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Abstract

Mitigating memory-access a�acks on the Intel SGX architecture

is an important and open research problem. A natural notion

of the mitigation is cache-miss obliviousness which requires the

cache-misses emi�ed during an enclave execution are oblivious

to sensitive data. �is work realizes the cache-miss obliviousness

for the computation of data shuffling. �e proposed approach is

to so�ware-engineer the oblivious algorithm of Melbourne shuf-

fle [23] on the Intel SGX/TSX architecture, where the Transaction

Synchronization eXtension (TSX) is (ab)used to detect the occur-

rence of cache misses. In the system building, we propose so�ware

techniques to prefetchmemory data prior to the TSX transaction to

defend the physical bus-tapping a�acks. Our evaluation based on

real implementation shows that our system achieves superior per-

formance and lower transaction abort rate than the related work

in the existing literature.
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1 Introduction

Today we witness the emergence of hardware enclaves, a trusted

execution environment that protects trusted user program against

the untrusted operating system. A notable example is the re-

cently released Intel So�ware Guard eXtension (SGX [4]) with in-

creasing adoption for secure public-cloud computing (e.g. in Mi-

croso� Azure [7] and Google Cloud Platform [2]). Various side-

channel a�acks on hardware enclave exploiting memory access

pa�ern [12, 20, 28] have been proposed and demonstrated feasible

in practice. Defending side-channel a�acks on SGX-alike enclave

architecture becomes an important and open research problem.

A natural notion of the defense is cache-miss obliviousness: �e

hardware enclave features a trusted processor issuing cachemisses

to access the memory in the untrusted world. Security can be
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assured by making the boundary crossing of cache miss oblivi-

ous to the sensitive data. �is is especially effective to defending

the physical a�ack, e.g. by bus tapping [13] and so�ware a�acks,

e.g. page-fault controlled side-channel a�ack [28]. In addition to

the strong security, cache-miss obliviousness helps induce be�er

performance as cache-miss oblivious algorithms have lower time

complexity than the classic word-oblivious algorithms [22, 29] (see

§ 4.1 for performance discussion).

�is work realizes the cache-miss obliviousness for data shuf-

fling computation. �e data shuffling is a basic operation used in

many analytical computations. Specifically, we consider the Mel-

bourne shuffle algorithm [23] which divides the data accesses in a

shuffle to 1) the oblivious ones to a large external storage and 2)

the non-oblivious ones to a small internal storage. We map the in-

ternal storage to the cache inside trusted process and the external

storage to untrusted world (e.g. memory and disk). By this means,

the cache misses that only touch the untrusted memory are made

oblivious and thus safe to be disclosed.

When engineering the above mapping paradigm on SGX, one

challenge is how to conceal the internal storage in cache with as-

sured isolation. We leverage Intel Transaction Synchronization eX-

tension [6], a Hardware Transaction Memory feature in the latest

Intel Skylake processor. TSX was originally designed for efficient

concurrency. In this work, we propose a technique to enable the

TSX transaction to detect cache misses; the observation is that TSX

provides the capability of detecting early cache write-back (before

the transaction commit) and cache miss can be detected if one can

equate cache miss with cache write-back. �e proposed technique

pre-fetches all memory referenced in a transaction and make them

dirty cache lines so that their eviction triggering write-back can be

detected.

In addition to cache-miss detection, we propose techniques to

avoid unnecessary transaction abort by carefully aligning data in

memory and ensuring no conflict during data prefetch. Our tech-

nique leverages the specific semantic of oblivious computation and

is distinct from the compiler-based partitioning schemes such as T-

SGX [25].

