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Abstract

Recently there has been a significant effort to handle quantitative properties in formal verification and synthe-
sis. While weighted automata over finite and infinite words provide a natural and flexible framework to express
quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot
be expressed using weighted automata, nor in any other know decidable formalism. In this work, we introduce
nested weighted automata as a natural extension of weightedautomata which makes it possible to express im-
portant quantitative properties such as average response time. In nested weighted automata, a master automaton
spins off and collects results from weighted slave automata, each of which computes a quantity along a finite
portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor
automata, which are used in run-time verification. We establish an almost complete decidability picture for the
basic decision problems about nested weighted automata, and illustrate their applicability in several domains. In
particular, nested weighted automata can be used to decide average response time properties.

1 Introduction

Traditionally, formal verification has focused on Boolean properties of systems, such as “every request is even-
tually granted.” Automata-theoretic formalisms as well astemporal logics have been studied as specification
languages for such Boolean properties of reactive systems.In recent years there has been a growing trend to
extend specifications with quantitative aspects for expressing properties such as “the long-run average success
rate of an operation is at least one half” or “the long-run average (or the maximal, or the accumulated) resource
consumption is below a threshold.” Quantitative aspects ofspecifications are essential for resource-constrained
systems, such as embedded systems, and for performance evaluation. For example, quantitative specifications
such as accumulated sum can express properties like number of a events betweenb events, or memory consump-
tion, whereas long-run average can express properties related to reliability requirements such as average success
rate.

For Boolean properties regular languages provide a robust specification framework. Finding the analogue of
regular languages for quantitative specifications is an active research area [4, 12, 16]. Some of the key features of
such a specification framework are (1) expressiveness, i.e., whether the formalism can express properties of inter-
est; (2) ease of specification, i.e., whether the propertiescan be stated naturally; (3) computability, i.e., whether
the basic decision problems can be solved —ideally with elementary complexity— for interesting fragments of
the formalism; and (4) robustness, i.e., whether the formalism is robust against small changes in its definition.

While automata are an expressive, natural, elementarily decidable, and robust framework for expressing
Boolean properties, weighted automata provide a natural and flexible framework for expressing quantitative1 prop-
erties [12]. Weighted automata are an extension of finite automata in which every transition is labeled by a rational
weight. Thus, each run produces a sequence of weights, and a value function aggregates the sequence into a single
value. For non-deterministic weighted automata, the valueof a wordw is the infimum value of all runs overw.
Initially, weighted automata were studied over finite wordswith weights from a semiring, and ring multiplication

∗This research was funded in part by the European Research Council (ERC) under grant agreement 267989 (QUAREM), by the Austrian
Science Fund (FWF) projects S11402-N23 (RiSE), Z211-N23 (Wittgenstein Award), FWF Grant No P23499- N23, FWF NFN Grant No
S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty fellows award.

1We use the term “quantitative” in a non-probabilistic sense, which assigns a quantitative value to each infinite run of a system, representing
long-run average or maximal response time, or power consumption, or the like, rather than taking a probabilistic average over different runs.
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as value function [16]. They have been extended to infinite words with limit averaging or supremum as value
function [9, 11, 12]. While weighted automata over semirings can express several quantitative properties [25],
they cannot express the following basic quantitative properties.

Example 1. Consider infinite words over{r, g, i}, wherer represents requests,g represents grants, andi rep-
resents idle. A first basic property is the long-run average frequency ofr’s, which corresponds to the average
workload of a system. A second interesting property is the average number ofi’s between a request and the
corresponding grant, which represents the long-run average response time of the system.

While weighted automata with limit-average as value function can express the average workload property
(which weighted automata over semirings cannot express), perhaps surprisingly, they are not capable of expressing
the long-run average response time. To see this, notice thatthe value of a weighted automaton with limit-average
value function is bounded by the maximal weight that occurs in the automaton, whereas the long-run average
response time can be unbounded. However, long-run average response time can be computed if the sum value
function can be applied between requests and subsequent grants, and the values of the sum function can be aggre-
gated using limit-average function. Such a mechanism can beexpressed naturally by an extension of weighted
automata, callednested weighted automata, which we introduce in this paper.

A nested weighted automaton consists of a master automaton and a set of slave automata. The master au-
tomaton runs over an infinite word, and at each transition of the infinite run, it may invoke a slave automaton that
runs over a finite subword of the infinite word, starting from the position where the master automaton invokes the
slave automaton. Each slave automaton terminates after a finite number of steps and returns a value to the master
automaton. To compute its return value, each slave automaton is equipped with a value function for finite words,
and the master automaton aggregates all return values usinga value function for infinite words. While in the case
of Boolean finite automata, nested automata are no more expressive than their non-nested counterpart, we show
that the class of nested weighted automata is strictly more expressive than non-nested weighted automata. For
example, with nested weighted automata, the long-run average response time of a word can be computed, as in
the following example.

Example 2. In Example 1 there is only a single type of request and grant, but in general there can be multiple
types of requests and grants, and the intervals between requests and corresponding grants for different requests
may overlap. Using a nested weighted automaton, the averageresponse time can be specified across all requests.
We illustrate this for two types of requests and corresponding grants. The input alphabet is{r1, g1, r2, g2, i}. At
every requestr1 (resp.r2) the master automaton spins off a slave automatonB1 (resp.B2) with a sum value
function, which counts the number of idle events to the next corresponding grantg1 (resp.g2). Observe that many
slave automata may run concurrently. Indeed, for the word(rn1 r

n
2 g1g2)

ω, at all positions with the letterg1 there
are 2 · n slave automata that run concurrently. The master automatonwith limit-average value function then
averages the response times returned by the slave automata.

Our contributions are three-fold. First, we introduce nested weighted automata over infinite words (Section 3),
which is a new formalism for expressing important quantitative properties, such as long-run average response time,
which cannot be specified by non-nested weighted automata.

Second, we study the decidability and complexity of emptiness, universality, and inclusion for nested weighted
automata. We present an almost complete decidability picture for several natural and well-studied value functions.

• On the positive side, we show that if the value functions of the slave automata are max, min, or bounded sum,
then the decision problems for nested weighted automata canbe reduced to the corresponding problems for
non-nested weighted automata. Moreover, we show that if thevalue function of the master automaton is
limit average and the value function of the slave automata isnon-negative sum (i.e., sum over non-negative
weights), which includes the long-run average response time property, then the emptiness question is de-
cidable in exponential space. Along with the decidability results, we also establish parametric complexity
results, that show that when the total size of the slave automata is bounded by constant (which is the case
for average response property), then for all decidability results the complexity matches that of Boolean
non-nested automata (see Remark 23). The decidability proof is obtained by establishing certain regularity
properties of optimal runs, which can be used to reduce the problem to the emptiness question for non-nested
weighted automata with limit-average value function.

• On the negative side, we show that even for deterministic nested weighted automata with sup value function
for the master automaton and sum value function for the slaveautomata, the emptiness question is undecid-
able. This result is in sharp contrast to non-nested weighted automata, where the emptiness and universality
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questions are always decidable for deterministic automata, and the emptiness question is decidable also for
non-deterministic sup and sum automata.

