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Rate-adaptive pacemakers are cardiac devices able to automatically adjust the pacing rate in patients with

chronotropic incompetence, i.e., whose heart is unable to provide an adequate rate at increasing levels of

physical, mental, or emotional activity. These devices work by processing data from physiological sensors in

order to detect the patient’s activity and update the pacing rate accordingly. Rate adaptation parameters de-

pend on many patient-specific factors, and effective personalization of such treatments can only be achieved

through extensive exercise testing, which is normally intolerable for a cardiac patient. In this work, we in-

troduce a data-driven and model-based approach for the automated verification of rate-adaptive pacemakers

and formal analysis of personalized treatments. To this purpose, we develop a novel dual-sensor pacemaker

model where the adaptive rate is computed by blending information from an accelerometer, and a metabolic

sensor based on the QT interval. Our approach enables personalization through the estimation of heart model

parameters from patient data (electrocardiogram), and closed-loop analysis through the online generation of

synthetic, model-based QT intervals and acceleration signals. In addition to personalization, we also support

the derivation of models able to account for the varied characteristics of a virtual patient population, thus

enabling safety verification of the device. To capture the probabilistic and nonlinear dynamics of the heart,

we define a probabilistic extension of timed I/O automata with data and employ statistical model checking

for quantitative verification of rate modulation. We evaluate our rate-adaptive pacemaker design on three

subjects and a pool of virtual patients, demonstrating the potential of our approach to provide rigorous,

quantitative insights into the closed-loop behavior of the device under different exercise levels and heart

conditions.
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1 INTRODUCTION

Cardiac pacemakers are small, life-saving medical devices that stimulate the heart tissue through
artificial electrical impulses in order to maintain an adequate heart rhythm in patients with cardiac
conditions. Current pacemakers include mechanisms for rate adaptation, i.e., for automatically
adjusting the frequency of electrical stimuli, or pacing rate, depending on the levels of physical,
mental, or emotional stress of the patient. This feature is crucial to ensure a good quality of life
for patients with chronotropic incompetence, i.e., whose heart is unable to provide by itself a rate
commensurate with the ideal metabolic demand. Rate-adaptive pacemakers work by processing
data from physiological sensors in order to detect the patient’s activity and update the pacing rate
accordingly (Dell’Orto et al. 2004).

Rate adaptation and device safety have been investigated in a number of clinical studies (see,
e.g., Candinas et al. (1997), Lamas et al. (2007), and Abi-Samra et al. (2013)), but such studies require
extensive testing under varying levels of physical activity, including maximal exercise tests (e.g.,
treadmill), which is often intolerable for cardiac patients, especially the elderly. Similarly, exer-
cise testing is necessary for effective personalization of the treatment, given that rate adaptation
parameters depend on many patient-specific factors such as age, lifestyle, and tolerance to rapid
pacing.

An alternative approach put forward in this article is rigorous in silico analysis of the designs,
while accounting for the specific electrophysiological characteristics of the patient and how these
characteristics vary at different activity levels.

We introduce a data-driven, model-based approach for the automated, closed-loop verification
of rate-adaptive pacemakers. We consider the VVIR1 pacemaker design, that is, a single-chamber
pacemaker that senses and paces the (right) ventricle and supports rate adaptation. To this pur-
pose, we develop a novel dual-sensor VVIR pacemaker model where the adaptive rate is computed
by a so-called sensor blending algorithm that combines information coming from two sensors: an
accelerometer, and a metabolic sensor based on the QT interval (QTI), i.e., the time needed for ven-
tricle depolarization and repolarization. QTIs are extracted from the pacemaker electrogram, i.e.,
the electrical signal recorded by the electrode.

The proposed sensor blending algorithm exploits the strengths of both sensors: the accelerom-
eter has a quick response to exercise but is inaccurate, while the QTI provides a slow but very
accurate response. The QT sensor relies on the fact that physical and mental stress shortens the
QTI. In particular, there is a natural, patient-specific relationship between QTI and heart rate (HR)
in healthy subjects. The blending algorithm leverages this relationship through the estimation of
regression functions between QTI and HR, used to predict an adequate pacing rate based on the
QTI.

A key feature of our approach is that it supports rigorous analysis of patient-specific treatments
through the estimation of personalized heart models from electrocardiogram (ECG) data (Barbot
et al. 2015a). Importantly, our estimation method can also handle ECG data from multiple patients,
by combining the parameters (i.e., probability distributions extracted from data) across all patients
in a given population. In this way, we can estimate models able to fully capture the varied charac-
teristics of the virtual patient population, thus enabling safety verification.

To account for the probabilistic nature of cardiac dynamics and ECG features detected from
data, heart and pacemaker models are specified in a probabilistic extension of timed I/O automata
with priorities and data (Kwiatkowska et al. 2015; Barbot et al. 2016). This formalism can represent
networked systems with real-time constraints and discrete control actions, characteristic of the

1The code VVIR is based on the standard NASPE/BPEG nomenclature (Bernstein et al. 2002).
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pacemaker, as well as the probabilistic, hybrid, and nonlinear dynamics of the cardiac conduction
system. For formal verification, we resort to statistical model checking (SMC) (Ballarini et al. 2015),
an approximate verification technique based on the statistical inference of quantitative properties
from a set of executions, well suited to our formalism for which no precise model checking method
exists.

A crucial requirement for the analysis in silico of rate adaptation is closing the gap between the
heart simulation and the physiological sensor data used by the pacemaker to update the pacing
rate, in this way modeling the characteristic feedback interaction between the physiological signal
used and the heart dynamics (Ellenbogen et al. 2016, ch. 5). To this aim, we introduce a closed-loop
design for rate adaptation that builds on the online generation of model-based QTIs and synthetic
accelerometer signals.

We evaluate our approach over four different heart model parameterizations, respectively
describing three distinct virtual patients and a pool of 10 virtual patients, and employ SMC for
quantitative verification in a variety of scenarios. These include the analysis of rate control under
realistic exercise curves and clinical stress tests, and under increasing degrees of chronotropic
incompetence (i.e., worsening heart conditions). Results demonstrate that our approach can
provide rigorous and quantitative insights into the safety and performance of the device, enabling
both personalized and population-level analysis of cardiac therapies, with the potential to
drastically reduce the need for actual exercise testing with cardiac patients.

Article Structure. In the remainder of the introduction we discuss related work. In Section 2,
we introduce our main modeling formalism. Statistical model checking is presented in Section 3.
In Section 4, we introduce our closed-loop heart-pacemaker model, the virtual patients used for
our analyses, and the methods for the processing and generation of physiological sensor data. In
Section 5, we report simulation and verification results. Conclusions are given in Section 6.

1.1 Related Work

This article is a major extension of Kwiatkowska et al. (2014), which introduces the first formal
and executable model of the VVIR pacemaker. In that work, the authors realize a single-sensor
and open-loop design for rate adaptation, i.e., such that the pacemaker detects activity from static,
offline physiological data and just from one sensor (the QT). In contrast, our work implements
a dual-sensor and closed-loop design, which provides faster and more accurate activity detec-
tion through the combination of QT and accelerometer sensors, and uses dynamically generated
physiological information. Compared to the open-loop design, in Section 5.2.2, we show that the
closed-loop design can reproduce with superior accuracy phenomena of sensor-induced endless-
loop tachycardia, triggered by the feedback interaction between the pacemaker, the heart, and the
resulting physiological sensor data. Furthermore, in this work, we employ the probabilistic heart
model of Barbot et al. (2015a) that supports personalization from patient data. This improves on
Kwiatkowska et al. (2014), where the authors use the deterministic heart model of Ye et al. (2005),
which, albeit providing more detailed action potential dynamics, does not support personalization.

Formal modeling and analysis of cardiac dynamics and devices is a very active field of research
(see Macedo et al. (2008), Gomes and Oliveira (2009), Bartocci et al. (2009), Tuan et al. (2010),
Grosu et al. (2011), Jiang et al. (2012), Pajic et al. (2012), Méry et al. (2014), Chen et al. (2014),
Kwiatkowska et al. (2015), Barker et al. (2015), and Ai et al. (2018) for a nonexhaustive list of
references). However, modeling of the rate-adaptive pacemaker has received limited attention so
far. Besides Kwiatkowska et al. (2014) (discussed above), to the best of our knowledge, the only
other work on rate adaptation is that of Méry and Singh (2009), where the authors consider a single-
sensor accelerometer-based pacemaker, but only provide a high-level, nonexecutable specification

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 4, Article 33. Publication date: August 2018.
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of the rate modulation mechanism. Related research also includes the definition of algorithms for
integrating signals from multiple physiological sensors (see, e.g., Shin et al. (2001) and Amigoni
et al. (2006)).

A complementary technique is model-based testing (MBT), employed by Ai et al. (2016) for the
validation of cardiac devices. Similarly to SMC, MBT relies on evaluating executions of the system,
but its focus is more on guaranteeing high coverage and efficient bug finding rather than deriving
quantitative measures (e.g., satisfaction probability) for a given property, as in SMC.

2 MODELING FORMALISM

We introduce our main modeling language, Probabilistic Timed I/O Automata with priorities and
data (PTIOA), which extends Timed I/O Automata with priorities and data (TIOA) (Kwiatkowska
et al. 2015; Barbot et al. 2016) with probabilistic delays.

TIOAs are well suited for modeling networked systems with real-time constraints and discrete
control actions, as well as hybrid dynamics through continuous variables and nonlinear update
functions, and thus provide an adequate level of representation for cardiac pacemaker models in a
closed loop with hybrid models of the human heart (Kwiatkowska et al. 2015, Barbot et al. 2016).
Importantly, this kind of automata can be expressed as MATLAB Stateflow diagrams (as shown by
Barbot et al. 2015a, 2016), thus enabling effective tool support.