We conduct algorithmic analysis to demonstrate the be�er com-

plexity of our hybrid external-oblivious algorithms. More impor-

tantly, we conduct performance study based on real implementa-

tion, with the hope of verifying the advantage of systems-level per-

formance of the cache-miss oblivious computation. �e systems-

level performance study is necessary even in the presence of al-

gorithmic analysis. Because the overhead induced by cache-miss

obliviousness, mostly due to TSX transaction execution, is higher

than that of word obliviousness. Our performance study in real-

istic se�ings show that the systems-level overhead of cache-miss

obliviousness is negligible in the presence of be�er time complex-

ity, and cache-miss obliviousness causes an overall be�er perfor-

mance than the word-oblivious computation.

http://arxiv.org/abs/1711.04243v1
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2 Preliminary

2.1 Intel So�ware Guard eXtension (SGX)

Intel SGX is a security-oriented x86-64 ISA extension on the Intel

Skylake CPU, released in 2016. SGX provides a “security-isolated

world” for trustworthy program execution on an otherwise un-

trusted hardware platform. At the hardware level, the SGX se-

cure world includes a tamper-proof SGX CPUwhich automatically

encrypts memory pages (in the so-called enclave region) upon

cache-line write-back. Instructions executed outside the SGX se-

cure world that a�empt to read/write enclave pages only get to

see the ciphertext and can not succeed. SGX’s trusted so�ware

includes only unprivileged program and excludes any OS kernel

code, by explicitly prohibiting system services (e.g. system calls)

inside an enclave.

To use the technology, a client initializes an enclave by upload-

ing the in-enclave program and uses SGX’s seal and a�estation

mechanism [11] to verify the correct setup of the execution envi-

ronment (e.g. by a digest of enclave memory content). During the

program execution, the enclave is entered and exited proactively

(by SGX instructions, e.g. EENTER and EEXIT) or passively (by in-

terrupts or traps). �ese world-switch events trigger the context

saving/loading in both hardware and so�ware levels. Comparing

prior TEE solutions [1, 3, 5, 8], SGX uniquely supports multi-core

concurrent execution, dynamic paging, and interrupted execution.

2.2 Intel Transactional Synchronization eXtension (TSX)

�e purpose of TSX is to enable atomic execution of a code block

or transaction from other processors’ view point. �is goal entails

two requirements: 1) During the transaction execution, it is fully

contained inside a processor and its memory-access requests can

all be resolved inside the data cache. In other words, the trans-

action writes are buffered by dirty cache lines without being re-

flected in the memory. 2) By the end of transaction execution, the

cached writes are successfully wri�en back and the transaction

can be commi�ed only when there is no data conflict with other

processor. A conflicting data access occurs when there is a loca-

tion being accessed by two processors and at least one access is a

transactional write.

To realize the two requirements, the TSX hardware supports the

capability of aborting the execution of a transaction under various

causes. It aborts a transaction when data conflict is detected at the

transaction commit time (AbortCause AC1). In order to detect data

conflict, the hardware needs to track both the readset and writeset

of a transaction. �e writeset needs to be kept inside the L1 data

cache (L1D) and readset needs to be inside the L3 cache. �us, it

aborts the transaction when the dirty data-cache lines are evicted,

triggering cache write-back, before the end of transaction (AC2).

It also aborts upon the readset exceeding the L3 cache (AC3). In

addition, it aborts upon various systems events such as page-fault,

interrupts and other exceptions delivered to the processor (AC4).

While TSX is originally designed for the performance and pro-

grammability in multiprocessing, its capabilities can be (ab)used

for security purposes: It can be used to realize the cache-based

or register-based computation [15] and to protect the private key

from leaving a processor [16] by leveraging the TSX capability of

detecting early cache write-back. T-SGX [25] defends the page-

fault side-channel a�acks by leveraging the TSX capability that

page-fault events are intercepted by the TSX abort handlers before

    x_begin

    ...

Prefetch:
    LD R15, 0x8231

    ST 0x8231, R15

  ...

Original data-access:
    LD RCX, 0x8231

    ...

    x_end

Execution Timeline

TSX guarantee 

No cache write 

back of 0x8231

TSX transaction

Figure 1. Intel TSX (ab)used to detect cache misses: �e hack

here is that no cache write-back of a dirty line means the line stay

present in the cache, implying a cache hit upon a memory request.

the untrusted OS. �is work uses TSX for detecting cache-misses

and for defending side-channel a�acks. �e use of TSX in this

work is elaborated below.

