arXiv:1504.06117v1 [cs.FL] 23 Apr 2015

Nested Weighted Automata

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop

IST Austria

August 18, 2018

Abstract

Recently there has been a significant effort to handle quadirg properties in formal verification and synthe-
sis. While weighted automata over finite and infinite wordsvjate a natural and flexible framework to express
quantitative properties, perhaps surprisingly, somecl&®stem properties such as average response time cannot
be expressed using weighted automata, nor in any other keoidable formalism. In this work, we introduce
nested weighted automata as a natural extension of weiglttethata which makes it possible to express im-
portant quantitative properties such as average responeeln nested weighted automata, a master automaton
spins off and collects results from weighted slave autopnedah of which computes a quantity along a finite
portion of an infinite word. Nested weighted automata canib&ed as the quantitative analogue of monitor
automata, which are used in run-time verification. We eithlzin almost complete decidability picture for the
basic decision problems about nested weighted automatallastrate their applicability in several domains. In
particular, nested weighted automata can be used to desdaege response time properties.

1 Introduction

Traditionally, formal verification has focused on Booleanperties of systems, such as “every request is even-
tually granted.” Automata-theoretic formalisms as welltasporal logics have been studied as specification
languages for such Boolean properties of reactive systdmsecent years there has been a growing trend to
extend specifications with quantitative aspects for exgingsproperties such as “the long-run average success
rate of an operation is at least one half” or “the long-runrage (or the maximal, or the accumulated) resource
consumption is below a threshold.” Quantitative aspectspetifications are essential for resource-constrained
systems, such as embedded systems, and for performancatewal For example, quantitative specifications
such as accumulated sum can express properties like nuhb&vents betweeh events, or memory consump-
tion, whereas long-run average can express propertigsddla reliability requirements such as average success
rate.

For Boolean properties regular languages provide a rolpestfication framework. Finding the analogue of
regular languages for quantitative specifications is aneotsearch areal[4, 12,116]. Some of the key features of
such a specification framework are (1) expressivenesswinether the formalism can express properties of inter-
est; (2) ease of specification, i.e., whether the propectesbe stated naturally; (3) computability, i.e., whether
the basic decision problems can be solved —ideally with elgary complexity— for interesting fragments of
the formalism; and (4) robustness, i.e., whether the fasmeils robust against small changes in its definition.

While automata are an expressive, natural, elementaritydeble, and robust framework for expressing
Boolean properties, weighted automata provide a natuthflexible framework for expressing quantitaﬁ\mop-
erties [12]. Weighted automata are an extension of finiteraata in which every transition is labeled by a rational
weight. Thus, each run produces a sequence of weights, aaddefunction aggregates the sequence into a single
value. For non-deterministic weighted automata, the vafiee wordw is the infimum value of all runs over.
Initially, weighted automata were studied over finite wondth weights from a semiring, and ring multiplication

*This research was funded in part by the European ResearaciCEERC) under grant agreement 267989 (QUAREM), by thetAars
Science Fund (FWF) projects S11402-N23 (RiSE), Z211-N28t@éhstein Award), FWF Grant No P23499- N23, FWF NFN Graot N
S11407-N23 (RIiSE), ERC Start grant (279307: Graph Gamed)\acrosoft faculty fellows award.

1we use the term “quantitative” in a non-probabilistic semgsich assigns a quantitative value to each infinite run gftesn, representing
long-run average or maximal response time, or power consampor the like, rather than taking a probabilistic averager different runs.

http://arxiv.org/abs/1504.06117v1

as value function[16]. They have been extended to infinitedavith limit averaging or supremum as value
function [9,[11]12]. While weighted automata over semisirogn express several quantitative properties [25],
they cannot express the following basic quantitative pridge

Example 1. Consider infinite words ovefr, g, i}, wherer represents requestg, represents grants, andrep-
resents idle. A first basic property is the long-run averaggdency of-'s, which corresponds to the average
workload of a system. A second interesting property is trerage number of’s between a request and the
corresponding grant, which represents the long-run avenagponse time of the system.

While weighted automata with limit-average as value fumtttan express the average workload property
(which weighted automata over semirings cannot expresg)aps surprisingly, they are not capable of expressing
the long-run average response time. To see this, noticéitbatlue of a weighted automaton with limit-average
value function is bounded by the maximal weight that occarthe automaton, whereas the long-run average
response time can be unbounded. However, long-run aveeagense time can be computed if the sum value
function can be applied between requests and subsequerd,grad the values of the sum function can be aggre-
gated using limit-average function. Such a mechanism caexpeessed naturally by an extension of weighted
automata, calledested weighted automatahich we introduce in this paper.

A nested weighted automaton consists of a master automatba aet of slave automata. The master au-
tomaton runs over an infinite word, and at each transitiomefrfinite run, it may invoke a slave automaton that
runs over a finite subword of the infinite word, starting frdm position where the master automaton invokes the
slave automaton. Each slave automaton terminates aftetearfimber of steps and returns a value to the master
automaton. To compute its return value, each slave autanmexuipped with a value function for finite words,
and the master automaton aggregates all return valuesasigge function for infinite words. While in the case
of Boolean finite automata, nested automata are no more ssipeethan their non-nested counterpart, we show
that the class of nested weighted automata is strictly mepeessive than non-nested weighted automata. For
example, with nested weighted automata, the long-run geemesponse time of a word can be computed, as in
the following example.

Example 2. In Examplddl there is only a single type of request and grauitjrbgeneral there can be multiple
types of requests and grants, and the intervals betweerestgand corresponding grants for different requests
may overlap. Using a nested weighted automaton, the aveespense time can be specified across all requests.
We illustrate this for two types of requests and correspogdjrants. The input alphabet {3+, g1, 72, g2,7}. At
every request; (resp.ry) the master automaton spins off a slave automafn(resp.B,) with a sum value
function, which counts the number of idle events to the r@xésponding grany; (resp.g-). Observe that many
slave automata may run concurrently. Indeed, for the wefd4 g1 g2)¢, at all positions with the letteg; there

are 2 - n slave automata that run concurrently. The master automatithn limit-average value function then
averages the response times returned by the slave automata.

Our contributions are three-fold. First, we introduce edsteighted automata over infinite words (Secfibn 3),
which is a new formalism for expressing important quaritiegproperties, such as long-run average response time,
which cannot be specified by non-nested weighted automata.

Second, we study the decidability and complexity of emsneaniversality, and inclusion for nested weighted
automata. We present an almost complete decidability igdtr several natural and well-studied value functions.

e Onthe positive side, we show that if the value functions efdlave automata are max, min, or bounded sum,

then the decision problems for nested weighted automatheasduced to the corresponding problems for
non-nested weighted automata. Moreover, we show that ifahee function of the master automaton is
limit average and the value function of the slave automat@isnegative sum (i.e., sum over hon-negative
weights), which includes the long-run average response firoperty, then the emptiness question is de-
cidable in exponential space. Along with the decidabilégults, we also establish parametric complexity
results, that show that when the total size of the slave aat@iis bounded by constant (which is the case
for average response property), then for all decidabiktsuits the complexity matches that of Boolean
non-nested automata (see Reniark 23). The decidabilityf rodtained by establishing certain regularity
properties of optimal runs, which can be used to reduce thiglgm to the emptiness question for non-nested
weighted automata with limit-average value function.

e On the negative side, we show that even for deterministitedegeighted automata with sup value function

for the master automaton and sum value function for the dlatemata, the emptiness question is undecid-
able. This result is in sharp contrast to non-nested weibgutitomata, where the emptiness and universality

guestions are always decidable for deterministic autonaaihthe emptiness question is decidable also for
non-deterministic sup and sum automata.
Our results are summarized in Table 1 and Table 2 (in Tabled3Table4 for parametric complexity results) in
Sectior 4.4.

Third, nested weighted automata provide a convenient fismao express quantitative properties. In the
Boolean casanonitor automataffer a natural compositional way of specifying complex pemral properties [26],
and nested weighted automata can be seen as a quantitaéusiex of monitor automata. Each monitor automa-
ton tracks a subproperty (which corresponds to a slave aittonin our formalism), and the results of the monitor
automata are combined by another monitor automaton (wlticlkegsponds to the master automaton in our formal-
ism).

e A key advantage of the monitor-automaton approach is tredlatvs complex specifications to be decom-
posed into subproperties, which eases the task of speificaDur nested weighted automata enjoy the
same advantage: e.g., for long-run average response @tleskave automaton computes the response time
(as a sum automaton) of an event, and the master automat@agasehe response times. Formally, we show
that deterministic nested weighted automata can be expiatgmmore succinct than non-deterministic
weighted automata even when they express the same propeagreni2b). Moreover, monitor automata
are used heavily in run-time verificatidn [20]. Hence ounfeavork can also be seen as a first step towards
guantitative run-time verification, where the slave auttamaturn values of subproperties, and the master
automaton (assuming a commutative value function) conspurtethe-fly an approximation of the value.

e More importantly, for Boolean properties monitor automsitaply provide a more convenient framework
for specification, as they are equally expressive as stdradomata, whereas we show that nested weighted
automata are strictly more expressive than non-nestechteglgautomata (e.g., long-run average response
time, which cannot be expressed using non-nested weighiteanata, can be expressed using nested
weighted automata.

In other words, we provide a natural combination of weigtdaatbmata (for quantitative properties) and nesting
of automata (for ease of expressiveness), and as a resalbh @more expressive, elementarily decidable, and
convenient quantitative specification framework.

Finally, we illustrate the applicability of nested weigtiteutomata in several domains. (1) We show that the
model-measuringroblem of [21] can be expressed in the nested weighted aitmmiramework (Section 5.2).
The model-measuring problem asks, given a model and a gdixifi, how robustly the model satisfies the speci-
fication, i.e., how much the model can be perturbed withootating the specification. (2) As dual of the model-
measuring problem, we introduce thwdel-repairproblem and show that it, as well, can be solved using nested
weighted automata (Sectibn b.3). The model-repair prolalgks, given a specification and a model that does not
satisfy the specification, for the minimal restriction of thodel that satisfies the specification. We show that we
need nested weighted automata in order to express integgaasures on models for the model-measuring and
model-repair problems.

In summary, we introduce nested weighted automata, whifglr ah expressive and convenient quantitative
specification framework, and establish that the basic eatifin problems are decidable for several interesting
fragments (which include the long-run average response giroperty). While there exist many frameworks to
express gquantitative properties (that we discuss in databectiori]’), there exists no framework (to the best of
our knowledge) that can express the average response toperpr and admit algorithms with elementary time
complexity for the basic decision problems. We present méwsork (of nested weighted automata) that can
express such basic system properties and have decidabtélaigs with elementary complexity.

The paper is a full version of [13].

2 Preliminaries

Words. Given a finite alphabel of letters, a finite (resp. infinite) wora is a finite (resp. infinite) sequence of
letters. For awordy andi, j € N, we definew(i] as the-th letter ofw andwli, j] as the wordv[iJw[i+1] . . . w[j].
We allow j to beco for infinite words. For a finite wordy, we denote byw| its length; and for an infinite word
the length isx.

Non-deterministic automata# (non-deterministic) automatoA is a tuple(X, Q, Qo, 0, F'), whereX is the alpha-
bet,Q is a finite set of stateg)y C Q is a set of initial states, C Q x ¥ x @ is a transition relation, anfl C @)

is a set ofacceptingstates.

Runs.Given an automatopt and a wordw, arun = = «[0]=[1] ... is a sequence of states such thflt] € Qo
and for everyi € {1,...,|w|} we have(r[i — 1], wli], w[i]) € §. Given a wordw, we denote byRun(w) the set
of all possible runs om.

Boolean acceptanc@he acceptance of words is defined using the accepting stafaste run of lengthj + 1
is acceptingf «[j] € F; and an infinite runr is acceptingif there exist infinitely many such thatr[j] € F. Let
Acc(w) C Run(w) denote the set of accepting runs. A wards accepted iffAcc(w) is non-empty. We denote
by £ 4 the set of words accepted by

Labeled and weighted automat@iven a finite alphabdt, al'-labeled automatois an automaton whose transi-
tions are labeled by elements frdim Formally, al'-labeled automatos is a tuple(%, @, Qo, 6, F, C) such that
(%,Q,Qo,0, F) is an automaton and' : § — I'. A weightedautomaton is &'-labeled automaton, wheteis a
finite subset of rationals; and the labels of the transitemesreferred to aweights

Semantics of weighted automain define the semantics of weighted automata we need to deénetue of a
run (that combines the sequence of weights of a run to a siailee) and the value across runs (that combines
values of different runs to a single value). To define valdesios, we will consideralue functionsgf that assign
real numbers to sequences of rationals. Given a non-emptyacevery runt of A onw defines a sequence of
weights of successive transitionsdfi.e.,C(m) = (C(nli — 1], w[i], 7[i]))1<i<|w|; @nd the valugf () of the run

w is defined asf (C(w)). We will denote by(C(w))[i] the cost of the-th transition, i.e.C'(r[i — 1], w[i], 7[7]).
The value of a non-empty word assigned by the automatot) denoted by’ 4(w), is the infimum of the set of
values of allacceptingruns; i.e.inf . cacc(w) f (), @and we have the usual semantics that infimum of an empty set
is infinite, i.e., the value of a word that has no acceptingfignnfinite. Every runr on an empty word has length

1 and the sequend€(r) is empty, hence we define the valfiér) as an external (not a real number) value
Thus, the value of the empty word is eitheyif the empty word is accepted by, or oo otherwise. To indicate a
particular value functiorf that defines the semantics, we will call a weighted automattam f-automaton.

Types of automataA weighted automaton is
e deterministiaff Q) is singleton and the transition relation is a function; and
o functionaliff for every wordw, all accepting runs o have the same value.

