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ABSTRACT
Recommender systems are established means to inspire users to
watch interesting movies, discover baby names, or read books. The
recommendation quality further improves by combining the re-
sults of multiple recommendation algorithms using hybridization
methods. In this paper, we focus on the task of combining unscored
recommendations into a single ensemble. Our proposed method is
inspired by genetic algorithms. It repeatedly selects items from the
recommendations to create a population of items that will be used
for the �nal ensemble. We compare our method with a weighted
voting method and test the performance of both in a movie- and
name-recommendation scenario. We were able to outperform the
weighted method on both datasets by 20.3 % and 31.1 % and de-
creased the overall execution time by up to 19.9 %. Our results do
not only propose a new kind of hybridization method, but intro-
duce the �eld of recommender hybridization to further work with
genetic algorithms.
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1 INTRODUCTION
Recommender systems shape the live on the web on a daily basis.
No successful web service runs without them. The hybridization of
recommender systems has proven to be e�ective in addressing the
cold start problem or the portfolio e�ect on all types of recommen-
dation tasks ranging from product recommendations over movie
recommendations to name recommendations [6, 7, 14, 18, 21, 22].

There is a wide selection of methods to choose from; all with
di�erent requirements and purposes. Combining ranked lists of
items into a single list is one of those purposes that we want to
address in this paper. The task can, broadly speaking, be grouped
into two groups: The combination of scored and the combination
of unscored rankings. In this paper, we aim at �nding a method
that is able to e�ciently combine two or more unscored source
recommendations into a single ranked list of items. Those source
recommendations can be without scores or with scores that are
deemed not comparable—as it is usually the case.

The most common way to combine multiple recommendations
into a single one is the use of a weighted hybridization method.
Mostly, it is used with a scored list of recommendations and—in the
simplest case—resembles a linear combination of all participating
recommendations. Pazzani [28] proposed a weighted hybrid that
work with unscored recommendations. It treats each recommended
item as a vote and the �nal ensemble is ranked by decreasing vote
count. This method works well if there are only a handful of items
to recommend from many source recommenders. However, its ap-
plicability is limited on long recommendations, because it results in
many ties—especially when there are only a handful of combined
recommendations. Therefore, we wanted to create a new hybrid
method that is able to work even on few large lists of unscored
recommended items.

Our proposed novel semi-genetic hybridization method is in-
spired by genetic algorithms in order to create a new scored list of
recommended items from multiple lists of unscored items. It treats
the source rankings as chromosome pool where each recommended
item is regarded as a chromosome. It then selects a single popu-
lation from this chromosome pool and ranks those items by their
decreasing frequency. The calculated frequency can then be used
as scoring for the �nal ensemble.

The contribution of this paper is as follows: (1) Presentation of a
novel semi-genetic hybridization method that is able to e�ciently
combine two or more long unscored source recommendations into
a single ensemble. (2) A comparative experimental study of the qual-
ity of the semi-genetic and the weighted hybridization method on
two di�erent datasets with four di�erent source recommendations.
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Experiments on both movie and name data show that this approach
is able to outperform a weighted method. We were able to improve
the Mean Average Precision (MAP) score by about 20.3 % on movie
and 31.1 % on name data compared to the weighted method.

The remainder of this paper is structured as follows: The next
section gives an overview about the state of recommender hybridiza-
tion and of genetic algorithms in general. We then describe the pro-
posed semi-genetic hybridization and our baseline—the weighted
hybridization using votes—in Section 3. The following Section 4
continues by presenting the used datasets. The core of this paper
is found in Section 5, where the reader �nds the results from our
experimental study along its discussion. The �nal section contains a
summary of our �ndings as well as some thoughts for future work.

2 RELATEDWORK
A hybridization method combines the prediction of two or more
recommenders to a single recommendation—also called an ensem-
ble. Burke [6, 7] provides a good survey on hybridization methods.
He categorizes the methods into the following seven groups:

(1) Weighted methods compute the score of a recommended
item by adding up the scores from each source recom-
mender. A score of 0 is assumed if an item was not rec-
ommended by any source recommender. The simplest ap-
proach is to use the linear combination where all recom-
menders have the same weight [8].