2.3 Use of TSX for Detecting Cache-Miss

Our work requires to conceal the access-leaky internal storage in

cache. Any access to the internal storage cannot be resolved by

cache miss, which would otherwise leak the sensitive access. To

conceal the internal storage in the last-level cache (LLC), it is equiv-

alent to ensure no LLC cache miss during the time period when

the internal storage is being accessed. �us, the key requirement

of our work is to ensure no LLC cache miss caused by internal-

storage access.

TSX as is, however, does not provide this capability. For in-

stance, a cache miss in a transaction does not necessarily cause

the transaction to abort. A cache miss would abort a TSX trans-

action when it replaces a line that is read or wri�en by the same

transaction. �e key insight of this work is to prefetch the entire

read/write set of a transaction, such that the actual access must be

served by cache hits (without leaky cache miss). More concretely,

TSX guarantees any a�empt to replace the prefetched cache line

would abort the transaction. With unreplace-able prefetched lines,

the actual access is guaranteed to be served by cache hits..

For example, consider the memory reference request of LD

RCX,0x8231 in the code sample in Figure 1. �e memory refer-

ence can be resolved by a cache hit or a miss. To ensure no chance

of cache miss, we prefetch the data to the LLC in the beginning of

the transaction (i.e. “LD R15,0x8231”). A�er this instruction, the

LLC cache-line buffering the content at 0x8231 is recorded into

the readset of this transaction and is “pinned” there; TSX guaran-

tees any a�empt to replace the LLC line will abort the transaction,

which is further captured by TSX abort handler. In other words, if

the transaction does not abort when the execution reaches instruc-

tion “LD RCX,0x8231”, the prefetched cache line is still present at

least in the LLC and the memory reference must not cause LLC

miss or cause any traffic on the system bus.

In general, the capability of prefetching transaction read-/write-

set and pinning them to unreplaceable cache-lines can assist mit-

igate various memory-access a�acks including physical bus tap-

ping and cache-timing a�acks. Bus tapping can bemitigated due to

pinned cache-line guarantees cache hits. �e cache-timing a�acks

are mitigated due to sharing cache-lines between transactions.
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3 System Design and Impl.

3.1 �reat Model

We mainly consider a memory-access a�acker who either directly

sniffs the out-of-process memory-access traffic (e.g. by bus tap-

ping or by page-fault channel [28]) or indirectly monitors the side-

channel of cache timing [12].

�e non-goals of this work includes the following a�acks. 1)

�is work is complementary to rollback a�acks load sealed but

stale data across power cycles and restore the system to a stale

state. 2) Given memory store both data and code, this work focuses

on data-memory. �e code-access a�acks are orthogonal that ex-

ploit the access pa�ern to the memory region storing code, and

that can be defended by existing techniques [21, 25] on a small

memory. 3) We don’t consider other side-channel a�acks exploit-

ing timing information or power usage [10]. 4) We don’t consider

denial-of-service a�acks that the adversary declines to serve the

requests from the enclave.

3.2 Security Definition

Intuitively, the memory-access obliviousness states that the mem-

ory access trace in a program execution is independent with any

computation data (involving both input and intermediate data).

Consider the execution of a program P with data input I . �e exe-

cution produces the memory-access traceT that consists of all the

last-level cache misses. �e obliviousness requires that given two

data values, I0 and I1, the an oblivious execution produces the same

trace, that is, TP (I0) = TP (I1). �is definition assumes determinis-

tic computation induced by P and is about “perfect” obliviousness

in the sense that it requires the traces under different input data

stay exactly the same. Due to the systems nature of this work, we

skip the more formal and generic definition of cache-miss oblivi-

ousness (e.g. based on indistinguishability formation [18]).