In addition, probabilistic features are essential to achieve personalization of heart models from
data, as we will see in Section 4.2. By supporting arbitrary distributions to specify time delays,
PTIOAs allow describing patients’ features accounting for statistical information from the data.

We now provide a formal account of PTIOA and its semantics. In the following, we denote with
dist (A) the set of probability distributions whose support is A.

Variables. A PTIOA includes a set of variables V = X ∪ D, where X and D are the set of clocks
and data, respectively. Clocks record the passage of time, while data variables can be updated to
arbitrary real values. A variable valuation η : V → R is a function that maps data variables to the
reals and clocks to the nonnegative reals. For a setY , we denote withV (Y ) the set of all valuations
overY . For η ∈ V (V ), ηX ∈ V (X) and ηD ∈ V (D) denote the valuation η restricted to clocks and
data variables, respectively. The valuation η after time t ∈ R≥0 has elapsed is denoted with η+t and
is such that (η+t ) (v ) = η(v ) + t ifv ∈ X and (η+t ) (v ) = η(v ) otherwise. This captures the fact that
all clocks proceed at the same speed and data variables are not affected by the passage of time.

Updates. In a PTIOA, variable valuations are manipulated through update functions. The update
of a set of variablesV ′ ⊆ V is a real-valued function r : V ′ × V (V ) → R. A valuation η ∈ V (V ) is
changed by the update function r into the valuationη[r ] = {v �→ r (v,η) |v ∈ V ′} ∪ {v �→ η(v ) |v �
V ′} that applies the update r to the variables in V ′ and leaves the others unchanged. We denote
with R the set of update functions.

Guards. We denote with B (V ) the set of guard constraints over V , which describe the prob-
abilistic firing conditions of automata edges. Specifically, guard constraints specify probabilistic
delays of the form д =

∧
i xi ≥ ti , where xi ∈ X is a clock and ti ∼ Di is a nonnegative random

variable2 describing the delay, and distributed according to the probability density function (PDF)
Di : V (D) → dist (R≥0), which possibly depends on data variable valuations. Where possible, we
alternatively use the shortcut д =

∧
i xi ≥ Di in place of д =

∧
i xi ≥ ti , where ti ∼ Di . Let Di (ηD )

be the PDF under valuation ηD . We denote with D≤i (ηD ) the corresponding cumulative distribu-

tion function, i.e., such that for all t ∈ R≥0, D≤i (ηD ) (t ) =
∫ t

−∞ Di (ηD ) (u) du.

2Not to be confused with the data variables.
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Remark 2.1 (Independence). We assume that the probabilistic delays in the guards of a PTIOA
are mutually independent.

Under the above assumption, the satisfaction probability of guard д under valuation η ∈ V (V )
can be computed by factorizing the joint probability as follows:

Pr (η |= д) =
∏

i

D≤i (ηD ) (η(xi )). (1)

The random waiting time, t (д,η), for д to be satisfied under η ∈ V (V ) is given by

t (д,η) = max(0,max{ti − η(xi )}i ). (2)

Deterministic delays can be expressed by choosing a Dirac distribution for Di (ηD ). Note that,
since Di can depend only on data variables, it is not affected by the passage of time, i.e., ∀t ≥
0.∀η ∈ V (V ). Di ((η + t )D ) = Di (ηD ).

Example 2.2 (Satisfaction Probability). Let д = x ≥ U (1, 2) ∧ y ≥ U (0, 2), where U (a,b) is the
uniform distribution on [a,b], characterized by the cumulative distribution functionU≤ (a,b) (x ) =
{0 if x < a, x−a

b−a
if x ∈ [a,b], 1 if x > b}.

Following Equation (1), the probability that valuation η = {x �→ 0,y �→ 0} satisfies д is 0, since
U≤ (1, 2) (0) = 0 and U≤ (0, 2) (0) = 0. The same holds for valuation η′ = {x �→ 1,y �→ 1.5}, since
U≤ (1, 2) (1) = 0. If from η′ we let 0.5 time units pass, the corresponding valuation η′ + 0.5 = {x �→
1.5,y �→ 2} yields a satisfaction probabilityU≤ (1, 2) (1.5) · U ≤ (1, 2) (2) = 1

2 · 1.

Remark 2.3 (Discrete Distributions). To simplify the presentation, probabilistic delays are de-
fined over continuous distributions, even if the above definitions can be easily adapted to support
discrete distributions.

Actions. Let A be a set of action symbols. We consider the set of actions Σ = Σin ∪ Σout, com-
posed of input actions Σin = {?α | α ∈ A} and output actions Σout = {!α | α ∈ A}. Each edge has an
action associated, describing the event performed by that edge. As we shall see, automata compo-
nents communicate by synchronizing on matching actions. For a ∈ Σin and b ∈ Σout, we say that
a matches b (or vice versa) if a =?α and b =!α for some α ∈ A.

Definition 2.4 (PTIOA). A PTIOA with priority and data A = (X,D,Q, q0, Σ,→) consists of

—a finite set of clocks X and data variables D;
—a finite set of locations Q , with initial location q0 ∈ Q ;
—a finite sets of input and output actions Σ = Σin ∪ Σout; and
—a finite set of edges→⊆ Q × Σ × N × B (V ) × R ×Q . Each edge e = (q,a,pr ,д, r ,q′) is de-

scribed by a source location q, an action a, a priority pr , a guard д, an update r , and a target
q′. Priorities define a total ordering of the edges out of any location, and are such that lower
pr values imply higher priorities.

Note that, unlike classical timed automata (Alur 1999), PTIOA locations do not include invariants
in order to avoid time nondeterminism: as explained in Section 2.2, an enabled edge is fired as soon
as possible, in a manner compatible with priority ordering, and no additional time can pass.

In addition to probabilistic dynamics, we remark that PTIOAs can express hybrid dynamics,
and specifically hybrid automata whose differential equations admit explicit solutions that can
be effectively computed. Indeed, we can use nonlinear update functions to encode such explicit
solutions.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 4, Article 33. Publication date: August 2018.
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Fig. 1. Portion of the PTIOA network of the heart model. Edge priorities are indicated with Roman numbers
(I, II, III). Empty updates, trivially true guards, and priorities of edges with no alternative choices are omitted
for clarity. Output action !· is used when no synchronization is sought for an edge.

2.1 Networks of PTIOAs

To facilitate modular designs, PTIOAs are able to synchronize on matching input and output ac-
tions, thus forming networks of communicating automata.

Definition 2.5 (Network of PTIOAs). A network of PTIOAs with m components is a tuple N =
({A1, . . . ,Am },X, D, Σ), where

—for j = 1, . . . ,m, A j = (X,D,Q j ,q j
0, Σ,→j ) is a PTIOA, and

—X, D, and Σ are the common sets of clocks, data variables, and actions, respectively.

We define the set of network modes by �Q = Q1 × · · · ×Qm , with initial mode �q0 = (q1
0, . . . ,q

m
0 ) and

the initial variable valuation η0. For mode �q = (q1, . . . ,qm ) ∈ �Q and j ∈ {1, . . . ,m}, we denote with
�qj = q

j the jth component of �q, that is, the location of the jth automaton. A state of the network is

a pair (�q,η), where �q ∈ �Q is the vector of active locations and η ∈ V (V ) is the variable valuation.

We use the notationN = ({A1, . . . ,Am },X,D, Σ) to stress the fact thatX,D, and Σ are shared
across A1, . . . ,Am .

Example 2.6 (PTIOA Network for SA Node and Atrium). Figure 1 shows a subnetwork of PTIOAs
of the heart model, illustrated in Section 4.2. The automaton of Figure 1(a) describes the sinoatrial
(SA) node, the component of the right atrium that generates intrinsic electrical stimuli. Figure 1(b)
depicts the PTIOA for the atrium.

In the SA node component, after the firing period of the SA node has elapsed, modeled by the
normally distributed delay SA_d ∼ N (1, 0.1) and guard x ≥ SA_d, the SA node transitions from
the initial location Wait4ABeat to Wait4ASynch, performing an output action !Abeat to notify the
other components of the network that the stimulus occurred. Data variable a_dV maintains the
action potential of the signal and is updated to SA_dV, which is specific to stimuli generated from
the SA node. In Wait4ASynch, the automaton waits until it can synchronize on action NextAtrBeat,
at which point it resets the clock x and returns to location Wait4ABeat.

In the atrium component, after a refractory period where the atrium cannot be stimulated, gov-
erned by the uniformly distributed delay Atr_refrD ∼ U (0.04, 0.06), the atrium becomes excitable
and can receive three types of impulses: an intrinsic stimulus from the SA node, through syn-
chronization on Abeat; a paced stimulus from the pacemaker (AP); or a retrograde signal from
the ventricles (AtrRetroIn). These trigger a contraction of the atria. When the atrial stimulus is
generated by the SA node or the pacemaker, this is propagated toward the ventricles through the
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AV node by performing action !AtrAnteOut. When the stimulus is not artificial, the component
emits an Aget action for the pacemaker to read. Before reaching the Refractory location again, an
intermediate action is required (!NextAtrBeat) to synchronize the SA node component.

Note that, while the VVIR pacemaker under study stimulates only the ventricle, the Atrium
component supports atrial pacing, and thus can be also connected to models of atrial or dual-
chamber pacemakers.

In this example, we arbitrarily chose the random delay SA_d to produce a heart period with mean
1s (i.e., rate of 60 BPM). In our experiments, however, SA_d depends on the ideal rate demand, and
thus on the kind of activity performed, as explained in Section 4.2.3. On the other hand, the atrial
refractory period Atr_refrD is based on the original parameterization of Barbot et al. (2015b).