(2) Switching methods select one of the given source recom-
mendations to be used based on a given switching criterion.
A possible criterion would be to use the secondary recom-
mender if the primary recommender does not provide any
items [32].

(3) Mixed methods present the recommendations of multiple
recommenders together [31]. It is a presentation strategy
rather than a combination of multiple recommenders in
the sense of obtaining a single list of recommended items.

(4) Feature combination methods are a way to add collabora-
tive �ltering data into a content-based recommender by
adding the collaborative information as additional features
to the data [3].

(5) Cascading methods use one recommendation to rearrange
the recommendation of another recommender. A common
case would be to order ties where multiple items have the
same score [6].

(6) Feature augmentation methods use the output of one rec-
ommender to add more information to the data and to be
used as additional input for a second recommender [25].

(7) Meta-level methods are similar to feature augmentation
with the di�erence that the entire model of the �rst recom-
mender becomes the input for the second one [2].

From those hybridization types, the switching, the mixed, the cas-
cading method are not applicable in our scenario, because they are
not used to combine multiple recommendations into a single one.
Feature combination, feature augmentation, and meta-level meth-
ods are extensions of the recommendation algorithms rather than
combination strategies for multiple recommendations. Therefore,
only the weighted method is applicable in our case.

Recent studies by Paraschakis [27] show that the adoption of
sophisticated recommendation algorithms in the industry is rather
slow. The authors see the high complexity of most methods as a
possible reason. Most hybridization methods on the other hand are
rather simple to implement. Therefore, advancing this sub-area of
recommender systems could have a higher impact in practice than
inventing better and better recommendation algorithms.

Di Noia et al. [10] tested a novel approach on the MovieLens
data that brings more diversity to the recommended movies. Their
hypothesis is that users who selected diverse items in the past
are more likely to want to receive diverse recommendations in
the future. Diversity is also increased by applying hybridization
methods [6], which will be addressed by this work.

O’Connor et al. [26] proposed the �rst movie recommender for
groups. A key challenge for group recommendations is the creation
of one recommendation that suits multiple users. Our semi-genetic
hybridization method could be used to combine the single user rec-
ommendations of all group members and use the resulting ensemble
as group ranking.

Our experiments will also cover the relatively new �eld of rec-
ommending given names. It was �rstly proposed by Mitzla� and
Stumme [24] who compared the performance of a user-based col-
laborative �ltering, item-based collaborative �ltering, a weighted
matrix factorization method, PageRank, and their newly proposed
NameRank using a wide range of evaluation settings. NameRank is
an adoption of the PageRank variant proposed by Hotho et al. [16]
who subtracted the global PageRank score from the preferential
score. Name recommendation are a relevant task of everyday live,
but have shown to be non-trivial to solve.

The name recommendation task was further tested by Mitzla�
et al. [22] who conducted a discovery challenge on the task of recom-
mending given names. NameRank was used alongside most popular
as baseline during the o�ine challenge. The challenge con�rmed
the high di�culty of the task—meaning it is hard to obtain high
evaluation scores. Most participants incorporated hybridization as
part of their approaches with great success [4, 9, 13, 22, 30].

Genetic algorithms are population-based search and optimiza-
tion methods that are inspired by natural evolution [15]. They are
already widely used in the realm of recommender systems and
obtain good results, as shown in the following.

Bobadilla et al. [5] proposed a new similarity measure for col-
laborative �ltering that consists of an array of similarity metrics.
The authors use genetic algorithms to �nd ideal weights between
those metrics. Hwang et al. [17] and Salehi et al. [29] have done
a similar work where they use genetic algorithms to weight the
feature vectors that is used to compute the similarity between users.

Kim and Ahn [19] presented a genetic algorithm-based k-Means
algorithm that separates the user-base before a recommender is ap-
plied. The genetic algorithm was used to �nd the initial seeds for the
clustering. Doing so enables a more targeted use of recommenders.

Georgiou and Tsapatsoulis [12] developed a whole clustering
algorithm that is based on genetic algorithms. In their approach,
each chromosome is a randomly created clustering—it de�nes the
users that belong to the cluster and those that do not–and their
algorithm tries to increase the number of users in the cluster while
increasing the number of shared items.
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3 METHODS
This section presents the problem to be solved as well as the method
we use to address it. This constitutes of our novel semi-genetic
hybridization method as well as the weighted hybridization voting
method by Pazzani [28], which will serve as baseline during our
experiments.