Value functionsWe will consider the classical functions and their natueaiants for value functions. For finite
runs we consider the following value functions: for runsesidgthn + 1 we have
1. Max and min:
o MAX(m) = max], (C(m))[i] and
e MIN(7) = min}, (C(m))[d].
2. Sum and variants:
e the sum function 8m(wr) = >, (C(m))[i],
e the absolute sumBu ™ (7r) = Y"1 | Abs((C())[i]) is the sum of the absolute values of the weights
(Abs denotes the absolute value of a number), and
¢ the bounded sum value function returns the sum if all theadabsolute sums are below a bouBd
otherwise it returns the boun, i.e., formally, ImM? (7) = Sum(x), if for all prefixesz’ of = we
haveAbs(Sum(7’)) < B, otherwiseB.
We denote the above class of value functions for finite wosdSr&val = {MaAx, MIN, Sum, Sum™, Sum®}.
Although, the absolute sum value functiow™ can be equivalently expressed by restricted to the
class of weighted automata with non-negative weights, wesider $)M and Sym™ separately, as the resulting
automata differ in complexity results.
For infinite runs we consider:

1. Supremum and Infimum, and Limit supremum and Limit infimum

Sup(r) = sup{(C(m))[¢] : i > 0},

INF(7r) = inf{(C'(m))[i] : i > 0},

LiMSuP(r) = lim sup{(C(m))[¢] : i > 0}, and
LIMINF(7) = lim inf{(C(m))[¢] : i > 0}.

2. Limit average:LIMAVG(r) = limsup L - S (C(m))[i].

k— oo
We denote the above class of value functions for infinite wordas InfVal =
{SuP, INF, LIMSUP, LIMINF, LIMAVG}.

Decision questiondNe consider the standard emptiness and universality quesstGiven ary-automaton4 and

a threshold\, theemptinesgresp.universality question asks whether there exists a non-empty wosdch that

L (w) < A (resp. for all non-empty worde we havel 4(w) <). We summarize the main results from the
literature related to the decision questions of weightedraata for the class of value functions defined above.

Theorem 3. (1) The emptiness problem is decidable in polynomial timelosalue functions we considelr [18,
25]. (2) The universality problem is undecidable fBum-automata with{—1,0,1} weights andLIMAVG-
automata with{0, 1} weights; and decidable in polynomial space for all otherneafunctions|[1["15,18, 23].
(3) The universality problem is decidable for all value ftions for deterministic and functional automala [19].

3 Nested Weighted Automata

In this section we introduce nested weighted automata. ¥ewith an informal description.

Informal description A nested weighted automatoansists of a labeled automaton over infinite words, catied t
master automatgra value functionf, and a set of weighted automata over finite words, callade automata

A nested weighted automaton can be viewed as follows: gimenfaite word, we consider a run of the master
automaton on the word, but the weight of each transition terdgned by dynamically running slave automata;
and then the value of a run is obtained using the value fumgtior hat is, the master automaton proceeds on an
input word as a usual automaton, except that before it tak@saition, it starts a slave automaton corresponding
to the label of the current transition. The slave automatarisat the current position of the word of the master
automaton and runs on some finite part of the input word. Onskna& automaton terminates, it returns its
value to the master automaton, which treats the returnek\ad the weight of the current transition that is being
executed. Note that for some transitions the slave autanratts on the empty word and returhs we refer to
such transitions asilenttransitions. A given run of a nested weighted automaton¢hvhonsists of a run of the
master automaton and runs of slave automata, is accepiingpifisists of accepting runs only. Finally, the value
of an accepting run of the master automaton is givery tapplied to the sequence of values returned by slave
automata (i.e., to compute the value function the silemisiteons are omitted).

Nested weighted automat&.nested weighted automatena tupleA = (A,qs; f;B1, . .., Bi), whereAd, .5 is
a{l,...,k}-labeled automaton over infinite words (where labels are&wlof slave automata), called thester
automaton,f € InfVal is a value function on infinite sequences, d8g, . .., B, are weighted automata over
finite words, callegslaveautomata.

Semantics: runs and valueket w be an infinite word. Aun of A onw is an infinite sequenc@l, 7y, 72, . . .)
such that ()T is a run ofA,,.s onw; (i) for everyi > 0 we haver; is a run of the automatoB ¢ (rr(;—1},w|i), 11[i])»
referenced by the labél(I1[i — 1], w[i], II[i]) of the master automaton, on some finite subwofd j] of w. The
run (II, m, ma, . . .) is accepting if all rundl, 71, 7o, . . . are accepting (i.ell satisfies its acceptance condition and
eachmy, 7o, ... ends in an accepting state) and infinitely many runs of slatenaata have length greater than
(the master automaton takes infinitely many non-silensitaoms). The value of the rufll, =1, 7o, . . .) is defined
assil(f)(v(m)v(me) .. .), wherev(m;) is the value of the rum; in the corresponding slave automaton ai@’) is
the value function that applieson sequences after removingsymbols. The value of a word assigned by the
automatord, denoted by, (w), is the infimum of the set of values of @tceptingruns. We require accepting
runs to contain infinitely many non-silent transitions hesssf is a value function over infinite sequences, so we
need the sequeneér)u(ms) . .. with L symbols removed to be infinite.

Notation. Let f, g be value functions. We say that a nested weighted autordaten(A,,,.s; h; B1, ..., Bx) is
an(f; g)-automaton iff = f and®B4, ..., B, areg-automata (weighted automata over finite words with value
functiong). We illustrate the semantics of nested weighted automélteexamples.

Example 4(Stuttering) Consider the nested weighted automatdyp, = (A} ..; LIMAVG; B, B,) where each
slave automaton is UM -automaton. The automato4), ., has a single state and two transitiofi, a, qo)
labeled byl and(qo, b, go) labeled by2. The slave automatdB; accepts words from*b and assigns to a word
a*b valuek. The automatofB, accepts words frorb*a and assigns to a wortfa valuek.

Consider a word(aaab)“. A run of Al,, on (aaab)* is depicted in Figuré€ll. The value of the wordZs

stu
Note thatA!,, accepts only words with infinite numberd$ andb’s, as otherwise, some slave automaton would

not terminate. For wordv = (a™b)“ the value is(@ +1)- #1 and this shows that the nested weighted
automaton can return unbounded values (in contrast foila AvG-automaton whose range is bounded by its

maximal weight). Consider the automatds,, = (A2, ,.; LIMAVG; B, B2, B3), where®B; has only a single

state, which is accepting, and it has no transitions. TH8is accepts on the empty word and invoking it is a way
for A2, to take a silent transition. Intuitively, each slave autdamecounts how many times a given letter occurs.
Thus the value computed by the nested weighted automatonaserage letter repetition (or average stuttering).
Silent transitions, produced by calling the automafdp, enableA?, .. to compute average only over positions

mas
where a new block starts.

Example 5(Average response timefConsider the specification for average response time deéinddllows: we
consider words for the alphabét-, g,i}, wherer denotes a request, denotes a grant, and denotes idle (no
request or grant). Consider a word, and a positionj, such thatw[j] is a request, and then the response time
in positionj is the distance to the closest grant, i.e., the responseitifie- j where;’ > j is the least number
greater thary with w[j'] = g. The average response time is the limit-average of the resptimes of the requests.
Consider a nested weighted automaton, with one slave attonthat has sum of non-negative weights as the
value function, and the master automaton with limit-averaglue function. The master automaton for every
letter » invokes the slave automaton, and fpand: takes a silent transition (i.e., it is a single state autoomat
with r labeled as 1, ang andi labeled as 2). The slave automat® counts the number of steps till the figst
and the slave automatdB, accepts only the empty word, which is used to produce silansitions. The nested
weighted automaton specifies the average response timenyopAs discussed in Sectibh 1 since the average
response time can be unbounded, it cannot be expressed byrasted limit-average automaton, whose value is
bounded by the maximal weight that occurs in it.

Equivalence with weighted automatslVe say that a
nested weighted automat@nand a weighted automa-

ton A areequivalentff their values c0|nC|de on each a,1) (¢,3) (b,2) (b,3) ”0 1]2]2]|cs, (a®b) = 3
word, i.e., for allw € ¥* we havel, (w) = . g [TO[1[1|Co, (aab) =2
Determinism of nested weighted automa‘t’dnere are ‘@ | olo E%l (ab) = 1
two reasons why a nested weighted automaton may b !
non-deterministic. The first one is standard: one of b 2) | 0]0 | Lo, (ba) =1
the components, the master automaton or one of ti@g)Amas (b) A2, . U 0]1]2]2]
slave automata is non-deterministic. The second one

is more subtle: it is the termination of slave automatg, 1) 32113

To accept, a slave automaton has to terminate in an ac- alala|blalalalb

cepting state, but it not need to be the first time it visits

anpaccgepting state. It can run longer to compute a dif- (C) B (d) ArunofAy,
ferent value. However, if the languaderecognized
by the slave automaton jwefix-freg i.e.,w € L im-
plies that no extension af belongs toZ, then it has
to terminate once it reaches an accepting state becali§
it will have no other chance to accept. This intuition suggése following definition.

Types of nested weighted automaianested weighted automatondsterministidff the master automaton and alll
slave automata are deterministic and each slave automatogmizes a prefix-free language. A nested weighted
automaton igunctionaliff for every wordw, each accepting run an has the same weight.

We will consider the decision questions of emptiness andeausality for nested weighted automata.

Figure 1. The master automata (&}, ,.. (b) A2,.,
(c) the slave automatofB;, (d) a run of the nested
ghted automatoal, .

4 Decision Probhlems

In this section we study the decidability and complexity lod tlecision problems for nested weighted automata.
We start with some simple observations.

Simple observationsNote that the emptiness (resp. universality)fedutomata ang-automata reduces to the
emptiness (resp. universality) 6f; g)-automata: by simply considering dummy master or dummyeskay
tomata. Hence by Theordm 3 it follows that the universalighem for(f; g)-automata is decidable only if the
universality problem is decidable fgrautomata ang-automata.

Theorem 6. (1) For f € InfVal, the universality problem foff; Sum)-automata is undecidable. (2) Far €
FinVal, the universality probleniLIMAVG; g)-automata is undecidable.

Proof of (1) from Theoreiln 6We show a reduction of the universality problem fasng-automata with weights
{-1,0, 1}, which is undecidable (Theorelm 3), to the universality peobfor (f; Sum)-automata, wherg €
{INF, SUP, LIMINF, LIMSUP}. The casef = LIMAVG follows from (2).

Let A be a $IM-automaton with weight¢—1,0,1}. Consider anINF; Sum)-automatonA that works as
follows. Its acceptance condition enforces that it acceply words with infinitely many# letters, i.e., the
words the formw,#wo#.... At each# letter the master automaton starts an instancel &s a slave au-
tomaton that works to the successigeletter. On the positions with a letter different théf the master au-
tomaton takes a silent transition. Then, the value of a worgtw.# ... is equal to the infimum of values
L(w;). In particular, L4 ((w#)*) = La(w). Since for every wordv; #ws# ... there existsi such that
La(wi#wa#...) = La((w;#)*), the universality problems fak and.A coincide.

The same construction shows a reduction of the universaliplem for SYM-automata to the universality
problem for(LIMINF; SuM)-automata (resp.Sup; SuM)-automata(L IM SUP; SUM)-automata). O

Proof of (2) from Theoreiln 6For everyg € FinVal we can define two dummy-automata,4, (resp. A;) that
immediately accept and return the valugresp. 1). Therefore, suciLIMAVG; g)-automata can simulate all
LiMAvG-automata with weight§, 1, whose universality problem is undecidable (Theokém 3)er&fore, the
universality problem fofL M AVG; g)-automata is undecidable as well. O

In the decidable cases, the lower bound for the emptinesshendniversality problems is P&CE. Recall,
the finite automata intersection problem, which asks, gavent of deterministic finite automata, is there a finite
word accepted by all of them, is P&CE-complete([22]. That problem can be reduced to the emptipeegdem
of deterministic nested weighted automata. This implieseAZ8-hardness of the emptiness problem for deter-
ministic nested weighted automata. Moreover, for deteigtionested weighted automata, the emptiness problem
can be reduced to the universality problem. Therefore, tineusality problem for deterministic nested weighted
automata is also FF8ce-hard.

Proposition 7. For all f € InfVal andg € FinVal, the emptiness (resp. the universality) problem for deitgstic
nested weighted automatafsSPACE-hard.

Proof. Let A4, ..., A, be deterministic finite automata over the alphabetFirst, we modify each of them to
obtain Aj, ..., A overX U {#,$} such that#,$ ¢ % and for everyi € {1,...,n} we haveA} acceptsu

iff w = #Fw$ and A; acceptsw. Observe thatd}, ..., A’ recognize prefix-free languages. Then, we define
a nested weighted automaton whose slave automatalare ., A% and the master automaton recognizes the
language(#™{a,b}*$)¥. The master automaton invokes all slave automata on sweeeédetters. Thus, for

a word#™ w1 $#™w-$. . . to be accepted, the slave automatdhhas to accept the wordé"w;$, #"ws$, .. .,

A3 has to accept the wordg™ 1w $, #™ 1ws$, ..., and so on. It follows that the nested weighted automaton
accepts the languagé™w; $#"w-$. .. such that all wordsv;, wo are accepted by all automatéy, ..., A,.
Therefore, the nested weighted automaton accepts any fiitidiie exists a finite word accepted by all automata
A1, ..., A,. The nested automaton defined as above is deterministic. O

4.1 Regular Weighted Slave Automata

We present a general result that ensures decidability éodétision problems for a large class of nested weighted
automata. We now consider slave automata that can onlynrealues from a bounded domain, and present
decidability results for them.

Definition 8 (Regular weighted automatalet .4 be a weighted automaton over finite words. We say that the
weighted automatort is a regular weighteciutomaton iff there is a finite s€t;,...,¢,} € Q and there are
regular language<,, . .., £, such that

(i) every word accepted by belongstd J, _,.,, £, and

(i) for everyw € L;, each run of4 onw has the weigh;.

Remark 9. Regular weighted automata define the class of are equivatergcognizable step functions [16].

However, we (implicitly) require regular languaggs, . . . , £,, to be disjoint, whereas the value of a recognizable
step function at a wordb is defined as the minimug € {q1, . . ., ¢, } among such’s thatw belongs ta’;.

We define thalescription sizef a given regular weighted automatgh as the size of automat4y, . .., A,
recognizing languages, . . ., £, that witnessA4 being a regular weighted automaton.

