Efficient Computation of Renaming Functions for
p-reversible Discrete and Continuous Time Markov Chains

Matteo Sottana
University Ca’ Foscari Venice
matteo.sottana@unive.it

ABSTRACT

With the introduction of p-reversibility, the basic notion
of reversible Markov chain has been relaxed by allowing a
wider range of scenarios. Specifically, the reversibility prop-
erties are not just sought on the chain itself, but also on
all the possible topology-preserving renamings of its state
space. Such renamings, called Renaming Functions, exhibit
many interesting properties which can be exploited in differ-
ent contexts. Unfortunately, finding a renaming function for
a Markov chain is a very computationally intensive task. Us-
ing a naive approach it could require to check for all the pos-
sible state space permutations, which is unfeasible for all but
the most trivial chains. As a matter of fact, we prove that
the corresponding decision problem is polynomially equiv-
alent to Graph Isomorphism. Nevertheless, we introduce
an algorithm that, exploiting some necessary conditions for
p-reversibility, is able to efficiently prune the search space
and then verify the remaining renaming candidates. The
correctness of the method is theoretically demonstrated and
its practical effectiveness is shown over a significant set of
discrete and continuous p-reversible Markov chains.

Keywords

Reversibility modulo Renaming, Discrete and Continuous
Time Markov Chains, Algorithms

1. INTRODUCTION

Markov chains have been widely used to study the per-
formance of computer systems and software architectures.
In the past decades several formalisms have been developed
with the goal of allowing a stochastic model to be speci-
fied in a compact way by using features such as composi-
tion and hierarchical approaches. Despite the availability of
compact representations, a stochastic process does not nec-
essarily admits an efficient analysis. For instance, even a
simple high-level model may suffer from the so called state
space explosion problem that makes the computation of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

© 2017 ACM. ISBN .
DOI: 10.1145/1235

Carla Piazza
University of Udine

carla.piazza@uniud.it

Andrea Albarelli
University Ca’ Foscari Venice
albarelli@unive.it

steady-state numerically intractable. Discrete and contin-
uous time Markov processes are the basis for modeling a
wide range of real-world contexts, ranging from chemical re-
action dynamics to economic models and computer systems.
The analysis of the Markov process underlying this kind of
systems, allows us to derive the performance indices of the
model, and thus of the modeled system itself. These are
often computed at the steady-state (if it exists), when the
time elapsed from the initial instant tends to infinity.

The analysis of Markov chains, both at continuous and
discrete time, can in many cases be simplified by applying
techniques based upon: internal symmetries, for instance re-
versibility [6, 8]; state aggregation, such as lumpability [9,
5]; composition, like product forms [2, 3]. Most of such sim-
plifications can be exploited in order to allow the numerical
or analytical tractability of the computation of performance
indices, related by the common concept of time-reversibility.

The time-reversibility of Markov stochastic processes has
been introduced for the first time and applied to the analysis
of stochastic networks and Markov chains by Kelly [6]. A
time-reversible Markov process has the property that the
process we obtain by reversing the direction of time has the
same probabilistic behavior of the original one.

Applications of these results have led to the character-
ization of product-form solutions for queuing models with
underlying time-reversible Markov chains. Product-form so-
lutions allow the study of the sub-components of a system,
reducing the state space, and then obtain the metrics of the
whole system by computing the product of the metrics of all
the sub-components. In particular the product-form theory
allows for the derivation of the steady-state distribution of
a system as the normalized product of the steady-state dis-
tributions of the system’s sub-components, each considered
in isolation and opportunely parametrized.

However, time-reversibility is a very restrictive condition
since it requires the chain to exhibit definitely the same
stochastic behavior presented by its reverse. Indeed, this is
a quite rare event and it happens only for a narrow class of
chains, thus limiting the aptness of simplification and analy-
sis approaches. In order to broaden the scope, a more flexible
definition, called p-reversibility, has been proposed in [10, 8].
A Markov process is said to be p-reversible if it is stochas-
tically identical to its reversed process modulo a renaming
of the state space. The availability of a renaming function
making a chain p-reversible allows, for instance, the efficient
computation of the stationary probabilities or to easily de-
compose a process to characterize them as a product form.

Contribution. The main contributions of this paper are
two algorithms for testing the p-reversibility of both DTMCs
and CTMCs. The first is a linear time procedure that can be
used to test whether a given renaming is valid for a process.
The second one exploits the first and solves the more gen-
eral problem of finding all renaming functions of a process.
Of course, its computation can be stopped as soon as the
first valid renaming is produced. The problem —in its deci-
sion version— is equivalent to Graph Isomorphism, provided
that the stationary distribution has been exactly computed.
Despite this complexity result, our algorithm proves its ef-
fectiveness on both synthetic and real-world examples. The
key ingredients of its efficiency are two necessary conditions
that in polynomial time prune the set of possibly valid re-
namings. To the best of our knowledge there was no previous
feasible approach to solve this problem and the naive check
of all the possible maps would require a number of verifica-
tion steps which is factorial with respect to the size of the
state space.