Our results are summarized in Table 1 and Table 2 (in Table 3 and Table 4 for parametric complexity results) in
Section 4.4.

Third, nested weighted automata provide a convenient formalism to express quantitative properties. In the
Boolean case,monitor automataoffer a natural compositional way of specifying complex temporal properties [26],
and nested weighted automata can be seen as a quantitative extension of monitor automata. Each monitor automa-
ton tracks a subproperty (which corresponds to a slave automaton in our formalism), and the results of the monitor
automata are combined by another monitor automaton (which corresponds to the master automaton in our formal-
ism).

• A key advantage of the monitor-automaton approach is that itallows complex specifications to be decom-
posed into subproperties, which eases the task of specification. Our nested weighted automata enjoy the
same advantage: e.g., for long-run average response time, each slave automaton computes the response time
(as a sum automaton) of an event, and the master automaton averages the response times. Formally, we show
that deterministic nested weighted automata can be exponentially more succinct than non-deterministic
weighted automata even when they express the same property (Theorem 25). Moreover, monitor automata
are used heavily in run-time verification [20]. Hence our framework can also be seen as a first step towards
quantitative run-time verification, where the slave automata return values of subproperties, and the master
automaton (assuming a commutative value function) computes on-the-fly an approximation of the value.

• More importantly, for Boolean properties monitor automatasimply provide a more convenient framework
for specification, as they are equally expressive as standard automata, whereas we show that nested weighted
automata are strictly more expressive than non-nested weighted automata (e.g., long-run average response
time, which cannot be expressed using non-nested weighted automata, can be expressed using nested
weighted automata.

In other words, we provide a natural combination of weightedautomata (for quantitative properties) and nesting
of automata (for ease of expressiveness), and as a result obtain a more expressive, elementarily decidable, and
convenient quantitative specification framework.

Finally, we illustrate the applicability of nested weighted automata in several domains. (1) We show that the
model-measuringproblem of [21] can be expressed in the nested weighted automaton framework (Section 5.2).
The model-measuring problem asks, given a model and a specification, how robustly the model satisfies the speci-
fication, i.e., how much the model can be perturbed without violating the specification. (2) As dual of the model-
measuring problem, we introduce themodel-repairproblem and show that it, as well, can be solved using nested
weighted automata (Section 5.3). The model-repair problemasks, given a specification and a model that does not
satisfy the specification, for the minimal restriction of the model that satisfies the specification. We show that we
need nested weighted automata in order to express interesting measures on models for the model-measuring and
model-repair problems.

In summary, we introduce nested weighted automata, which offer an expressive and convenient quantitative
specification framework, and establish that the basic verification problems are decidable for several interesting
fragments (which include the long-run average response time property). While there exist many frameworks to
express quantitative properties (that we discuss in details in Section 7), there exists no framework (to the best of
our knowledge) that can express the average response time property and admit algorithms with elementary time
complexity for the basic decision problems. We present a framework (of nested weighted automata) that can
express such basic system properties and have decidable algorithms with elementary complexity.

The paper is a full version of [13].

2 Preliminaries

Words.Given a finite alphabetΣ of letters, a finite (resp. infinite) wordw is a finite (resp. infinite) sequence of
letters. For a wordw andi, j ∈ N, we definew[i] as thei-th letter ofw andw[i, j] as the wordw[i]w[i+1] . . . w[j].
We allowj to be∞ for infinite words. For a finite wordw, we denote by|w| its length; and for an infinite word
the length is∞.

Non-deterministic automata.A (non-deterministic) automatonA is a tuple(Σ, Q,Q0, δ, F ), whereΣ is the alpha-
bet,Q is a finite set of states,Q0 ⊆ Q is a set of initial states,δ ⊆ Q×Σ×Q is a transition relation, andF ⊆ Q
is a set ofacceptingstates.
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Runs.Given an automatonA and a wordw, a run π = π[0]π[1] . . . is a sequence of states such thatπ[0] ∈ Q0

and for everyi ∈ {1, . . . , |w|} we have(π[i − 1], w[i], π[i]) ∈ δ. Given a wordw, we denote byRun(w) the set
of all possible runs onw.

Boolean acceptance.The acceptance of words is defined using the accepting states. A finite runπ of lengthj + 1
is acceptingif π[j] ∈ F ; and an infinite runπ is accepting, if there exist infinitely manyj such thatπ[j] ∈ F . Let
Acc(w) ⊆ Run(w) denote the set of accepting runs. A wordw is accepted iffAcc(w) is non-empty. We denote
byLA the set of words accepted byA.

Labeled and weighted automata.Given a finite alphabetΓ, aΓ-labeled automatonis an automaton whose transi-
tions are labeled by elements fromΓ. Formally, aΓ-labeled automatonA is a tuple(Σ, Q,Q0, δ, F, C) such that
(Σ, Q,Q0, δ, F ) is an automaton andC : δ 7→ Γ. A weightedautomaton is aΓ-labeled automaton, whereΓ is a
finite subset of rationals; and the labels of the transitionsare referred to asweights.

Semantics of weighted automata.To define the semantics of weighted automata we need to define the value of a
run (that combines the sequence of weights of a run to a singlevalue) and the value across runs (that combines
values of different runs to a single value). To define values of runs, we will considervalue functionsf that assign
real numbers to sequences of rationals. Given a non-empty wordw, every runπ of A onw defines a sequence of
weights of successive transitions ofA, i.e.,C(π) = (C(π[i− 1], w[i], π[i]))1≤i≤|w|; and the valuef(π) of the run
π is defined asf(C(π)). We will denote by(C(π))[i] the cost of thei-th transition, i.e.,C(π[i − 1], w[i], π[i]).
The value of a non-empty wordw assigned by the automatonA, denoted byLA(w), is the infimum of the set of
values of allacceptingruns; i.e.,infπ∈Acc(w) f(π), and we have the usual semantics that infimum of an empty set
is infinite, i.e., the value of a word that has no accepting runs is infinite. Every runπ on an empty word has length
1 and the sequenceC(π) is empty, hence we define the valuef(π) as an external (not a real number) value⊥.
Thus, the value of the empty word is either⊥, if the empty word is accepted byA, or∞ otherwise. To indicate a
particular value functionf that defines the semantics, we will call a weighted automatonA anf -automaton.

Types of automata.A weighted automaton is
• deterministiciff Q0 is singleton and the transition relation is a function; and
• functionaliff for every wordw, all accepting runs onw have the same value.

Value functions.We will consider the classical functions and their natural variants for value functions. For finite
runs we consider the following value functions: for runs of lengthn+ 1 we have

1. Max and min:
• MAX(π) = maxni=1(C(π))[i] and
• M IN(π) = minni=1(C(π))[i].

2. Sum and variants:
• the sum function SUM(π) =

∑n

i=1(C(π))[i],
• the absolute sum SUM+(π) =

∑n

i=1 Abs((C(π))[i]) is the sum of the absolute values of the weights
(Abs denotes the absolute value of a number), and

• the bounded sum value function returns the sum if all the partial absolute sums are below a boundB,
otherwise it returns the boundB, i.e., formally, SUMB(π) = SUM(π), if for all prefixesπ′ of π we
haveAbs(SUM(π′)) ≤ B, otherwiseB.