Regular value functionsA value functionf is aregular value functioriff all f-automata are regular weighted
automata. Examples of regular value functions are W1 Ax , Sum®. Observe that the description size of anyl
Max and Sym”-automatond is polynomial in|.A|, but it is exponential in the length of binary representati
B, for a Um®-automatonA.

Key reduction lemmaln the following key lemma we establish that if the slave auta are regular weighted
automata, then nested weighted automata can be reducedjtt@tautomata with the same value function as for
the master automata. For regular weighted slave automataighted automaton can simulate a nested weighted
automaton in the following way. Instead of starting a slavmaton, the weighted automaton guesses the weight
of the current transition (i.e., the value to be returnedhefdlave automaton) and checks that the guessed weight
is correct. The definition of regular weighted automata iegpthat such a check can be done by a (non-weighted)
finite automators. Thus, the weighted automaton takes a universal transtioh that in one branch it continues

its execution and in another it russ Observe that such a universal transition can be removedtandard power-

set construction. Given a value functignrecall thasil(f) is the value function that appligson sequences after
removing silent transitions. The following Lemifa 10 alonighil heoreni B implies Theorem13.

Lemma 10 (Key reduction lemma)Let f € InfVal be a value function. Consider a nested weighted automaton
A = (Anas; [38B1,...,Bg) such that all automatds,, ..., %, are regular weighted automata. There is a
sil(f)-automatonA (weighted automaton), that can be constructed in polynbspiace, which is equivalent t;
moreover, ifA is functional, thend is functional as well.

Proof. Assume that each slave automafBn has the weights from the sét-n,...,n}. Then, since all of the

slave automata are regular weighted automata, faral{ 1, ...,k} andj € {—n, ..., n} there is a deterministic
finite word automators; ; that recognizes the language of all wordssuch thatly, (w) = j. Since®B; is a
regular weighted automaton, it accepts precisely when btfe@utomata, o, . . . , S; ,, accepts.

We defineQs (resp. Fs) as the disjoint union of the sets of states (resp. the sedsadpting states states)
of all automatas; ;. Let @, (resp.F,,) be the set of all states (resp. all accepting states) théeemastomaton
Amas. We define a relation &p C 295 x ¥ x 29, which is the union of transition relations lifted to sets
of states, i.e.({¢q1,...,a},a,{qi,...,q}) € STEPIff for every m € {1,...,1}, some automatos; ; has a
transition(g,,, a, ¢.,,).

We define4, which we show is equivalent td, as a generalized Buichi automaton, which differs from an
automaton over infinite words (Blchi automaton) in the atanege condition. An acceptance condition in a gener-
alized Biichi automaton is a sequencd®f. . ., F; of sets of states. A run is accepting iff for eatk {1,...,s}
there is a state fromi,; visited infinitely often. There is a straightforward redoatof a generalized Bilichi automa-
ton to a Biichi automaton, and we omit the reduction and fdrrtea@l convenience consider generalized Biichi
condition for the proof.

The automatord works as follows. It simulates the execution of the mastésmaton. Every time the master
automaton starts a slave automafp the automaton guesses the vajuthat B, returns and checks it, i.e., it
starts simulating the automatdh ;, by including the initial state of; ; in a set of state$’,. The automatomd
maintains two sets of states of simulated automBtaand P»: states inP, and P> represent states of; ; and
basically, there are states# until all automata corresponding to them terminate. Oneg tho, P, is empty and
all states fromP,; are copied taP. Intuitively, the role of P, and P, is to ensure that each automaton terminates,
by enforcingP;, to be empty infinitely often. We now formally definé= (=, Q, g0, C, §, F') as follows:

1.Q=Qmx ({—n,...,n}u{L}) % 2Qs % 2Qs
2. qo = (q§", 0,0, 0), whereg;" is the initial state of the master automaton

3. ({q,7, P1, Po),a,{q 5, P{, Py)) € §iff (¢,a,q") is a valid transition of the master automaton labeled by
and one of the following holds (intuitive descriptions @ll):

(@ j=L1,P =P/'\Fs,P,=P)\ Fs,where SEP(Py,a, P]') and SEP(P,, a, P})),

(b) j# L, P, =0, P, ={qy’} andPy = Py \ Fs, where SEP(P,,a, Py) andg} is the initial state of
S, ;. the automaton that checks that the slave autor@ipostarted at the current position returns the
valuej,

©j# L P #0 P = (P'u{q?})\ Fs andPj = P\ Fs, where SEP(P,a, P/') and
STEP(Py, a, PY)

The intuitive descriptions are as follows: (a) the first sition corresponds to a silent transition, and hence
we compute the successor states of ggtand P, and remove the accepting states (that correspond to
automata that terminate); (b) the second transition islairto the first case but here a new automaton that
simulates the slave automaton is started, but sihcis empty we compute the ne®, from the successor

of P, according to $SEP but after removing the accepting states, and the Rews the initial state of the
simulating automaton; and (c) the third transition is vargikar to the first transition just that the initial
state of the simulating automaton is added tof#e

4. the cost function is defined 8§(q, j, P1, P»),a, (¢, j', P{, Py)) = §',

5. F consists of; = F,, x ({—n,...,n}U{L})x295 x29 andF, = Q,, x ({—n,...,n}U{L})x2%s x.
Intuitively, F} ensures that the acceptance condition of the master awdoiisatatisfied and: ensures that
P, is empty infinitely often.

The correctness follows from the construction. O

The automatond in Lemma[I0 is constructed in polynomial space, which mehas4 can be represented
implicitly, i.e., its exponential-size set of states is negented in a compact way and for each transition triple
(¢,a,q") one can compute in polynomial time whether that triple isaagition of A and what is its weight.

Remark 11. The automatond from Lemmd_10 has exponential size|#j. More precisely, the size of is
exponential in the total size of slave automat@obut only polynomial in the size of the master automataoh.of

Proof. The set of states of the automatdnfrom is Q = Q,, x ({-n,...,n} U {L}) x 2¢s x 29s ie., itis
linear in the size of the master automatorfofMoreover, the weights ofl are bounded by a constamt Thus,
A is polynomial in the size of the master automatoof O

Now, we show a simple lemma regarding weighted automatasiléght moves.

Lemma 12. Let f € {INF,Sup,LIMINF, LIMSUP}. (1) The emptiness problem feil(f)-automata is in
NLOGSPACE. (2) The universality problem fail(f)-automata is inP SPACE.

Proof. Given asil(f)-automatonA, where f € InfVal, we define the automatad’ as the f-automaton that
results fromA by substituting each silent transition by a transition eftfeight¢. Observe that for everil(INF)-
automatonA for every infinite wordw we havel 4(w) < X iff £ 411 (w) < A. The same equivalence holds for
everysil(Sup)-automaton4 and its variantA*~1). Thus, the emptiness and universality problemssfigiNF)-
automata (respsil(SuP)-automata) andNF-automata (resp. \B-automata) coincide. Now, a run ofsé(INF)-
automaton is accepting only if it contains infinitely manywgilent transitions. Therefore, the above equivalences
hold for f € {LiMINF,LIMSuUP} and the corresponding problems coincide. As the emptinessigm for f-
automata is in NIbGSPACE we have (1). The universality problem férautomata is in PSACE, hence we have
). O

Finally, we are ready to prove theorem characterizing cexifyl of decision problem for newsted weighted
automata whose slave automata &N, MAX , SUMB 1.

Theorem 13. Let ¢ € {MiIN,MAX,Sum®}. The following assertions hold: (1) Lef ¢
{INF, SuP, LIMINF,LIMSUP}. The emptiness problem for non-determinisfi ¢g)-automata is P SPACE-
complete. The universality problem for non-determinigficg)-automata isP SPACE-hard and in EXPSPACE.
(2) The emptiness problem for non-determiniétiov AvG; g)-automata isP SPAcE-complete (3) The universality
problem for functiona(LIM AvG; g)-automata isP SPACE-complete.

Proof. PSPAcE-hardness in (1), (2) and (3) follows from Proposifign 7. W# eiscuss containment separately:
(1): Let f € {INF, SuP, LIMINF, LIMSUP} andg € {MIN, MAX, Sum”}. Due to Lemm&l0 everff; g)-
automatonA is equivalent to somsil(f)-automatond’ of exponential size inA|. By LemmdI2, the emptiness
problem forsil(f)-automata is in NDGSPACE. The construction from Lemniall0 implies that the automatbn
can be represented implicitly, i.e., given two statag the existence and weight of the transitigna, ¢’) can be

decided in polynomial time. Therefore, the emptiness gnablor (f; g)-automata is in PEACE.
By Lemmd12, and the universality problem #l(f)-automata is in PSAce and|.A’| is of exponential size
in |.A|, hence we have the universality problem (@t g)-automata is in EPSPACE.

(2): Lemmd 1D state that IMAVG; g)-automata are equivalent¢d(L IM AVG)-automata, which enjoy decid-
ability of the emptiness problem (Lemrnal 35) in NGSPACE. As in (1), the automatod’ can be represented
implicitly, hence the emptiness problem fdriMm AvG; g)-automata is in PSACE.

(3): The universality problem for functiondL M AvG; g)-automata reduces to the emptiness problem for
functional(LIMAVG; g)-automata. It suffices to (1) first check that every word hascmepting run, which can be
done in polynomial space, (2) construdlam AvG; g)-automatord’ by taking additive inverses of all weights in
all slave automata of a given nested weighted automatonatiteenatom satisfies the universality problem with
threshold\ iff it satisfies (1) and the automatad from (2) does not satisfy the emptiness problem with thriesho
— . Therefore, the universality problem for functiorfalim AvG; g)-automata is in PSACE. O

Remark 14. Assume that the total size of slave automata is bounded. , hyeRemark11, the size of the
automatonA is polynomial in the size of the master automaton of a givesteseautomaton. In consequence, the
emptiness problem for automata from (1) and (2) from The@@iecome® TIME and the universality problem
for automata from (1) from Theordml13 becor®&ACE-complete.

Theoreni IB covers the case for all classes of slave autortreathan M- and SyM T -automata, which we
consider in the following two subsections.

4.2 Undecidability Results for Slave M Automata

In this section we studyf; Sum)-automata and we present a crucial negative result.

Note that for weighted automata with the value function frbmVal or InfVal, the emptiness problem is
decidable (for non-deterministic automata); and all deniproblems are decidable for deterministic automata.
In sharp contrast we establish that for determini€BioP; Sum)-automata the emptiness problem is undecidable.
The proof is a reduction from the halting problem of a two+uign (Minsky) machine to the emptiness problem.
The key idea is to ensure that words that encode valid cortipngaof the Minsky machine have value 0; and
all invalid computations have value strictly greater tharBasically, we need to check consistency of values of
each counter at each step, which is done as follows. The fasle anaster automaton is to ensure that tests on
the countersy, ¢; are consistent. The master automaton uses several slamatatto track the exact values of
the counters. Each slave automaton operates on an alphhioét i& increment and decrement for the counters
co, c1, as well as zero and positive test, and for each counter we thage slave automata. For positians 7,
let co-balance(resp.c; -balance) between positiarand;j denote the difference in the number of increments and
decrements of the countey (resp.c;1) between and;. For zero tests of a counter, two slave automata are invoked:
the first automaton (resp. second automaton) incremerss. (decrements) with every increment operation on
the counter and decrements (resp. increments) with evergaent operation on the counter and terminates with
the value at the position of the next zero test. Intuitiviig two automata computg-balance and the opposite
(the additive inverse) afy-balance between two consecutive zero tests. Given thaegtrof the current position
is satisfied, both automata return zero iff the next zerasesiso satisfied, otherwise one of them return a positive
value. For positive tests of a counter we use the third slatenaaton to compute thg-balance plus 1 between
the current position and the next zero test@f The co-balance plus 1 does not exceed zero iff the value @t
the current position is positive. We repeat a similar carcdion forc;. The construction of slave automata does
not depend on the given two-counter machine, thereforedatieation works even in the presence of a constant
bound on the size of slave automata.

This establishes the undecidability for emptiness(8fpP; SuM)-automata, and the proof also holds for
(LimSup; Sum)-automata. Also observe that since we establish the resutidterministic automata, we can
take opposites of weights and changer$resp. LM SUP) to INF (resp. LMINF) and the emptiness problem to
the universality problem.

Theorem 15 (Crucial undecidability result) (1) The emptiness problem for determinist{8upP; Sum)- and
(LimSupP; Sum)-automata is undecidable. (2) The universality problem deterministic (INF; Sum)- and
(LIMINF; Sum)-automata is undecidable.

Proof of (1) from Theorem 15Given a Minsky machiné, we construct a deterministiSup; Sum)-automaton

A that accepts infinite words of the foram #w-# Moreover, the value of the worg; #w-,# . . . is 0 iff each
subwordw; encodes a valid accepting computatiom\df As the problem, given a Minsky machine, does it have
an accepting computation is undecidable, we concludetieagitnptiness problem for deterministsup; Sum)-
automata (resp.L IM SuP; SuM)-automata) is undecidable.

10

A Minsky machineM is a finite automaton augmented with two countars,. The counters can be in-
cremented, decremented and tested whether they are zemsitivgr The transitions ofM depend on the
values of counters, namely, whether they are equal zero.t iEhaach transition has the following form
(g,s,t) = (¢’ ,v1,v2), Wwheres € {c; =0,c; >0},¢t € {c2=0,c0 >0} andovy,v2 € {-1,0,1}. E.g.
(g,c1 =0,c2 > 0) — (¢',+1,—1) means that if the machine is in the statehe value of; is 0 andc, greater
than0, then the next state ig, ¢; is incremented and, is decremented.