Related work. In [6] the author deeply discusses the no-
tion of time reversibility both for DTMCs and CTMCs, and
several applications are illustrated. Dynamic reversibility is
introduced in [14] as a tool for the study of physical sys-
tems such as the growth of two dimensional crystals. An
exploration of the relations among different definitions of
lumpability and the notion of time-reversed Markov chain
can be found in [10]. The idea of p-reversibility is intro-
duced for the first time in [8] and its applications in the em-
bedded and uniformized chains of continuous time processes
are discussed. In [7] the authors introduce the definition of
auto-reversibility that allows one to exploit the symmetrical
structures of a class of CTMCs to derive the steady-state
probabilities in an efficient way. In [9] the authors propose
the idea of using a general permutation of states for com-
paring forward and reversed processes at continuous time.
A review covering the main results regarding time-reversible
Markov processes and a discussion about how to apply them
to tackle the problem of the quantitative evaluation of re-
versible computations can be found in [1]. In [4] the authors
show new results on both reversed stationary Markov pro-
cesses as well as Markovian process algebra. A connection
between exact lumping and time reversibility is proposed
in [13]. Finally, in [12] the authors focus on the problem of
defining quantitative stochastic models for concurrent and
cooperating reversible computations.

Structure of the paper. The remainder of this paper is
organized as follows. Section 2 briefly recalls the general no-
tions about Markov chains and supplies the definition and
notation for both reversibility and p-reversibility that will be
used throughout the following sections. Section 3 discusses
in depth the conditions for a Markov chain to be p-reversible
at the basis of our algorithm and studies the complexity
of the Reversibility modulo Renaming decision problem and
its relation with Graph Isomorphism. Section 4 introduces
the algorithm we propose for recovering all the feasible re-
naming functions mapping a Markov chain to its reversible
isomorphic form. Its correctness and complexity are also
discussed. In Section 5 the performance and effectiveness
of this novel algorithm are demonstrated by applying it to
both continuous and discrete Markov chains representing re-
spectively synthetic examples and processes related to a real
case study. Finally, Section 6 concludes the paper.

2. SETTING THE CONTEXT

In this section, we briefly recall some basic notions about
discrete and continuous time Markov chain. For more details
the reader should refer to [6].

2.1 Markov Chains

A discrete time stochastic process X (t) is a sequence of
random variables taking values in state space S for t € Z.
Similarly, a continuous time stochastic process X (t) is a se-
quence of random variables taking values in state space S
for ¢ € R. In this paper we will only deal with finite state
spaces. A stochastic process is stationary if it has the same
distribution for all time ¢. A Markov Chain is a stochastic
process such that for all ¢; < --- < t,, < tn41 it holds that

P(X(tn+1) = Tp+1 ‘ X(tl) =T1,... ,X(tn) = :IZn) =
P(X(tn41) = ans1 | X(tn) = z0)

i.e., the past evolution does not influence the conditional
probability of the future behaviour. If X(¢) is a discrete
(continuous) time stochastic process, then the Markov Chain
is a Discrete Time Markov Chain (DTMC) (Continuous
Time Markov Chain (CTMC), respectively). A Markov chain
is said to be time homogeneous if the conditional probability
P(X(t+7)=j]| X(t) =1) does not depend upon t.

In the case of time homogeneous DTMC for each i,j € S
we use the notation

PX(t+1) =3[X(t) =) =py

The value p;; denotes the probability that the chain, when-
ever in state 7, next makes a transition into state j, and is
referred to as (one-step) transition probability. The square
matrix P = (psj)i,jes is called (one-step) transistion ma-
triz, and since when leaving state ¢ the chain must move to
one of the states j € S, each row sums to one (i.e., forms a
probability distribution).

In the case of time homogeneous CTMC for each i,j5 € S
and for each t > 0 we use the notation

PX(s+t) =7 | X(s) =) = pi(t)

This value represents the probability that the chain from

state i after ¢ time instants ends up in state j. Hence, we

can consider the square matrices P(t) = (ps;(t))i jes, where

P(0) = Id is the identity matrix. It is possible to prove that
dP(t) dP(t)

= QP(t), with Q = 7(0) = (qij)i,jes

Q is the infinitesimal generator, all its rows sum to 0 and its
diagonal elements are negative. Intuitively, g;; with i # j
represents the transition rate from ¢ to j. Given Q the
CTMC is completely defined, since P(t) = e'?.

A Markov chain is irreducible if every state in S can be
reached from every other state. A state in a Markov pro-
cess is called recurrent if it is guaranteed that the process
will eventually return to the same state (the probability of
going back to the state is one). A recurrent state is called
positive-recurrent if the expected number of steps until the
process returns to it is finite. A Markov chain is ergodic if
it is irreducible and all its states are positive recurrent. An
ergodic Markov chain has a unique steady-state distribution
(stationary distribution), i.e., a distribution of probability
m = (m;)ics which remains invariant with respect to time.

In the case of DTMC this means that
™ =7nP (1)

Similarly, in the case of CTMC the meaning is that = =
7P (t), for all ¢ > 0, which can be proven to be equivalent
to

Q=0 (2)

Eq. (1) and (2) are called Global Balance Equations (GBE).

In general, the knowledge of the steady-state for a process
modeling a system is a key information in order to com-
pute its performance indeces, such as throughput, expected
number of customers at a queue, admission rates and many
others.

2.2 Reversibility

The most obvious method to obtain 7 is, of course, by
solving algebraic problems (1) and (2). However, this ap-
proach could suffer from ill-conditioning or numerical insta-
bility, since it requires either an iterative computation or a
possibly large number of substitutions. Luckily the analysis
of ergodic Markov chains can be greatly simplified if the be-
havior of the chain remains the same when the direction of
time is reversed.