3.3 Step 1: Mapping Melbourne Shuffle to SGX

In this work, we focus on implementing cache-miss oblivious data

shuffling. Data shuffle is a fundamental operator in oblivious data

analysis computation. We describe the engineering of Melbourne

shuffle [23] on Intel SGX. �e idea is to map the program of Mel-

bourne shuffle to TSX transactions and to isolate the leaky data

access in cache by abusing TSX capability. Note this work only

considers single-threaded execution.

Preliminary of Melbourne shuffle [23]: Melbourne shuffle

is an oblivious, randomized algorithm for data shuffle. Given a data

array and a permutation (of the same length), the computation of a

data shuffle produces an array that reorders the data array based on

the permutation. Internally, the Melbourne shuffle works in two

data scans or passes, where the first pass, called distribution, scans

the data array at the granularity of size
√
N buckets and reorders

individual buckets non-obliviously with the size-p logN
√
N inter-

nal memory. �e second pass scans the array and sorts reorganized

buckets internally. Figure 2a illustrates an example of Melbourne

shuffle. Overall, the trusted memory is logN
√
N with array length

N . �e details can be found in the original paper [23].

�e Melbourne shuffle is mapped to TSX transactions such that

the accesses to internal storage are kept inside transactions while

external oblivious data accesses are kept outside transactions. In

Melbourne shuffle, the mapping is illustrated in Figure 3 where

the bucket-wise permutationmultiplication in the “distribute” pass

and the bucket-wise sort in the “cleanup” pass are mapped to indi-

vidual transactions.

One implication of this mapping is that the internal storage of

logN
√
N must be smaller than that of the size of L1 cache, which

is one factor that constrains the scalability of CMOS on real SGX

hardware (see § 4.1).

3.4 Step 2: Isolating Cached Data by TSX

Isolating cached data is realized by data prefetching which sim-

ply prefetch all data referenced inside a transaction. Given a

prefetched line, the TSX capability guarantees that at least the line

will not be replaced from LLC during the transaction. Our goal in

this work is to avoid self-eviction, that is, the dataset prefetched

does not conflict each other. Here, we consider both conflict and

capacity cache misses during prefetching. Given a set-associative

cache, we lay out memory properly such that the number of con-

flicts in each cache set do not exceed the capacity (i.e. the number

of ways). �is applies for both L1 and LL caches.

Figure 2b shows how isolation is realized with the distribution

phase of Melbourne shuffle. First, data is prefetched from the en-

clave to the cache. Second, it runs non-oblivious computation on

the cached data; this phase is wrapped in TSX transactions to en-

sure no cache miss. �ird, the end of the transaction triggers the

write-back of cached lines to the enclave memory. �e second-

phase transaction, in particular, takes two continuous memory re-

gions as input and output data stored in another contiguous mem-

ory region. To avoid conflict in this layout, we partition the three

regions at granularity of cache lines and precompute (at compila-

tion time) that the number of conflicts in each cache set does not

exceeds the number of ways.

3.5 Implementation Notes

Abort Handling: Transaction aborts are handled by re-executing

the transactions. Before entering the transaction, the context (all

the values in registers) is saved to a memory area pointed by a

reserved register R15. Upon aborts, the handler reloads the con-

text prior to the transaction from R15, before jumping back to the

beginning of the transaction to re-execute it. An important prop-

erty is that the value of R15must be preserved through the regular

transactional path and abort path.

CPUID: Obtaining cache information (e.g. cache sizes) is real-

ized by calling the functions provided in Intel SGX SDK [4] which

switches out to the untrusted world and calls CPUID instructions.

Here, the result of CPUID is not necessarily be trusted. �e enclave

can run test program to evaluate the cache sizes itself. Concretely,

it can read a series of arrays with increasing lengths and the max-

imal length without aborting transaction is the size of LLC cache.

Similarly, it can writes to a series of length-increasing arrays to

obtain the maximal length as L1 cache size.

Randomness generation: Melbourne shuffle is a randomized

algorithm and we generate true randomness using SDK-provided

function sgx read rand.