We denote the above class of value functions for finite words asFinVal = {MAX ,M IN,SUM,SUM+,SUMB}.
Although, the absolute sum value function SUM+ can be equivalently expressed by SUM restricted to the

class of weighted automata with non-negative weights, we consider SUM and SUM+ separately, as the resulting
automata differ in complexity results.

For infinite runs we consider:

1. Supremum and Infimum, and Limit supremum and Limit infimum:

• SUP(π) = sup{(C(π))[i] : i > 0},
• INF(π) = inf{(C(π))[i] : i > 0},
• L IM SUP(π) = lim sup{(C(π))[i] : i > 0}, and
• L IM INF(π) = lim inf{(C(π))[i] : i > 0}.

2. Limit average:L IM AVG(π) = lim sup
k→∞

1
k
·
∑k

i=1(C(π))[i].

We denote the above class of value functions for infinite words as InfVal =
{SUP, INF, L IM SUP, L IM INF, L IM AVG}.
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Decision questions.We consider the standard emptiness and universality questions. Given anf -automatonA and
a thresholdλ, theemptiness(resp.universality) question asks whether there exists a non-empty wordw such that
LA(w) ≤ λ (resp. for all non-empty wordsw we haveLA(w) ≤ λ). We summarize the main results from the
literature related to the decision questions of weighted automata for the class of value functions defined above.

Theorem 3. (1) The emptiness problem is decidable in polynomial time for all value functions we consider [18,
25]. (2) The universality problem is undecidable forSUM-automata with{−1, 0, 1} weights andL IM AVG-
automata with{0, 1} weights; and decidable in polynomial space for all other value functions [1, 15, 8, 23].
(3) The universality problem is decidable for all value functions for deterministic and functional automata [19].

3 Nested Weighted Automata

In this section we introduce nested weighted automata. We start with an informal description.

Informal description.A nested weighted automatonconsists of a labeled automaton over infinite words, called the
master automaton, a value functionf , and a set of weighted automata over finite words, calledslave automata.
A nested weighted automaton can be viewed as follows: given an infinite word, we consider a run of the master
automaton on the word, but the weight of each transition is determined by dynamically running slave automata;
and then the value of a run is obtained using the value function f . That is, the master automaton proceeds on an
input word as a usual automaton, except that before it takes atransition, it starts a slave automaton corresponding
to the label of the current transition. The slave automaton starts at the current position of the word of the master
automaton and runs on some finite part of the input word. Once aslave automaton terminates, it returns its
value to the master automaton, which treats the returned value as the weight of the current transition that is being
executed. Note that for some transitions the slave automaton runs on the empty word and returns⊥; we refer to
such transitions assilent transitions. A given run of a nested weighted automaton, which consists of a run of the
master automaton and runs of slave automata, is accepting ifit consists of accepting runs only. Finally, the value
of an accepting run of the master automaton is given byf applied to the sequence of values returned by slave
automata (i.e., to compute the value function the silent transitions are omitted).

Nested weighted automata.A nested weighted automatonis a tupleA = 〈Amas; f ;B1, . . . ,Bk〉, whereAmas is
a{1, . . . , k}-labeled automaton over infinite words (where labels are indices of slave automata), called themaster
automaton,f ∈ InfVal is a value function on infinite sequences, andB1, . . . ,Bk are weighted automata over
finite words, calledslaveautomata.

Semantics: runs and values.Let w be an infinite word. Arun of A onw is an infinite sequence(Π, π1, π2, . . .)
such that (i)Π is a run ofAmas onw; (ii) for everyi > 0 we haveπi is a run of the automatonBC(Π[i−1],w[i],Π[i]),
referenced by the labelC(Π[i − 1], w[i],Π[i]) of the master automaton, on some finite subwordw[i, j] of w. The
run(Π, π1, π2, . . .) is accepting if all runsΠ, π1, π2, . . . are accepting (i.e.,Π satisfies its acceptance condition and
eachπ1, π2, . . . ends in an accepting state) and infinitely many runs of slave automata have length greater than1
(the master automaton takes infinitely many non-silent transitions). The value of the run(Π, π1, π2, . . .) is defined
assil(f)(v(π1)v(π2) . . .), wherev(πi) is the value of the runπi in the corresponding slave automaton andsil(f) is
the value function that appliesf on sequences after removing⊥ symbols. The value of a wordw assigned by the
automatonA, denoted byLA(w), is the infimum of the set of values of allacceptingruns. We require accepting
runs to contain infinitely many non-silent transitions becausef is a value function over infinite sequences, so we
need the sequencev(π1)v(π2) . . . with ⊥ symbols removed to be infinite.

Notation. Let f, g be value functions. We say that a nested weighted automatonA = 〈Amas;h;B1, . . . ,Bk〉 is
an(f ; g)-automaton iffh = f andB1, . . . ,Bk areg-automata (weighted automata over finite words with value
functiong). We illustrate the semantics of nested weighted automata with examples.

Example 4(Stuttering). Consider the nested weighted automatonA1
stu

= 〈A1
mas; L IM AVG;B1,B2〉 where each

slave automaton is aSUM+-automaton. The automatonA1
mas has a single state and two transitions(q0, a, q0)

labeled by1 and(q0, b, q0) labeled by2. The slave automatonB1 accepts words froma∗b and assigns to a word
akb valuek. The automatonB2 accepts words fromb∗a and assigns to a wordbka valuek.

Consider a word(aaab)ω. A run ofA1
stu

on (aaab)ω is depicted in Figure 1. The value of the word is7
4 .

Note thatA1
stu

accepts only words with infinite number ofa’s andb’s, as otherwise, some slave automaton would
not terminate. For wordw = (anb)ω the value is( (n+1)n

2 + 1) · 1
n+1 , and this shows that the nested weighted

automaton can return unbounded values (in contrast to aL IM AVG-automaton whose range is bounded by its
maximal weight). Consider the automatonA2

stu
= 〈A2

mas; L IM AVG;B1,B2,B3〉, whereB3 has only a single
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state, which is accepting, and it has no transitions. Thus,B3 accepts on the empty word and invoking it is a way
for A2

mas to take a silent transition. Intuitively, each slave automaton counts how many times a given letter occurs.
Thus the value computed by the nested weighted automaton is the average letter repetition (or average stuttering).
Silent transitions, produced by calling the automatonB3, enableA2

mas to compute average only over positions
where a new block starts.