We define two notions for Minsky machinesyun and acomputation A run of a Minsky machineM is a
sequencéq, 0,0), (¢1, @1, 51), - - -, (qn, an, Brn) Such that for every < n there is a transition oM (q;, s,t) —
(gi+1,v1,v2) such thaty; satisfiess, 5; satisfies, anda,; 11 = a;+v1, Bit1 = Bi+va. Arunisacceptingff its last
elementigqr, 0,0). A computatiorof M is a sequence of elemertdsx {c; = 0,¢; > 0} x {c2 =0,c3 > 0} x
{-1,0,1} x {-1,0, 1} calledconfigurations A computation(¢qp,c; = 0,c2 = 0,0,0), (g1, S1,t1,Z1,Y1), - - - »
(gn,c1 =0,c0 =0, z,,y,) is valid iff there is an accepting rufyy,0,0),..., (g, an, 8n) such that for every
1€ {0, . ,n}, oy = Z;:O T andﬁi = Z;’:O Yj-

Consider a valid computatiopand the corresponding accepting run For positionsi < j, let ¢;-balance
(resp. co)-balance between positiarandj (in n) denote the difference in the number of increments and decre
ments ofc; (resp.cs) between andj. Since the initial value of the counterslisthe value of a counter; (resp.
¢o) in 7[i] is precisely its:-balance (respeo-balance) between positionsandi. Thus, forp € {1,2}, a zero test
(non-zero test) of, at the positiort is valid iff ¢,-balance between positiotsandi is 0 (is strictly positive).

Consider a computatiomof a Minsky machineM. If it is invalid then there is a first position in such that
the corresponding sequence o¢grx N x N is not a run. There are two possible reasons for thatMihas
no transition consistent with a step from¥] to n[i + 1] , (ii) the configuration at[i] is inconsistent with the
current values of4, co, i.€., a zero or a non-zero test is inconsistent with thezetlue of a counter. A Boolean
automaton can check whether the computation is invalidsezaf (i). We show how to check (ii), i.e., validity
of zero and non-zero tests, using a nested weighted autamato

Letp € {1,2}. First, we check validity of zero tests af). All zero tests orc, are valid iff ¢,-balance
between any two consecutive zero tests is zero. To checlhHisaholds, the nested weighted automaton starts
at each position with a zero test two deterministic slaveJB-automata'AjFo, o—0- The automatonéljl:O
computes:,-balance betweenand the next zero test of; it increments (decrements) its value wheneaygis
incremented (decremented), and it terminates at the nextest ofc,. The automato_ _, does the opposite,
i.e., it computes the additive inverse @f-balance betweefand the next zero test @f,. The values of these
automata are inverses of each other and the maximum of thieies is the absolute value @f-balance. Hence,
the maximum of their values is less-or-equal to zero jibalance betweenand the next zero test of is 0. Thus,
the values of all slave automatt’ _, A_ _, are less-or-equal to zero if and only if all zero tests;pére valid.

Second, we check that non-zero tests are valid. To do thatudkomaton starts at every positibwith a
non-zero test a third slaveu$1-automatonA,, .o that first increments its value foand then computes-balance
between; and the next zero test ef. The value ofc, at the positiory is strictly greater thaf iff ¢,-balance
between the position and the next position at whicf), is 0 does not exceed1. Provided that verifying zero
tests succeeds, the valueAf, - is less-or-equal t0 iff the non-zero test at the positians valid.

The value of the nested weighted automaton does not excéeohd only if the values of all slave automata
are less-or-equal t6, which holds precisely when all zero and non-zero tests,pare valid. In the above
construction up to four automata has to be started at anygroafion, while nested weighted automata can start
at most one slave automaton at each step. However, we cadeecanfigurations by some fixed number of letters.
E.g.c$ $ $ $ wherecis a letter that fully encodes a configurati@n«, 3, x, y) and$ letters are used only to start
enough slave automata. It follows thataccepts a wore; #w,# . . . and assigns it the valukiff each wordw;
encodes an valid accepting computation\df

Observe that the same automatén,considered asL IM SuP; SUM)-automaton returns the same result. In-
deed, if a given Minsky machine does not have an acceptinguatation, each accepted word will have posi-
tive value. On the other hand, if there is an accepting coatfmutw, the value of(Sup; Sum)-automata and
(LimSup; Sum)-automata the worcw#)“ coincides, hence it i8. O

Proof of (2) from Theorem15The universality problem for deterministi¢NF; Sum)-automata is the dual of
the emptiness problem for deterministi8up; Sum)-automata. Indeed, consider a determinigtigr; SUM)-
automatonA and the nested weighted automatihthat results from taking inverses of all weightsAnand
changing its value function tovF. One can easily check that for every wardthe weight ofw assigned bw is
x, thenA’ assigns tav the weight—z. O

11

4.3 Decidability Results for Slave M- and Sum " -Automata

We now establish the remaining decidability results, ngnfel slave automata with® ™ value function, and
emptiness fofINF; SuM)-automata andL IMINF; SuM)-automata. In contrast to the reduction of Lenimk 10, for
example(LIMAVG; Sum™)-automaton cannot be reduced to weighdiéd. IM AvG)-automata (Exampl8 5).

Intuitive proof ideasFor (f; Sum™)-automata, forf € InfVal \ {LIMAVG}, we show that the decision problems
can be reduced to the bounded sum value function; and theredee decidability results from Theoréml13. The
reductions are polynomial in the size of the master automdtor (INF; Sum)-automata we show the emptiness
problem is decidable and the main argument is a reductiohgcinptiness of non-deterministic weighted au-
tomata with &M value function. The constructed automaton is exponemtigde size of a nested automaton, but
only polynomial in the size of the master automaton, i.ehéftotal size of slave automata and the threshold are
bounded by a constant. We summarize the results in the fiigptheorem.

Theorem 16. (1) For f € {INF, LIMINF}, the emptiness problem fdf; Sum)-automata isP SPACE-complete.
(2) For f € {Sup,LIMSUP}, the universality problem for functiond); Sum)-automata isP SPACE-complete.
(3) For f € {INF, SUP, LIMINF, LIMSUP}, the emptiness problem f¢f; Sum™)-automata isP SPACE-complete,
and the universality problem fdif; Sum™)-automata isP SPACE-hard and inEXPSPACE.

Proof of (1) from Theoreiln 16P SPAcE-hardness follows from Propositiéth 7. For containment irr R, let
A = (Ap.s; INF; B, ..., B) be a nested weighted automatdnF; Sum)-automaton. We construct ausi-
automaton over finite wordd such that the emptiness problem forand. A coincide. The automatad works
over words over the alphabBtU {#, 1, . .. k} of the formwiv#u’ #u, wherew, v, v’,u € ¥* andi € {1, ...k},
and the value of its run, if it is accepting, is the value of sfeve automatof3; on the wordv. The automaton
A consists of two components. The first compondnt a Boolean one whose all weights @reensures tha
has an accepting run anvu/u® such that the slave automaton started at the beginning afidhé v is 95, and
B, accepts the wor@. The second component,, is a weighted one and it computes the valuéfyfon v.
Clearly, the size 0fd, is proportional to the size 6B;. Observe that the value of each rundofiepends only on
a finite prefix of a word, i.e., for each run éfthere is a finite prefixovu’v such that the value of that run equals
L 4(wiv#u'#u). It follows that the emptiness problem fédrand.A coincide. The construction o4, is similar
to the construction from Lemniail0, hence the emptiness @moldr A = A, x A, can be solved in polynomial
space w.r.tJA|.

Assume thatA is a (LIMINF; SuM)-automaton. We carry out virtually the same constructiora Bum-
automaton over finite wordgl. The automatond accepts wordsviv#u such thath; accept andA has an
accepting run omv(vu)“ at which the slave automaton invoked at the positionswu, . .., w(vu)k, ... is B;.
The value of4 on an accepted wora@iv#u is the value of3; onwv. It follows that if A has a run of valua on
wiv#u, A has a run of the valug onw(vu)¥. Conversely, ifA has a run of the valug, there is a reachable
stateg of the master automatos,,,, of A and a slave automat@; such that infinitely oftemd,,, . in the statey
invokes®B; which returns the valug. Thus, there are words u such that5; onv returns the value. and A,
upon readingu returns to the stat¢ Moreover, there is a word such thatA,,, ., reacheg from the initial state
upon readingv. Therefore, the value ab(vu)“ in A is at mosth. Hence, the emptiness problems forand
A coincide. Similarly to théINF, Sum™) case, the emptiness problem fdrcan be solved in polynomial space
w.r.t. [A]. O

Remark 17. The construction ofd; is similar to the construction from Lemral 10, hence it is polyial in the
size of the master automaton. Therefore, the emptinestepndor (INF; SUM)-automata (resp(LIMINF; SUM)-
automata) is inP TIME provided that the total size of slave automata is bounded.

Proof of (2) from Theorein 16P SPAcE-hardness follows from Propositiih 7. The universalitylypeon for func-
tional (INF; SuM)-automata (resp(LIMINF; Sum)-automata) reduces to the emptiness problem for functional
(Sup; SuM)-automata (resp(L M SupP; SuM)-automata). It suffices to (1) first check that every word haaa
cepting run, which can be done in polynomial space, (2) coosan automatofil NF; SUM)-automaton (resp.
(LiMINF; Sum)-automaton)\’ by taking inverses of all weights in all slave automata ofveginested weighted
automaton. The automatdnsatisfies the universality problem with threshaldf it satisfies (1) and the automa-
ton A’ from (2) does not satisfy the emptiness problem with thriesho\. Therefore, the universality problem
for functional(INF; Sum)-automata (resp(LIMINF; SUM)-automata) is in PSACE. O

Proof of (3) from Theoreiln 16P SPAcE-hardness follows from Propositiéh 7.

12

Let X be the threshold given in the emptiness (resp. univer$alityblem. Consider &f; Sum®)-automaton
A*, whereB = \+1, obtained fromA by changing each slaveu$t* automatoris into Sum**!-automator*.
Basically, such a 8M**1-automatori3* simulates runs of Gv*-automata by implementing &+ 1-bounded
counter in its state§ x {0,...,\ + 1}, whereQ is the set of states dB. If %6 accumulates the value above
)\, the automato®* returns just\ + 1, regardless of the actual value accumulated®yThe automatoi* is
polynomial inA, which can be exponential in the input size. Observe thaf fer{INF, Sup, LIMINF, LIM SupP},
for every wordw, A has a run onw of the value not exceeding threshold iff A* has. It follows that the
emptiness (resp. universality) problem fgt. Sum™)-automata with threshold reduces to the emptiness (resp.
universality) problem for(f; Sum**!)-automata. Since ®v” is a regular value function, Lemnial10 states
that for f € {INF, SUP, LIMINF, LIMSUP}, a(f; Sum*!)-automator* is equivalent to ail(f)-automatonA.
Therefore, the emptiness (resp. the universality) probitamif; Sum™)-automata reduces to the emptiness (the
universality) problem fosil(f)-automata. However, by employing Lemind 10, we detf the size exponential
in |A*| and doubly-exponential ifd\|. We show that the second exponential blow-up can be avoided.

We show that there existssd(f)-automatond—, equivalent ta4 of the exponential size in the input size.
Infimum caseLet f € {INF,LIMINF}. Originalsil(f)-automaton4 simulates runs of all slave automatasof.
The modifiedsil (f)-automatond— simulates only a single®1**!-automaton at the time, which is chosen non-
deterministically. For remaining slave automata, onlyirthen-weighted counterparts are simulated, i.@uS
automata from with weights removed. Sincgis infimum of limit-infimum value function, the automathand
A~ are equivalent. The cardinality of the set of statesdofis O(2/ - |A| - B). Therefore, the size ofi~ is
exponential in the input size.

Supremum case.et f € {Sup, LiMSuP}. Recall that the set of states B is Q x {0,...,\ + 1}, whereQ is
the set of states dB. We obtaind~ from .4, by imposing the following condition: (*) at every positiénif A~
simulates two runsg;, 7; of B> that have state§y, wy) resp.(q, w-) at positionk, with w; > w,, A~ discards
the runr; (the one that has the stafe w-)). Intuitively, the runz; can be completed to an accepting run that
accumulates lower value than, thus simulating it is redundant. We argue thaand. A~ are equivalent.

The A~ simulates only a subset of slave automata. Since its vahaifin issil(Sup) or sil(LiM SuP), for ev-
ery wordw, the value of4~ does not exceed the value.df Conversely, consider an accepting fih 71, 7o, . . .)
of A* onw. We can modify runs of slave automata 7, . . . so that the modified rufil, 7, 75, . . .) satisfies the
following condition (**): at every positiork in w, if runs;, 7; have stategg, w.), resp.(g, w2) at the positions
corresponding té&, then they accumulate the same value in the remaining pafttbé run. One can achieve that
by changing the suffix of the run that accumulates greaterevial the suffix of the other run. Such an operation
of substituting a prefix decreases the value, hence it camdmited finitely many times for each run, and it will
not produce infinite runs of slave automata. Observe thatibaified run is an accepting run af* of the value
not exceeding the value ¢fL, 71, 7o, . . .).

Now, observe that for a run of* satisfying (**), if runs m;, 7; have stategq,w:), resp. (¢, w2) at the
positionsk in w, with w; > w,, the value ofr; is greater than the value af;, and the runr; can be discarded.
Such an operation corresponds to the condition (*) imposedb. Therefore, the values af assigned by*, A
and.A~ are equal.

The cardinality of the set of states df is O((|A| - B)!Al), which is exponential in the input size.

The emptiness (resp. the universality) problem @ffaSum™)-automatonA reduces to the emptiness (the
universality) problem fosil(f)-automaton4 ™ of the exponential size if\| + log()). Hence, by Lemm@a12, for
(f; Sum™)-automata, the emptiness problem is inrPRSE and the universality problem is ind®SPACE. O

Remark 18. Let f € {INF,LIMINF, SuP, LIMSuP}. Assume that the thresholis given in unary. Then, for
(f; Sum™)-automata, the emptiness problem iAMME and the universality problem BSPACE-complete.

Proof. Let f € {INF, LIMINF, SupP,LIMSuP}. Assuming that the threshold is given in unary and the total s
of slave automata is bounded, the size4f is polynomial in the size ofA. Therefore, the emptiness (resp.,
the universality) problem foff; Sum™)-automata reduce to the emptiness (resp., the universaiitilem forf-
automata. The emptiness problem feautomata is in PIME and the universality problem is PScCe-complete.
Hence, the result follows. O

Finally, we establish decidability of the emptiness prableith limit-average master automaton andvg' -
automata as slave automata. The key proof idea is to showdahats of certain runs ofLiMAvVG; Sum™)-
automata coincide with the values of non-nested limit-agerautomata, and those runs have values arbitrarily
close to the infimum over values of all runs. This also allows@ show the decidability of the universality
problem for functionalL 1M AvG; SumM™)-automata.