4 Evaluation

�is section evaluates the performance and abort rate of CMOS

system. Specifically, it aims at answering the following two ques-

tions.
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Figure 2. Engineering Melbourne shuffle algorithms on SGX/TSX

1 int[] Melbourne_shuffle(int[] data ,

2 int[] perm){

3 perm_r =gen_perm ();

4 data_r =shuffle_pass(data ,perm_r );

5 perm_rr =shuffle_pass(perm ,perm_r );

6 return shuffle_pass(data_r ,perm_rr );

7 }

8 int[] shuffle_pass(int[] data ,

9 int[] perm){

10 int[][] inter=distribute(data ,perm);

11 return cleanup (inter);

12 }

13 int[][] distribute(int[] data ,

14 int[] perm){

15 for(int i=0;i<sqrt(length(data));i++){

16 inter[i]= tx_bucket_perm(data ,perm ,i);

17 }

18 return inter;

19 }

20 int[] cleanup (int[][] inter){

21 List res;

22 for(i < sqrt(length (data))){

23 res.add(tx_bucket_sort(inter ,i));

24 }

25 return res.toarray ();

26 }

Figure 3. Melbourne shuffle mapped to TSX transactions

• What is the performance of CMOS comparing the baseline

of word-oblivious shuffle and pure transaction-based pro-

tection?

• What is the abort rate of CMOS comparing with the imple-

mentation without prefetching?

4.1 Performance

We consider two baselines for performance comparison against

CMOS. �e first baseline (BL1) is pack the naive, non-oblivious

shuffle algorithm in TSX transactions whose time complexity at

O(N ) is be�er than the O(
√
N logN ) complexity of Melbourne

shuffle. �e second baseline is the word-oblivious shuffle that is

realized by running a bubble sort on the permutation array. �is

baseline has worse time complexity than CMOS, but it does not

need run transactions, adding performance uncertainty.

Experiment setup: We did all the experiments on a laptop

with an Intel 8-core i7-6820HKCPU of 2.70GHz, 32KB L1 and 8MB

LL cache, 32 GB RAM and 1 TB Disk. �is is one of the Skylake
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Figure 4. Execution time of CMOS and other shuffle baselines

CPUs equipped with both SGX and TSX features. We use numeric

datasets and generate them randomly.

In the evaluation, we measure the execution time and the maxi-

mal data size supported. In transaction-based approaches, the indi-

vidual transaction is bounded by L1 cache size, which in our plat-

form is 32 KB.

�e performance result is illustrated in Figure 4. It can be seen

that BL1 is the most efficient but with limited scalability. BL2 has

the best data scalability but may not be efficient, especially when

data size is large. CMOS starts to show superior performancewhen

data size roughly grows beyond 4096. CMOS can scale to larger

dataset than BL2 because of its smaller space complexity. It has

smaller execution time than BL1 because of the be�er time com-

plexity.

4.2 Transaction Abort Rate

One of the design goals of prefetch in CMOS is to reduce the rate

of self-abort. To evaluate the design effectiveness, we run the pro-

gram several runs and measure the average abort rate. We con-

sider the first baseline that simply skips the external prefetching.

�e baseline would cause transactions to abort due to both in-

terrupt (AC4) and cache write-back (AC2) (recall § 2.2). We also

consider two additional baselines that do not cause write-back by

placing nop instructions in a transaction. �is way, the baselines

are only caused by interrupt. We implement two variants: the
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Figure 5. Number of transaction aborts

second baseline, named interrupt-lower, runs enough nop instruc-

tions such that the running time is equal to the case that all mem-

ory references are solved by cache hits. �e third baseline, named

interrupt-upper, runs enough nop instructions such that the run-

ning time is equal to the case that all memory references are solved

by cache misses. Note that to determine the appropriate number of

nop instructions, we profile our SGX hardware using some bench-

mark programs (e.g. calling cache-flush instructions to measure

the cache-miss time).

We conduct experiments by running the four approaches above

multiple times. We vary the size of data referenced inside the trans-

action and report the percentage of transaction aborts during the

execution, in Figure 5. As can be seen, CMOS causes aborts that

are fewer than BL1, close to BL2, and are much fewer than BL3.