Example 5(Average response time). Consider the specification for average response time definedas follows: we
consider words for the alphabet{r, g, i}, wherer denotes a request,g denotes a grant, andi denotes idle (no
request or grant). Consider a wordw, and a positionj, such thatw[j] is a request, and then the response time
in positionj is the distance to the closest grant, i.e., the response timeis j′ − j wherej′ > j is the least number
greater thanj withw[j′] = g. The average response time is the limit-average of the response times of the requests.
Consider a nested weighted automaton, with one slave automaton that has sum of non-negative weights as the
value function, and the master automaton with limit-average value function. The master automaton for every
letter r invokes the slave automaton, and forg and i takes a silent transition (i.e., it is a single state automaton
with r labeled as 1, andg andi labeled as 2). The slave automatonB1 counts the number of steps till the firstg
and the slave automatonB2 accepts only the empty word, which is used to produce silent transitions. The nested
weighted automaton specifies the average response time property. As discussed in Section 1 since the average
response time can be unbounded, it cannot be expressed by a non-nested limit-average automaton, whose value is
bounded by the maximal weight that occurs in it.

q0

(a, 1)

(b, 2)
(a)A1

mas

qa q0

(a, 3) (b, 3)
(b, 2)

(a, 1)

(b)A2
mas

qa qF
(a, 1) (b, 0)

(c)B1

a a a b a a a b

3 2 1 1 3

0 1 2 2

0 1 1

0 0

0 0

0 1 2 2

LB1(a
3b) = 3

LB1(aab) = 2

LB1(ab) = 1

LB2(ba) = 1

(d) A run ofA1
stu

Figure 1: The master automata (a)A1
mas, (b) A2

mas,
(c) the slave automatonB1, (d) a run of the nested
weighted automatonA1

stu
.

Equivalence with weighted automata.We say that a
nested weighted automatonA and a weighted automa-
tonA areequivalentiff their values coincide on each
word, i.e., for allw ∈ Σω we haveLA(w) = LA(w).

Determinism of nested weighted automata.There are
two reasons why a nested weighted automaton may be
non-deterministic. The first one is standard: one of
the components, the master automaton or one of the
slave automata is non-deterministic. The second one
is more subtle: it is the termination of slave automata.
To accept, a slave automaton has to terminate in an ac-
cepting state, but it not need to be the first time it visits
an accepting state. It can run longer to compute a dif-
ferent value. However, if the languageL recognized
by the slave automaton isprefix-free, i.e.,w ∈ L im-
plies that no extension ofw belongs toL, then it has
to terminate once it reaches an accepting state because
it will have no other chance to accept. This intuition suggests the following definition.

Types of nested weighted automata.A nested weighted automaton isdeterministiciff the master automaton and all
slave automata are deterministic and each slave automaton recognizes a prefix-free language. A nested weighted
automaton isfunctionaliff for every wordw, each accepting run onw has the same weight.

We will consider the decision questions of emptiness and universality for nested weighted automata.

4 Decision Problems

In this section we study the decidability and complexity of the decision problems for nested weighted automata.
We start with some simple observations.

Simple observations.Note that the emptiness (resp. universality) off -automata andg-automata reduces to the
emptiness (resp. universality) of(f ; g)-automata: by simply considering dummy master or dummy slave au-
tomata. Hence by Theorem 3 it follows that the universality problem for(f ; g)-automata is decidable only if the
universality problem is decidable forf -automata andg-automata.

Theorem 6. (1) For f ∈ InfVal, the universality problem for(f ;SUM)-automata is undecidable. (2) Forg ∈
FinVal, the universality problem(L IM AVG; g)-automata is undecidable.
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Proof of (1) from Theorem 6.We show a reduction of the universality problem for SUM-automata with weights
{−1, 0, 1}, which is undecidable (Theorem 3), to the universality problem for (f ;SUM)-automata, wheref ∈
{INF,SUP, L IM INF, L IM SUP}. The casef = L IM AVG follows from (2).

Let A be a SUM-automaton with weights{−1, 0, 1}. Consider an(INF;SUM)-automatonA that works as
follows. Its acceptance condition enforces that it acceptsonly words with infinitely many# letters, i.e., the
words the formw1#w2# . . . . At each# letter the master automaton starts an instance ofA as a slave au-
tomaton that works to the successive# letter. On the positions with a letter different than#, the master au-
tomaton takes a silent transition. Then, the value of a wordw1#w2# . . . is equal to the infimum of values
LA(wi). In particular,LA((w#)ω) = LA(w). Since for every wordw1#w2# . . . there existsi such that
LA(w1#w2# . . . ) = LA((wi#)ω), the universality problems forA andA coincide.

The same construction shows a reduction of the universalityproblem for SUM-automata to the universality
problem for(L IM INF;SUM)-automata (resp.(SUP;SUM)-automata,(L IM SUP;SUM)-automata).

Proof of (2) from Theorem 6.For everyg ∈ FinVal we can define two dummyg-automata,A0 (resp. A1) that
immediately accept and return the value0 (resp. 1). Therefore, such(L IM AVG; g)-automata can simulate all
L IM AVG-automata with weights0, 1, whose universality problem is undecidable (Theorem 3). Therefore, the
universality problem for(L IM AVG; g)-automata is undecidable as well.

In the decidable cases, the lower bound for the emptiness andthe universality problems is PSPACE. Recall,
the finite automata intersection problem, which asks, givena set of deterministic finite automata, is there a finite
word accepted by all of them, is PSPACE-complete [22]. That problem can be reduced to the emptinessproblem
of deterministic nested weighted automata. This implies PSPACE-hardness of the emptiness problem for deter-
ministic nested weighted automata. Moreover, for deterministic nested weighted automata, the emptiness problem
can be reduced to the universality problem. Therefore, the universality problem for deterministic nested weighted
automata is also PSPACE-hard.

Proposition 7. For all f ∈ InfVal andg ∈ FinVal, the emptiness (resp. the universality) problem for deterministic
nested weighted automata isPSPACE-hard.

Proof. Let A1, . . . ,An be deterministic finite automata over the alphabetΣ. First, we modify each of them to
obtainA∗

1, . . . ,A
∗
n overΣ ∪ {#, $} such that#, $ /∈ Σ and for everyi ∈ {1, . . . , n} we haveA∗

i acceptsu
iff u = #kw$ andAi acceptsw. Observe thatA∗

1, . . . ,A
∗
n recognize prefix-free languages. Then, we define

a nested weighted automaton whose slave automata areA∗
1, . . . ,A

∗
n and the master automaton recognizes the

language(#n{a, b}∗$)ω. The master automaton invokes all slave automata on successive # letters. Thus, for
a word#nw1$#

nw2$ . . . to be accepted, the slave automatonA∗
1 has to accept the words#nw1$,#

nw2$, . . .,
A∗

2 has to accept the words#n−1w1$,#
n−1w2$, . . ., and so on. It follows that the nested weighted automaton

accepts the language#nw1$#
nw2$ . . . such that all wordsw1, w2 are accepted by all automataA1, . . . ,An.

Therefore, the nested weighted automaton accepts any word iff there exists a finite word accepted by all automata
A1, . . . ,An. The nested automaton defined as above is deterministic.

4.1 Regular Weighted Slave Automata

We present a general result that ensures decidability for the decision problems for a large class of nested weighted
automata. We now consider slave automata that can only return values from a bounded domain, and present
decidability results for them.

Definition 8 (Regular weighted automata). Let A be a weighted automaton over finite words. We say that the
weighted automatonA is a regular weightedautomaton iff there is a finite set{q1, . . . , qn} ⊆ Q and there are
regular languagesL1, . . . ,Ln such that

(i) every word accepted byA belongs to
⋃

1≤i≤n Li, and
(ii) for everyw ∈ Li, each run ofA onw has the weightqi.