DEFINITION 1 (REVERSIBILITY [6]). A process X(t) is
reversible if X (t) and XT(t) = X (1 —t) are stochastically
identical for all T.

It is easy to see that reversible processes are stationary.
Moreover, if X () is a Markov chain, then X *(¢) is a Markov
chain too. Hence, in the rest of this paper we will consider
only ergodic stationary Markov chains.

A characterization of reversibility over (egodic stationary)
DTMC is given by the following result.

THEOREM 1 (DETAILED BALANCE [4]). A DTMC X (t)
defined by P is reversible iff there is a distribution of prob-
ability m = (m;)ics such that for each i,j € S it holds that:

TiPij = TjDji 3)
The stationary distribution of both X (t) and X®(t) is .

The above theorem can be exploited to efficiently compute
the stationary distribution of reversible processes. The same
result holds for CTMCs replacing P with Q.

Unfortunately, reversibility is a strong requirement which
is not usually satisfied by real systems. In order to relax
the condition, still guaranteeing the efficient computation of
the stationary distribution, the notion of reversibility mod-
ulo state renaming has been introduced in [8]. A renaming
function p over the state space of a Markov process is a bi-
jection on S. For a Markov chain X (t) with state space S we
denote by p(X)(t) the same process where the state names
are changed according to p.

DEFINITION 2
over S is p-reversible if there exists a renaming p on S such
that X (t) and p(XT)(t) are stochastically identical. In this
case we say that X (t) is p-reversible.

THEOREM 2 (p-DETAILED BALANCE EQUATIONS[8]). Let
p be a renaming on S. A DTMC X (t) defined by P is p-
reversible iff there is a distribution of probability m = (7;)ies
such that for all i,j € S it holds that:

TiPij = TiDp(j)p(i) (4)

(p-REVERSIBILITY). A Markov Chain X (t)

The stationary distribution of X (t) and p(XT)(t) is m and
T = Tpes), for alli € S.

We will also exploit a characterization of p-reversibility
which generalizes Kolmogorov’s criterion.

THEOREM 3 (p-KOLMOGOROV’S CRITERION [8]). Let p
be a renaming on S. A DTMC X(t) defined by P is p-
reversible iff for every finite sequence i1,12,...in € S,

PiyioPigiz * " Pip_1inPinii =
Pp(i1)plin)Po(in)plin_1) """ Ppliz)p(ia)Poliz)p(in)- (5)

The above theorems holds also for CTMCs replacing P
with Q.

3. COMPUTATION OF p-REVERSIBILITY

In this section we study the complexity of the Reversibility
modulo Renaming decision problem and its relations with
graph isomorphism. We focus on DTMCs, but all the results
can be restated on CTMCs.

3.1 Verifying a given Renaming p

Given a renaming p on S, Equation (4) of Theorem 2
can be used to verify whether X (¢) is p-reversible and to
simultaneously compute its stationary distribution .

LEMMA 1. Let p be a renaming on S. A DTMC X(t)
defined by P is p-reversible iff the following system in the
variables IT has a solution with 111 = 1:

/\ Tipis = Tp,0)00 (6)
i,j€S
PROOF. =) If X(¢t) is p-reversible then, by Theorem 2
System (6) has a solution 7 which is the stationary distribu-
tion of X (t). Since X (t) is ergodic its stationary distribution
has m; > 0 for all 4 € §. Hence, by multiplying 7 for the
factor 77 we get a solution of System (6) whose first com-
ponent is 1.
<) If System (6) has a solution 7™ = (7})ics whose first
component is 1, then by multiplying such solution for the
factor 1/, g7 we get a solution 7 which satisfies the
conditions of Theorem 2. [

Notice that, since X(t) is ergodic, once the value of X3
has been fixed it is immediate to determine whether System
(6) has a solution or not. We replace the value of II; in
the system and we determine the value of IT; for each j
such that p1; # 0. We proceed by replacing and computing
until either we find a contradiction or we have a solution.
Moreover, the following lemma proves that it is sufficient to
consider the equations whose left hand side is not null (i.e.,

pij # 0).

LEMMA 2. Let p be a renaming on S. Let X(t) be a
DTMC defined by P. System (6) has a solution with I1; = 1
iff the following system has a solution with 11, = 1:

N\ Tpi; =TLp,Gee) (7)
4,JES pi;#0

PROOF. =) It is trivial, since System (7) is a subset of
System (6).

<) Let " be a solution of System (7) with 77 = 1. We
have to prove that 7* is a solution of System (6). First we
notice that since X (t) is ergodic, 7" has only strictly posi-
tive components. The equations of System (6) with p;; # 0
are also in System (7), so they are satisfied. We have to
prove that if p;; = 0, then also p,¢;),i) = 0, i.e., the equa-
tions of System (6) that are not in System (7) are trivially
satisfied. Let us assume by contradiction that p,(;),i) #
0. Then, since m,;) # 0, it has to be pp2(y,2; # 0
More in general this implies that pzrt1(j),2x+1(;) # 0 and
Pp2k(i)p2k(jy 7 0 for all k > 0. Since p is a bijection over
a finite set, there exists m and n such that p™ (i) = ¢ and
p"(j) = j. Hence, p*™*"(i) = i and p**™"(j) = j. So
we have p,zeman (jyp2«men ;) = pij # 0 which is a contradic-
tion. [J

The above lemma can be exploited to define Algorithm
(1) for verifying p-reversibility. The algorithm exploits a
Depth First Search (DFS) on the labeled graph induced by
P on S. It starts from the first element of S initializing
II[1] to 1 and it proceeds initializing all the II[j]’s thanks to
the equations of System (7). If the process is p-reversible,
then it returns true and at the end of the computation the
array II contains the stationary distribution of the process.
Otherwise an equation which cannot be satisfied is found
during the computation and false is returned.

