
On the Optimality of Reflection Control,
with Production­Inventory Applications

[Extended Abstract]

Jiankui Yang
∗

David D. Yao
†

Heng­Qing Ye
‡

ABSTRACT
We study the control of a Brownian motion (BM) with a
negative drift, so as to minimize a long-run average cost
objective. We show the optimality of a class of reflection
controls that prevent the BM from dropping below some
negative level r, by cancelling out from time to time part of
the negative drift; and this optimality is established for any
holding cost function h(x) that is increasing in |x|. Further-
more, we show the optimal reflection level can be derived as
the fixed point that equates the long-run average cost to the
holding cost. We also show the asymptotic optimality of this
reflection control when it is applied to production-inventory
systems driven by discrete counting processes.

1. INTRODUCTION
Consider the control of a Brownian motion (BM) with

a negative drift, so as to minimize a long-run average cost
objective. We show the optimality of a class of reflection
controls that prevent the Brownian motion from dropping
below some negative level r, by cancelling out from time to
time part of the negative drift; and this optimality is estab-
lished for any holding cost function h(x) that is increasing
(i.e., non-decreasing) in |x|, where x is the state variable.
This is a natural and desirable form of a cost function, since
in applications, the absolute value of the state variable can
be interpreted as finished-goods inventory or backordered
demand (depending on the sign of x), both incurring costs.
To the best of our knowledge, this is the most general form of
the cost function for which the optimality of the reflection
control is known. (Existing studies in the literature often
require second-order properties such as convexity.) Further-
more, let C(r) be the long-run average cost under the reflec-
tion control with the level r. We show the optimal reflection
level r∗ can be derived as the fixed point that equates the
long-run average to the holding cost, C(r∗) = h(r∗).
To prove the optimality of the reflection control, we follow

the lower-bound method in Harrison and Taksar [5]. (Also
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see Harrison [6] and Taksar [9].) Focusing on a sub-class of
the class of admissible controls (with the sub-class including
the reflection control), we first find a lower bound on the
cost objective, and then show this lower bound can be at-
tained by a reflection control with a proper reflection level,
which is thus optimal. To connect the result to a discrete
production-inventory system driven by counting processes,
we use the standard diffusion-limit approach (e.g., Reiman
[8]), and establish the asymptotic optimality of the reflection
control.

Many related studies in the literature that use BM in
production-inventory systems focus on two-sided controls
such as the (s, S) policy, whereas the reflection control we
focus on here is one-sided. Refer to [1, 3, 4, 7, 10, 11],
among many others. However, these papers all need to as-
sume piecewise linear or convex/quasi convex cost functions
with polynomially-bounded growth; whereas we only need a
cost function h(x) that is increasing in |x|, and we can allow
it to have exponentially-bounded growth.

2. THE CONTROL PROBLEM
Given a Brownian motion with a negative drift, X(t) :=

θt + σB(t), where θ < 0 and σ > 0 are given constants
and B(t) denotes the standard Brownian motion, we want
to find a control, denoted {Y (t), t ∈ [0,+∞)}, such that the
state process

Z(t) = z0 +X(t) + Y (t), t ∈ [0,+∞), (1)

with z0 being the initial state, will approach a stationary
limit Z(+∞) that minimizes a cost objective Eh[Z(+∞)].
In general, the expected long-run average cost is given by

AC(x, Y ) = lim sup
t→+∞

Ex
1

t

∫ t

0

h(Z(u))du. (2)

And we have AC(z0, Y ) = Eh[Z(+∞)], provided the control
Y induces a steady-state distribution for Z(t).

• Assumptions on the cost function. Here the cost func-
tion h(x) is assumed to be continuous, and increas-
ing in x ≥ 0 and decreasing in x ≤ 0. This implies
h(x) ≥ h(0) for all x, and h(0) is assumed to be finite.
In both directions, x tends to +∞ or −∞, h(x) goes
to +∞. Of course, we also need Eh[Z(+∞)] < +∞,
and this requires h to be exponentially bounded; see
(7) below.

Note the negative drift of X(t) will drive the state process
to −∞ without any control, and hence achieve an objective
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value that is at one of the two largest extremes of h, i.e.,
h(−∞). Thus, the control Y (t) is trying to cancel out, from
time to time, this negative drift; and in this sense, Y (t) is a
cumulative effort up to t.

• Admissible controls. Let A denote the set of admissi-
ble controls. To be admissible a control must be non-
anticipative and satisfy the following requirements: Y (t)
is increasing in t ∈ [0,+∞), with Y (0) = 0.