2.2 Semantics

Enabled Components and Synchronization. Let N = ({A1, . . . ,Am },X, D, Σ) be a PTIOA net-
work and (�q,η) be its current state. We say that a PTIOA component A j of N is enabled from
(�q,η) if, from its current location �qj , it has at least one enabled edge. An output edge is enabled
when the associated guard is satisfied under valuation η3, while an input edge is enabled when its
guard holds under η and, at the same time, it can synchronize with a matching output action fired
by another component of the network. This means that, unlike output edges, input edges can fire
only by synchronizing with a matching output action; i.e., an edge labeled with !α can fire without
other components firing ?α , but not vice versa. In turn, we allow for multiparty synchronization;
that is, multiple input edges can synchronize with a single matching output edge.

Product PTIOA. Formally, the semantics of a PTIOA network is defined over the corresponding
product PTIOA (see Supplementary Material, Section 1 for details on its construction). The product

PTIOA of a networkN is a PTIOAN⊗ = (X,D, �Q, �q0,P (Σout),→), where locations correspond to

the set of network modes �Q , and edges in→ are defined by applying the above synchronization
rules. To reflect the simultaneous firing of multiple components, an edge e = (�s,a,pr ,д, r ,�t ) ∈→
is characterized by an action a ∈ P (Σout) given by the set of output actions fired by the enabled
components; a vector of priorities pr = (pr 1, . . . ,prm ) ∈ Nm , where, for j = 1, . . . ,m, pr j is the
priority of the edge fired byA j or +∞ ifA j is not enabled; and a guard д and an update r obtained
by combining guards and updates, respectively, of the fired edges.

Below, we describe the semantics of PTIOA networks in a way that facilitates their encoding
into Discrete Event Stochastic Processes (Ballarini et al. 2015), for which we can leverage efficient
statistical model checking algorithms, as described in Section 3.

Semantics. Given a PTIOA network N and its product PTIOA N⊗ = (X,D, �Q, �q0,P (Σout),→),

the semantics of N is described by timed paths of the form ρ = (�q0,η0)
e0,t0−−−→(�q1,η1)

e1,t1−−−→ · · · ,
where, for each i , ρ[i] = (�qi ,ηi ) is a state of the network, ti is the time spent in that state, and
ei ∈→ is the edge fired in N⊗ .

Given the probabilistic nature of the model, ρ[i] = (�qi ,ηi ), ti and ei are families of random
variables, characterized for each step i as follows (see Supplementary Material, Section 1 for a
formal definition). Let t (e,ηi ) be a random variable describing the waiting time for e ∈→ to be
enabled under valuation ηi (see Equation (2)). Then, the waiting time ti is the shortest waiting
time among the outgoing edges of �qi , and ei ∈→ is the edge with the shortest waiting time and
highest priority. Finally, the next state ρ[i + 1] = (�qi+1,ηi+1) is determined by the target location
and the update of ei .

3To simplify the presentation, here guard satisfaction is assumed under some realization (sampling) of the random delays

associated to the guard constraint.
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3 STATISTICAL MODEL CHECKING WITH HASL PROPERTIES

For the verification of PTIOA models we employ SMC, a technique for the verification of proba-
bilistic properties based on simulating the system for finitely many runs (Younes et al. 2006). This
provides an effective, yet approximate, verification method for PTIOA networks, for which no pre-
cise (numerical) model checking method exists. As we shall see, another advantage of SMC is that
it supports rich specification languages, including quantitative and automata-based properties.

In this work, we consider properties specified in the Hybrid Automata Stochastic Language
(HASL) (Ballarini et al. 2015), implemented in the statistical model checker Cosmos.4 An HASL
formula consists of two parts:

(1) A Linear Hybrid Automaton (LHA) that keeps a set of data variables and synchronizes with
executions of the system, in our case paths of a PTIOA network.

(2) The actual quantity to evaluate, given as an expression over the data variables of the LHA.

In the following, we give a brief overview of these two components. For a detailed explanation,
we refer to Ballarini et al. (2015) and Supplementary Material, Section 2.

Linear Hybrid Automata. We outline the main differences between LHAs and PTIOAs (intro-
duced in the previous section). Since an LHA is meant to synchronize with the paths of the PTIOA
network under analysis, it also contains a final location that determines when to terminate and
accept the current path. If at any point the LHA cannot synchronize with the PTIOA network, the
path is terminated and rejected. In particular, an LHA edge can either synchronize with a set of
PTIOA actions5 or proceed autonomously—i.e., it can fire without synchronization (denoted by ac-
tion #). Unlike PTIOAs, LHA guards are deterministic and are specified as linear constraints over
LHA variables. In addition to update functions, the evolution of LHA variables is controlled by
flows, i.e., linear functions describing their change rate at each location.

HASL Expressions. We introduce the HASL fragment of interest for our properties (see Appen-
dix B for the full syntax). A HASL expression is of the form E[Y ] and allows for evaluating the
expectation of a so-called path variable Y = LAST(y), i.e., a random variable denoting the value of
y at the final state of the synchronized execution.

The termy is an arithmetic expression over LHA variables, built using the operations {+, ·,−, /}.
A derived HASL expression is PDF(Y ,h,a,b) that computes a discrete approximation of the prob-
ability density function (PDF) of path variable Y in the interval [a,b] and using h subdomains.

In the Cosmos tool, statistical model checking of a HASL expression Z is based on confidence
interval estimation: given a confidence level α ∈ (0, 1) and number of executions n, the method re-
turns a confidence interval CIμZ

for the expected value of Z , μZ , where α represents the frequency
of possible confidence intervals that contain the actual value of μZ . The method also returns an
estimator for μZ , given by the mean of the values of Z over the above n executions.

Example 3.1 (Fraction of Paced Beats). Consider the LHA in Figure 2. Its purpose is to record the
number of paced and total ventricular beats occurring within Tmax time units. These quantities are
kept respectively in data variables VPs and Nbeats. Clock t stores the current time. All variables
are initialized to 0. Flows indicate that VPs and Nbeats have associated a change rate of 0, while t
has a change rate of 1. The LHA is intended to synchronize with the heart and pacemaker network
presented in Section 4.2, where intrinsic and paced ventricular impulses are implemented through
actions Vget and VP, respectively.

4Available at http://www.lsv.ens-cachan.fr/Software/cosmos/.
5Since they synchronize with the output actions fired by the PTIOA network, all LHA actions are implicitly input actions.
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Fig. 2. LHA for estimating the fraction of paced beats. Final locations are denoted with double-bordered
boxes.

The automaton has two locations: an initial location q0 and a final location q1, reached from q0

with an autonomous edge as soon as t ≥ Tmax.
Consider the following path, describing the antegrade propagation of the action potential from

the atrium to the ventricle, as shown in the high-level schema of the heart model of Figure 4:6

(�q0, η0)
!Abeat,0.9−−−−−−−−→ (�q1, η1)

!Aget,0
−−−−−→ (�q2, η2)

!AtrAnteOut,0−−−−−−−−−−→ (�q3, η3)
!NextAtrBeat,0−−−−−−−−−−−→ (�q4, η4)

!AVJAnteIn,0.03
−−−−−−−−−−−−→ . . .

. . . (�q5, η5)
!AVJAnteOut,0.02
−−−−−−−−−−−−−→ (�q6, η6)

!AVVAnteIn,0.04−−−−−−−−−−−−→ (�q7, η7)
!VtrAnteIn,0.05−−−−−−−−−−−→ (�q8, η8)

!Vget,0
−−−−−→ (�q9, η9).

Let Tmax = 1.5. From the initial location q0, the LHA synchronizes with path transitions
e0,t0−−−→

· · ·
e7,t7−−−→ by firing the loop labeled with Σin \ {?VP, ?Vget}. This edge has the least priority, a triv-

ially true-guard, empty update, and can match any output action fired by the PTIOA network
apart from ?VP and ?Vget. Without such an edge, the LHA would fail to synchronize at the first
transition (labeled with {!Abeat}), and the path would be immediately rejected. Along transition
e8,t8−−−→, the PTIOA network fires {!Vget}, leading to a synchronization on the LHA edge labeled with
?Vget. The resulting variable valuation is t = 1.04, Nbeats = 1, and VPs = 0.

Consider the continuation ρ = . . . (�q9,η9)
!VP,0.3−−−−−→ (�q10,η10). Here, the LHA synchronizes with

e9,t9−−−→ on the LHA edge labeled with ?VP, leading to valuation t = 1.34, Nbeats = 2, and VPs = 1.
After time Tmax − t = 0.16, the LHA can fire the autonomous edge to the final location. Assuming
no !VP or !Vget is emitted by the PTIOA network during this period, the final valuation is t = 1.5,
Nbeats = 2, and VPs = 1.

Let y = VPs
Nbeats denote the fraction of paced beats over the total number of beats. For path ρ,

LAST(y) = 1
2 , because Nbeats = 2 and VPs = 1 at the final state. A property that we will analyze

in Section 5 is the PDF of the fraction of paced beats at the end of the execution, i.e., after time
Tmax:

ϕPDF(VP) = PDF
(
LAST

( VPs

Nbeats

)
,h,a,b

)
, (3)

where a = 0 and b = 1, given that the ratio VPs
Nbeats ranges in the interval [0, 1]. We further set

h = 0.01, which corresponds to dividing the domain of the PDF in 100 subdomains.

6With abuse of notation, we denote transition
e,t
−−−→ by

a (e ),t
−−−−−→, where we replace the edge e with the corresponding set of

fired actions a (e ).
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Fig. 3. Closed-loop architecture for rate adaptation.