Algorithm 1: ReversibleUpTo(S, P, p)

for i € S do
color[i] = white
I1i] = 400
end
=1
return DFS-ReversibleUpTo(S, P, 1, p)

Algorithm 2: DFS-ReversibleUpTo(S, P, i, p)

bool = true
for bool A pli, j] # 0 do

if (plplj], p[t]] = 0) then

| bool = false

end

lft}{colm’[ﬂ] # white A T[i]p[i, 5] # T[j]p[plj], plil])
| l?g:)l = false

end

if (color[j] = white) then
color[j] = grey
2 ryrs _plisd]
1[5 = il st omm

bool = bool N DFS-ReversibleUpTo(S, P, 4, p)
end

end
return bool

THEOREM 4 (CORRECTNESS AND COMPLEXITY). Given
a DTMC X(t) over S defined by P and a renaming p, al-
gorithm ReversibleUpTo(S, P, p) returns true iff (S,P) is
p-reversible. If X (t) is p-reversible, at the end of the com-
putation the normalized vector mﬂ contains the sta-

tionary distribution of X (t).

ReversibleUpTo(S, P, p) can be implemented so as to run
wn time O(n +m), where n is the number of states of S and
m is the number of strictly positive elements of P.

PRrROOF. The correctness of the algorithm immediately fol-
lows from Lemma 2.

The algorithm has time and space complexities of a DFS-
visit. Hence, if P is stored using weighted adjacency lists,
the complexity thesis follows. []

3.2 Deciding Reversibility modulo Renaming

Let us now consider the Reversibility modulo Renaming
decision problem, i.e.: given a (ergodic stationary) DTMC
X (t) over a finite state space S decide whether there exists a
renaming p such that X (t) is p-reversible. This is the prob-
lem we would like to solve. Moreover, in case of affirmative
answer we would like to produce a valid renaming p and use
it to compute the stationary distribution.

As a consequence of the results in the previous section,
the Reversibility modulo Renaming problem is in the class
NP. We can say more than that. The following two lemmas
prove that our problem is polynomially equivalent to Graph
Isomorphism.

LEMMA 3. Unlabeled Undirected Graph Isomorphism can
be polynomially reduced to Reversibility modulo Renaming.

ProOF. Given two unlabeled undirected graphs Gi =
(Vi, E1) and G2 = (Va, E2) we should compute a DTMC
X (t) defined by P such that Gy is isomorphic to G2 if and
only if X (t) is p-reversible for some p.

It is not restrictive to assume that G; and G2 are con-
nected, V1 N V2 =0, and |V1| = |V2| = n.

With a slight abuse of notation we denote as G1 (G2) the
oriented graph obtained considering both (u,v) and (v,u)
for each {u,v} € E; (E2, respectively). G; and G2 are
isomorphic if and only if these two oriented graphs are iso-
morphic.

Let us consider the following oriented graph

G = (V, E) =G1 UG U (Vg,Eg),
where V3 = {a1, az, as, b1, bz, bs} are new nodes and

Es = {{a1, a2), (a2, as), (az,a1) }U
{{b1,b3), (bs, b2), (b2, b1) } U {({az, b2), (b2, az) }U
{(al,u>, (u,al) |’u (S G1} U {(bl,v>, <’U,b1> |U S GQ}

G has 2n + 6 nodes.
Let P over V be defined as follows:

e foreachu € V1UV2U{(127 as, bz, bz}, for each edge (u, v)

let puy = deg(u), where deg(u) is outgoing degree of u;
o for each edge (a1, u) with u € Vi let pa,u = % — n—lg,;
o let Pajay = n%;
e for each edge (b1, v) with v € V3 let pp,o = = — 53

1.
o let ooy = 735

e otherwise p;; = 0.

P is a probability matrix.

If G is isomorphic to G2, let 0 : G1 — G2 be an isomor-
phism from G; to G2. We consider the following permuta-
tion of the nodes of G:

o(u) ifuel

- o_l(u) ifue Vs

pu) =19 4, if u=a; fori=1,2,3
a; ifu==5b; fori=1,2,3

Notice that for each u € Vi UV, U {az, as, bz, b3} it holds
that deg(u) = deg(p(uw)).

We prove that X (¢) defined by P is p-reversible. As a
consequence of Theorem 3 it is sufficient to prove that for
each simple cycle C' of G it holds p(C) = p((p(C))™"), where
P(C) is the product of the probabilities of the edges occur-
ring in C.