Given BL2 is ideal lower bound of aborts, the result shows that

the CMOS design of double prefetch is highly effective in reduc-

ing cache write-back aborts. In addition, CMOS is approximately

the same with the Ideal-lower bound, which shows the CMOS de-

sign eliminates the cache write-back aborts as the ideal can not be

aborted by cache write-back.

5 Related Work

In this section, we survey the related work on defending memory-

access side-channel a�acks on hardware enclaves.

Making memory access oblivious is a feasible defense strategy

to side-channel a�acks in general. Comparing the cumbersome

Oblivious RAM protocols [14, 27], oblivious algorithms [22] are

more lightweight and are promising towards practical a�ack de-

fense. Various data-analytical systems are developed based on the

computation-specific oblivious algorithms, such as Opaque [29]

for relational data analytics and oblivious machine learning [24].

�ese systems instantiate the notion of word-obliviousness; recall

that its goal is to make memory references at word granularity

oblivious. ObliVM [22] is a source-to-source program transfor-

mation that translates the annotated program into efficient obliv-

ious algorithms. �is line of research does not consider external-

oblivious algorithms and does not a�ain the cache-miss oblivious-

ness on SGX.

T-SGX [25] takes a general-purpose approach to defend the

page-fault side-channel a�ack [28]. T-SGX’s approach is to assume

the allocated memory is large enough to hold the data referenced

by the application, such that during execution there is no page-

fault. It leverages the TSX capability of detecting page-faults in

user-space programs. It partitions the program and wraps the par-

titions into individual TSX transactions. Similarly, work [26] takes

a compiler approach to defend the page-fault based side-channel

a�acks. It is based on the notion of page-fault obliviousness.

�is work is different from T-SGX in the following senses: 1)

�e goals are different: T-SGX is a defense of page-fault side-

channel a�acks, and this work is to defend all so�ware/hardware

memory-access pa�ern a�acks on SGX. T-SGX makes page-fault

in enclave unobservable, while this work is to make enclave execu-

tion cache-miss oblivious. 2) �e approaches are different: T-SGX

defends by detecting page faults inside TSX transactions, while

this work defends by detecting cache misses inside TSX transac-

tions. While both seem to rely on TSX, their use of TSX transac-

tions is fundamentally different, which will be elaborated on in the

next paragraph. 3)�e applicability is different: T-SGX is a general-

purpose, compiler-based solution, and this work is specific to data

analytics and leverage the corresponding “semantics” for be�er ef-

ficiency. In addition, T-SGX mainly focus on the security of code-

page execution, while this work focuses on data-obliviousness.

�e use of TSX transactions in T-SGX and this work is different.

In T-SGX, it assumes amemory large enough to store all data pages

and ensure no page-fault during enclave execution. Given the lim-

ited “size” allowed by a TSX transaction, T-SGX packages enclave

computation in as many TSX transactions as needed and ensure

the security of page-access across transactions by placing all the

code outside transaction on a single page (so-called Springboard

page). It is important to note the Springboard code-page does not

access memory on any other pages. In this work, the TSX trans-

actions are used to isolate the enclave computation inside the pro-

cessor and to detect any (unexpected) cache misses. Across trans-

actions, the data security is ensured by running external oblivious

algorithms. �is work is applicable to a more realistic se�ing when

handling a large volume of data, that is, we allow page-fault dur-

ing program execution and the working-set memory can be much

smaller than original dataset.

6 Conclusion

�is work defends enclave side-channel a�acks by cache-miss

obliviousness. �e proposed approach is so�ware engineering the

target oblivious computation on top of the SGX and TSX platform.

It proposes cache-miss oblivious algorithms with small trusted

space. It has several so�ware-engineering strategies that pack-

age the computation into TSX transactions, achieving cache-miss

obliviousness. �rough initial evaluation, the performance over-

head of cache-miss obliviousness is much smaller than that of the

Strawman approach.
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