Remark 9. Regular weighted automata define the class of are equivalentto recognizable step functions [16].
However, we (implicitly) require regular languagesL1, . . . ,Ln to be disjoint, whereas the value of a recognizable
step function at a wordw is defined as the minimumqi ∈ {q1, . . . , qn} among suchi’s thatw belongs toLi.

We define thedescription sizeof a given regular weighted automatonA, as the size of automataA1, . . . ,An

recognizing languagesL1, . . . ,Ln that witnessA being a regular weighted automaton.
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Regular value functions.A value functionf is a regular value functioniff all f -automata are regular weighted
automata. Examples of regular value functions are MIN,MAX ,SUMB. Observe that the description size of a MIN,
MAX and SUMB-automatonA is polynomial in|A|, but it is exponential in the length of binary representation of
B, for a SUMB-automatonA.

Key reduction lemma.In the following key lemma we establish that if the slave automata are regular weighted
automata, then nested weighted automata can be reduced to weighted automata with the same value function as for
the master automata. For regular weighted slave automata, aweighted automaton can simulate a nested weighted
automaton in the following way. Instead of starting a slave automaton, the weighted automaton guesses the weight
of the current transition (i.e., the value to be returned of the slave automaton) and checks that the guessed weight
is correct. The definition of regular weighted automata implies that such a check can be done by a (non-weighted)
finite automatonS. Thus, the weighted automaton takes a universal transitionsuch that in one branch it continues
its execution and in another it runsS. Observe that such a universal transition can be removed by astandard power-
set construction. Given a value functionf , recall thatsil(f) is the value function that appliesf on sequences after
removing silent transitions. The following Lemma 10 along with Theorem 3 implies Theorem 13.

Lemma 10 (Key reduction lemma). Let f ∈ InfVal be a value function. Consider a nested weighted automaton
A = 〈Amas; f ;B1, . . . ,Bk〉 such that all automataB1, . . . ,Bk are regular weighted automata. There is a
sil(f)-automatonA (weighted automaton), that can be constructed in polynomial space, which is equivalent toA;
moreover, ifA is functional, thenA is functional as well.

Proof. Assume that each slave automatonBi has the weights from the set{−n, . . . , n}. Then, since all of the
slave automata are regular weighted automata, for alli ∈ {1, . . . , k} andj ∈ {−n, . . . , n} there is a deterministic
finite word automatonSi,j that recognizes the language of all wordsw such thatLBi

(w) = j. SinceBi is a
regular weighted automaton, it accepts precisely when one of the automataSi,0, . . . ,Si,n accepts.

We defineQS (resp.FS) as the disjoint union of the sets of states (resp. the sets ofaccepting states states)
of all automataSi,j . LetQm (resp.Fm) be the set of all states (resp. all accepting states) the master automaton
Amas. We define a relation STEP ⊆ 2QS × Σ × 2QS , which is the union of transition relations lifted to sets
of states, i.e.,({q1, . . . , ql}, a, {q′1, . . . , q

′
l}) ∈ STEP iff for every m ∈ {1, . . . , l}, some automatonSi,j has a

transition(qm, a, q′m).
We defineA, which we show is equivalent toA, as a generalized Büchi automaton, which differs from an

automaton over infinite words (Büchi automaton) in the acceptance condition. An acceptance condition in a gener-
alized Büchi automaton is a sequence ofF1, . . . , Fs of sets of states. A run is accepting iff for eachd ∈ {1, . . . , s}
there is a state fromFd visited infinitely often. There is a straightforward reduction of a generalized Büchi automa-
ton to a Büchi automaton, and we omit the reduction and for technical convenience consider generalized Büchi
condition for the proof.

The automatonA works as follows. It simulates the execution of the master automaton. Every time the master
automaton starts a slave automatonBi, the automaton guesses the valuej thatBi returns and checks it, i.e., it
starts simulating the automatonSi,j , by including the initial state ofSi,j in a set of statesP1. The automatonA
maintains two sets of states of simulated automata,P1 andP2: states inP1 andP2 represent states ofSi,j and
basically, there are states inP2 until all automata corresponding to them terminate. Once they do,P2 is empty and
all states fromP1 are copied toP2. Intuitively, the role ofP1 andP2 is to ensure that each automaton terminates,
by enforcingP2 to be empty infinitely often. We now formally defineA = 〈Σ, Q, q0, C, δ, F 〉 as follows:

1. Q = Qm × ({−n, . . . , n} ∪ {⊥})× 2QS × 2QS

2. q0 = 〈qm0 , 0, ∅, ∅〉, whereqm0 is the initial state of the master automaton

3. (〈q, j, P1, P2〉, a, 〈q′, j′, P ′
1, P

′
2〉) ∈ δ iff (q, a, q′) is a valid transition of the master automaton labeled byi

and one of the following holds (intuitive descriptions follow):

(a) j = ⊥, P ′
1 = P ′′

1 \ FS , P
′
2 = P ′′

2 \ FS , where STEP(P1, a, P
′′
1 ) and STEP(P2, a, P

′′
2 ),

(b) j 6= ⊥, P2 = ∅, P ′
1 = {qi,j0 } andP ′

2 = P ′′
2 \ FS , where STEP(P1, a, P

′′
2 ) andqi0 is the initial state of

Si,j , the automaton that checks that the slave automatonBi started at the current position returns the
valuej,

(c) j 6= ⊥, P2 6= ∅, P ′
1 = (P ′′

1 ∪ {qi,j
′

0 }) \ FS andP ′
2 = P ′′

2 \ FS , where STEP(P1, a, P
′′
1 ) and

STEP(P2, a, P
′′
2 )
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The intuitive descriptions are as follows: (a) the first transition corresponds to a silent transition, and hence
we compute the successor states of setsP1 andP2 and remove the accepting states (that correspond to
automata that terminate); (b) the second transition is similar to the first case but here a new automaton that
simulates the slave automaton is started, but sinceP2 is empty we compute the nextP ′

2 from the successor
of P1 according to STEP but after removing the accepting states, and the newP1 is the initial state of the
simulating automaton; and (c) the third transition is very similar to the first transition just that the initial
state of the simulating automaton is added to theP ′

1.

4. the cost function is defined asC(〈q, j, P1, P2〉, a, 〈q′, j′, P ′
1, P

′
2〉) = j′,

5. F consists ofF1 = Fm×({−n, . . . , n}∪{⊥})×2QS×2QS andF2 = Qm×({−n, . . . , n}∪{⊥})×2QS×∅.
Intuitively,F1 ensures that the acceptance condition of the master automaton is satisfied andF2 ensures that
P2 is empty infinitely often.

The correctness follows from the construction.

The automatonA in Lemma 10 is constructed in polynomial space, which means thatA can be represented
implicitly, i.e., its exponential-size set of states is represented in a compact way and for each transition triple
(q, a, q′) one can compute in polynomial time whether that triple is a transition ofA and what is its weight.