3.1 Problem De�nition
During our experiments, we deal with a standard binary item rec-
ommendation task. Users of a web service have expressed interest
in certain items by requesting them. These interactions with the
system are interpreted as (binary) positive feedback to these items.

We use two publicly available datasets: The MovieLens data
about movie ratings and the Nameling discovery challenge data
about name requests (see Section 4). For each user, the last two items
from the usage history are left-out. The �rst will be used for training
and the second for evaluation. The task during the experiment is
then to produce for each user a list of k item recommendations,
ordered by their relevance to the user at hand.

We select four source recommender that should be combined
using the hybridization method at hand. The obtained ensemble
should improve the performance of the best single recommender
while requiring as little additional runtime as possible.

3.2 The Semi-Genetic Hybridization Method
The basic idea of our semi-genetic hybridization method is to use
aspects of genetic algorithms to create the ensemble. Our goal is to
use those aspect to create a non-linear combination of all source rec-
ommendations while honoring the inherent item-relevancy given
by the items ranking.

Genetic algorithms in general are stochastic search and opti-
mization algorithms that mimic the natural selection to �nd a good
solution. Given a so-called chromosome pool of items to draw from,
they typically follow the following steps to obtain this result:

(1) Initialize Population: A �rst population of chromosomes is
created—usually at random—from the chromosome pool.

(2) Evaluate Fitness: During each iteration, the �tness of each
chromosome is evaluated using a given �tness function.

(3) Selection: A subset of the population is selected at random
based on their �tness for mating. It is possible that any
given item is selected multiple times.

(4) Cross-over: Each pair of chromosomes is mated using a
cross-over technique that exchanges parts of the chromo-
some’s information.

(5) Mutation: Additionally, a mutation can be applied with a
very low chance that alters part of the chromosomes or
replaces them altogether by new ones.

(6) Solution Set: The genetic algorithm stops if a certain crite-
rion is reached. The simplest one would be a pre-de�ned
number of iterations. The last population that remains after
the termination—called the solution set—is used to solve
the task at hand.

Typically, genetic algorithms run for multiple iterations until
a certain �tness quality is reached. This behavior can result in a
high demand for memory and runtime. However, a hybridization
method should add as little runtime to the recommendation process

as possible, which is in stark contrast to the way genetic algorithms
usually operate. Therefore, a balance between a high performance
and a low runtime.

Before genetic algorithms can be applied, one has to de�ne the
following features: A suitable encoding for the chromosomes and a
�tness function. The �tness function is a central feature, because
it decides which chromosomes survive a given iteration. It should
re�ect the chance of the given chromosome to solve the problem at
hand. However, there is a reason that genetic algorithms have not
already been applied to recommender systems: There is no such
function. A list of recommended items contains some that hit the
users taste and others that do not, but none in-between. So, how to
assign a useful �tness score?

The situation is a little di�erent for the hybridization task. There
is an implicit score attached to each item in the source recommen-
dations: It’s position in the ranking. It can safely be assumed that
any recommendation algorithm puts more promising items �rst.
Therefore, we decided to use each recommended item as a chro-
mosome and evaluate its �tness by using its reciprocal rank. The
�tness score is computed as follows:

ReciprocalRank(i) = 1
Rank(i) , (1)

where i is an item from a recommended list of items R and Rank(i)
is the rank position of i in R.

However, this implicit relevancy score is only present in the �rst
iteration where we can use the output of the recommendation algo-
rithms directly. We lose this information afterwards. Furthermore,
there is no meaningful way to apply any cross-over to the chromo-
somes when they are the smallest entity of the task (in our scenario:
a recommended item). Therefore, we refrain from applying any
cross-over or mutation. We further refrained from doing more than
one iterations, which makes our approach a single pass process.

Avoiding cross-over, mutations, and iterations has a bene�cial
side-e�ect for our hybridization task: It keeps the additional run-
time low. The lack of those parts of genetic algorithms lead to our
decision to call our hybridization methods semi-genetic, because it
uses only aspects of them.

