, and
M. Westenberg. A framework for trajectory segmentation by stable criteria. In
Proc. 22nd ACM SIGSPATIAL/GIS, pages 351–360. ACM, 2014.

2. B. Aronov, A. Driemel, M. J. van Kreveld, M. Löffler, and F. Staals. Segmentation
of trajectories for non-monotone criteria. In Proc. 24th ACM-SIAM SODA, pages
1897–1911, 2013.

3. A. Bialkowski, P. Lucey, G. P. K. Carr, Y. Yue, S. Sridharan, and I. Matthews.
Identifying team style in soccer using formations learned from spatiotemporal
tracking data. In ICDM Workshops, pages 9–14. IEEE, 2014.

4. A. Bialkowski, P. Lucey, P. Carr, Y. Yue, and I. Matthews. Win at home and draw
away: automatic formation analysis highlighting the differences in home and away
team behaviors. In Proc. 8th Annual MIT Sloan Sports Analytics Conference, 2014.

17

5. K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo. Detecting com-
muting patterns by clustering subtrajectories. Int. J. Comput. Geometry Appl.,
21(3):253–282, 2011.

6. K. Buchin, M. Buchin, M. J. van Kreveld, B. Speckmann, and F. Staals. Trajectory
grouping structure. In Proc. 13th WADS, pages 219–230, 2013.

7. M. Buchin, A. Driemel, M. van Kreveld, and V. Sacristan. Segmenting trajectories:
A framework and algorithms using spatiotemporal criteria. Journal of Spatial
Information Science, 3:33–63, 2011.

8. M. Buchin, H. Kruckenberg, and A. Kölzsch. Segmenting trajectories based on
movement states. In Proc. 15th SDH, pages 15–25. Springer-Verlag, 2012.

9. H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal data reduction with
deterministic error bounds. The VLDB Journal, 15(3):211–228, 2006.

10. C. B. Fraser and R. W. Irving. Approximation algorithms for the shortest common
supersequence. Nordic Journal of Computing, 2(3):303–325, 1995.

11. J. Gudmundsson and T. Wolle. Football analysis using spatio-temporal tools.
Computers, Environment and Urban Systems, 47:16–27, 2014.

12. C.-S. Han, S.-X. Jia, L. Zhang, and C.-C. Shu. Sub-trajectory clustering algorithm
based on speed restriction. Computer Engineering, 37(7), 2011.

13. H.-C. Kim, O. Kwon, and K.-J. Li. Spatial and spatiotemporal analysis of soccer.
In Proc. 19th ACM SIGSPATIAL/GIS, pages 385–388. ACM, 2011.

14. P. Lucey, A. Bialkowski, G. P. K. Carr, S. Morgan, I. Matthews, and Y. Sheikh.
Representing and Discovering Adversarial Team Behaviors Using Player Roles. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’13),
pages 2706–2713, Portland, OR, jun 2013. IEEE.

15. C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. In Proc. 25th ACM STOC, pages 286–293. ACM, 1993.

16. K. Pietrzak. On the parameterized complexity of the fixed alphabet shortest
common supersequence and longest common subsequence problems. Journal of
Computer and System Sciences, 67(4):757 – 771, 2003.

17. Prozone Sports Ltd. Prozone Sports - Our technology. http://prozonesports.

stats.com/about/technology/, 2015.
18. K.-J. Räihä and E. Ukkonen. The shortest common supersequence problem over

binary alphabet is NP-complete. Theoretical Computer Sci., 16(2):187 – 198, 1981.
19. J. Van Haaren, V. Dzyuba, S. Hannosset, and J. Davis. Automatically Discovering

Offensive Patterns in Soccer Match Data. In Advances in Intelligent Data Analysis
XIV - 14th International Symposium, IDA 2015, volume 9385 of Lecture Notes in
Computer Science, pages 286–297, Saint Etienne, oct 2015. Springer.

20. Q. Wang, H. Zhu, W. Hu, Z. Shen, and Y. Yao. Discerning Tactical Patterns for
Professional Soccer Teams. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining - KDD ’15, pages 2197–2206,
Sydney, aug 2015. ACM Press.

21. X. Wei, L. Sha, P. Lucey, S. Morgan, and S. Sridharan. Large-Scale Analysis
of Formations in Soccer. In 2013 International Conference on Digital Image
Computing: Techniques and Applications (DICTA), pages 1–8, Hobart, nov 2013.
IEEE.

18

http://prozonesports.stats.com/about/technology/
http://prozonesports.stats.com/about/technology/

	Compact Flow Diagrams for State Sequences