Remark 11. The automatonA from Lemma 10 has exponential size in|A|. More precisely, the size ofA is
exponential in the total size of slave automata ofA, but only polynomial in the size of the master automaton ofA.

Proof. The set of states of the automatonA from isQ = Qm × ({−n, . . . , n} ∪ {⊥}) × 2QS × 2QS , i.e., it is
linear in the size of the master automaton ofA. Moreover, the weights ofA are bounded by a constantn. Thus,
A is polynomial in the size of the master automaton ofA.

Now, we show a simple lemma regarding weighted automata withsilent moves.

Lemma 12. Let f ∈ {INF,SUP, L IM INF, L IM SUP}. (1) The emptiness problem forsil(f)-automata is in
NLOGSPACE. (2) The universality problem forsil(f)-automata is inPSPACE.

Proof. Given asil(f)-automatonA, wheref ∈ InfVal, we define the automatonAℓ as thef -automaton that
results fromA by substituting each silent transition by a transition of the weightℓ. Observe that for everysil(INF)-
automatonA for every infinite wordw we haveLA(w) ≤ λ iff LA(λ+1)(w) ≤ λ. The same equivalence holds for
everysil(SUP)-automatonA and its variantA(λ−1). Thus, the emptiness and universality problems forsil(INF)-
automata (resp.sil(SUP)-automata) and INF-automata (resp. SUP-automata) coincide. Now, a run of asil(INF)-
automaton is accepting only if it contains infinitely many non-silent transitions. Therefore, the above equivalences
hold for f ∈ {L IM INF, L IM SUP} and the corresponding problems coincide. As the emptiness problem forf -
automata is in NLOGSPACE we have (1). The universality problem forf -automata is in PSPACE, hence we have
(2).

Finally, we are ready to prove theorem characterizing complexity of decision problem for newsted weighted
automata whose slave automata are{M IN,MAX ,SUMB}.

Theorem 13. Let g ∈ {M IN,MAX ,SUMB}. The following assertions hold: (1) Letf ∈
{INF,SUP, L IM INF, L IM SUP}. The emptiness problem for non-deterministic(f ; g)-automata is PSPACE-
complete. The universality problem for non-deterministic(f ; g)-automata isPSPACE-hard and inEXPSPACE.
(2) The emptiness problem for non-deterministic(L IM AVG; g)-automata isPSPACE-complete (3) The universality
problem for functional(L IM AVG; g)-automata isPSPACE-complete.

Proof. PSPACE-hardness in (1), (2) and (3) follows from Proposition 7. We will discuss containment separately:
(1): Let f ∈ {INF,SUP, L IM INF, L IM SUP} andg ∈ {M IN,MAX ,SUMB}. Due to Lemma 10 every(f ; g)-

automatonA is equivalent to somesil(f)-automatonA′ of exponential size in|A|. By Lemma 12, the emptiness
problem forsil(f)-automata is in NLOGSPACE. The construction from Lemma 10 implies that the automatonA′

can be represented implicitly, i.e., given two statesq, q′ the existence and weight of the transition(q, a, q′) can be
decided in polynomial time. Therefore, the emptiness problem for(f ; g)-automata is in PSPACE.

By Lemma 12, and the universality problem forsil(f)-automata is in PSPACE and|A′| is of exponential size
in |A|, hence we have the universality problem for(f ; g)-automata is in EXPSPACE.
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(2): Lemma 10 state that(L IM AVG; g)-automata are equivalent tosil(L IM AVG)-automata, which enjoy decid-
ability of the emptiness problem (Lemma 35) in NLOGSPACE. As in (1), the automatonA′ can be represented
implicitly, hence the emptiness problem for(L IM AVG; g)-automata is in PSPACE.

(3): The universality problem for functional(L IM AVG; g)-automata reduces to the emptiness problem for
functional(L IM AVG; g)-automata. It suffices to (1) first check that every word has anaccepting run, which can be
done in polynomial space, (2) construct a(L IM AVG; g)-automatonA′ by taking additive inverses of all weights in
all slave automata of a given nested weighted automaton. TheautomatonA satisfies the universality problem with
thresholdλ iff it satisfies (1) and the automatonA′ from (2) does not satisfy the emptiness problem with threshold
−λ. Therefore, the universality problem for functional(L IM AVG; g)-automata is in PSPACE.

Remark 14. Assume that the total size of slave automata is bounded. Then, by Remark 11, the size of the
automatonA is polynomial in the size of the master automaton of a given nested automaton. In consequence, the
emptiness problem for automata from (1) and (2) from Theorem13 becomesPTIME and the universality problem
for automata from (1) from Theorem 13 becomesPSPACE-complete.

Theorem 13 covers the case for all classes of slave automata other than SUM- and SUM+-automata, which we
consider in the following two subsections.

4.2 Undecidability Results for Slave SUM Automata

In this section we study(f ;SUM)-automata and we present a crucial negative result.
Note that for weighted automata with the value function fromFinVal or InfVal, the emptiness problem is

decidable (for non-deterministic automata); and all decision problems are decidable for deterministic automata.
In sharp contrast we establish that for deterministic(SUP;SUM)-automata the emptiness problem is undecidable.
The proof is a reduction from the halting problem of a two-counter (Minsky) machine to the emptiness problem.
The key idea is to ensure that words that encode valid computations of the Minsky machine have value 0; and
all invalid computations have value strictly greater than 0. Basically, we need to check consistency of values of
each counter at each step, which is done as follows. The task of the master automaton is to ensure that tests on
the countersc0, c1 are consistent. The master automaton uses several slave automata to track the exact values of
the counters. Each slave automaton operates on an alphabet which is increment and decrement for the counters
c0, c1, as well as zero and positive test, and for each counter we have three slave automata. For positionsi < j,
let c0-balance(resp.c1-balance) between positioni andj denote the difference in the number of increments and
decrements of the counterc0 (resp.c1) betweeni andj. For zero tests of a counter, two slave automata are invoked:
the first automaton (resp. second automaton) increments (resp. decrements) with every increment operation on
the counter and decrements (resp. increments) with every decrement operation on the counter and terminates with
the value at the position of the next zero test. Intuitively,the two automata computec0-balance and the opposite
(the additive inverse) ofc0-balance between two consecutive zero tests. Given the zerotest of the current position
is satisfied, both automata return zero iff the next zero testis also satisfied, otherwise one of them return a positive
value. For positive tests of a counter we use the third slave automaton to compute thec0-balance plus 1 between
the current position and the next zero test ofc0. Thec0-balance plus 1 does not exceed zero iff the value ofc0 at
the current position is positive. We repeat a similar construction forc1. The construction of slave automata does
not depend on the given two-counter machine, therefore the reduction works even in the presence of a constant
bound on the size of slave automata.

This establishes the undecidability for emptiness of(SUP;SUM)-automata, and the proof also holds for
(L IM SUP;SUM)-automata. Also observe that since we establish the result for deterministic automata, we can
take opposites of weights and change SUP (resp. LIM SUP) to INF (resp. LIM INF) and the emptiness problem to
the universality problem.