Figure 1 shows the proposed mapping from genetic algorithms
to our semi-genetic hybridization. It basically, contains only the
�rst half of the genetic algorithm steps in favor of a low runtime.

(1) Initialize Population (input R in Algorithm 1): We treat the
source recommendations from the recommender systems
that should be combined as population initialization. They
basically select a set of items from all possible chromo-
somes.

(2) Evaluate Fitness (Algorithm 1, line 1 - 4): The �tness of the
recommended items is evaluated by assigning the recipro-
cal rank to them.

(3) Selection (Algorithm 1, line 5): We then use the selection
step to create a huge population of items by randomly draw-
ing n items with replacement from the initial population
based on their �tness score (i.e., reciprocal rank).

(4) Cross-over: None.
(5) Mutation: None.
(6) Solution Set (Algorithm 1, line 6 - 7): The method termi-

nates after the �rst iteration and the resulting solution set
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Figure 1: Comparison between the work�ow of a regular ge-
netic algorithm and our proposed semi-genetic hybridiza-
tion method.

is used for the combined ranking by counting the frequency
of each item and ordering them by decreasing frequency.

Algorithm 1 shows the methods work�ow as a pseudo-code. The
hybrid gets the collection of recommendations R to be hybridized
and a numeric value n given the number of random samples to
draw from the recommendations—which is the �rst and �nal itera-
tion. One item can occur in multiple source recommendations with
di�ering �tness values. This results in a higher survival rate for the
given item, because it increases its chance to be drawn.

Our approach has the advantage of being applicable on any list of
recommended items—with or without scores. The �tness function
can be replaced by the item score if the source recommender has
scores that are deemed comparable.

3.3 The Weighted Method
We select the weighted hybridization method that was proposed
by Pazzani [28] as our baseline method during our experiments,
because it is a well-established method.

The weighted hybridization mechanism for unscored items is
basically a voting system where each recommender can putn votes—
at most one vote per items—where n is the number of recommended
items. The items are then ordered by the decreasing number of votes.
Ties are solved using the order in the source recommendations.

Algorithm 1: Semi-genetic hybridization method
Data: A collection of recommendations R consisting of two or

more recommendations R ∈ R containing |R | ranked
items i ∈ R.

Result: A list of ranked items that contains items of R.
// Evaluate fitness / score items

1 foreach recommendation R ∈ R do
2 foreach item i ∈ R do
3 Assign the reciprocal rank to i as �tness score;

4 Create a multi set P from all r ∈ R;
// Selection

5 Create a multi set P ′ by drawing randomly n items with
replacement from P using the �tness score as probability;

// Solution set

6 Count the frequency of each item i ∈ P ′;
7 Order the items by decreasing frequency;

This method has the bene�t that it can work with recommended
items that have no score attached or in cases where the scores
of di�erent recommenders mean vastly di�erent things. However,
this method results in many ties in cases where there is a huge
number of votes to give per recommender with only a small number
of participating recommenders. The weighted voting method is
described in Algorithm 2 as pseudo-code.

Algorithm 2: Weighted hybridization method using votes
Data: A collection of recommendations R consisting of two or

more recommendations R ∈ R containing |R | ranked
items i ∈ R.

Result: A list of ranked items that contains items of R.
1 foreach recommendation R ∈ R do
2 foreach item i ∈ R do
3 Assign a voting weight of 1 to i .

4 Create a multi set P from all r ∈ R;
5 Count the number of votes of all i ∈ P (i.e., the frequency of

each item);
6 Order the items by decreasing frequency;

The core di�erence to our semi-genetic hybridization method
is to be found in two crucial steps: It has no selection step and the
solution set is created di�erently. Our semi-genetic method counts
the number of items (i.e., chromosomes) not their �tness score;
the weighted method counts the vote scores of the items—which
corresponds to counting the items in our case, given that each item
has a voting score of 1.

4 DATA
This section presents the data that will be used during our exper-
iments. We use two datasets, one containing movie ratings from
MovieLens, one containing name searches from the Nameling name
search engine.
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Figure 2: Screenshot of the Nameling web application show-
ing the �rst three search results for a the name “John”.