If C = ayuar with u in Gy, (p(C)) ™! = p(a1)p(u)p(ar) =
b1p(u)b1 and

-1y _ l _ i # =
P((p(©)) %(n ns) deg(p(u))

(=) degy = P©)

If C = azbsaz, then (p(C))f1 = baaszb2. Hence,

! 1
 deg(b2) deg(as)
1 1

deg(az) deg(b) 1)

If O = a10a2a3a1, then (p(C))_l = b1b3b2b1. In thiS case

P((p(C)™)

—1 1 1 1
11 1

n? deg(as) deg(as)

= P(C)

Similarly the thesis holds for the cycles bivb1, baasbe and
b1b3b2by .

Now we only have to consider cycles among nodes of G
and Gz. If C = ujuz ... usu; is a cycle in G1, then since o
is an isomorphism p(ui)p(uz) ... p(us)p(u1) is a cycle in Gs.
Since G = G3, also p(u1)p(us) ... p(uz)p(ur) = (p(C))~!
is a cycle in G2. Moreover,

1y 1 1 1 _
P((p(C))") = deg(p(u1)) deg(p(us)) ~ deg(p(uz))
1 1 r
deg(u1) deg(us) ~~ " deg(uz)
1 1 1

deg(un) deg(uz) " deglug) 1 \©)
Similarly, the thesis holds if we consider a cycle C over Ga.

If X (t) defined by P is p-reversible for some renaming
p, then we consider o : G1 — G2 defined as o(u) = p(u).
We prove that o is a graph isomorphism between G; and
Go. First we prove that for each v € Vi3 UV, it holds
deg(u) = deg(p(u)) = deg(o(u)). For each edge (u,w) in
E1UE> we also have (w, u) in E1UFE>. Hence, uwu is a cycle
in G1 UG,. Since, G is p-reversible it corresponds to a cycle
p(u)p(w)p(u) in G and vice-versa. Hence, since p is per-
mutation (i.e., a bijection), it has to be deg(u) = deg(p(u))
Now we prove that p(ai1) has to be bi. If by contradic-
tion p(a1) # b1, then the probability of any outgoing edge
from p(a1) is at least % Hence, if we consider u € V7 we

have P(aiua1) = (& —
11 _ 1_1
n Teg(p(@) — n deg(u
same reason p(b1) is a1. Since the only cycle of length 3 in
which a1 is involved is a1a2asa1 and the only cycle of length
3 in which by is involved is bibsbab1, p(a1) = b1 implies
plaz) = by and p(as) = bs. Similarly, from the fact that
p(b1) = a1 we get p(b2) = a2 and p(bs) = az. Moreover,
since all the cycles of length 2 in which a; is involved are of
the form ajuar with u € V3 and the only cycles of length 2
in which b; is involved are of the form bijvb; with v € V5,
we get that for each w € Vi it holds o(u) = p(u) € Va.
Moreover, since p is a permutation and |Vi| = |Va2| = n, o
is a bijection. Finally if (u,w) € FEi, then uwu is a cycle
in G, this implies that o(u)o(w)o(v) = p(u)p(w)p(u) is a
cycle in G2. Hence, (o(u)o(w)) € E2. On the other hand,
if (o(u), o(w)) € Ea, then o(w)o(w)o(v) = pu)p(w)p(v) i9
a cycle in G2, hence uwv has to be a cycle in G1, which
implies (u,w) € E,. 0O

+8) aeary = Plp(an)p(u)p(ar)) >
) which is a contraddiction. For the

LEMMA 4. Rewversibility modulo a Renaming can be re-
duced to Labeled Directed Graph Isomorphism.

PrOOF. Given a DTMC X (¢) defined by P we should
exhibit two graphs G1 and G2 such that G, is isomorphic
to Gz if and only if X (t) is reversible modulo a renaming.
Let G1 be the labeled oriented graph having P as adjacency
matrix, i.e., each edge (u,v) is labeled with the value py..
Let 7 be the stationary distribution of X (t). Notice that 7
can be computed from P in polynomial time. We consider
the graph G2 obtained by labeling each edge (u,v) with
the value :—”pvu. If there exists an isomorphism o from G
to Ga, let pu: o. It holds that for each u,v € G, Tupuv =
TuDp(u)p(v) = ToPp(v)p(u), i-€., X (t) is p-reversible. Similarly,
if X(t) is p-reversible, then o = p is an isomorphism form
G1 to G2. [

Hence, the Reversibility modulo Renaming problem is com-
plete for the class GI (Graph Isomorphism). Currently,
Graph Isomorphism is not known to be polynomially solv-
able nor NP-complete. A large number of heuristics and
specialized solvers have been developed to efficiently solve
Graph Isomorphism over a large class of graphs. Unfor-
tunately, we cannot exploit the reduction presented in the
proof of Lemma 4 together with such solvers to efficiently
solve Reversibility modulo Renaming without first comput-
ing the stationary distribution. So we are in a vicious circle
and we need to develop direct algorithms for solving our
problem without having to compute the stationary distribu-
tion.

4. P-REVERSIBILITY ALGORITHM

In the case of ergodic Markov chains over a finite state
space S, the uniformization method allows to transform a
CTMC X (t) into a DTMC X (t)V having the same station-
ary distribution. Let Q be the infinitesimal generator of
X(t) and v = max{—q;; | i € S} we define X(t)V as the
DTMC having transition matrix PY = Id + %Q. In view of
this uniformization technique, a CTMC X (t) is p-reversible
if and only if the DTMC XU (#) is p-reversible. Hence, with
respect to the definition of a reversibility algorithm, we can
focus on DTMCs.