13

Theorem 19. The emptiness problem fékiMAvG; Sum™)-automata isP SPACE-hard and inEXPSPACE; and
the universality problem for functiondl IMAvG; Sum™)-automata isP SPACE-hard and inEXPSPACE.

We present the proof of part (1) from Theoren 15 in Sedtioméhé following, we show the proof of part (2)
from Theoreni_Ib.

Observe that for a run of a functional nested weighted automas long as the run is accepting, its value
does not depend on the choices of transitions. Thereforayilvéocus on the construction of an accepting run
with the maximal value to compute the minimal threshold far tunctionality problem.

Lemma 20. Let A be a functionalLIMAVG; Sum™)-automaton and leA be the value bounding weights in all
slave automata ofi.. Then, one of the following holds:

1. For every accepting run, there is a positiansuch that every slave automaton started afteaccumulates
the value not exceedin- conf(A).

2. The automatoi has an accepting run of infinite value (whose value exceeaty av> 0).

Proof. Assume that (1) does not hold. Then, there is an acceptinguahn that some slave automaton returns
values that exceed the valde- conf(A) infinitely often. Observe that if a slave automat®naccumulates a
value exceedind - conf(A) during a runr, then the nested weighted automatbis in the same configuration

at least twice during the run and meanwhileéB increases its value. Therefore, one can pump the run of the
nested weighted automaton to increase the value returnél. bly follows that we can pump successively the
run onA such that infinitely often the following holds: a slave autdon started at a positionaccumulates the
value exceeding?. A run with such a property has an infinite weight accordinth®semantics IMAVG () =

lim supy,_, o % : Zle(C(ﬂ))[i]. -

Now, we are ready to prove decidability of the universalitpigem for functional(LIMAVG; SUM™T)-
automata.

Proof of (2) from Theorefn15f (1) holds, A is equivalent to a functionalL iM AvG; Sum?)-automatona’,
where B = A-conf(A). The size ofA’ is exponential in|A|. The universality problem for functional
(LiIMAvG; Sum®)-automata is PSACE-complete, which implies the the universality problem fandtional
(LIMAVG; Sum™)-automata is in EPSPACE. Otherwise, if (2) holds, then an answer to the universalityb-
lem for A is “No” for every A\. Now, it can be detected whether (1) or (2) holds by redudiictine universality
problem for functionalL 1M Sup; Sum™)-automata, which is P&\CE-complete. O

Remark 21. The size of\’ is polynomial in the size of the master automatomofTherefore, the universaility
problem is inP SPACE. The universality problem for function§um ™ -weighted automata iB SPACE-hard, hence
the universality problem fofL 1M AvG; Sum™)-automata isP SPACE-complete assuming that the total size of slave
automata is bounded.

4.4 Summary and Open problems

While we have established the decidability and undecidgluf the decision problems for nested weighted au-
tomata for almost all cases, there is one open problem whichresent as a conjecture.

Conjecture 22. The emptiness problem for non-determinigtiom AvG; SuM)-automata is decidable.

Tableg1 anfll2 summarize our results.
Complexity.The decision problems are P& E-complete, in KPSPACE, or undecidable. We show in Theorem 25
that (deterministic) nested weighted automata are exgi@tlgrmore succinct than (non-deterministic) weighted
automata, which explains¥®SpAce complexity of some universality problems.

We present the proof of the emptiness case from Thebrém 18dtio® 6.
Discussion on inclusion. The emptiness and universality problems reduce to the siariuproblem, where the
inclusion problem given two automats, andA, asks whether for every word we havel,, (w) < La, (w).
Therefore, for decidability of the inclusion problem bottetemptiness and the universality problem must be
decidable. Hence, in the non-deterministic case, for valnetions studied in Tablg 2, the inclusion problem can
be decidable only in two cases:

1. for (f; g)-automata, wherg is regular value function, anfl € InfVal \ {LIMAVG};

14

INF Sup
LIMINF LimSupP LIMAVG

MIN, MAX | Empt.)
Sum? Univ. Pe-c 3
Empt.| PSe.-c (18) | Undec.(15)

Sum Univ. | Undec.(15) | PSP.-c (18) Open{2P)

Sum™ If;:ist' P<.-c (I3) ExPSP. (19)

Table 1: Decidability and complexity of the emptiness aniversality problems for functiondlf; g)-automata.
Functionsf are listed in the first row and functiogsare in the first column. The undecidability results hold even

for deterministic automata. Next to each result there isfereace to the corresponding theorem or conjecture.
PSe. (resp. ExPSP.) denotes PSACE (resp. EXPSPACE).

INF Sup
LIMINF LimSup LimAve
MIN, MAX | Empt. PS.-c (13)

sum® [Univ. ExPSP. (13) Undec.(8)
Sum Empt.| PSe.-¢c (18) | Undec.(I5) | Openl2R)
Univ. | Undec.(I15) | Undec.(@) | Undec.(6)
Sumt Empt. PS.-c (18) ExpPSp. (19)
Univ. ExPSP. (16) Undec.(6)

Table 2: Decidability and complexity of the emptiness andrersality problems for non-determinist{g’; g)-
automata. PS (resp. ExPSP.) denotes PSACE (resp. EXPSPACE). The alignment s as in Tahlé 1.

INF Sup
LIMINF | LiMSuP LIMAVG
MIN, MAX | Empt. PTIME
Sum? Univ. PSPACEC
Empt.| PTIME Undec.
Sum Univ. | Undec. | PSPACE-C Open[2P)
Empt. PTIME
+
SUM Univ. PS,ACE-C

Table 3: Decidability and complexity of the emptiness antvensality problems for functiondlf; g)-automata
whose slave automata have size bounded by a constant. Ghenalit is as in Tablg 1.

INF Sup

LIMINF | LiIMSuP LIMAVG

MIN, MAX | Empt. PTIME
Sum?® Univ. PSPACE-C Undec.

Sum Empt.| PTIME | Undec. | Openl[22)

Univ. | Undec.| Undec. | Undec.

Empt. PTIME
Sum* Univ. PSrPACE-C | Undec.

Table 4: Decidability and complexity of the emptiness and/ersality problems for non-deterministi¢’; ¢)-
automata whose slave automata have size bounded by a dofi$taralignment is as in Tablé 1.

15

2. for(f; Sum™)-automata, wher¢ € InfVal \ {LIMAVG}.

In fact, in case[{2), the inclusion problem is undecidablevali. Indeed, inclusion of 8M*-automata
over finite words reduces to the inclusion (@f; Sum™)-automata, wherg’ € {INF, LIMINF, SUP, LIMSUP}.
It has been shown ir_[1] that the inclusion problem fasns -automata is undecidable. Therefore, the in-
clusion problem in casd](2) is undecidable. As automata #e @) are equivalent tsil(f)-automata for
f € {INF,LIMINF, Sup, LIMSuP} (Lemmal[10), which are essentially equivalentft@automata, the inclusion
problem is decidable [12].

Remark 23 (Parametric complexity) The complexity results summarized in Taliles 1[dnd 2 are given the
size of a nested automaton, i.e., the sum of the size of themaagomaton and the total size of slave automata.
However, if the total size of slave automata is bounded byrsstemt, then we show that the complexity of all
emptiness problems decreases fref@ACE (resp. EXPSPACE) to PTIME, and all the universality problems
becomeP SPAacE-complete (Remarks L1 ahdl39). In other words, we show tieatdmplexity of emptiness and
universality in the size of the master automaton (with thaltsize of slave automata considered as constant)
matches that of Boolean non-nested automata. (For eyeey InfVal the universality problem for functional
f-automata isP SPAcE-complete[[19]). Interestingly, bounding the total sizestafve automata does not change
decidability status; all undecidability results still kbl The parametric complexity results are summarized in
Table[3 and TablEl4.

5 Applications

In this section we discuss several applications of nestéghted automata.

5.1 Quantitative system properties

We have shown (Examplé 5) that basic properties such asge/eeaponse time can be expressed conveniently
as a nested weighted automaton. We also argue that our framaésva natural extension of the framework of
monitor automata for Boolean verification, and is a step td&guantitative run-time verification.

Quantitative monitor automatdn verification of Boolean properties, the formalism wittonitor automatas a
very convenient way to express system properties [26]. Pleeiication for a system can be decomposed into
subproperties, each monitor automaton tracks a subpsoped the logical value of the specification is inferred
from the results of the monitor automata. To be more spegjfien an LTL specification, the logical value of
every subformula is tracked by a monitor automaton. A merdtdomaton is a transducer that at each position
of the word outputs whether the current suffix satisfies thergsubformula. The monitor automata for complex
formulae are constructed from monitor automata for theingdiate subformulae. Finally, the answer whether a
given word satisfies the specification is encoded as the fitgtud of the monitor that corresponds to the whole
LTL formula. Our nested weighted automata framework canden sas a natural extension of the formalism
provided by monitor automata. Below we argue how nestedhteijautomata provide a convenient framework
for specification, with added expressiveness, and is a fapttewards quantitative run-time verification.

e Ease of specificationA specification formalism is a convenient framework if compbpecifications can
be easily decomposed. For Boolean properties, monitonaateowere introduced for this purpose: in other
words, for Boolean properties, though monitor are not mgpeessive than the standard automata, yet they
are widely used as they provide a framework where specifieattan be conveniently described. In our
setting, in the spirit of monitor automata, each slave aatom can specify a subproperty of the system,
and the master automaton combines the result obtained fitdimeaslave automata. This (as in the case
of monitor automata) allows decomposing quantitative prtes into subproperties and thus eases the task
of specification. For example as shown in Exaniple 5 to comauteage response time, for each request
the master automaton invokes a slave automaton that comhig@esponse time (a subproperty for every
request) and then the master automaton with limit-averadigevfunction combines the subproperties to
obtain the average response time.

Example 24 (Average resource consumptiononsider a system with at mostconcurrently running
processes, in which processes can be started and terminbitedsystem has available resourees. . ., r.
The quantitative property olverage resource consumptiamhich asks what is the average number of

16

different resources allocated by processes, can be exgéss convenient way by a (deterministic) nested
weighted automatod defined as follows. The master automatorhddtarts a separate slave automaton
B8 when a new process is started. The slave autom@awins until the process terminates and counts
how many different resources, . . . , r;, the given process allocates. The counting can be implemidayte

a Max-automaton with weight§0, 1, ..., k}. Then, the master automaton computes the limit average of
resource consumption computed by slave automata. Sinog @ue1 AvG; MAX)-automaton is equivalent

to somesil(LIMAvVG)-automaton (Lemmia10), average resource consumption canka expressed by a
weighted automaton. However, construction of such a wethtitomaton is cumbersome and it essentially
follows the proof of Lemniall0.

We use Example_24 to show that (deterministic) nested weibatitomata can be exponentially more suc-
cinct than (non-deterministic) weighted automata. ABC(n) denote the average resource consumption
property forn-processes.

Theorem 25. There is a deterministi€L IM AvG; MAX)-automaton of the siz€(n) expressindARC(n),
while every non-deterministigl(L 1M AvG)-automaton expressingRC(n) has2?(™ states.

Proof. Recall the the automatah from Examplé 24 that expresses average resource consumiisicize

is linearly bounded in the number of processedt remains to show that everyl(L M AvG)-automaton
expressind\RC(n), average resource consumptionfoprocesses, has(™) states. To show that, we need
to give a more precise description of the system in consiiderand its modeling.

We assume for simplicity that there is only a single resoufzeh processe {1, ..., n} is associated with
the following actions:start (s;), allocation of the resourced;), andtermination(¢;). Formally, average
resource consumption im is defined as the limit average over all positignat which a process starts
wlp] = s; (for somei) of the indicator (/1) whethera; occurs inw between positiorp and the first
occurrence of; pastp.

We show that unlessgl(LIMAVG)-automaton has at leagt->" states, it cannot compute average resource
consumption. Assume towards contradiction thatl@ M AvG)-automatonA has less thag® 5" states
and computes average resource consumption. For evety{as,...,a,}, we define a wordiy € A*

as a periodic listing of all letters from |.A| times, i.e.,(b; ...bs) !, where{b,,..., b} = A. Consider
execution traces 4 = (suat)?, wheres = s1...s,,t =11...t,. Given awordw,, letw4 be a run of4
onw,4 of the minimal value. Due to periodicity af,,, such a run exists. We show the following claim:

(*) There exist cycles 4, cg in the automatod such that (1)c4, cp are labeled with words over different
alphabets4, B, with |A| = |B| = 0.5n, (2) ca,cp share a state that occurs in both runs 4, 7 with
positive density, and (3) each of, cg is either silent or its average weightlisin.

We shall prove (*) later; first we show that (*) implies thatdoes not express average resource consumption.
Indeed, consider a paits, cg from (*) anda,; from B \ A. We insert into the rumr4 the cyclecg at all
positions where occurs. Letr’, be the resulting run, and let, be the word that corresponds#q. The
resulting runm’, has the same value ag, % but average resource consumptionuify is higher. Indeed,

in all blockssut, for someu, in whichw is different fromu 4, the number of different letters imis at least

|A| + 1. In the remaining blocks, the number of different letterisds Since blocksut with w # w4 occur

with positive density, average resource consumptiom’inis strictly higher tharg. But, the value of/,

does not exceed as’, is an accepting run on’, of the values. It follows that.4 does not express the
average resource consumption property.

Now, we prove (*). Consider a word 4 and an occurrence af4 at positionp in w4. Since|us| >

|A| + 2 - |A|, there is a state that occurs twice in the run, between positiong andp + |u 4| (the part
corresponding to the considered occurrence ©f and the distance between occurrenceg lnétween A|

and|ua| — |A|. These occurrences gfindicate a cyclegy ,, in A, which is labeled with all letters from.
Indeed, among anpA| consecutive letters in 4 each letter fromd occurs. Now, we seleety from cycles
ca,i, Wherei varies, that occurs with positive densityzin . Let g4 be the state that occursdn.