4 MODELS AND METHODS

In this section, we introduce our closed-loop design for the rate-adaptive pacemaker and describe
the heart and pacemaker models, the algorithms for the processing of physiological data, and how
the extracted features are combined to compute an adequate adaptive rate. The design, illustrated
in Figure 3, realizes a dual-sensor VVIR pacemaker, that is, a pacemaker that senses and paces
only the ventricle and supports rate adaptation. The heart model (explained in Section 4.2) and
the pacemaker model (Section 4.3) are connected into a closed-loop system and implemented as
a PTIOA network, where these two components communicate with each other to detect intrin-
sic heartbeats (sensing) and deliver artificial beats (pacing). We include a so-called sensor blending
algorithm (Section 4.3.1) that computes the adaptive pacing rate by combining QT-based and ac-
celerometer sensors. The QT sensor exploits the fact that physical and mental stress shortens the
QTI. The blending algorithm estimates patient-specific mathematical laws between the QTI and
the heart period (also called RR interval) in order to predict an adequate pacing rate based on the
QTI measured by the pacemaker electrogram.

To close the loop between the heart dynamics and the sensor data used by the blending algo-
rithm, we generate online, synthetic QTIs (Section 4.2.3) that reflect the state of the heart model
simulation. We further devise a method for generating synthetic accelerometer signals, whose pa-
rameters can be either estimated from offline recordings in order to reproduce patient-specific
characteristics or configured to reproduce specific physical activities, e.g., running or walking.

Through the parameter estimation method of Section 4.2.1, our approach crucially enables the
derivation of personalized heart models from patient ECG data, resulting in patient-specific virtual
patient models. Importantly, if we use ECG data from a set of multiple patients instead of a single
patient, we can apply the same method to estimate virtual populations of patients, i.e., models able
to fully capture the varied characteristics of the input population. Therefore, the synthetic QTIs
received by the blending algorithm in turn reflect the features of the input patient/population,
since they are generated from the corresponding virtual patient/population.

We remark that parameter estimation is performed offline, prior to the closed-loop analysis,
and that this results in a probabilistic heart model, which motivates the application of quantitative
verification techniques.

Open-Loop Variant. To assess the effectiveness of our closed-loop design, we also consider an
open-loop variant, where the QTIs are not generated from the model but are extracted from the
input (offline) ECG data. Such obtained QTIs are fixed, implying that the adaptive rate does not
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Table 1. Age (y) and HR at Rest
(HRrest, BPM) for the Virtual

Patients of Our Study

Age HRrest

Subject 1 21 80

Subject 2 34(∗) 75
Subject 3 52 67

V. population 34(∗) 77

(∗)Due to the anonymity of the record,

the age is set to the median of the ages

of the participants in Anguita et al.

(2013).

reflect the dynamic state of the heart model. For this reason, compared to the open-loop variant, the
closed-loop design can reproduce with superior accuracy phenomena of sensor-induced endless-
loop tachycardia, as we will see in the experimental evaluation section.

We first introduce the virtual patients over which we evaluate our design, and the corresponding
input data for parameter estimation.

4.1 Virtual Patients

We consider two kinds of heart models: patient-specific models for the analysis of personalized
treatments (Subjects 1–3 below) and population-level models, which can capture the varied features
of a pool of patients, and thus are suitable for safety verification (Virtual population below).

Subject 1. The data consists of one-lead ECG and one-axis accelerometer data obtained from a
volunteer (one of the authors) and recorded through a BITalino board.7 We performed recordings
at rest and at varying levels of activity, for a total of 15 minutes.

Subject 2. The data corresponds to record 16272 of the MIT-BIH Normal Sinus Rhythm Database
(Goldberger et al. 2000), consisting of 1-hour, two-lead ECG recordings of patients without any
particular arrhythmia. Since we do not have accelerometer data for this subject, we generate it
following the synthetic generation method discussed in Section 4.4, and using data from Anguita
et al. (2013).

Subject 3. Signals are extracted from the data published by Alan Dix,8 collected during his 1,000+
miles circumlocution of Wales. Public data consists of 35 sequences of 40 hours of ECG (one-lead)
and three-axis accelerometer signals, recorded through wearable devices during resting, activity,
and sleep. Of this database, we consider an extract of day 1.

Virtual Population. We estimate a virtual population of patients based on 10 subjects taken from
the MIT-BIH ST Change Database (Albrecht 1983),9 which consists of ECG recordings of different
patients during exercise stress tests. Similarly to Subject 2, we generate accelerometer signals based
on the data from Anguita et al. (2013). In Table 1, we also report age and HR at rest of the above
four patients. As we will see in Section 4.3.3, these parameters are used within the rate adaptation
algorithm.

7http://www.bitalino.com/
8http://alanwalks.wales/data/
9IDs: 300, 301, 302, 304, 307, 308, 310, 311, 312, 313.
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Fig. 4. High-level view of the PTIOA components of the heart model. Arrows indicate synchronizations,
with the target component synchronizing with the output action performed by the source component, and
are labeled with the action name. The antegrade conduction (blue arrows) passes from the Atrium to the
Ventricle component. The retrograde conduction (red arrows) follows the opposite path. Gray arrows indicate
the connection with the VVIR pacemaker.

We remark that ECG recordings are only used to estimate the parameters of the heart model,
while the closed-loop simulation just relies on synthetic data (QTIs and accelerometer).

4.2 Heart Model

Below, we illustrate the heart model, including the method for estimation from ECG data, the mod-
eling of relevant arrhythmias, and the online generation of synthetic QTIs. The model reproduces
the electrical conduction system of the heart, that is, the propagation of the cardiac action poten-
tial (AP) from the atria (the upper chambers) to the ventricles (the lower chambers) through the
atrioventricular (AV) node. Here, we only provide a high-level view of the model, which is depicted
in Figure 4. For a comprehensive description of the model components, we refer to the original
publication (Barbot et al. 2015a) and Supplementary Material, Section 6.

The model consists of 10 conduction nodes and two main conduction pathways: the antegrade
conduction, that is, the normal situation where an electrical impulse generated by the SA node
stimulates the atria and is conducted to the ventricles through the AV node (component AVJ in
Figure 4), and the retrograde conduction, where the impulse travels in the opposite direction (from
the ventricles to the atria through the AV node). Generally, retrograde conduction is less frequent
and originates when the ventricular myocardium is stimulated artificially by a pacemaker or by
an ectopic action potential. The conduction between nodes is implemented through synchroniza-
tion between the involved components. In this way, the model can be easily extended with other
accessory conduction pathways.

In the figure, we also illustrate the connection with the pacemaker component: the device sends
impulses to the right ventricle through action VP and senses intrinsic impulses from the right
ventricle by synchronizing on action Vget.

We have already inspected the Atrium and SANode PTIOAs in Example 2.6.
Component AEctopic generates the so-called atrial ectopic beats, which originate from the spon-

taneous excitation of different portions of the atrial tissue, mainly from the pulmonary veins, but
are not as frequent as the stimuli from the SA node. A dedicated component, AFib, is included to
model atrial fibrillation, as we will see in Section 4.2.2.

The Ventricle and VEctopic components describe the AP dynamics in the ventricles, and are
modeled in a similar way to the Atrium and AEctopic components, respectively. There are two
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Fig. 5. Example of ECG for one cardiac cycle and corresponding features. Top: Duration features, and map-
pings with actions (orange) and delay parameters (purple) of the heart model. Right: Amplitude features. For
each wave, the gray solid line indicates the width at half amplitude. Vtr_refrD is the ventricular refractory
period.

structurally equivalent conductor components, AAVConductor (Atrium-AV node conductor) and
AVVConductor (AV node-Ventricle conductor), whose role is to apply a propagation delay to
the transmission of the action potential in both directions. From a physiological viewpoint, the
AAVConductor represents the so-called internodal tracts, while the AVVConductor is an abstrac-
tion of the nodes connecting the AV node and the ventricles, namely, the bundle of His and the
Purkinje fibers. The AV node is modeled through components AVJ and AVJOut. Unlike the other
components that use delays to implement the conduction of cardiac waves, AVJ provides a detailed
representation of the action potential dynamics, whose conformation is reproduced through non-
linear update functions. This enables the modeling of complex conditions such as the AV block, as
explained below. Component AVJOut applies additional delays depending on the state of the AV
node action potential.

Delays in the heart network are mainly probabilistic, as a result of the estimation from ECG
data described below and in detail in Barbot et al. (2015a).

4.2.1 Personalization. The ECG is composed of five main waves, P, Q, R, S, and T, which cor-
respond to specific heart events, as illustrated in Figure 5 and explained in Malmivuo and Plonsey
(1995), Chapter 15. In particular, time-domain ECG features can be mapped into specific actions
and parameters in our heart model:

—The P wave corresponds to the activation and propagation of the AP in the atria. In the
heart model, the event !Aget captures the moment at which an atrial pacemaker lead would
sense the signal, which happens as the ECG signal rises toward the P peak. We assume that
!Aget coincides with the P peak.

—The Q wave corresponds to the AP propagating into the Purkinje fibers and the inner walls
of the ventricles. In our model, this is equivalent to the event !AVVAnteIn, which indicates
the beginning of the AP propagation into the AVV conductor component.
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—The QRS complex corresponds to the propagation of the depolarization wave into the ven-
tricles. Similarly to the P wave in the atria and action !Aget, we assume that action !Vget
(denoting AP sensing by the ventricular lead) corresponds exactly to the R peak.

—Finally, the T wave is generated by the ventricle repolarization wave. The T peak corre-
sponds to the end of the ventricular absolute refractory period, which is indicated by the
delay parameter, Vtr_refrD, in our model.

Note that the PTIOA heart model does not distinguish between the left and right ventricle, meaning
that it does not have actions or timing delays mapping into the S wave of the ECG, which roughly
corresponds to the depolarization of the left ventricle.

Importantly, through this mapping between the heart model and the ECG, the synthetic QTI
(used as a sensor for rate adaptation) is derived as the time elapsed between the event !AVVAnteIn
and the ending of the corresponding ventricular refractory period. Details of the generation of
synthetic QTIs are given in Section 4.2.3.