A naive algorithm for Reversibility modulo Renaming could
generate all the possible renamings and for each of them ex-
ploit Algorithm 1 to test whether the renaming is valid or

not. This would require time Q(n!) for generating the set
of valid renamings of a process. Our algorithm exploits two
main necessary conditions to drastically reduce the set of
possible renamings that need to be validated. Of course, in
the worst case all renamings pass the conditions and there
is no improvement. However, as we will see in the following
section, in practical cases our algorithm is effective, while
the naive one is not. The advantage of our approach comes
from using the necessary conditions once at the beginning
of the computation to determine for each state of S a set of
possible renamings.

The first condition we use concerns the number of strictly
positive elements in the rows and columns of the matrices
defining a process and its p-reversed.

DEFINITION 3. Let X(t) be a DTMC over S defined by
P. For each i € S we define:

in(i) = [{j|pj >0}
out(i) = [|{j|pi; > 0}

PROPOSITION 1 (TOPOLOGY). Let p be a renaming over
S. Let X(t) be a DTMC defined by P. If X (t) is p-reversible,
then for each i € S it holds that:

(i) = out(p(i)) and out(i) = in(p(i))

PROOF. This is immediate from Theorem 2. [

The second condition follows from p-Kolmogorov’s crite-
rion. Each pair of states i, j € S of an ergodic Markov chain
is involved in at least one simple cycle. From p-Kolmogorov’s
criterion we get that if ¢ and j are involved in a cycle C hav-
ing probability p > 0, then there must be a cycle in the
reversed process involving p(i) and p(j) and having proba-
bility p. Given a matrix A = (ai;)i,jes we use the notation
AT = (ag;-)i,jeg to denote its transposed, i.e., ag;- = aj;.

LEMMA 5. Let p be a renaming over S. Let X(t) be a
p-reversible DTMC' defined by P. If
Diig ** " PigjPjipgy " Pini =P >0
then there exists az, ..., ak, Qk+1,an such that

T T T T _
Dp(i)as =" " Parp(i)Pp(i)aps1 " Panps) =P

Proor. This is a consequence of Theorem 3 taking a;, =
p(in), foreach 2 < h<n. O

Now we need an efficient way to compute the probability of
simple cycles or more in general of paths. Given a transition
matrix P = (pij)ijes, let P* = (pf)ijes = (—logpij)ijes
and P? = (P®)”. Thanks to the properties of logarithms,
Lemma 5 can be rewritten as follows.

LEMMA 6. Let p be a renaming over S. Let X(t) be a
p-reversible DTMC' defined by P. If

Piiy + D0 F P, F o Dl =P 20
then there exists az,...,ak, k41, an Such that
B B B B _
Potiyas T T Payo) T Poyagsy T T Panp(iy =P
ProoF. It immediately follows from Lemma 5 []

Notice that the elements of P® and P? are all positive num-
bers (including 0 and +o0). Hence, we can interpret P® and
P? as adjacency matrices of weighted graphs and exploit an

algorithm for solving the All Pairs Shortest Paths problem
over them. Let A® and A® be the matrices obtained as out-
put of such computations. In the graph induced by P the
simple cycle of minimum weight involving both ¢ and j has
weight A7 4+ A%;. Similarly, in the graph induced by P’
the simple cycle of minimum weight involving both p(i) and
p(j) has weight A?

p(1)p(J
Lemma 6 these two values have to coincide.

B
)y + Ap(j)’p(i). As a consequence of

PROPOSITION 2 (CYCLES). Let p be a renaming over S.
Let X (t) be a DTMC defined by P. If X(t) is p-reversible,
then for alli,j € S it holds that

AG + AT = Ay + 0000

Notice that the shortest cycles determined by the above
proposition corresponds to the cycle of highest probability
in the Markov chain.

We are now ready to put together the necessary conditions
of Propositions 1 and 2 in our algorithm. For each state 4
we compute a set Z; of candidates p(¢) using Proposition 1,
then we refine Z; in R; using Proposition 2, finally we test
all the possible combinations of the remaining candidates
with Algorithm 1.

Algorithm 3: ComputeRenamings(S, P)
{Initialize P*, P® A% and AP}

for i € S do
=10
for j € S do
if in(i) = out(j) A out(i) = in(j) then
| Zi=7, U{j}
end
end
end
for i € S do
Ri=10
for k € Z; do
if Vj e S\ {i} 3h e Z; \ {k} s.t.
A%,] + A%[j, 4] = AP[k, h] + AP[h, k] then
| Ri=R:iU{k}
end
end
end
F=0

for pe Ri X R2 X...x R, do
if ReversibleUpTo(S, P, p) then
| F=Fu{p}
end
end
return F

LEMMA 7. Given a DTMC X(t) over S defined by P,
Algorithm (3) returns the set F which contains all the valid
renaming functions for the p-reversibility of the given chain.