4.1 MovieLens 100K Data
MovieLens is a well-known service for personal movie recommenda-
tions by GroupLens1—a research lab at the University of Minnesota.
It o�ers rich information and enables its users to �nd, tag, and rate
movies. GroupLens has published multiple datasets from their web
system for scienti�c use.

We will use the well-known MovieLens 100K dataset2 [14] during
our experiments. This dataset contains 99392 ratings for 1664 movies
from 943 users with 20 movie ratings per user (users with less movie
rating where removed from the dataset by GroupLens).

4.2 Nameling Discovery Challenge Data
Nameling [23] is designed as a search engine and recommendation
system for given names. The basic principle is simple: The user
enters a given name and gets a browse-able list of relevant, related
names. As an example, Figure 2 shows the similar names for the
classical masculine American given name “John”.3 The list of sim-
ilar names in this example (“Lawrence”, “Gerald”, and “Norman”)
exclusively contains classical English masculine given names as
well. Categories for the respective given name are displayed when-
ever such a Wikipedia article exists (e.g., “English masculine given
names”, “Scottish masculine given names”, and “Surnames” for the
given name “Norman”). Via hyperlinks, the user can browse for
similar names of each listed name or get a list of all names linked
to a certain category in Wikipedia.

We use the publically available o�ine challenge data4 from the
Nameling discovery challenge as well as the list of submitted name
recommendations from the top 6 teams.5 We use the list of recom-
mended names that where originally submitted by the participating
1Source: https://movielens.org
2Source: File “ml-100k.zip” from https://grouplens.org/datasets/movielens/100k
3Source: http://nameling.net/name/John
4Source: File “20DC13_O�ine_Challenge.tar.bz2” from https://kde.cs.uni-kassel.de/
nameling/dumps
5Source: File “20DC13_Top6_Submissions.tar.bz2” from https://kde.cs.uni-kassel.de/
nameling/dumps

teams as source recommendations during our hybridization experi-
ments. The dataset contains 515848 activities from 60922 users in
the train data and two left-out names for 4140 test users each in the
test data. Each submitted name recommendations contains 1000
names for each of the 4140 test users.

5 TESTING THE METHODS
This section presents the experimental design, data pre-processing,
evaluation metric, describes the obtained results, and the discussion
of those results.

5.1 Design and Procedure
Our experiments focus on the task of combining recommendations
that were made by several recommenders beforehand. Our novel
semi-genetic hybridization method will be compared against the
weighted voting method by Pazzani [28] as well as the best single
result of a source recommender.

The hybridization methods will further be evaluated based on
their runtime, because most recommendation scenarios require fast
responses and adding hybridization increases the overall runtime
anyhow. Therefore, we need to �nd a suitable upper boundary for
the usable runtime. We will further address this topic in Section 5.4.

All experiments were conducted using R6 in version 3.3.3 and
the MovieLens recommendations were created using the recom-
menderlab r-package7 in version 0.2-2. We ensured that we had no
concurrent processes running on the test cluster to ensure compara-
ble runtime measurements between the semi-genetic and weighted
method.

5.2 Evaluation
Given the list of test users and a set of source recommendations,
each method produces a list of k recommended items per user.
These lists are then used to evaluate the quality of the method by
comparing for each test user the k items to the left-out items from
the test data. It is assumed that good methods will rank the left-out
items high, since they represent the actual measurable interests of
the user at hand.

The chosen assessment metric to compare the lists of recommen-
dations is Mean Average Precision (MAP). MAP can usually handle
arbitrarily long lists of recommendations; however, we restricted
it to MAP@1000, because this is the number of items that were
recommended in the discovery challenge data, meaning that only
the �rst 1000 positions of a list are considered. More formally, the
score assigned to a recommended list is

MAP@k =
1
|U |

|U |∑
u=1

(
1

Rank(ui1 )
+ 2

Rank(ui2 )

)
2

, (2)

where U is the set of all test users, Rank(ui1 ) and Rank(ui2 ) are the
ranks of two left-out items for useru ∈ U from the secret evaluation
dataset. Rank(ui ) returns 0 if an item does not occur in the top k
list positions of recommended items.