Theorem 15 (Crucial undecidability result). (1) The emptiness problem for deterministic(SUP;SUM)- and
(L IM SUP;SUM)-automata is undecidable. (2) The universality problem fordeterministic(INF;SUM)- and
(L IM INF;SUM)-automata is undecidable.

Proof of (1) from Theorem 15.Given a Minsky machineM, we construct a deterministic(SUP;SUM)-automaton
A that accepts infinite words of the formw1#w2# . . .. Moreover, the value of the wordw1#w2# . . . is 0 iff each
subwordwi encodes a valid accepting computation ofM. As the problem, given a Minsky machine, does it have
an accepting computation is undecidable, we conclude that the emptiness problem for deterministic(SUP;SUM)-
automata (resp.(L IM SUP;SUM)-automata) is undecidable.
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A Minsky machineM is a finite automaton augmented with two countersc1, c2. The counters can be in-
cremented, decremented and tested whether they are zero or positive. The transitions ofM depend on the
values of counters, namely, whether they are equal zero. That is, each transition has the following form
(q, s, t) → (q′, v1, v2), wheres ∈ {c1 = 0, c1 > 0}, t ∈ {c2 = 0, c2 > 0} and v1, v2 ∈ {−1, 0, 1}. E.g.
(q, c1 = 0, c2 > 0) → (q′,+1,−1) means that if the machine is in the stateq, the value ofc1 is 0 andc2 greater
than0, then the next state isq′, c1 is incremented andc2 is decremented.

We define two notions for Minsky machines, arun and acomputation. A run of a Minsky machineM is a
sequence(q0, 0, 0), (q1, α1, β1), . . . , (qn, αn, βn) such that for everyi < n there is a transition ofM (qi, s, t) →
(qi+1, v1, v2) such thatαi satisfiess,βi satisfiest, andαi+1 = αi+v1,βi+1 = βi+v2. A run isacceptingiff its last
element is(qF , 0, 0). A computationof M is a sequence of elementsQ×{c1 = 0, c1 > 0}×{c2 = 0, c2 > 0}×
{−1, 0, 1} × {−1, 0, 1} calledconfigurations. A computation(q0, c1 = 0, c2 = 0, 0, 0), (q1, s1, t1, x1, y1), . . . ,
(qn, c1 = 0, c2 = 0, xn, yn) is valid iff there is an accepting run(q0, 0, 0), . . . , (qn, αn, βn) such that for every
i ∈ {0, . . . , n}, αi =

∑i

j=0 xj andβi =
∑i

j=0 yj .
Consider a valid computationη and the corresponding accepting runπ. For positionsi < j, let c1-balance

(resp. c2)-balance between positioni andj (in η) denote the difference in the number of increments and decre-
ments ofc1 (resp.c2) betweeni andj. Since the initial value of the counters is0, the value of a counterc1 (resp.
c2) in π[i] is precisely itsc1-balance (resp.c2-balance) between positions1 andi. Thus, forp ∈ {1, 2}, a zero test
(non-zero test) ofcp at the positioni is valid iff cp-balance between positions1 andi is 0 (is strictly positive).

Consider a computationη of a Minsky machineM. If it is invalid then there is a first position inη such that
the corresponding sequence overQ × N × N is not a run. There are two possible reasons for that: (i)M has
no transition consistent with a step fromη[i] to η[i + 1] , (ii) the configuration atη[i] is inconsistent with the
current values ofc1, c2, i.e., a zero or a non-zero test is inconsistent with the actual value of a counter. A Boolean
automaton can check whether the computation is invalid because of (i). We show how to check (ii), i.e., validity
of zero and non-zero tests, using a nested weighted automaton.

Let p ∈ {1, 2}. First, we check validity of zero tests oncp. All zero tests oncp are valid iff cp-balance
between any two consecutive zero tests is zero. To check thatthis holds, the nested weighted automaton starts
at each positioni with a zero test two deterministic slave SUM-automata:A+

c1=0,A
−
c1=0. The automatonA+

c1=0

computescp-balance betweeni and the next zero test ofcp; it increments (decrements) its value whenevercp is
incremented (decremented), and it terminates at the next zero test ofcp. The automatonA−

c1=0 does the opposite,
i.e., it computes the additive inverse ofcp-balance betweeni and the next zero test ofcp. The values of these
automata are inverses of each other and the maximum of their values is the absolute value ofcp-balance. Hence,
the maximum of their values is less-or-equal to zero iffcp-balance betweeni and the next zero test ofcp is 0. Thus,
the values of all slave automataA+

c1=0,A
−
c1=0 are less-or-equal to zero if and only if all zero tests ofcp are valid.

Second, we check that non-zero tests are valid. To do that, the automaton starts at every positioni with a
non-zero test a third slave SUM-automatonAc1>0 that first increments its value to1 and then computescp-balance
betweeni and the next zero test ofcp. The value ofcp at the positioni is strictly greater than0 iff cp-balance
between the positioni and the next position at whichcp is 0 does not exceed−1. Provided that verifying zero
tests succeeds, the value ofAc1>0 is less-or-equal to0 iff the non-zero test at the positioni is valid.

The value of the nested weighted automaton does not exceed0 if and only if the values of all slave automata
are less-or-equal to0, which holds precisely when all zero and non-zero tests oncp are valid. In the above
construction up to four automata has to be started at any configuration, while nested weighted automata can start
at most one slave automaton at each step. However, we can encode configurations by some fixed number of letters.
E.g.c $ $ $ $ wherec is a letter that fully encodes a configuration(q, α, β, x, y) and$ letters are used only to start
enough slave automata. It follows thatA accepts a wordw1#w2# . . . and assigns it the value0 iff each wordwi

encodes an valid accepting computation ofM.
Observe that the same automaton,A, considered as(L IM SUP;SUM)-automaton returns the same result. In-

deed, if a given Minsky machine does not have an accepting computation, each accepted word will have posi-
tive value. On the other hand, if there is an accepting computationw, the value of(SUP;SUM)-automata and
(L IM SUP;SUM)-automata the word(w#)ω coincides, hence it is0.

Proof of (2) from Theorem 15.The universality problem for deterministic(INF;SUM)-automata is the dual of
the emptiness problem for deterministic(SUP;SUM)-automata. Indeed, consider a deterministic(INF;SUM)-
automatonA and the nested weighted automatonA′ that results from taking inverses of all weights inA and
changing its value function to INF. One can easily check that for every wordw, the weight ofw assigned byA is
x, thenA′ assigns tow the weight−x.
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4.3 Decidability Results for Slave SUM - and SUM+-Automata

We now establish the remaining decidability results, namely, for slave automata with SUM+ value function, and
emptiness for(INF;SUM)-automata and(L IM INF;SUM)-automata. In contrast to the reduction of Lemma 10, for
example,(L IM AVG;SUM+)-automaton cannot be reduced to weightedsil(L IM AVG)-automata (Example 5).

Intuitive proof ideas.For (f ;SUM+)-automata, forf ∈ InfVal \ {L IM AVG}, we show that the decision problems
can be reduced to the bounded sum value function; and then derive the decidability results from Theorem 13. The
reductions are polynomial in the size of the master automaton. For(INF;SUM)-automata we show the emptiness
problem is decidable and the main argument is a reduction to the emptiness of non-deterministic weighted au-
tomata with SUM value function. The constructed automaton is exponential in the size of a nested automaton, but
only polynomial in the size of the master automaton, i.e., ifthe total size of slave automata and the threshold are
bounded by a constant. We summarize the results in the following theorem.