PROOF. =) The proof is trivial since the proposed algo-
rithm rejects all the renaming that don’t satisfy the condi-
tions of Propositions 1 and 2 which are tested respectively
in the first and second for-loop of the algorithm. All the
remaining permutations are tested in the last for-loop with
Algorithm (1), this ensures that at the end F will contain
only the valid renaming functions for p-reversibility, if there
exists any. [J

We now evaluate the time complexity of Algorithm (3). Let
|S| = n. The first part of the algorithm, which includes
the initialization of the data structures and the first two
for-loop, has a time complexity of O(n*). In particular,
the initialization of P® and P? requires time ©(n?), while
the initialization of A® and A® can be done using for in-
stance Floyd-Warshall algorithm in time ©(n®). The first
for-loop requires time @(n2), while the second one requires
time ©(n*) only if the first one has generated large sets Z;.
The second part of the algorithm, i.e., the last for-loop, con-
sists of ¥ = |[R1 X Ra X - - - X Ry| calls to Algorithm 1. Hence,
by Theorem 4, the complexity of the second part is O(y*n?).
This give us a total complexity of O(n* + v * n?).

S. EXPERIMENTAL RESULTS

The validation of the proposed algorithm has been per-
formed on a set of 9 different p-reversible chains, with sizes
ranging from 8 to 24 nodes. While testing the method with
larger chains would be interesting for evaluating the compu-
tational efficiency, it would be very difficult to synthetically
produce large p-reversible chains. On the other hand, test-
ing the method with non p-reversible graphs would result in
an immediate trivial answer by the algorithm. The first 4
processes are modeled by discrete time Markov chains and
are not related to any specific real-world scenario. They are
just designed in order to exhibit a valid renaming function
and to offer a variable number of states. These synthetic
chains, labeled with identifiers from DTMC1 to DTMC4,
are presented in Fig. 1. They range from a minimum of 5
states to a maximum of 10 states for the most complex case.
In addition to these discrete time chains, we also tested the
behavior of the algorithm with 5 continuous time Markov
chains, by first transforming them as described in Section
4. These latter chains have been obtained by modeling a
practical scenario.

In detail, we show how the proposed algorithm can be
applied to a model of a real system. To this end, the al-
gorithm is used to verify the p-reversibility of the Markov
chain underlying the analytical model used for the perfor-
mance evaluation of the Fair Allocation Control Window
(FACW) protocol [11].

The main idea of FACW is that data traffic in a Wireless
Sensor Network (WSN) can be classified into a finite set of
M classes K = {c1,c2,...,cm}. Each sensor maintains a
control window of size N in which the classes of the latest
N transmissions (listened or performed) are stored. In the
window, at most h. entries of class ¢ can appear. In case
the sensor generates a packet of class ¢ when in its window
there are already h. entries of class ¢, the packet is either
rescheduled for transmission after a back-off time or simply
dropped. Otherwise, in case of generation of a class ¢ packet
when the number of c-entries in the window is strictly lower
than h., the packet is sent and the window is updated ac-
cording to a FIFO policy. The initialization of the window
is arbitrary.

We consider a set K = {c1,ca,...,cm} of M distinct traf-
fic classes and assume that each node maintains a window W
of size N storing the transmission classes of the most recent
sensed data according to a FIFO policy. The state of the
window is denoted by & = (z1,z2,...,2n), where z; € K,
and |Z|. = SN 8z, represents the total number of oc-
currences of class ¢ in W. Data of different traffic classes
are generated according to independent Poisson processes

Figure 1: The 4 synthetic discrete time Markov chains used
for experimental validation. In the text we will refer to these
chains as DTMC1 and DTMC?2 for the examples in the first
row and DTMC3, DTMC4 for those on the second row.

whose rates A\.(j), with ¢ € K and 1 < j < N, depend on
the number of objects j = |Z|. of class ¢ that are present
in the window. Clearly, the process X (¢) that describes the
state of W is a CTMC. In the window there can be at most
hc objects of class ¢, with ¢ € IC. If h. = N then there is no
constraint on the maximum number of objects of the same
class in the window. Let & = (x1,...,2n) be the state of
the control window, then the transition rates in the CTMC
infinitesimal generator are: for ¥ # 7,

(5.7 = {)\C(|:EC) i 7 = (¢,21,. @y 1) and [7]e < he

0 otherwise.

We created a total of 5 different CTMCs based on the
FACW model with the parameters showed in Table 3.

Chain | N | he | [S] | Classes Rates A
CTMCI [3 [3] 8 | {L2) 11.0,2.0
cTMC2 | 4 | 3 | 14| {1,2) {1.0,2.0}
CTMC3 | 4 | 4 |16 | {1,2} {1.0,2.0}
CTMC4 | 2 | 2 | 16 | {1,2,3,4} | {1.0,2.0,3.0,4.0}
CTMC5 | 3 | 2 | 24| {1,2,3} | {1.0,2.0,3.0}

Table 1: Parameters for the FACW model of the generated
CTMCs

5.1 Efficiency of the algorithm

In order to assess the efficiency of the proposed algorithm
we compare its execution times with the naive approach.
From Table 2 we can notice the improvement in the execu-
tion times, the Renaming Algorithm (column tra) is able
to verify the p-reversibility of the tested chains much faster
than the naive approach (column ¢¢actoriar). It should be
noted that we were not able to complete the computation
using the naive approach for all the chains. In fact, with a
size of the state space of 16 or more the naive method did
not terminate after a whole 24 hours.