Our parameter estimation method relies on the generation of synthetic ECG signals (following
the method of McSharry et al. (2003), Barbot et al. (2015b), and Eberz et al. (2017)) that resemble the
behavior of the electrical propagation in the heart during the execution of the model. Such syn-
thetic ECGs are synchronized with the heart model simulation according to the above-explained
mapping, and are obtained by summing, for each wave kind, a Gaussian curve that reproduce the
morphology of the wave.

In particular, estimation of patient-specific models from ECG data consists of the following two
steps:

1) Extraction of ECG features. This step results in a set of discrete probability distributions {Df }f ,
one for each ECG feature f . The features considered are those of Figure 5. Following the mapping
described above, some of the model parameters can be directly estimated at this stage, in terms
of probabilistic delays distributed according to the relevant feature distribution Df . For feature
extraction, we combine the Pan-Tompkins peak detection algorithm (Pan and Tompkins 1985) to
identify R peaks with local search to identify the other peaks.

2) Estimation of “hidden” parameters. We estimate the heart parameters that cannot be directly de-
rived from any ECG feature, hence called hidden. This boils down to finding the hidden parameter
values that minimize a suitable statistical distance between the input ECG and the synthetic ECG
generated from the model simulation. In addition to the explicit parameters of step 1, we estimate
two hidden parameters, the AV node threshold voltage AV_Vt and the minimum conduction time
in the AV node AV_DMin, because these were the conduction parameters that produced the high-
est sensitivity for the synthetic ECG. We consider the statistical distance of Eberz et al. (2017),
which is computed as the mean of the statistical distances between the feature distributions, and
solve the optimization problem using the pattern search algorithm (Kolda et al. 2003), even though
our method supports arbitrary (black-box) optimization algorithms and distances.

Estimation for Virtual Population Models. In order to estimate the parameters of virtual popula-
tion models, we proceed by performing steps (1) and (2) for each patient of the input dataset. This
results in a set of random variables xi,p ∼ Di,p , describing the values of each estimated parameter
i for each patient p. Then, the virtual population model is obtained by combining, for each pa-
rameter, the patient-specific distributions across all patients into a single distribution: parameter i
is characterized by random variables xi ∼ Di , where Di =

⊎
p Di,p is the combined distribution.10

Virtual population models can thus represent all the dynamics that could result from each of their

10For simplicity, the combined distribution is defined as the multiset sum of the underlying samples.
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Fig. 6. Comparison of mean input ECG and mean synthetic ECG for the estimated patient-specific models.
Shaded areas span ±1 standard deviation around the mean. Mean ECGs are computed after a linear phase
assignment (Sameni et al. 2007), assigning a periodic phase value to each sample in the ECG, starting from
one R-peak (phase 0) and ending with the next R-peak (phase 2π ). For each heart cycle, amplitudes are
normalized by the amplitude of the corresponding highest peak.

constituent patients, as well as new dynamics that may arise from the “cross-talking” among the
individually estimated patient-specific features.

Figure 6 compares the input ECG signals used for the estimation and the corresponding syn-
thetic ECG produced by a simulation trace of the model, after the parameter estimation is per-
formed. We observe good agreement between the two, especially as far as time-domain features
(i.e., time between peaks) are concerned, which is most relevant for our PTIOA model. The main
difference is in the shape of the T wave, which is naturally asymmetric, while our synthetic ECG
waves are generated as symmetric Gaussian curves. We remark, however, that this lack of asymme-
try does not affect the estimated time delays, and that it can be easily accounted for by introducing
an additional width feature, as done in Eberz et al. (2017).

4.2.2 Heart Conditions. The VVIR pacing mode is generally recommended for patients suf-
fering from both AV block and SA node dysfunctions, or chronic atrial impairment (e.g., atrial
fibrillation or flutter) (Iaizzo 2009, Fig. 30.7-8). Therefore, in our model we reproduce AV block and
atrial fibrillation (AF) as illustrated below.

AV Block. we consider the heart disorder called Wenckebach AV block (Hampton and Adlam 2013),
a conduction failure causing the loss of ventricular beats due to the progressive prolongation of
the AV conduction time. The Wenckebach AV block is a form of chronotropic incompetence typi-
cally addressed by setting the pacemaker to the rate-adaptive mode. As illustrated in Barbot et al.
(2015a), this condition can be reproduced in our heart model by increasing parameter AV_Vt, i.e.,
the depolarization threshold potential of the AV node. We stress that, although we arbitrarily in-
troduce AV block, this does not compromise the original electrophysiological characteristics of the
patient. Indeed, the Wenckebach AV block affects only the duration of the PQ interval (Hampton
and Adlam 2013, Chapter 4), and thus has no effect on the other ECG features, including the QTI.
In the heart model, the AV block prolongs the timing delays solely of the AVJ component, meaning
that all the other components maintain the subject-specific behavior learned from ECG data.

Atrial Fibrillation. AF is the most common cardiac arrhythmia (Markides and Schilling 2003) and
is characterized by a highly disorganized atrial electrical activity, which is thought to be caused
by the interaction of rapidly firing ectopic extra-atrial foci and abnormal atrial tissue. We model
AF through the AFib component (depicted in Figure 7), which is responsible for the generation of
random AF impulses. Following Lian et al. (2006), the irregular rates of the electrical signals are
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Fig. 7. AFib component.

governed by an exponential distribution (with mean 0.3s), and the corresponding action potential
(AF_dV) is not strong enough to stimulate, by itself, the AV node.

For the purpose of model personalization from ECG data, we assume that AF is either recur-
rent (i.e., few AF episodes occurred to the patient), paroxysmal (i.e., repeated self-terminating AF
episodes that last less than 7 days), or persistent (i.e., long-lasting AF episodes that can be termi-
nated by external intervention) (Markides and Schilling 2003). Indeed, in all these cases we can
obtain ECG segments showing no AF episodes, and use them to estimate the model parameters
and the subject-specific relationship between QT and RR (see Sections 4.3.2 and 4.2.3). For per-
manent AF (i.e., long-lasting AF episodes that cannot be terminated by external intervention), we
cannot obtain useful ECG segments to learn the relationship between QT and RR intervals, which
is at the basis of rate adaptation. In this case, however, we can still use a different rate adaptation
model that works for virtual populations and does not require patient-specific data, as explained
in Section 4.3.2.

4.2.3 Synthetic QT Intervals. As previously explained, there is a clear patient-specific correla-
tion between the QT and the RR intervals in every heartbeat, which is exploited by the blending
algorithm to compute the adaptive rate (see Section 4.3.1). Therefore, it is crucial to account for
the QT-RR relationship also in our heart model, so that the synthetic QTIs used for rate adapta-
tion reflect this correlation in an accurate way and adapt to the dynamical HR changes due to,
e.g., exercise, pacing, or conduction defects. To this purpose, we derive from the input ECG data
a joint discrete probability distribution, denoted by DQT,RR : R2 −→ [0, 1], which characterizes the
observed QT and RR intervals at each heart cycle. For virtual population models, the distribution
is obtained by combining the set of samples across the multiple-input datasets.

The actual dynamics of the QTI shortening depend on both the effective HR and the autonomic
tone (Ahnve and Vallin 1982; Davey and Bateman 1999). The autonomic tone resembles the ideal
rate demand, which is represented in our model by the firing period of the SA node SA_d (see the
SA node model of Figure 1(a)). However, the electrical stimuli produced by the SA node are over-
whelmed by the effect of AF, and are also affected by the AV conduction defects, thus producing a
discrepancy between the ideal rate demand and the effective HR in cardiac patients. On the basis
of the experimental results obtained by Magnano et al. (2002), we assume that the QT interval
correlates with both the ideal rate demand and effective HR.

Consider a generic heart cycle t , and let HRt be the corresponding ideal rate demand (in BPM),
which depends on the current activity level. The synthetic QTI at t , QTt , is generated as follows:

(1) We update the SA node firing period based on the ideal rate: SA_dt = 60/HRt .

(2) To consider the combined effect of the effective and ideal HR, we define RRt as the

weighted sum RRt = k · SA_dt + (1 − k ) · RRt−1, where k ∈ (0, 1) and RRt−1 is the effec-
tive heart period at t − 1, i.e., computed as the time between the last two ventricular events.

(3) QTt is finally sampled from distribution DQT,RR, conditioned on RR = RRt .
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Fig. 8. Components of the VVIR pacemaker model.

Recall that, in the open-loop variant of the VVIR design, QTIs are extracted from offline ECG
data and not generated from the heart model.

4.3 VVIR Pacemaker Model

In this section, we introduce the pacemaker model, the blending algorithm, and the estimation of
QT-RR laws for rate adaptation.

VVIR Pacemaker. The PTIOA network of the VVIR pacemaker is shown in Figure 8. The model
is a simplified version of the dual-chamber pacemaker model of Jiang et al. (2012), from which
we only retain the components responsible for sensing and pacing the ventricle. We remark that,
in the pacemaker network, delays are deterministic. The Lower Rate Interval (LRI) component en-
sures a given lower HR, which in our case corresponds to the adaptive rate. The adaptive pacing
period is denoted with tAR and is updated at regular intervals by the sensor blending algorithm
(see Section 4.3.1), typically every 2.5 seconds. If there is no sensed ventricular event (represented
by the synchronization on action VS) before tAR expires, the component paces the ventricle, which
is implemented by output action !VP.

On the other hand, the Ventricular Refractory Period (VRP) component is responsible for the
sensing of intrinsic ventricular events. These are generated by the heart network through action
Vget. After a Vget is detected, the VRP component notifies the LRI component of the sensed impulse
by sending a VS action. After a sensed or paced ventricular event, corresponding respectively to
firing the edge Vsig −→ VRP and Idle −→ VRP, the pacemaker enters a refractory period (location
VRP), during which sensing is disabled; i.e., no synchronization on Vget is possible. This mimics
the natural refractory period of the ventricles, and thus allows for filtering out sensing noise. After
the refractory period tVRP has elapsed, the component returns to the Idle location where sensing
is reactivated.