To motivate, consider a production-inventory system that
supplies demand. Suppose demand rate is λ and production
rate is µ. Let the state at time t be the net demand in
the system, i.e., waiting orders minus produced quantities
(both are cumulative up to t). Then, without any control,
this net demand is (λ − µ)t + σB(t), where σB(t) models
the volatility (Gaussian noise) associated with demand (or,
with both demand and production). Assume λ < µ; hence,
θ := λ− µ < 0, and denote this net demand as X(t). Here,
the control is to insert idle time into production; so denote
the cumulative idle time up to t as U(t). Then, production
up t becomes µ[t−U(t)]; and, with Y (t) = µU(t), the state
process can be expressed as follows:

Z(t) = z0 + (λ− µ)t+ µU(t) + σB(t)

:= z0 +X(t) + Y (t). (3)

Note that Z(t), when positive, represents the volume of wait-
ing orders; when Z(t) is negative, its absolute value repre-
sents the volume of products waiting to supply demand (i.e.,
inventory). This also motivates why the cost function h(x)
is increasing in x ≥ 0 and decreasing in x ≤ 0 (the more
negative x is, the higher the cost).

3. REFLECTION CONTROL
Recall, a Brownian motion (starting from 0) with a nega-

tive drift will have a stationary limit if it is reflected at some
pre-specified value. Hence, we first focus on a sub-class of
admissible controls, called “reflection controls,” A∗ ⊂ A;
and denote a control in this class as Yr ∈ A∗, and denote
the corresponding state process as Zr. The control Yr is
defined by a reflection level r, meaning it ensures Z(t) ≥ r
for all t.
Then, Zr(t) − r is a standard reflected Brownian motion

(RBM); refer to [2] Section 6.2). It is known that Yr and Zr

can be explicitly expressed as functions of X, the primitive
(Brownian motion with drift), as follows:

Yr(t) = sup
0≤u≤t

(r − z0 −X(u))+, (4)

Zr(t) = z0 +X(t) + sup
0≤u≤t

(r − z0 −X(u))+. (5)

In addition, complementarity holds: [Zr(t)−r]dYr(t) = 0 for
all t, i.e., when Zr(t) > r, Yr(t) cannot increase. Further-
more, the steady-state distribution of Zr(+∞) − r follows
an exponential distribution with rate γ := −2θ/σ2 (recall,
θ < 0).
Thus, under the reflection control Yr, we have

Eh(Zr(+∞)) = γ

∫ +∞

0

h(r + x)e−γxdx := C(r). (6)

Note that the left-hand-side is indeed AC(z0, Yr).
Next, we want to find the r value that minimizes Eh(Zr(+∞)).

But first note that for this expectation to be finite, we need

the function h(x) to satisfy the following condition: there
exist positive numbers a and b < γ/2 (γ is specified above),
such that

h(x) ∼ o(aebx), ∃a > 0, 0 < b < γ/2. (7)

The C(r) expression in (6) confirms that the optimal reflec-
tion level, if exists, must be negative, since C(r) is increasing
in r > 0. Taking derivative on C(r), and applying the vari-
able change, we have

C′(r) = γ[C(r)− h(r)].

Hence, the optimal r can be obtained from

h(r) = C(r) (8)

The optimal solution r must exist and be strictly negative.
To see this, first observe from (6) that C(0) > h(0). So,
the equation in (8) must have a finite and strictly negative
solution (denoted as r∗ < 0), unless C(r) > h(r) for all r <
0. But then, this means C′(r) > 0, i.e., C(r) is increasing
in r < 0, which, via (6), contradicts the fact that h(r) is
increasing to +∞ as r → −∞. Furthermore, taking into
account C(r∗) = h(r∗), it is direct to verify C(r) ≥ C(r∗)
for r ≤ r∗. To summarize, we have

Proposition 1. The reflection control Yr∗ is optimal among
all controls in the sub-class A∗, with the optimal reflection
level r∗ being the solution to C(r) = h(r).

What remains is to argue that the reflection control Yr∗

is not only optimal within the sub-class A∗ of all reflection
controls but also optimal over all admissible controls in A.

To this end, for any admissible control Y (t), consider an-

other control, Ỹr(t) := Yr(t)∧Y (t). It is then readily verified

that (a) Ỹr(t) is an admissible control, and (b) Ỹr(t) yields
a lower cost objective than Y (t), where the reflection level
r ≥ 0 is fixed arbitrarily. Thus, it suffices to show (with
details spelled out in the full paper):

AC(x, Ỹr) ≥ AC(x, Yr∗)[= C(r∗)]. (9)

Consequently, we have the following theorem.

Theorem 2. The reflection control Yr∗ specified in Propo-
sition 1 is optimal over all controls in the admissible class
A, i.e., AC(x, Yr∗) ≤ AC(x, Y ) for any initial state x and
any Y ∈ A.