As there are more thaf->" subsets ofay, . . ., a,} of cardinality0.5n, there is a state that occurs in two
cyclesca, cp with A # B. Itremains to show that,, ¢ are either silent or their average Weighglslf the
average weight of 4 is greater thar%, we can decrease the valuenof by removing all occurrences of;.
Recall that the length af4 is at mostiu 4| — | 4|, therefore if we remove all parts af4 that correspond to

17

c4, each process in the resulting word has resource consumtpiio, hence average resource consumption
is still % But, the value of the corresponding run is lower tléalat contradiction. Conversely, if the value is
lower than3, we can pump that cycle to obtain a run of the value smaller han a word whose resource
consumption for each procesli$n. Thus,c, is either silent or its average weight valuelis O

e ExpressivenessMore importantly, as mentioned above, for Boolean propsrtmonitor automata only
add convenience but not expressiveness, whereas we shidiertfjaantitative properties, nested weighted
automata are strictly more expressive than non-nestedntezicautomata. Moreover, we show that the
added expressiveness of nested weighted automata contethwitbility to express natural quantitative
properties (like average response time) that could not peesged as non-nested weighted automata.

e Quantitative run-time verification.Finally, monitor automata are specially useful for safetgperties,
and widely used in run-time verification [20]. Our nestedginéd automata can be seen as the first step
towards quantitative run-time verification. Each slaveomdton acts as a monitor and returns values of
subproperties of the system. If the value function of theteragutomaton is commutative (as in all our
examples), the master automaton can compute an on-thegitgxdmation of the value function for finite
words.

5.2 Model measuring

Themodel-measuringroblem [21] asks, given a model and a specification, whatgsiaximal distance such

that all models within distangefrom the model satisfy the specification. Formally, a madeand a specification

S are Boolean automata. Giveéd, a similarity measurdof M) is a functiond,,; from infinite words to positive
real numbers such that for all tracesin £,; we haved,;(w) = 0. Similarity measures extend to models in
a natural way; i.e.dy (M') = sup{dy(w) : w is a trace ofM’}. Thestability radiusof S in M w.r.t. the
similarity measurel;, denoted byr,,, (M, S), is defined asrg,, (M, S) = sup{p > 0: VM'(dpy(M') < p =

Ly C Ls)}. We are interested in similarity measurgg defined by nested weighted automata (resp. weighted
automata as ir_[21]). Note thdt, is independent of the specification. The model-measuriegiba problem

of whethersr,,, (M, S) < A reduces to the emptiness decision quesiioh [21]. We now Sloewnested weighted
automata can define interesting similarity measdrgs

Example 26 (Bounded delays)Consider the modelM for two processes communicating through a channel,
where every sent packet is delivered in the next state.$ldginote the event of neither sending or receiving
packetss; andr; (resp.ss andrs) the send and receive for process 1 (resp. process 2). Tiyaiéaye ofM can

be described as a regular expression as follo§$)* - (s171)* - (3)* - (s272)*)%.

Note thatd,; must assign value 0 to every trace in the languagé/of Alsod,; needs to assign values to
traces where the delivery of packets can be delayed by a &éimtaunt. Hence we first need to relax the language
of M as Mp such that every packet sent is received with a finite delay;dan assigns values to traces in the
language of\/ . The relaxed languagk/ is obtained as follows: consider the following languadesand L,

Ll — ($* . (51$*T1)* . $*)w; andL2 _ ($* . (82$*T2)* . $*)w;

whereL; denotes that every sent for process 1 can be delayed by adindent and analogously, for process 2.
The language oM, is theshuffle(arbitrary interleavings) ofl,; and L.

The similarity measurd,, is defined as dSup; Sum™)-automatond , that computes the maximum delay
in the following way. When a packet is sent, the master autmmstarts a slavéSum ™ -automaton that counts
the number of transition until the packet is delivered. Ifpaxket is sent, the master automaton takes a silent
transition. The product automata zp and A p defines the desired similarity measure.

5.3 Model repair

Themodel-repaimproblem, given a model and a specification, asks for the nahiestriction of the model such
that the specification is satisfied. Given a matiglarepair measurel,, is a function from infinite words to real
numbers such that, (w) < oo iff w € L. Intuitively, the measure evaluates the hardness of ti@cks which
can be used to evaluate severity of the violation of the §ipatibn. We are interested ify; specified by nested
weighted automata (resp. weighted automata). Given a mddel repair measuré,,;, and a real number, we
define the languagéy; as{w : da(w) < r}. The model-repair decision problem, given a mati&l a repair

18

measurel,;, and a specificatio, asks whethesup{r : d3; C Ls} < A. The model-repair decision problem
also reduces to the emptiness question.

Example 27(Context-switches)Consider a system consisting of a scheduler and two prograims scheduler
starts processes infinitely often and does preemptive siihgd To obtain a finite-state model, we consider that
only a single instance of each program may run at a given ti@ansider the repair measurg,; that represents
the negative of theninimal slot lengthi.e., for allw we havel,,(w) = —k iff each process in the executian
runs for at leask steps. The repair measure can be defined by a functi@us; Sum)-automatori i as follows.
After each context-switch, the master automaton startagoraaton that computes the running time until the next
context-switch and multiplies it by1 (i.e., add—1 at each step). At steps at which there is no context switch,
the master automaton takes a silent transition. It follohestthe supremum of all those values is the length of
the shortest running time of a process multiplied-by. Although, the emptiness problem is undecidable for
(Sup; SuM)-automata, the automatahy has only non-positive weights. The emptiness problertSop; Sum)-
automata with non-positive weights reduces to the univigysproblem for (INF; SuMm™)-automata, which is
decidable.

Remark 28 (Decidability of examples)Note that for all examples presented in the paper, they ligotthe class
of nested weighted automata for which we establish deditiabf the emptiness problem.

Remark 29 (Robustness of nested weighted automaid)e model of nested weighted automata is robust with
respect to several changes, e.g., (i) instead of labelimgtfan on transitions we can have labeling function on

states; or (ii) instead of invoking one slave automaton iarguransition a constant number of slave automata
can be invoked. These changes do not change the expresgige por the decidability and the complexity results

for nested weighted automata.

6 Emptiness of(LIM AvG; Sum™)-automata is in EXPSPACE

In this section we prove that the emptiness problem fomAvG; Sum™)-automata is in EPSPACE ((1) from
Theoreni IB), as the proof itself is interesting and requiexg and non-standard techniques. We first present an
overview of the proof.

Overview of the proof.The key argument will be tsimulatea given (LIMAVG; SuM™)-automatonA by a
sil(LIMAVG)-automaton, however, the main conceptual difficulty is that Ave; Sum™)-automata are strictly
more expressive thagil(LIMAvG)-automata. We circumvent this problem (which is non-stathdier weighted
automata) in the following way:

1. Step 1.We establish a property on runs of aLIMAVG; SuM™)-automatorA such that (a) the infimum
over values of runs satisfying is the same as the infimum over values of all runs, and (b) tisese
sil(LIMAvG)-automaton that simulates on runs satisfying.

2. Step 2We give the construction of€l(L M AvG)-automatonA specified in the condition (b) from Step 1.

Although, A simulatesA, weighted automata and nested weighted automata accemeaghts in a differ-
ent way; a run of\ that satisfie€ and the corresponding run gf can have different values.

3. Step 3.We show that the infima over values of all runséoind.A are equal.

Proof of Step 1.We first introduce the notion of bounded multiplicity.

Configuration and multiplicitiesIn nested weighted automata, starting a slave automatobe&aeen as a uni-
versal transition in the sense of alternating automata. Wéptathe power-set construction, which is used to
convert alternating automata to non-deterministic autanta the nested weighted automata case. Given a nested
weighted automatoA, we defineconfigurationandmultiplicitiesof A as follows. LetQq, be the disjoint union

of the sets of states of all slave automataofor a run ofA, we say thatq,,, A) is theconfigurationat position

p if ¢, is the state of the master automaton at positiand A C Qg is the set of states of slave automata at
positionp. We denote byonf(A) the number of configurations @f. We define thenultiplicity mult at positionp

as the functiomult : Qs — N, such thatnult(q) specifies the number of slave automata in the gtateposition

p. The configuration together with the multiplicity give a cpliete description of the state éfat positionp.

19

Optimal runs. The general idea to solve the emptiness problentfom AvG; Sum™)-automata is to simulate

a given(LIMAVG; Sum™)-automaton by ail(LIMAvG)-automaton that keeps track of configurations and mul-
tiplicities. Unfortunately, unbounded multiplicitiesrmaot be encoded in a finite set of states afldLIMAVG)-
automaton. But, the emptiness problem can be solved bydtiageonly selected runs. More precisely, given a
(LIMAVG; Sum™)-automatond, we say that runs satisfying a conditidnare optimalfor A iff the infima over
values of all runs of\ and runs that satisfg are equal. We identify a condition such that the runs satigfif are
optimal and can be simulated byi&L 1M AvG)-automaton. First, we observe that without loss of gertgrale

can assume that nested weighted automata are determiBiasically, non-deterministic choices can be encoded
in the input alphabet.

Lemma 30. Given a(LIMAVG; SuM™)-automatond overy:, one can compute in polynomial space a determinis-
tic (LIMAVG; SuM™)-automaton’ over an alphabeX x I' such thatnf s+ £4(w) = inf,emxry+ Lar(w').
Moreoverconf(A) = conf(A').

Proof. The proof consists of two steps. We show that (i) for every(ftinr , 7o, . . .) of A there exists aimple
run of A of the value not exceeding the valug(®F, 71, 72, . . .). Next, we show that (i) there exists a deterministic
(LIMAVG; Sum™)-automatord’ over an extended alphabet such that the sets of acceptipgesions ofA and
accepting runs o’ coincide and each run has the same value in both automata.(iJlaed (ii) imply the lemma
statement.

(): A run of a nested weighted automatorsimpleif at every position in the run slave automata that are in the
same state take the same transition. Now, consider élfum;, 7o, ...) of A. Suppose that;, 7; that are in the
same state at the positienn the word, i.e.jr;[i'] = 7;[j'], wheres’, j” are the position inr;, 7; corresponding to
the positions in w.

We choose from the suffixes[i/, |m;|], 7;[5’, |7;|] the one with the smaller value and change the suffixes of
both runs to the chosen one. If these suffixes have the saoms vad chose the shorter one. Such a transformation
does not increase the value of the partial sums and doestnadirce infinite runs of slave automata. Indeed, a
run of each slave automaton can be changed by such an opeatiofinitely many times. Thus, this transfor-
mation can be applied to any pair of slave runs to obtain algimm of the value not exceeding the value of
(H,ﬂ'l,ﬂ'g, “.)

(ii): Without loss of generality, we can assume that for g\gave automaton iA final states have no outgoing
transitions. Let)y be the disjoint union of the sets of states of the master aatimmand all slave automata &f
We definel as the set of all partial functioris: Qay — Qai. We define gLIMAVG; Sum™)-automaton’ over
the alphabeE x I by modifying only the transition relations and labeling ¢tions of the master automaton and
slave automata of; the sets of states and accepting states are the same a®iigthal automata. The transition
relation and the labeling function of the master automatgy,, of A’ is defined as follows: for all statesq’,

(g, (a, h),q) iff h(q) = ¢’ and.A,,.s has the transitiofig, a, ¢'). The label of the transitiofy, (a, k), ¢’) is the
same as the label of the transition a, ¢') in A,,..s. Similarly, for each slave automat®; in A, the transition
relation of the corresponding slave automa®jrin A’ is defined as follows: for all statesq’ of B, (¢, (a, h), ¢)

iff h(q) = ¢’ and®B; has the transitiofiq, a, ¢’). The label of the transitiofy, (a,), ¢') is the same as the label
of the transition(q, a, ¢') in B;.

First, we see thatonf(A) = conf(A’). Second, observe that the master automadgy,, and all slave
automata®; are deterministic. Moreover, since we assumed that foryestawe automaton i final states
have no outgoing transitions, slave autom@arecognize prefix free languages. Finally, it follows frone th
construction that (i) for every simple rutl, 71, 7o, ...) of A is also a run ofA of the same value. One needs
to encode non-deterministic transitions in functidgns I'. The value of each transition is the same by the
construction. Conversely, (ii) a rfl, 1, 72, ...) of A’ is a simple run ofA of the same value. Indeed, the fact
that transitions are directed by functiols I" implies that the run is simple. O

We attempt to simulatéLIMAvG; Sum™)-automatonA by asil(LIMAVG)-automaton. For that, we need
to show that runs with bounded multiplicities or boundedueal returned by slave automata are optimalAfpr
otherwise the state space of the simulating automaton woaNeé to be unbounded. However, such a direct
statement does not hold as we see in the following example.

Example 31. Consider a(LIMAVG; SuM™)-automatonA over {a, b} such that on letter. (resp. b) the master
automaton starts a slave automat®, (resp.3;). The automatofB, accepts words*b, and for a worda*b
assigns valué¢ mod 2. The automatofB, accepts wordéa*b, and for a wordba*b assigns valué+2. Observe
that the infimum over all runs df is %

20

Atthe end of a block df lettersa, the number of slave automata running concurrently4s1, one automaton
9B, and k automata®s,, and the value returned b%, is & + 2. It follows that if the multiplicity of a run is
bounded by: + 1 or the maximal returned values are boundediby 2, lengths of all block ofi’s are bounded by
k. However, if the length of block’s of letterare bounded by, the value of such a run is at Iea;f\i’,j%‘f). Thus,
runs of bounded multiplicity or bounded returned value aséaptimal forA.