4.3.1 Blending Algorithm. The blending algorithm combines data from the QT and accelerom-
eter sensors in order to change the adaptive pacing rate tAR such that the pacemaker mimics the
behavior of a healthy conduction system in terms of mental and physical stress. The algorithm
accounts for the fact that the accelerometer quickly reacts at the onset of exercise, but lacks pre-
cision in the longer run. On the other hand, the QT sensor gives very accurate and specific HR
predictions, but has a slower response to exercise (Lau et al. 2007).

We propose a blending algorithm that generalizes the rate adaptation approaches presented

in Lau et al. (2007). Let tQT
AR and tACC

AR be the adaptive pacing intervals computed by the QT and
the accelerometer sensors, respectively, as detailed in Sections 4.3.2 and 4.3.3. Let RRrest denote
the heart period at rest. For the computation of the adaptive pacing interval tAR, our algorithm
distinguishes four cases:
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tAR =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

RRrest if tQT
AR ≥ RRrest ∧ tACC

AR ≥ RRrest (i)

tQT
AR if tQT

AR < RRrest ∧ tACC
AR < RRrest (ii)

max
(
tQT
AR ,ADL

)
if tQT

AR < RRrest ∧ tACC
AR ≥ RRrest (ii)

w (Δt ) tACC
AR + (1 −w (Δt )) RRrest if tQT

AR ≥ RRrest ∧ tACC
AR < RRrest. (iv)

Case (i) corresponds to rest conditions, i.e., when none of the sensors indicate activity. Case (ii)
describes sustained activity, i.e., when both sensors indicate activity, in which case tAR is updated
to the pacing period suggested by the QT sensor. Case (iii) describes either mental or isometric
activity, and occurs when only the QT sensor suggests activity. Also in this case, tAR is updated to

tQT
AR but the pacing period is limited by parameter ADL = 0.66s (activities of daily living) to avoid

excessive pacing (Lau et al. 2007).
In case (iv), only the accelerometer detects activity, indicating either an early stage of activity

(to which the QTI has not yet adapted) or a false detection. To reflect this duality, the blending
algorithm opens a time window during which tAR is set to a weighted combination of tACC

AR and
RRrest, where the contribution of the accelerometer gradually decreases according to the parameter
w (Δt ), defined as follows:

w (Δt ) =
⎧⎪⎨⎪⎩
− w0

tmax
Δt +w0 if Δt < tmax

0 if Δt ≥ tmax ,

wherew0 is the initial weight, Δt indicates the time elapsed (in seconds) since case (iv) was entered,
and tmax is the maximum time window. Following the blending algorithms reported in Lau et al.
(2007), we set w0 = 0.8 and tmax = 60.

Importantly, our algorithm can be easily adapted to reproduce the sensor blending algorithms
of commercially available rate-adaptive pacemakers (Lau et al. 2007).

4.3.2 QT Sensor. In this section, we discuss methods to effectively compute such QT-RR laws,
that is, to estimate a function f such that

QT ≈ f (RR). (4)

This equation is used within the blending algorithm to update the adaptive pacing rate period tQT
AR

from QTI values. Below, we illustrate the methods used to derive f for patient-specific models,
and for virtual population models.

Patient-Specific QT-RR Laws. Several attempts have been made to formalize the QT-RR relation-
ship, even if experimental and statistical evidence shows that no single law exists that optimally
fits every patient (Malik et al. 2002). We perform an in-depth analysis and comparison of five
established mathematical models for describing patient-specific QT-RR relationship, namely:

(1) Linear model: QT = a0 + a1RR
(2) Quadratic model: QT = a0 + a1

√
RR

(3) Cubic model: QT = a0 + a1
3
√

RR
(4) Hyperbolic model: QT = a0 +

a1

RR
(5) Exponential model: QT = a0 − a1 exp(−a2RR)

We further investigate, for the first time in this context, the application of Multigene Symbolic
Regression (MSR) (Searson 2015). MSR consists in the automatic computation of a regression law
from a set of basis functions, and thus it notably reduces the need for trial-and-error fitting that
results from fixed choices of regression functions. We employ the MSR algorithm of Searson (2015)
that crucially supports multiobjective optimization to evaluate the tradeoff between the goodness
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Fig. 9. Estimation of QT-RR laws for the three subjects of our study, and comparison between classical curve
fitting (top row) and multigene symbolic regression (bottom row). For the latter, we show the Pareto-optimal
models found.

of fit and the expressional complexity of a fitting function. In this way, MSR allows for a Pareto-
oriented analysis of different response functions. To ensure a fair comparison, MSR was evaluated
by choosing models (1) through (5), {+, ·,−, /,√, 3

√
, exp}, as the set of basis functions.

Curve-fitting results (plotted in Figure 9) evidence that (1) QT-RR laws are highly patient spe-
cific; (2) MSR produces models with superior accuracy, outperforming the above classical mathe-
matical laws; (3) among models (1) through (5), the exponential law yields overall the best fitting
scores; and (4) unlike the MSR models, the hyperbolic and exponential laws are characterized by
good extrapolation accuracy—i.e., they provide satisfactory predictions also for points outside the
training dataset.

In general, MSR represents an effective alternative to the current practice of choosing a fixed a
priori mathematical model. Indeed, the “one fits all” approach can lead to inaccurate computation

of the pacing rate period tQT
AR computed by the QT sensor. Nevertheless, relative to our input data,

the exponential law showed a satisfactory overall performance. Further details on MSR and fitting
results are in Supplementary Material, Section 3.2.

Population-Level QT-RR Laws. As we just showed, the QT-RR relationship is patient specific,
and thus, for the case of virtual population models, we have to resort to different, more general
techniques.

To this purpose, we follow the work of Poore and Mann (1991), where a general mathemati-
cal law for computing the adaptive pacing rate is proposed that does not require patient-specific
information, but only minimum and maximum values for the RR and the physiological sensor.

Let QTmax (QTmin) and RRmax (RRmin) be the maximum (minimum) QT and RR interval observed
for the pool of patients considered. This law assumes linear updates from the minimum to the
maximum values, i.e., a linear model with parameters

a =
QTmax −QTmin

RRmax − RRmin
and b = QTmin − a · RRmin.
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Fig. 10. Estimation of linear QT-RR law for the virtual population.

The estimated linear model for our virtual population is shown in Figure 10. Compared to the
results of patient-specific estimation, we observe that, for each RR interval, observed QTIs have
much higher variability, and that the overall trend is more markedly linear. We remark that this law
can be also used for patients affected by permanent atrial impairment, i.e., whose ECG contains
no useful QT-RR pairs for the above patient-specific estimation, since it relies on maximal and
minimal HR that can be estimated from population-wide models, as per Equation (5) below.

4.3.3 Accelerometer Sensor. We process three-axial accelerometer signals in order to detect the
physical activity of the patient. Specifically, we derive a real-time approximation of the patient
Metabolic Equivalent of Task (MET), an index of physical activity intensity defined as the ratio of
the work metabolic rate to the resting metabolic rate. Thus, a MET value of 1 indicates resting, and
typically, light physical activities have an associated MET value < 3, while MET values for intense
activities are > 6.

The MET computation is achieved by a decision tree model, estimated by Ohkawara et al. (2011)
from the statistical analysis of patient data, and its value is updated at runtime by inspecting a time
window of 5 seconds. LetX be the mean value of the accelerometer signal during the time window,

and X̂ be the mean of the corresponding filtered signal, obtained after removing the baseline drift.
The model distinguishes among sedentary activity, light activity, and heavy activity, and derives

the MET based on X and X̂ as follows:

MET =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if X̂ < k0 (sedentary activity)

a0 + a1 · X̂ if
X

X̂
≥ k1 (light activity)

b0 + b1 · X̂ otherwise (heavy activity),

where k0,k1,a0,a1,b0,b1 are the parameters estimated in Ohkawara et al. (2011).
Finally, the adaptive pacing period suggested by the accelerometer, tACC

AR , is derived using
Wilkoff’s patient-dependent chronotropic response model (Wilkoff et al. 1989), which computes,
for a given MET value, the appropriate HR:

HR(MET) =
(220 − age − HRrest) (MET − 1)

METmax − 1
+ HRrest and tACC

AR =
60

HR(MET)
, (5)

where age is the age of the patient, HRrest is the patient’s HR at rest, and METmax is the maximum
MET value. Values of age and HRrest for our virtual patients are given in Table 1 of Section 4.1.
Note that the minimum HR is obtained at minimum MET (MET = 1) and is equal to HRrest, while
for MET = METmax we recover the well-known equation for maximum HR: 220 − age. Alternative
laws for the maximum HR have been proposed (Tanaka et al. 2001) but are outside the scope of
our study.
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Fig. 11. Example of the results produced by our algorithm for the generation of patient-specific, activity-
dependent, synthetic accelerometer signals.

4.4 Generation of Synthetic Accelerometer Signals

We introduce a new method for the generation of synthetic, three-axial accelerometer signals that
are either patient specific (i.e., they resemble a given input signal) or activity dependent (i.e., they
describe a specific physical activity, e.g., walking or running). Our method is based on a Poisson
process model, whose events represent the onset of activity in the generated signal, e.g., climbing
stairs.