6Source: https://r-project.org
7Source: https://cran.r-project.org/web/packages/recommenderlab

https://grouplens.org/datasets/movielens/100k
https://kde.cs.uni-kassel.de/nameling/dumps
https://kde.cs.uni-kassel.de/nameling/dumps
https://kde.cs.uni-kassel.de/nameling/dumps
https://kde.cs.uni-kassel.de/nameling/dumps
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Table 1: The results for the four methods on the Movie-
Lens data, showing the method names together with their
achieved MAP@1000 score.

Pos. Method Score

1 User-based Collaborative Filtering (UBCF) 0.0309
2 Most Popular 0.0295
3 Singular Value Decomposition (SVD) 0.0198
4 Item-based Collaborative Filtering (IBCF) 0.0126

Table 2: The results for the four best teams of the Nameling
discovery challenge, showing the team names together with
their achieved MAP@1000 score.

Pos. Team Name Score

1 Glauber et al. [13] (uefs.br) 0.0486
2 Bayer and Rendle [4] (ibayer) 0.0419
3 Letham [20] (all_your_base) 0.0418
4 Aurélio Domingues et al. [1] (Labic) 0.0374

5.3 Data Pre-Processing
We conducted the following pre-processing, in order to create a
comparable setting between the MovieLens and Nameling data:

We need to have three datasets: Train data to create the source
recommendations, tuning data to optimize the model parameter,
and testing data to evaluate the �nal performance.

In order to obtain this setting in the MovieLens data, we use
the last movie rating as testing data, the rating next to the last as
tuning data, and the remaining ratings as training data.

The Nameling data is already separated into training and test
data. The train data was created be striping the data starting with
the next to last name search requests for 4140 users. The last two
name search request are provided as test data. We further divide
this original test data into tuning and testing by using the �rst name
as training and the second as testing name.

Next, we need a set of source recommendation that can be used
for hybridization. For the Nameling data, there is already a set of
the best recommendations of the Nameling discovery challenge
as download available. We will use them as non-trivial source rec-
ommenders. For the MovieLens data, we use the common User-
Based Collaborative Filtering (UBCF), Singular Value Decomposi-
tion (SVD), Item-Based Collaborative Filtering (IBCF), and a Most
Popular recommender to form the source recommendations using
the train data.

Table 1 and 2 show the performance of all source recommenders
by decreasing MAP@1000 score. During our experiments, we will
combine between two and four of those source recommenders
using their decreasing MAP@1000 score order. We will label them
Top 2, Top 3, and Top 4 for a combination of the �rst two, three,
and four best (e.g., the Top 3 ensemble on the Nameling data is a
hybridization of uefs.br, ibayer, and all_your_base).

5.4 Parameter Optimization
First, we need to identify a suitable value for the parameter n for the
size of the population for our semi-genetic hybridization method
before we can compare our semi-genetic hybridization with the
weighted method. We conducted a grid-search for n on the tuning
data where we tested values ranging from 1000 to 40000 in steps of
1000. We further repeated every run 1000 times in order to account
for the randomness in the semi-genetic hybridization method. We
also run each weighted hybridization experiments 1000 times to ob-
tain reference runtime measurements of the hybridization methods
themselves.

Figure 3a show the tuning results for the MovieLens data and
Figure 3b shows the results for the Nameling data.

The plots in Figure 3 show the median scores across all 1000
runs as line with error bars showing the 95 % con�dence interval.
The vertical line in the plots mark the slowest experiment that is
still faster or as fast as the fastest baseline run.

Most combinations follow the same course with a steep increase
in the MAP@1000 score for increasing values of n with a plateauing
e�ect at a size of about 10000. Note that the actual MAP@1000 score
does not matter during this experiment; only its change compared
to other parameters.

The runtime increases with an increasing value of the number
of randomly selected items. Choosing simply the best MAP@1000
score would ignore the runtime as a factor. A hybridization tech-
nique always increases the overall runtime of a recommendation,
but should require as little runtime as possible. So, what is a rea-
sonable upper threshold considering the runtime? We decided to
use the minimum runtime of the weighted hybrid method as an
upper bound for the semi-genetic method. The weighted method is
accepted in practice and, consequently, deemed fast enough. There-
fore, the semi-genetic method can be considered fast enough, as
long as it runs as fast as or faster than the fastest weighed method.
Therefore, we selected the best median MAP@1000 score for every
hybridization running faster than the fastest weighted method. This
leads to a good balance of MAP@1000 score and runtime while stay-
ing at worst as fast as the baseline. Doing so, we selected n = 5000
for the Top 2, and n = 19000 for the Top 3 hybrid in the MovieLens
experiments and n = 9000 for the Top 2, and n = 26000 for the
Top 3 hybrid in the Nameling experiments. The selected parameters
for n are marked with a S-label in Figure 3.