Example 3]l shows that we cannot bound the number of slavenatdiorunning concurrently or the values
returned by slave automata. However, we can combine thesednditions, i.e., we show that while computing
the infimum over values of runs of §h1M AvG; Sum™)-automaton, there is a consta¥itsuch that we can discard
runs in which more thaiN slave automata accumulate value abbdieThen, slave automata that return bounded
values are essentially bounded sum automata, and can beatkah and only bounded number of slave automata
returning unbounded values remain. E.g. the automatisom Examplé 3L is equivalent to(a IMAVG; SUM™T)-
automatom\# that, instead of starting a slave automa®®y, guesses the parity of the following block of letters
a and, based on that guess, sta@tg or 8,1, which terminates after a single transition and retWr® o) or 1
(%B.1). The master automaton verifies the correctness of the gdgssity.

Synchronized silent transitionsThe bounded multiplicity property enables simulationfoty sil(LIMAVG)-
automaton, but it does not guarantee that the correspongimghave the same value. We impose the following
condition on optimal runs of\. We say that a run oA hassynchronized silent transitioritat every position
where the master automaton takes a silent transition, dael sutomaton takes a transition of weight On
runs of A with synchronized silent transitions, thi&L iM AvG)-automaton can take a silent transition whenever
the master automaton d@f takes a silent transition as no weighted transition is l@stachieve synchronization
of silent transitions, we modify slave automata so thatrdysilent transitions of the master automaton, slave
automata accumulate their values in their states, whiliagatkansitions of weight, and flush the accumulated
value \ by taking transition of weighh once the master automaton takes a non-silent transitionpré¥es that
runs with sequences of silent transitions boundeddnyf(A) are optimal forA, therefore slave automata have to
accumulate only bounded weights.

We combine the ideas for bounding the multiplicity and synaolization of silent transitions in the following
lemma.

Lemma 32. LetA be a deterministi¢LIM AvG; Sum™)-automaton. There is a constantjuadratically bounded
in conf(A) and a deterministi¢L IMAvG; Sum™)-automatornd,, equivalent toA such that runs that have (1) mul-
tiplicities bounded by, and (2) synchronized silent transitions, are optimaldgr The size of\, is exponentially
bounded inA]|.

Before we prove Lemnia 82, we show its vital components:

Lemma 33. Let A be a deterministi¢LIMAvG; SuM™)-automaton that has an accepting run. Runs such that
among every consecutieenf(A) steps, the master automatonftakes a non-silent transition are optimal for
A.

Proof. Consider a run ofs on a wordw and positions, j such that + 2 - conf(A) < j andA takes only silent
transitions betweehand;.

Observe that there are positionsc ¢/, j' < j with the same configuration (defined in Sect{idn 6). Consider
a wordw’ resulting from removingu[i’, j'] from w. The partial sum of the weights of the master automaton up
to the positionj — (j* — #') onw’ does not exceed the partial sum up to the posifiom w. These partial sums
are divided, in the average, by the same number of steps., Theisalue of the word will not increase even if
we can carry out this operation infinitely often. One showdcchreful not to remove all positions with accepting
states. However, it is not a serious problem as we can inparssely subwords with an accepting state (after
1,2,...,2% ... time increase steps). Such an operation will not increasérttit average of the run. O

Lemma 34. Let A be a deterministi¢LIMAvVG; Sum™)-automaton that recognizes a non-empty language. Let
N = (|Qs| + 2) - conf(A). The runs that eventually (for every positiemgreater than some positiosy) satisfy

the following condition (*) are are optimal fof: (*) among slave automata active at positiepat most2 - N

will accumulate value greater thah- N.

Proof. For a multiplicity mult we define its restriction tN, mult [N, asmult [n (¢) = min(mult(q), N), for
everyq € dom(mult).

21

Consider any wordiw such that at the positioju| there are2 - N slave automata that will accumulatedn
(past the positioffi| in uw) value greater tha#- N. We show a transformation efw to uw’, such thauw’ has the
same value and at the positior] no slave automaton will accumulatedr value greater thas- N. Let jo > |u]
be a position inuw with an accepting state and Igt, . . ., j,, be the positions at which each of slave automata
started before the positiga| finishes. Note that < |Q;|. As slave automata work on finite words sygh. . ., j,
exist. Finally, letj be the first position greater thamax(jo, j1, - - - , j») With the configuratior?,, 1 j—|.] = Cu
and multiplicity mult,, .1, |, [N= mult, [~. There are only finitely many positiotig| for which suchj does
not exist. Next, as there is no bound gnwe remove fromw[1,j — |u|] all cycles that do not overlap with
any position from{jo, ..., j,}. The resulting word> has the length bounded }Q),| + 2) - conf(A) = N as
n < |Qs|. It follows that for everyg € A we havemult,,(¢) < N andmult,,(¢) < mult,(¢) [n. Indeed,
since cycle removal does not increase the multiplicityefegryq € A we havemult,, (q) < mult,, ;(¢) and
multy,[1,5 [N= mult, [n. We show that the partial sum of weights of the master automait the positioruuv|
in wow is smaller than the partial sum at the positjahis uw, which implies that the transformatieny — uvw,
removes a position violating our assumption, and even egjifinitely many times, does not increase the value
of the resulting words.

Let val be a function withdom(val) = dom(mult,) such thatval(q) is the value accumulated i@ (past
the position|u| i uww) by any slave automaton that is in the statat the positionu|. Equivalently, that is the
value accumulated by the same automaton past the pogitionn wow. We call a slave automataactive if
val(q) > 4 - N, whereq is the state of that automaton at the positioh(resp.|uv|). The value of the partial sum
up to the positionu| in uw is the value of all slave automata started befatelt consists of 1) + (2), where

e (1) is the value all inactive slave automata plus the value df@slave automata accumulated up to the
position|u|, and

e (2) is the value accumulated in by all active automata past the positin.

Observe thaf2) = >_ . , val(g) - mult,(q), whereA is the set of states of active slave automata at the position
|u|. The value of the partial sum up to the positiam| in uvw consists of1)" + (2)’ + (3), where

e (1) is the value of all inactive slave automata plus the valuet¥a slave automata accumulated up to the
position|u|,

e (2)is the value accumulated by active automataipast positiofuv|, and

e (3) is the value accumulated by all active slave automata on trd w i.e., between the positiorig| and
|uv] in uvw.

Note that(1)’ is bounded by(1), (3) is bounded by2 - N - [v| < 2- N2, and(2)’ = > qgeaval(q) - multy, (q).
We claim that(2) — (2)’ > (3), which means that the partial sum at the positio#| in uvw is smaller than the
partial sum at the positiou| in uw. Indeed,) . , mult,(q) —multy,(¢') > 2-N—N = N and for eacly € 4,
val(q) > 4 - N, therefore(2) — (2)’ is at leastt - N2, which is greater tha(3).

It follows that aforementioned transformation, even agginfinitely many times, will not increase the value
of the resulting word. Therefore, for every run®dfof value, there issg and an a run of the value not exceeding
A such that at each positian> so at most2 - N will accumulate value greater than IN. O

Proof of Lemm&32We transform the automataito an equivalent deterministit. IM AvG; Sum™)-automaton
Ag for which runs that at each position (1) at messlave automata run, and (2) if the master automaton takes
a silent transition, each slave automaton takes a silemsitian, are optimal. Due to Lemnial34 runs for which
eventually at mos® - N slave automata accumulate value greater thaiN are optimal forA. Moreover, by
Lemmd38B runs in which at least one in eveoyf(A) transitions is non-silent are optimal fér.

We define an automataky, by modifying A in two ways. First, we extend the input alphabet to include th
marking of the positio, past which at mos2- N slave automata accumulate value greater thas are optimal
for Ay. Prior to that marking, a modified automaton starts only dymlave automata that immediately terminate.
Past that markind\y simulatesA. Second, we modify each slave automatom\dh such a way that is runs as
long as it can accumulate the value exceedindN. More precisely, the master automaton starts only automata
that return values exceedidg N. For other slave automata it “guesses” their value from #i€& ..., 4 - N}
and runs a dummy automaton that takes only a single transifithis weight. As it is deterministic, we assume
that the “guess” is encoded in the input word. Started slatemaata run as long as they can accumulate the value
exceedingl - N. Once a slave automaton guesses that this is not possitalked a transition of the weight N

22

and terminates. Again, that “guess” is encoded in the infurtwtherefore the master automaton is able to verify
that this “guess” is correct.

The automator, simulates the runs df past the positior, and each running slave automaton accumulates
the value exceeding - N. Therefore, there is a run @f, on a word corresponding t@,,; such that at most
2 - N + 1 slave automata run concurrently. The automatgns equivalent tad, as the return values of slave
automata past the positioy are the same and thelAvG value function does not depend on finite prefixes.
Therefore, runs satisfying conditions (1) and (2) are oatifor A,. O

The size of the automataty, from Lemmd 3R is polynomial in the size of the master automafa\.
Proof of Step 2.We now prove Step 2 which basically involves the classic pese¢ construction.

Construction ofA. We adapt the classic power-set construction to constrsg{lam AvG)-automatonA that
simulates runs of a give(LIMAVG; SuM™)-automatond with bounded multiplicities and synchronized silent
transitions. LetA be a deterministi¢L 1M AvG; Sum™)-automaton. Without loss of generality (Lemma 32), we
assume that runs with (1) multiplicities boundeddgnd (2) synchronized silent transitions are optimal4or
The automatord, which simulates runs satisfying (1) and (2), keeps tracthefcurrent configuration and the
multiplicity of A. That is, the set of states gf is Q,, x c9, whereQ,,, Qsy are respectively the set of states
of the master automaton and the union of the sets of statelb slhee automata of\. The component@sv
encodes a part of configuration and multiplicity. For allte$dq:, h1), (g2, he) of A and every letter, A has
a transition{(¢1, h1), a, (g2, ho)) iff the master automaton has a transitign, a, ¢2) with the label: and the
multiplicities ho follow from h; according to transitions of the slave automata and invonatf3,. The weights
of transitions ofA are defined as follows. If the transitidm, , a, g2) of the master automaton df is silent, the
transition{(q1, h1), a, (g2, ha)) is silent. Otherwise, the weight &fq1, h1), a, (g2, h2)) equals the sum of weights
of the corresponding transitions of simulated slave autarmmaultiplied by their multiplicitiesh; . Recall that the
simulated runs have silent transitions synchronizedgfioee, the values accumulated by each slave automaton
and the corresponding simulated automaton are equal.

Given a run of4 one can construct a run af with multiplicities bounded by, and vice versa. Hence, for a
run of A (resp.A) we refer to the corresponding run Af(resp..A). We can solve the emptiness problem fbr
assil(LIMAvG)-automata behave similarly toa AvG-automata:

Lemma 35. (1) The emptiness problem fok(L M AvG)-automata is ilNL OGSPACE. (2) For evenil(LIMAVG)-
automatonA that recognizes a non-empty language, there is asrfi A such that (a) the value af is minimal
among values of all runs o4, (b) at least one in eveny| transitions is non-silent, and (c) partial sums converge,

ie.,
k

‘ k— o0 ¢
=1 =1

Proof. Let A = (2, Q, qo, 6, F, C) be asil(LIMAVG)-automaton. We show that if there is a run4bf the value
not exceeding\ there is a lasso run such that the average weight in its cyale dot exceed, i.e. there is a run
m = w[0]x[1]...w[n] of lengthn < |\ on awordw = w[1]...w[n] such thatr[0] = ¢, for somei < n we have
7[i] = w[n] (such a runr is called a lasso)s[0], ..., 7[n — 1] are distinct and- (C(x[i], w[i + 1], x[i + 1]) +
...+ C(w[n — 1],w[n], 7[n])) < A. The existence of such a lasso can be decided iop&BPACE, which shows
(). As there are only finite number of values of lassos, tigerg which is the smallest. It follows that there is
no run of A of the value\’ smaller than\y; otherwise there would be a lasso of the value not exceedinbhus,
the lasso of the valug, has the minimal value among values of all runs, and the seguehpartial averages
converge.

First, we define a lm AvG-automatonAg,, such that for every accepting ryrof A, the runy’, resulting from
1 by removing silent transitions, is an accepting rundgf,, and vice versa, every accepting run4f, can be
extended to a run ofl by inserting silent transitions. The set of statesAgf; is the same agl and the transition
relation of Ag, consists 0f ¢, a, ¢2) such that there i&;}, a, ¢}) € § andg; (resp.¢2) is reachable frony; (resp.
¢5) by a path consisting of only silent transitions. The weighséuch a transition is the infimum over the weights
of transitions(q}, a, ¢5) € J that generat€g; , a, g2). It follows from the construction thatls, has the stipulated
properties and their corresponding runs have the same.veherefore, Ag, has a lassé, such that the average
weight in its cycle does not exceed The lassd, can be extended to a laskoin .4, which can have states that
occur multiple times. We can remove duplicate states inghevfing way, if the average weight betweéand;
with [1[i] = [1[j] is above), we remove all the states betweeef 1 and;j. Otherwise, if the average weight does

23

not exceed\, we can remove all the states followingj]. Hence, we have shown thatif has a run of the value
A it has a lasso such that the average weight in its cycle dae=xaeed\. O

Proof of Step 3.We now prove Step 3, i.e., we show that the emptiness prolflemisand.4 coincide. The main
problem is that, even though a runfand the corresponding run gf represent the same sequences of weights,
they can have different values. Still, we show that infimaraadues of all runs ofA and.A are equal.

Accumulation of weightslhe automata and.4 compute their values differently. lh a slave automaton started
at a positionk computes its value and returns it as a weight of the tramsétigositionk, whereas in4, simulated
slave automata run concurrently and add their weights tpangal sum at each step. To visualize this, consider a
matrix such that the value &, ;) is the weight of the transition gfth slave automaton at positiarin the input
word. Then, the value di is the limit average of the sums of rows, whereas the valu4 isfthe limit average of
the sums of columns.

[lo][1][o][1] slave automaton1 [o][1]o][1]
[[1][o][1][1] slave automaton2 1o 1]1]
0[[1][0]| slave automaton 3 o 1]fo]
|

[2][3][1][0][0] master automaton [0][2][0][3][1]

simulation weights

Figure 2: The matrix depicting the difference in aggregatibweights byA and.A.

In consequence, a run éfand the corresponding run gf can have different values.