Let t be a time bound and T1 (β ), . . . ,TN (β ) be random variables describing the absolute arrival
time up to time t of N activity events, such that for i = 1, . . . ,N , Ti (β ) −Ti−1 (β ) is exponentially
distributed with mean arrival time β .11 The durations of the activity segments are modeled as
independent and identically distributed Gaussian random variables L1 (μ,σ ), . . . ,LN (μ,σ ), where
μ and σ are, respectively, the mean and standard deviation of the distribution. The typical shape
of the accelerometer signal during these segments is reproduced by means of a white Gaussian
noise generator (Wang et al. 2011). For each time point t ∈ [0, t] and interval [t1, t2) ⊆ [0, t], we
define the white Gaussian noise generator WGN t2

t1
(t ;σp ) as a random variable that is normally

distributed with zero mean and standard deviation equal to σp if t ∈ [t1, t2), and identically zero
otherwise. The synthetic accelerometer signal at time t is hence a random variable defined as

synthAcc(t ; β, μ,σ ,σp ) =
N∑

i=1

WGN
Ti (β )+Li (μ,σ )
Ti (β )

(t ;σp ). (6)

We finally add noise to the signal in order to mimic background noise effects. Parameters β , μ,
σ , and σp are among the most used features for accelerometer signal processing (Chernbumroong
et al. 2011) and can be automatically estimated from accelerometer recordings, or tuned to re-
produce a prescribed, activity-dependent morphology. For the former, we have implemented a
detection algorithm able to identify the regions of interest in the signal, and extract the relevant
statistical features from it. An example of synthetic accelerometer signal is shown in Figure 11,
using as input accelerometer data taken from Anguita et al. (2013). We can observe that the key
features of the input signal are preserved by our algorithm and are clearly visible in the generated
synthetic signal.

Validation. To validate our algorithm, we need to show that the input accelerometer signal and
the corresponding synthetic signals are consistent with respect to the decision tree model used for
the accelerometer; that is, the two signals must be classified to the same activity level (sedentary,

11We assume T0 (β ) = 0.
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Fig. 12. Results of model simulation. Left and center figures depict the stem plots of a 5-second simulation
(upper half, atrial activity; lower half, ventricular). Blue stems indicate intrinsic atrial impulses, or atrial
impulses conducted in the ventricle; red stems indicate paced ventricular beats. Right: pacing period of
different rate-adaptive sensors: blended (red), accelerometer (yellow), and QT based (aqua), compared to the
ideal demand (blue).

light, or heavy activity). We are also interested in how the predicted metabolic activity differs
between the two.

To this end, we consider 100 recordings from the training set of Anguita et al. (2013) and gener-
ate, for each, 100 synthetic signals. Our synthetic signal generator produced a satisfactory 93% of
correct classifications, with a mean deviation of only 0.17 MET in the predicted metabolic activity.

5 RESULTS

In Section 5.1, we analyze the behavior of the VVIR pacemaker along a single simulation, and how
it compares with alternative pacemaker designs. In Section 5.2, we illustrate the verification results
obtained through statistical model checking.

Unless otherwise stated, the following experiments assume a condition of AV block and
AF (modeled as per Section 4.2), which is typically addressed by VVIR pacing (Iaizzo 2009,
Fig. 30.7-8).

Implementation. The COSMOS statistical model checker works by executing efficient C++ code
generated from Stochastic Petri Net (SPN) models. Therefore, we apply existing methods (Barbot
et al. 2016) to translate the heart-pacemaker PTIOA network into an SPN. The blending and signal
processing algorithms described in Sections 4.3.1 to 4.4 are implemented as C++ code, called by
COSMOS during execution. Note that these algorithms have only the effect of updating variable
values of the PTIOA network. An implementation is available at www.veriware.org/heart_pm_
methods.php#heartverify.

5.1 Simulation and Comparison with Fixed-Rate Pacemaker

In this section, we compare our VVIR pacemaker design with its fixed-rate variant (called VVI)
during sustained activity, and further compare the dual-sensor blending algorithm with the cor-
responding single-sensor variants, i.e., obtained by disabling one of the two sensors. For a deeper
look at the behavior of the VVIR pacemaker, here we consider a single simulation trace, param-
eterized with an extract of the ECG and accelerometer data from subject 1 during activity (see
Section 4.1), and choose an exponential QT-RR law in the blending algorithm.

Given that subject 1 has a healthy ECG, we use the corresponding sequence of RR intervals to
construct the ideal rate demand curve. Recall that in our model, the ideal rate demand is reflected
by the firing rate of the SA node (see Section 4.2.3), which propagates impulses into the atrium.
Therefore, to obtain a clear illustration of the atrial activity, only for this experiment, we assume
no AF (only AV block).

Analysis of Pacing Modes. The results are summarized in Figures 12(a) and 12(b), which give a
detailed view of the atrial and ventricular events during a 5-second simulation. We observe that,
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in the VVI mode, the fixed ventricular rate imposed by the pacemaker is not commensurate to
the atrial activity. There are only a few impulses successfully conducted from the atrium to the
ventricle, which happens at regular intervals in the Wenckebach AV block. This behavior does
not occur in the VVIR mode, where the adaptive pacing rate ensures that the ventricular rhythm
follows the ideal demand through increased pacemaker activity.

Analysis of Blending Algorithms. In Figure 12(c), we compare the pacing rates computed by our
blending algorithm under exercise with the single-sensor pacing rates. We observe that, if we
consider only the accelerometer, the rate-adaptive pacemaker reacts appropriately to the onset of
exercise (visible by the decreased RR duration) and sets an adequate pacing rate for the first ≈20
seconds, after which it cannot account for the increased rate demand. On the other hand, the QT
sensor alone fails to detect the onset of activity in a timely manner, but after the first ≈25 seconds
provides more and more accurate predictions. Our blending algorithm takes advantage of both
sensors: it successfully detects the onset of patient activity and predicts the right chronotropic
response in the longer run, with the resulting adaptive rate closely following the ideal demand at
any time.

5.2 Statistical Model Checking Experiments

We employ SMC to provide formal and quantitative guarantees on the behavior of the VVIR pace-
maker. Our study involves two broad kinds of analyses, in order to investigate (1) effects of pace-
maker malfunctions on cardiac dynamics and (2) the adequacy of pacing treatment under varying
physiological conditions.

The experiments of Sections 5.2.2 and 5.2.3 belong to the first kind of analysis. In the former
experiment, we investigate phenomena of sensor-induced endless-loop tachycardia, comparing
closed- and open-loop designs. In the latter experiment, we analyze how the heart rate regularity
is affected by a faulty pacemaker lead that causes oversensing. This defect is typically random and
thus can be meaningfully investigated through SMC.

The experiments of Sections 5.2.4 and 5.2.5 belong to the second kind of analysis. In the former
experiment, we simulate exercise curves and stress tests in order to assess which QT-RR law pro-
vides the most adequate rate at every activity stage. In the latter experiment, we analyze how the
pacemaker responds to different conditions of the cardiac conduction system, namely, at different
degrees of AV block.

Where not otherwise specified, the following analyses are obtained by instantiating the QT
sensor of the rate-adaptive algorithm with the exponential law. For SMC, we only consider time-
bounded HASL properties.12

5.2.1 Verification Properties.

Absence of Induced Tachycardia. This HASL property evaluates the probability that, in resting
conditions, the pacemaker does not wrongly switch to activity mode, thus inducing an excessive
HR (tachycardia). The corresponding LHA (illustrated in Supplementary Material, Section 5) is
designed to count, through variable nOKs, the number of adequate rate updates, i.e., inducing an
effective HR that does not exceed the HR at rest of the subject. Variable nUpd keeps track of the
total number of rate updates. The HASL formula is defined as

ϕNO_TC = E

[
LAST

(
nOKs

nUpd

)]
, (7)

12These are characterized by an LHA with a global clock t and unique final state whose incoming edges are autonomous

and have guard д = t ≥ Tmax, where Tmax is the time bound.
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corresponding to the expectation of the final value of the ratio of adequate updates. Since the
adequacy/nonadequacy of each update forms a Bernoulli process, ϕNO_TC actually estimates the
probability that the rate is updated correctly, in a way that it does not induce tachycardia.

PDF of Fraction of Paced Beats. We consider the HASL property ϕPDF(VP) introduced in Exam-
ple 3.1. The property evaluates the PDF of the fraction of paced beats, or, simply put, how much
artificial pacing is needed to ensure a safe heart rhythm.

Heart Rate Regularity. We introduce a measure of HR regularity for a patient under pacing con-
ditions, defined as the average deviation between consecutive RR intervals. Let n be the number of
beats along a given execution, andRRi be the RR associated to the ith beat. We define the regularity
of the path as

Reg =
1

n − 1

n−1∑
i=1

|RRi+1 − RRi | .

Low Reg values are indicative of paths where the RRs change smoothly, whereas high Reg values
indicate abrupt HR changes, potentially introducing excessive stress on the patient’s cardiac tissue.
Due to the intrinsic HR variability, a value of zero for Reg is impossible to achieve.

In this regard, we can compute a baseline level for Reg, corresponding to the regularity of a
perfectly healthy subject in a particular activity stage. This can be obtained by assuming that the
RR delays of a healthy subject in a particular stage of activity are normally distributed (as done in
Lian et al. (2010)) and is defined by

Reg∗ = 2

√
σ 2

π
, (8)

where σ is the standard deviation of the estimated Gaussian distribution for RR intervals at the
given activity stage. The full derivation of Equation (8) is in Supplementary Material, Section 5.

The LHA for computing Reg over a simulation path is illustrated in Supplementary Material,
Section 5. It contains a variable RegΣ for storing the cumulative sum of the deviations between
consecutive RRs, and a variable Nbeats, tracing the number of ventricular beats. The HASL formula
is

ϕReg = E

[
LAST

(
RegΣ

Nbeats

)]
. (9)

5.2.2 Endless-Loop Tachycardia: Open versus Closed Loop. We analyze phenomena of
pacemaker-mediated tachycardia (PMT), also called endless-loop tachycardia, and compare the ac-
curacy of the open- and closed-loop VVIR architectures in reproducing this malfunction. PMT is
typical of (dual-chamber) DDD pacemakers (Monteil et al. 2015) but has been found to occur also
in VVIR pacemakers (see, e.g., Bohm et al. (2010)). In this case, the event is triggered by a sen-
sor malfunction causing the pacemaker to wrongly detect activity, thus inducing a self-sustained
increase of the ventricular pacing rate, as illustrated in Figure 13.