5.5 Hybridization Evaluation
We conducted our evaluation on the testing data with the above-
mentioned parameters that we found during the grid-search for
each Top n hybridization. The task during our experiment is to
predict the left-out items of each user in the testing data.

Figure 4a shows the obtained median results for each ensemble
on the MovieLens data as well as the best score that was obtained
by the best single recommender (i.e., UBCF with a MAP@1000 score
of 0.0309).

All hybridization result follows the same trend across both meth-
ods: The score decreases with an increasing number of combined
recommenders. In other word, combining more and more source
recommenders does not bene�t the overall performance, which is
to be expected, because every additional source recommender has
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Figure 3: Median MAP@1000 scores for the grid-search for the number of randomly selected items with three di�erent hy-
bridizations per dataset and 1000 repeats on the tuning data. Those runs that obtained the highest scores while running faster
than the fastest baseline are marked with a S-label. Note that the y-axis does not start a 0 to better illustrate the di�erences.
Error bars show 95 % con�dence intervals.

a lower MAP@1000 score than the previous ones. Our proposed
semi-genetic hybridization outperforms the weighted hybrid in
every experiment by about 20.3 % on average. Further, does the
Top 2 outperform the singe recommender with 0.0349 by about
12.8 % in the Top 2 experiment. The Top 3 ensemble obtains a
slightly better result than the best single recommender and the
Top 3 ensemble is slightly worse. The weighted method is only able
to obtain slightly better results than the best single recommender
with the Top 2 ensemble and is clearly inferior than the best single
recommender in the Top 3 and Top 4 experiment. This dramatic

decrease in MAP@1000 scores can be explained by the sharp de-
crease in the MAP@1000 scores of the added source recommenders
as given in Table 1.

Figure 4b shows the obtained median results for each ensemble
on the Nameling data as well as the best score that was obtained by
the best team (i.e., team uefs.by with a MAP@1000 score of 0.0460).

The results follow the same trend as on the MovieLens data:
Decreasing scores with larger ensembles. Again, our proposed semi-
genetic hybridization outperforms the weighted hybrid in every
experiment—in this case by about 31.1 %. The Top 2 outperform the
best team with 0.0516 by about 12.2 % in the Top 2 experiment. The
Top 3 ensemble obtains about the same results as the best team and
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Figure 4: Median MAP@1000 scores on the test data with
1000 runs across all hybridizations. The horizontal line
marks the best obtained result from the sole recommenda-
tions.

the Top 4 ensemble is slightly worse. The downward trend with the
increasing number of combined teams can be explained analogue to
the MovieLens experiment with the decreasing MAP@1000 score
of the combined recommendations. The decline is less pronounced,
because the MAP@1000 scores of the source recommendations are
closer to each other (see Table 2). The weighted method performs
very di�erent than on the MovieLens data—it is never able to obtain
better results than the best single recommendation.

To compare the recommenders’ performances in greater detail,
Figure 5 shows the cumulative distribution of the di�erent ranking
positions (1, . . . , 1000). For each recommender system and every
ranking position k is the number of hold-out items displayed—from
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Figure 5: Cumulative distribution of the ranking positions
for both hybrid methods as well as the respective winners
(i.e., User-based Collaborative Filtering (UBCF) and uefs.br).
Both axes are logarithmically scaled.

the test users with one hold-out item each—that had a rank smaller
than or equal to k on the list of recommended items.

Figure 5a shows the ranking position on the MovieLens data
for the Top 2 hybridization for the semi-genetic method, weighted
method, and the best single recommender (i.e., UBCF). We can see a
clear di�erence for the rank position in the �rst 50 positions. Both
hybridization methods are able to increase the number of movies on
the top three positions compared to UBCF. The weighted method
is even able to recommend a few more movies at those positions
than our semi-genetic method. However, it falls behind shortly
after when both UBCF as well as our semi-genetic method place
far more movies correctly between position �ve and �fty with the
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semi-genetic method being always better than UBCF. Both, UBCF
and the semi-genetic method are about equal starting from position
�fty with the weighted method always staying behind. However,
the weighted method is able to recommend more movie correctly
within the 1000 items, but at very low positions.