Example 36. Consider the automatah™ that has been discussed above as a modification of an autarfrato
Examplé 3l and a wordy = bab...ba% ~1b. ... At position2* + 1, the partial sumezl(C(m)) is equal to
the sum of (1) the values of blodks, . .., ba?" ' ~1b and (2) the value o83, started at the beginning 6t:2" ~1b
equal2® — 1. The value of a blocka® ~1b equals2’ — 1 (accumulated byB,) plus2i—! — 1 (accumulated by
B.1). Thus, the value (1) equal¥ + 2¢~1 — 2. k, i.e.,2F +2¥=1 — O(k). Therefore, the partial average at
position2¥ +1is 2 — O(£). Thus, the value af assigned bys# is 2. In contrast, the automatad# simulating
A7 simply takes a transition of weighton letterb, 1 on even occurrences of letterand2 on odd occurrences
of lettera. The value ofv assigned byd# is 2.

Nevertheless, we show that the emptiness problemd famdA coincide. In the following lemma we will use
a notion ofreset wordsised to terminate long runs of slave automata.

Reset words.Given a wordw, a finite wordw is areset wordfor A at position: if in w[1, iJuw[i + 1, 0] we
have (1) the configuration of at positionsi and: + |u/| is the same (recall that is deterministic), and (2) all
slave automata active at positionerminate before position+ |u|. We say that the word[1, ijuw[i + 1, o0]

is the result of injecting a reset word at positian Observe that (1) implies that acceptsw iff it accepts
w1, dJuwli 4+ 1, 00]. As in an accepting run of past some finite position all configurations occur infinitefien
and all slave automata terminate after finite number of stiygsefore at almost all positions there exists a
reset word that can be injectedat Basically, that word occurs already at positien In addition, by simple
(un)pumping argument we can show that for almost all pasdtitere exist reset words with length bounded by

|Qsv| - conf(A).
Lemma 37. The emptiness problems farand.A coincide.

Proof. Observe that for every rufll, =1, 72, . . .) of A with at mostc concurrently running slave automata, and
the corresponding simulation rurof A at every positiork we haverzl(C(n))[i] < Zle(C’(m)). Therefore,
the infimum over runs afd does not exceed the infimum over runsiof

Conversely, due to Lemnial35| has a rum of the minimal value and whose sequence of partial averages
converges. First, we show that there is a raof the same value ag such that in the corresponding run &f
for everyk greater than some constant, each slave automaton stafted pesitionk, terminates before position
k + log(k). Then, we show tha}’ and the run ofA corresponding tg/ have the same value.

24

Consider a sequende; };>o Whereaqy is the least position past which every configuration occufisitely
often anda;+; = a; + loga;. Observe that{a; : a; < k}| = o(k), i.e., limj_, OOM = 0. Letn bea
run obtained fromy by injecting reset words on positioas in . The value ofy’ is the same as the value of
Indeed, for almost alt we have

k
i=1

(€I < D (CIl +o(k)

It follows from the fact that there arléa; : a; < k}| = o(k) reset words up to positioh and the total increase
of the partial sum due to each of them is bounded by the praafu@l),(2),(3), where (1) is the maximal length
of a reset word, (2) is the number of currently running slautomata, and (3) is the maximal weight a slave
automaton can take. Note that (1),(2),(3) are bounded bystant, hence up to positidn the total increase of
the partial sum due to injected reset words(ig). Due to Lemma35, there are at Ierf\% non-silent transitions
up to positionk. Hence the values af do not exceed the value gf which is minimal. Hence, the values ofn’
are equal.

Now, we consider a run oflI, =1, 7o, ...) of A that corresponds tg’. Observe that each slave automaton
started at positioi, terminates after at mokig k steps. Therefore, the partial sum of weight§idf 7y, 72, . . .)
up tok is bounded by the partial sum of weightsiihup tok + log &, i.e., for almost alk we have

k k k+log k
S CENE <Y (Cm) < D (CH))il
=1 i=1 =1
However, eact{C(n))[i] is bounded by a constant. TherefoEfi,i‘flk(C(n’))[z‘] = O(logk). Again, as the
number of non-silent transitions up to positibis Q(k), we haveimy,_, Og‘(’f)’“) = 0. SinceA and.4 take non-

silent transitions at the same positions, the limit avesadé¢C'(n'))[1], (C(n'))[2], ... andC(m1), C(m2), ... are
equal. Thus, the value of the infimum over runs4tioes not exceed the value of the infimum over rung of
This implies that the emptiness problems fbandA coincide. O

Finally, we prove the main statement.
Lemma 38. The emptiness problem fok IMAvG; Sum™)-automata is iIfEXPSPACE.

Proof. First, we transform a giver{LIMAVG; SuM™)-automatonA to a deterministic(LIMAVG; SUM™T)-
automatonA? (Lemmal[30). The transformation does not change the caitjirafl the set of configurations,
i.e.,C(A) = C(A?). Next, we transform\“ to an equivalent automata¥’ for which runs with (1) multiplicities
bounded by and (2) synchronized silent transitions are optimal (Leri@®a Finally, we define ail(LIMAVG)-
automatond that simulated\’ on runs that satisfy (1) and (2). Since the emptiness prabferd\’ and.A coincide
(Lemmd3Y), we solve the former.

Observe that the size o4 is doubly exponential in the size @f. Indeed, letQy,, be the disjoint union of
the sets of states of the slave automata bf The size ofQ, is exponential in the size df, thereforg|c@s| is
doubly-exponential. However, the emptiness problemA4ds decidable in NloGSPACE (Lemma35). Hence,
the emptiness problem foLIMAvG; Sum™)-automata is in EPSPACE. O

Remark 39. The transformations from Lemrhal 30 and Lemimia 32 are polyramtize size of the master automa-
ton of a given nested automatén Then, the number of configurations and, in consequanegg polynomial
in the size of the master automatonaf Finally, the set of states of th#l(LIM AvG)-automatonA constructed
in Step 2 isQ,, x c%v. Thus, it is polynomial in the size of the master automatoA a well as its weights.
Therefore, the emptiness problem(bimAvG; Sum™)-automata is inPTIME if the total size of slave automata
is bounded by a constant.

7 Related work

In this section we discuss various related work.

Weighted counterpart of Boolean nested autom#itaighted nested automata have been consideréd in [7] in the
context of finite words, where the weights are given over sagg. It is further required that the semirings of
all master and slave automata coincide, while in our cageyalue functions may differ. Since the semirings of

25

master and slave automata must coincidefor [7], it can leepnéted as defining weighted counterpart of Boolean
nested automata over finite words. Adding nesting strudtungords and trees have been extensively studied
for non-weighted automata ial[2] 5] and also applied to safeamodel checking [3]. The work dfl[7] defines

a weighted counterpart of nesting of finite words, whereasovesider nesting of various weighted automata to
express properties of infinite behaviors of systems. Pti@sesuch as long-run average response time cannot be
expressed in the framework 6f [7].

Weighted MSO LogicRQuantitative properties can be expressed in weightedspépc exampleWeighted MSO
Logics[17] and weighted temporal logicl[6]. For the basic decigiwablems for weighted logics over infinite
words, the reduction is to weighted automata. For a giveofsstlue functions that assigns values to infinite runs
(such agrinVal andInfVal), weighted MSO logics are as expressive as weighted ausowitit the same class of
value functions[[1]7]. It follows that witlrinVal andInfVal as the value functions, weighted MSO logic cannot
express the average response property. One can expreagavesponse time in weighted MSO logics by adding
average response time itself as a primitive value functidhéw-valuation monoid. The decidability of weighted
MSO logics with such a primitive can be established by a rédnt¢o weighted automata that are able to express
average response time, such as nested weighted automatavétothe reduction is non-elementary, as the basic
decision problems for even non-weighted MSO logic have el@mentary complexity, whereas our complexity
results range from P& CE-complete to KPSPACE.

Register automataAnother related model for specifying quantitative projgsrareregister automatd4], which

are parametrized by cost functions. The main differenctgd®n [4] and nested weighted automata are as follows:
(i) register automata are over finite words, whereas we dengifinite words, and (ii) we consider nested control
of automata, whereas register automaton are non-nested.résllt, both in terms of expressiveness and decid-
ability results nested weighted automata are very diffefirem register automata. For example, the emptiness of
register automata with max and sum value functions is detédavhile we show emptiness to be undecidable for
deterministic nested weighted automata with these valoetions.

Other related modelsOther possible quantitative models are visibly pushdovioraata (VPA) with limit-average
functions, or quantitative models consider(inl[24]. Therfeavork of [24] neither captures the average response
time property nor presents any decidability results. FohMith limit-average functions it follows from [14] that
even perfect-information VPA games (that correspond takition) with limit-average objectives are undecidable
(the undecidability proof of[14] is for general pushdownrgss, but the proof itself also works for VPA games).
Thus though there exist many other quantitative modelsethgists no framework that can express the average
response time property and have elementary-time complakjorithms for the basic decision problems.

8 Conclusion and Future Work

Motivated by important system properties such as long-uenage response time, we introduced the framework
of nested weighted automata as a new, expressive, and ¢entvEmwmalism for specifying quantitative properties
of systems. We answered the basic decision questions ftechegighted automata. There are several directions
for future work. First, we have an open conjecture (Conjetf2) regarding the decidability of the emptiness of
(LiIMmAVG; Sum)-automata. Second, another interesting direction would lestablish optimal complexity results
for the decision problems. Third, there are several pos@kiensions of the nested weighted automaton model,
such as (i) two-way master and slave automata, (ii) multglels of nesting, and (iii) instead of infimum across
paths consider average measures across paths (i.e., pitglzhgtributions over runs and expected value of the
runs, as in[[10]).

References

[1] S. Almagor, U. Boker, and O. Kupferman. What's decidatt®ut weighted automata? ATVA pages
482-491. LNCS 6996, Springer, 2011.

[2] R. Alur, S. Chaudhuri, and P. Madhusudan. Languages sitddrees. [ICAV, pages 329-342, 2006.

[3] R. Alur, S. Chaudhuri, and P. Madhusudan. Software modetking using languages of nested tre&SM
Trans. Program. Lang. Sys83(5):15, 2011.

26

[4] R. Alur, L. D’Antoni, J. V. Deshmukh, M. Raghothaman, avidyuan. Regular functions and cost register
automata. IrLICS, pages 13-22, 2013.

[5] R. Alur and P. Madhusudan. Adding nesting structure todsoJ. ACM 56(3), 2009.

[6] U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupfermaemporal specifications with accumulative
values. InLICS, pages 43-52, 2011.

[7] B. Bollig, P. Gastin, B. Monmege, and M. Zeitoun. Pebbleighted automata and transitive closure logics.
In ICALP (2), pages 587-598. LNCS 6199, Springer, 2010.

[8] K. Chatterjee, L. Doyen, H. Edelsbrunner, T. A. Henzingad P. Rannou. Mean-payoff automaton expres-
sions.CoRR abs/1006.1492, 2010.

[9] K. Chatterjee, L. Doyen, and T. A. Henzinger. Alterngtiweighted automata. IRCT'09, pages 3-13.
Springer-Verlag, 2009.

[10] K. Chatterjee, L. Doyen, and T. A. Henzinger. Probatiii weighted automata. IBONCUR pages 244—
258. LNCS 5710, Springer, 2009.

[11] K. Chatterjee, L. Doyen, and T. A. Henzinger. Expressi¥ss and closure properties for quantitative lan-
guagesLMCS 6(3), 2010.

[12] K. Chatterjee, L. Doyen, and T. A. Henzinger. QuaniitalanguagesACM Trans. Comput. Log11(4),
2010.

[13] K. Chatterjee, T. A. Henzinger, and J. Otop. Nested Wisd automata. |hICS, 2015.
[14] K. Chatterjee and Y. Velner. Mean-payoff pushdown gameLICS 2012 pages 195-204, 2012.

[15] A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, andT®runczyk. Energy and mean-payoff games with
imperfect information. IrCSL, pages 260-274. LNCS 6247, Springer, 2010.

[16] M. Droste, W. Kuich, and H. Vogler.Handbook of Weighted AutomatéSpringer Publishing Company,
Incorporated, 1st edition, 2009.

[17] M. Droste and I. Meinecke. Weighted automata and weidso logics for average and long-time behaviors.
Inf. Comput, 220:44-59, 2012.

[18] J. Filar and K. VriezeCompetitive Markov decision process&pringer-Verlag New York, Inc., New York,
USA, 1996.

[19] E. Filiot, R. Gentilini, and J.-F. Raskin. Quantitailanguages defined by functional automataCONCUR
pages 132-146. LNCS 7454, Springer, 2012.

[20] K. Havelund and G. Rosu. Synthesizing monitors for safeoperties. INTACAS pages 342—-356. LNCS
2280, Springer, 2002.

[21] T. A. Henzinger and J. Otop. From model checking to madebsuring. INCONCUR pages 273-287.
LNCS 8052, Springer, 2013.

[22] D. Kozen. Lower bounds for natural proof systems. FACS pages 254-266. IEEE Computer Society,
1977.

[23] H. Leung. Limitedness theorem on finite automata witstatice functions: an algebraic prooTheor.
Comput. Scj.81(1):137-145,1991.

[24] C. Mathissen. Weighted logics for nested words andhatgje formal power series. IfCALP 2008 pages
221-232,2008.

[25] M. Mohri. Semiring frameworks and algorithms for srest-distance problemd. Autom. Lang. and Comb.
7(3):321-350, 2002.

[26] A. Pnueli and A. Zaks. On the merits of temporal testéns25 Years of Model Checkingages 172—-195.
LNCS 5000, Springer, 2008.

27

	1 Introduction
	2 Preliminaries
	3 Nested Weighted Automata
	4 Decision Problems
	4.1 Regular Weighted Slave Automata
	4.2 Undecidability Results for Slave Sum Automata
	4.3 Decidability Results for Slave Sum- and Sum+-Automata
	4.4 Summary and Open problems

	5 Applications
	5.1 Quantitative system properties
	5.2 Model measuring
	5.3 Model repair

	6 Emptiness of (LimAvg;Sum+)-automata is in ExpSpace
	7 Related work
	8 Conclusion and Future Work