To intentionally induce PMT in our model, we consider a naïve blending algorithm where cross-
checking of multiple sensors is disabled and thus, any of the two sensors can set the pacing rate
as it predicts. The PMT episode is initiated by simulating a fault in the accelerometer sensor that
detects activity when the subject is actually at rest. This results in a wrongly increased pacing rate
and, as a side effect, in a shortening of the QTI (Ahnve and Vallin 1982). In turn, shorter QTIs are
translated by the QT sensor into higher pacing frequencies, leading to endless-loop tachycardia.

We verify property ϕNO_TC (see Equation (7)) to estimate the probability that, after an induced
sensor malfunctioning of 30 seconds, the pacemaker does not induce tachycardia in the following
90 seconds. Detailed experimental setup and numerical results are reported in Supplementary Ma-
terial, Section 5. In a nutshell, we obtain that in the closed-loop architecture, PMT is from 18% to
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Fig. 13. Feedback behavior of sensor-induced tachycardia.

Fig. 14. HR regularity (ϕReg, y-axis) at different oversensing rates (βover, x-axis). Mean and 99% confidence
intervals for ϕReg are indicated with lines and shaded areas, respectively. Dashed lines represent the corre-
sponding ideal regularity values (Reg∗, see Equation (8)). For SMC, we use 1,000 simulations for each subject.

59% more likely to happen than in the open-loop case across the three virtual patients, for which
tachycardia occurs with relatively low probability (ranging from 1% to 30%).

Therefore, SMC results confirm that the feedback-loop nature of PMT can be only reproduced in
the closed-loop model and cannot be well captured by the open-loop model, since this uses offline
data that does not reflect the runtime activity of the pacemaker. We remark, however, that when
using the complete blending algorithm of Section 4.3.1, PMT is terminated.

5.2.3 Regularity under Oversensing. We analyze how oversensing, i.e., the misinterpretation
of artifacts or other waves as R peaks by the pacemaker, affects the HR regularity (see Equa-
tion (5.2.1)). The occurrence of an oversensing event is modeled as an exponentially distributed
variable, with mean waiting time given by the parameter βover, ranging in the interval [0.5, 10]
seconds. We evaluate regularity in both resting and activity conditions through SMC of the HASL
formula ϕReg (see Equation (9)).

Results for ϕReg are illustrated in Figure 14. Recall that smaller ϕReg values imply a more regular
heart rhythm. As expected, the worst regularity is registered when severe oversensing is in action,
and this monotonically improves as the rate of misdetected beats decreases.

We obtain similar results among the three patient-specific models and between resting and ac-
tivity conditions, suggesting that the pacemaker is able to maintain good levels of regularity in-
dependently of the activity stage and the differences intrinsic to the three subjects.

For the virtual population model, this analysis yields considerably higher values of ϕReg (less
regular HR) for high values of oversensing (i.e., low values of βover ). This is explained by the
higher width of the parameter distributions estimated by the population-wide approach. Note,
however, that values of ϕReg comparable to those obtained for the patient-specific approach are
restored for high values of βover .
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We further observe that the obtained confidence intervals for ϕReg are very narrow, meaning
that SMC results are precise and, more importantly, that the regularity measure is robust with
respect to the intrinsic heart variability and the random occurrence of oversensing events.

5.2.4 Adequacy of Pacing Rate during Exercise. We evaluate how the HR under AV block and AF
is corrected by the rate-adaptive pacemaker during exercise, and in particular, how the effective
HR induced by the pacemaker fits the required ideal rate demand (ID). Recall that, in our model,
the ID is set by updating the firing period of the SA node (see Section 4.2.3).

We consider three experiments, respectively describing

(1) a vigorous, 20-minute exercise consisting of four activity stages: activity onset, sustained
activity, decay, and rest;

(2) a more intense, 10-minute exercise consisting of three stages: activity onset, sustained
activity, and decay; and

(3) the Bruce protocol (Candinas et al. 1997), one of the most common clinical stress tests. It
is composed of seven activity stages performed at increasing intensity, with a duration
of 3 minutes each. The ID at each stage is described in MET, from which we derive the
corresponding ideal HR by using Equation (5) for each virtual patient (see Supplementary
Material, Section 6 for the ideal HR of each patient).

Regarding accelerometer data, we generate synthetic signals using parameters estimated from
recordings at rest (for rest and decay stages) and during activity (for onset and sustained activity
stages). As explained in Section 4.1, we use accelerometer data from Anguita et al. (2013) for subject
2 and for the virtual population.

Results are shown in Figure 15 and compare the behavior of different QT-RR laws in the blend-
ing algorithm: linear model, exponential model, and lowest mean-square error MSR model. We
generally observe that the effective HR qualitatively and quantitatively agrees with the ID, demon-
strating that the blending algorithm is able to provide an adequate heart behavior during exercise.

In particular, for the Bruce protocol, the rate-adaptive algorithm achieves an almost ideal behav-
ior, accounting for the sudden ID changes in a timely manner when transitioning between activity
stages, and successfully maintaining the effective HR constant during each stage. The only excep-
tion is the linear model for subject 1, which underestimates the ID during stages 4 through 6. The
cause of this behavior is to be found in the decreased fitting performance of the linear model for
the corresponding range of RR values (see Figure 9(a)), even though the discrepancy between the
ID and effective rate is never above 20 BPM.

Noteworthy are the narrow confidence intervals in the patient-specific experiments (subjects
1–3), obtained with just 100 simulations, independently of the subject or the used QT-RR law. This
proves the robustness of our pacemaker design, able to mitigate the intrinsic stochasticity of the
heart model.

Results obtained for the virtual population demonstrate that, also in this case, the rate-adaptive
pacemaker is able to follow the overall trend of the exercise curves, with a very similar performance
to the patient-specific experiments. At sustained activity rates, when the pacing rate is mainly
determined by the QT sensor, we notice an increased width of the confidence interval, which
mirrors the increased variability of the QTIs estimated from multiple patients.

Further note that the quick initial HR increase, as well as the quick decrease at the decay stage
(for exercise curves 1 and 2), is basically independent from the QT-RR law used in the QT sensor
and of the virtual patient. This is in fact mostly driven by the accelerometer sensor that successfully
detects the onset/offset of activity.
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Fig. 15. HR during simulated exercise curves, obtained through 100 simulations for each subject. The ideal
rate demand (ID, blue) is compared to the HR under different QT-RR laws for the blending algorithm: expo-
nential, linear, and best-fitting MSR model. Shaded areas indicate 99% confidence intervals. Tables describe
the different stages of each test.

5.2.5 AV Block Degree. We perform a parametric analysis of AV_Vt, i.e., the AV node depolar-
ization threshold that, as explained in Section 4.2, can be tuned to reproduce AV block conditions,
such that higher AV_Vt values imply worse heart conduction. In particular, we let AV_Vt deviate
from its default (healthy) value of −4.0 mV (Barbot et al. 2015a) by an exponentially distributed
random variable with mean βvt . We consider propertyϕPDF(VP) , defined in Example 3.1, to evaluate
the probability density function of the fraction of paced beats, with βvt spanning from 0.1 (normal
AV conduction) to 2.5 (severe AV block).

The heat-maps in Figure 16 depict, for each subject and for both resting and sustained activity
conditions, how the distribution of the fraction of paced beats is affected by parameter βvt . We
observe that as the condition of the conduction system worsens, the number of paced beats in-
creases, demonstrating that the pacemaker can well adapt to different degrees of AV block. This
increase slowly saturates around the value of 0.9. This indicates that the coexistence of AF and
severe AV block in a subject makes the pacemaker almost essential, with only a small percentage
of atrial impulses propagating into the ventricles. At high βvt values, we further notice a substan-
tial decrease of the width of the distributions (redder area, implying a higher probability density).
This suggests a scenario where heart cycles are primarily initiated by the pacemaker, effectively
reducing the intrinsic variability of the patient (diseased) heart dynamics.
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Fig. 16. Probability density function of the fraction of paced beats (x-axis) under different degrees of AV
block severity, obtained by increasing the AV node threshold potential by parameter βvt (y-axis). Colors
indicate the SMC results for formula ϕPDF(VP) (see Example 3.1), evaluated for each value of βvt using a
total of 50,000 simulations.

For the virtual population, we report a fraction of paced beats always greater than 0.9, inde-
pendently of the AV block degree and of the activity stage. This suggests that the QT-RR law
implemented for the virtual population is more conservative, causing the device to pace the heart
even when only AF and no AV block is present.

6 CONCLUSION

Safety assurance of rate-adaptive pacemakers demands rigorous verification methods able to ac-
count for the high specificity of the patient’s electrophysiology, and how this changes under dif-
ferent levels of physical or mental stress. In this work, we addressed this challenge through the
development of a formal, data-driven, and model-based approach to the automated, closed-loop
verification of dual-sensor rate-adaptive pacemakers. Our approach uniquely combines methods
for the personalization of heart models from patient data with the online generation of synthetic,
model-based sensor data used for rate adaptation, seamlessly supporting patient-specific models
for the analysis of personalized treatments and virtual population models targeted to safety veri-
fication. We performed extensive statistical model checking experiments to assess the device’s be-
havior under a variety of conditions, leading to quantitative insights that would be difficult, if not
impossible, to obtain with testing on real patients. By considerably reducing exercise testing, our
techniques offer great potential to enhance the design and development process of rate-adaptive
pacemakers, and to provide clinicians with appropriate and patient-specific treatment indications.
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