4. ASYMPTOTIC OPTIMALITY
Consider a discrete version of the production-inventory

model outlined in §2, i.e., with both demand and production
processes being renewal counting processes. Let {ui, i =
1, 2, · · · } denote the inter-arrival times of the orders (de-
mand), an i.i.d. sequence with Eu1 = 1/λ and the squared
coefficient of variation c2e. Let {vi, i = 1, 2, · · · } denote the
required processing times of the orders, another i.i.d. se-
quence with Ev1 = 1/µ and the squared coefficient of vari-
ation c2s. Assume the two sequences, {ui, i = 1, 2, · · · } and
{vi, i = 1, 2, · · · }, are independent; and let E(t) and S(t)
denote the corresponding counting processes.

Let T (t) denote the cumulative amount of time produc-
tion is active (with processing orders) up to time t. Let
U(t) = t − T (t) be the cumulative inactive (idle) time. Let
Q(t) denote the state of the system at time t, the differ-
ence between the number of orders that have arrived and



the number of completed products by time t. Then, the
dynamics of the system can be written as follows:

Q(t) = Q(0) + E(t)− S(T (t)), t ≥ 0. (10)

For the above system, reflection control means, whenever
the level of inventory reaches a certain level, Q(t) = r, for
some negative (integer) r, production will be stopped; i.e.,

T (t) =
∫ t

0
1[Q(s) > r]ds.

We want to show that applying reflection control to the
above discrete production-inventory system is asymptoti-
cally optimal in a precise sense to be spelled below. Consider
a sequence of systems as described above, indexed by a su-
perscript “(n)”, with the n-th system having arrival rate

λ(n), while the service rate µ stays fixed. Assume the fol-
lowing limit.

√
n(λ(n) − µ) → θ < 0. (11)

When n → ∞, the above implies λ(n) → µ, from below.
Thus, when n is large, the above alludes to a heavily uti-
lized system, with production capacity (µ) near saturation.
Accordingly, we scale time t by n and space by 1/

√
n in all

processes involved (along with proper centering):

Ê(n)(t) :=
1√
n
(E(n)(nt)− λ(n)nt),

Ŝ(n)(t) :=
1√
n
(S(n)(nt)− µnt),

and

Û (n)(t) :=
1√
n
U (n)(nt), Q̂(n)(t) :=

1√
n
Q(n)(nt).

Then, the dynamics of the n-th system can be written as,

Q̂(n)(nt) = Q̂(n)(0) + X̂(n)(t) + Ŷ (n)(t), (12)

with

X̂(n)(t) = Ê(n)(t)− Ŝ(n)(T̄ (n)(t)) +
√
n(λ(n) − µ)t,

Ŷ (n)(t) = µÛ (n)(t), T̄ (n)(t) =
1

n
T (n)(nt).

Applying the standard approach to the diffusion limit of a
single-server queue under heavy traffic, we have the following
proposition.

Proposition 3. Under the condition in (11), along with

Q̂(n)(0) ⇒ z0, and applying reflection control to the n-th
system with

√
nr being the reflection level and r any given

negative integer, we have, as n → ∞, the following weak
convergence (denoted ⇒):

X̂(n)(t) ⇒ X(t) := σB(t) + θt, Ŷ (n)(t) ⇒ Yr(t); (13)

where σ2 = λc2e + µc2s, θ is the constant in (11), and Yr is
the reflection control in (4). Hence,

Q̂(n)(t) ⇒ Zr(t) := z0 +X(t) + Yr(t). (14)

Next, consider any admissible control applied to the n-
th system, under the above time-space scaling. Admissibil-
ity means Ŷ (n)(t) must be increasing in t ∈ [0,+∞), with

Ŷ (n)(0) = 0, and non-anticipative. Similar to the diffusion
limits in the above proposition, we can show that along some
subsequence of n, Ŷ (n)(t) will converge to a weak limit, de-

noted Y (t), thereby taking the corresponding Q̂(n)(t) to a

weak limit as well, denoted Z(t), and with

Z(t) := z0 +X(t) + Y (t),

in parallel to the (Zr, Yr) relation in (14). Note, in par-
ticular, here X(t) remains the same as (13), as it involves
primitive data only.

Then, from Theorem 2 and Proposition 3, we have

Theorem 4. Applying reflection control to the n-th sys-
tem as described above, with

√
nr∗ being the reflection level

and r∗ specified in Proposition 1, is asymptotically optimal
in the sense that its diffusion limit (as n → ∞) yields a
long-run average cost AC(x, Yr∗) that is no greater than the
long-run average cost of the diffusion limit of the same sys-
tem under any other admissible control.
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