Chain |S| trA tfactorial
DTMC1 | 5 2 2
DTMC2 | 8 6 41
CTMC1 | 8 7 41
DTMC3 | 8 12 56
DTMC4 | 10 4 4948
CTMC2 | 14 | 2864 | 6306581
CTMC3 | 16 | 2334 —
CTMC4 | 16 | 101 -
CTMC5 | 24 | 9168 —

Table 2: Execution times in milliseconds

5.2 Suitability of the results

The congruence of the renaming function obtained is easy
to verify in practice and the correctness of the verification
method has been proven theoretically. Still, we are inter-
ested in showing a practical application of the obtained re-
naming function and to highlight its suitability with respect
to other methods that can be used to obtain the same result.

To this end we decided to exploit the renaming map to
compute the stationary distribution of tested chains. In
fact the notion of p-reversibility, as shown in [8], can be
used to efficiently compute the vector m. We also computed
the stationary distribution for the same chains by adopting
the rather standard power method simulation (i.e., repeated
multiplications).

In Tables 3 and 4 we compare the approximation error of
the stationary distribution resulting from the direct compu-
tation over the renaming function with the power method
after respectively 50 and 100 iterations. In detail, Table 3
shows the results for the discrete time examples and Table 4
reports the results for the continuous time chains. Approx-
imations error e for the discrete case has been computed
as ¢ = |7P — w|?>. Differently, we computed the error e
for the continuous case as € = |7Q|*. It can be observed
that, in general, the direct computation through the itera-
tive method requires a large number of iterations to obtain
a level of accuracy comparable with that of our method.

Chain | |S] €RA Emult50 Emult100
DTMCL | 5 | 7.881E — 17 | 3.429E — 5 | 2.290E — 8
DTMC2 | 8 0.0 5.551E — 17 0.0
DTMC3 | 8 0.0 3.065E — 11 0.0
DTMC4 | 10 | 5.551E — 17 | 6.218E —9 | 1.582E — 15

Table 3: Discrete chains

Chain | |S| €RA Emult50 €mult100
CTMC1 | 8 0.0 0.0 0.0
CTMC2 | 14 0.0 1.175E — 6 1.881E —9
CTMC3 | 16 0.0 0.0 0.0
CTMC4 | 16 | 3.119E — 16 | 2.775F — 17 | 1.387FE — 17
CTMC5 | 24 | 5.846FE — 17 | 3.869E — 7 | 1.419EFE — 10

Table 4: Continuous chains

6. CONCLUSIONS

In this paper we proposed a practical algorithm that al-
lows the computation of all the renamings functions for both
continuous and discrete time Markov chains. Our algorithm
reduces the number of renaming functions that need to be
tested by exploiting: properties about the structure of the
chain; rules of algebra on the logarithmic function applied
to the Kolmogorov’s criterion; and the properties of shortest
paths connecting states in the chain.

We compared the execution times of our algorithm with
those required by the naive approach showing that the for-
mer is much faster than the latter, and that it can obtain
solutions where the naive approach cannot. As far as we
know our is the first proposal for solving this problem.

As future work we plan to implement other heuristics for
polynomially pruning the set of possible renamings and to
extensively test them on large systems.

Acknowledgments. Research partially supported by Uni-
versity of Udine PRID ENCASE project and by INDAM-GNCS
project "Logica e Automi per il Model-Checking Intervallare”

7. REFERENCES

[1] S. Balsamo, F. Cavallin, A. Marin, and S. Rossi.
Applying reversibility theory for the performance
evaluation of reversible computations. In Proc. of
ASMTA, 9845 LNCS:45-59, 2016.

[2] S. Balsamo and G. lazeolla. Aggregation and
disaggregation in queueing networks: The principle of
product-form synthesis. In Computer Performance
and Reliability, pages 95-109, 1983.

[3] S. Balsamo and A. Marin. Performance engineering
with product-form models: efficient solutions and
applications. In Proc. of ICPE, pages 437-448, 2011.

[4] P. G. Harrison. Turning back time in Markovian
process algebra. Theoretical Computer Science,
290(3):1947-1986, 2003.

[5] J. Hillston, A. Marin, S. Rossi, and C. Piazza.
Contextual lumpability. In VALUETOOLS, pages
194-203, 2013.

[6] F. Kelly. Reversibility and stochastic networks. Wiley,
New York, 1979.

[7] A. Marin and S. Rossi. Autoreversibility: exploiting
symmetries in Markov chains. In Proc. of MASCOTS,
pages 151-160, 2013.

[8] A. Marin and S. Rossi. On discrete time reversibility
modulo state renaming and its applications. In
VALUETOOLS, 2014.

[9] A. Marin and S. Rossi. On the relations between
lumpability and reversibility. In In Proc. of
MASCOTS, pages 427-432, 2014.

[10] A. Marin and S. Rossi. On the relations between
markov chain lumpability and reversibility. In Acta
Informatica, pages 1-39, 2016.

[11] A. Marin and S. Rossi. Priority-based bandwidth
allocation in wireless sensor networks. EAI Endorsed
Trans. Wireless Spectrum, 2(10), 2016.

[12] A. Marin and S. Rossi. On the relations between
Markov chain lumpability and reversibility. Acta Inf.,
54(5):447-485, 2017.

[13] U. Sumita and M. Rieders. Lumpability and time
reversibility in the aggregation-disaggregation method
for large markov chains. Communications in Statistics:
Stochastic Models, 5:63-81, 1989.

[14] P. Whittle. Systems in stochastic equilibrium. John
Wiley & Sons Ltd., 1986.