Figure 5b shows the ranking position on the Nameling data for
the Top 2 hybridization for semi-genetic method, weighted method,
and the best single recommender (i.e., uefs.br). We see that the
challenge winner has predicted about as much names correctly
onto position one as our semi-genetic method. However, the semi-
genetic method is able to place more names in high positions for
about the �rst 100 positions. The weighted method on the other
hand, obtains far lower results than team uefs.br or the semi-genetic
method, which is to be expected given the low MAP@1000 scores.

To wrap up our analysis: Our goal was to �nd a better hybridiza-
tion method to be applied on long non-scored rankings. We used
state of the art recommendation methods for the MovieLens data
and the predictions that were made by the top participants of the
Nameling discovery challenge for the Nameling data. We further
restricted our semi-genetic method to require no more runtime
than the fastest weighed method run. Doings so, we were able
to outperform the weighted baseline for all Top n hybridizations.
The improvement over the baseline is quite pronounced across all
experiments. To further illustrate this di�erence using the Top 2
ensemble: The improvement corresponds to an average increase of
a left-out item from about position 32 to 29 for the MovieLens data
and to an increase from position 25 to 20.

5.6 Runtime Analysis
The second aspect of our hybridization experiments is the impact
on the runtime. We selected the number of randomly selected items
in a way to ensure that our semi-genetic method adds at worst
about the same amount of time to the overall recommendation as
the weighted method. Please note that the following experiments
focus on the runtime of the hybridization methods themselves and
do not take the runtime of the combined source recommendations
into account.

The measured results shown in Figure 6 show that our selection
technique indeed resulted in comparable or better runtimes of
the semi-genetic over the weighted method in all experiments. In
order to better illustrate the di�erence between both method, we
decided to compare each experiment’s runtime with the Median
runtime of the weighted method—meaning, the plot shows how
much faster/slower the semi-genetic method is compared to the
Median weighted method in a given Top n ensemble.

The Top 2 ensemble run signi�cantly faster than the weighted
method by up to 19.9 %. This is due to the fact the selected popu-
lation size is with 5000 very small. We further see that—except of
some runs in the highest quartile for the Top 3 ensemble—all exper-
iments run faster than the lower quartile runtime of the weighted
method.

The results on the Nameling data are similar, with the Top 2 en-
semble being up to 14.8 % faster than the Median weighted method.
As on the MovieLens data, all experiments run bellow the lower
quartile runtime of the weighted method experiments.
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Figure 6: Boxplot showing the execution time on the testing
data with 1000 repeats in each experiment. The runtime is
normalized to the median runtime of the weighted method
better to illustrate the di�erence between both methods.

In summary, our results show that our semi-genetic method
is not just better in terms of MAP@1000 score, but is also able
to run faster than the weighted baseline. This di�erence is to be
found across all experiments, which leads to the conclusion that
our semi-generic hybridization method is a suitable replacement
for the weighted voting method.

6 CONCLUSIONS
In this paper, we presented a hybridization method for recom-
mender systems that picks up aspects of genetic algorithms. The
combined recommendation is constructed by randomly selecting
items with replacement from the source recommendations based
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on the reciprocal rank. It provides a signi�cant improvement in
scenarios where long lists of recommended items o�er no scores or
scores that are deemed to be not comparable.

Our experiments show a clear improvement of up to 31.1 % (on
the Nameling data) over the traditional weighted method, which
uses the items in the source recommendations as votes. This is espe-
cially di�cult when there are only a few recommenders with lots of
items that should be combined, because there are not enough vote
ranks—the number of source recommenders at most—compared to
the number of items.

A possible extension to our approach would be to use di�erent
weights for each recommender and each user. We were not able to
do this experiment, because one would need to repeat the experi-
ment over time on each user multiple time to learn the preferences
of that particular user in an online evaluation. However, our exper-
iments relied on o�ine data, which do not o�er this opportunity.
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