Theorem 16. (1) For f ∈ {INF, L IM INF}, the emptiness problem for(f ;SUM)-automata isPSPACE-complete.
(2) For f ∈ {SUP, L IM SUP}, the universality problem for functional(f ;SUM)-automata isPSPACE-complete.
(3) For f ∈ {INF,SUP, L IM INF, L IM SUP}, the emptiness problem for(f ;SUM+)-automata isPSPACE-complete,
and the universality problem for(f ;SUM+)-automata isPSPACE-hard and inEXPSPACE.

Proof of (1) from Theorem 16.PSPACE-hardness follows from Proposition 7. For containment in PSPACE, let
A = 〈Amas; INF;B1, . . . ,Bk〉 be a nested weighted automaton(INF;SUM)-automaton. We construct a SUM-
automaton over finite wordsA such that the emptiness problem forA andA coincide. The automatonA works
over words over the alphabetΣ∪ {#, 1, . . . k} of the formwiv#u′#u, wherew, v, u′, u ∈ Σ∗ andi ∈ {1, . . . k},
and the value of its run, if it is accepting, is the value of theslave automatonBi on the wordv. The automaton
A consists of two components. The first componentA1, a Boolean one whose all weights are0, ensures thatA
has an accepting run onwvu′uω such that the slave automaton started at the beginning of theword v is Bi and
Bi accepts the wordv. The second component,A2, is a weighted one and it computes the value ofBi on v.
Clearly, the size ofA2 is proportional to the size ofBi. Observe that the value of each run ofA depends only on
a finite prefix of a word, i.e., for each run ofA there is a finite prefixwvu′u such that the value of that run equals
LA(wiv#u′#u). It follows that the emptiness problem forA andA coincide. The construction ofA1 is similar
to the construction from Lemma 10, hence the emptiness problem forA = A1 ×A2 can be solved in polynomial
space w.r.t.|A|.

Assume thatA is a (L IM INF;SUM)-automaton. We carry out virtually the same construction ofa SUM-
automaton over finite wordsA. The automatonA accepts wordswiv#u such thatBi acceptsv andA has an
accepting run onw(vu)ω at which the slave automaton invoked at the positionsw,wvu, . . . , w(vu)k, . . . is Bi.
The value ofA on an accepted wordwiv#u is the value ofBi on v. It follows that ifA has a run of valueλ on
wiv#u, A has a run of the valueλ on w(vu)ω . Conversely, ifA has a run of the valueλ, there is a reachable
stateq of the master automatonAmas of A and a slave automatonBi such that infinitely oftenAmas in the stateq
invokesBi which returns the valueλ. Thus, there are wordsv, u such thatBi onv returns the valueλ andAmas

upon readingvu returns to the stateq. Moreover, there is a wordw such thatAmas reachesq from the initial state
upon readingw. Therefore, the value ofw(vu)ω in A is at mostλ. Hence, the emptiness problems forA and
A coincide. Similarly to the(INF,SUM+) case, the emptiness problem forA can be solved in polynomial space
w.r.t. |A|.

Remark 17. The construction ofA1 is similar to the construction from Lemma 10, hence it is polynomial in the
size of the master automaton. Therefore, the emptiness problem for(INF;SUM)-automata (resp.(L IM INF;SUM)-
automata) is inPTIME provided that the total size of slave automata is bounded.

Proof of (2) from Theorem 16.PSPACE-hardness follows from Proposition 7. The universality problem for func-
tional (INF;SUM)-automata (resp.(L IM INF;SUM)-automata) reduces to the emptiness problem for functional
(SUP;SUM)-automata (resp.(L IM SUP;SUM)-automata). It suffices to (1) first check that every word has an ac-
cepting run, which can be done in polynomial space, (2) construct an automaton(INF;SUM)-automaton (resp.
(L IM INF;SUM)-automaton)A′ by taking inverses of all weights in all slave automata of a given nested weighted
automaton. The automatonA satisfies the universality problem with thresholdλ iff it satisfies (1) and the automa-
ton A′ from (2) does not satisfy the emptiness problem with threshold −λ. Therefore, the universality problem
for functional(INF;SUM)-automata (resp.(L IM INF;SUM)-automata) is in PSPACE.

Proof of (3) from Theorem 16.PSPACE-hardness follows from Proposition 7.
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Let λ be the threshold given in the emptiness (resp. universality) problem. Consider a(f ;SUMB)-automaton
Aλ, whereB = λ+1, obtained fromA by changing each slave SUM+ automatonB into SUMλ+1-automatonBλ.
Basically, such a SUMλ+1-automatonBλ simulates runs of SUM+-automata by implementing aλ + 1-bounded
counter in its statesQ × {0, . . . , λ + 1}, whereQ is the set of states ofB. If B accumulates the value above
λ, the automatonBλ returns justλ + 1, regardless of the actual value accumulated byB. The automatonAλ is
polynomial inλ, which can be exponential in the input size. Observe that forf ∈ {INF,SUP, L IM INF, L IM SUP},
for every wordw, A has a run onw of the value not exceedingλ threshold iffAλ has. It follows that the
emptiness (resp. universality) problem for(f ;SUM+)-automata with thresholdλ reduces to the emptiness (resp.
universality) problem for(f ;SUMλ+1)-automata. Since SUMB is a regular value function, Lemma 10 states
that forf ∈ {INF,SUP, L IM INF, L IM SUP}, a (f ;SUMλ+1)-automatonAλ is equivalent to asil(f)-automatonA.
Therefore, the emptiness (resp. the universality) problemfor (f ;SUM+)-automata reduces to the emptiness (the
universality) problem forsil(f)-automata. However, by employing Lemma 10, we getA of the size exponential
in |Aλ| and doubly-exponential in|A|. We show that the second exponential blow-up can be avoided.

We show that there exists asil(f)-automatonA−, equivalent toA of the exponential size in the input size.
Infimum case.Let f ∈ {INF, L IM INF}. Original sil(f)-automatonA simulates runs of all slave automata ofAλ.
The modifiedsil(f)-automatonA− simulates only a single SUMλ+1-automaton at the time, which is chosen non-
deterministically. For remaining slave automata, only their non-weighted counterparts are simulated, i.e., SUM+

automata fromA with weights removed. Sincef is infimum of limit-infimum value function, the automataA and
A− are equivalent. The cardinality of the set of states ofA− is O(2|A| · |A| · B). Therefore, the size ofA− is
exponential in the input size.
Supremum case.Let f ∈ {SUP, L IM SUP}. Recall that the set of states ofB

λ is Q × {0, . . . , λ+ 1}, whereQ is
the set of states ofB. We obtainA− fromA, by imposing the following condition: (*) at every positionk, if A−

simulates two runsπi, πj of Bλ that have states(q, w1) resp.(q, w2) at positionk, with w1 > w2, A− discards
the runπj (the one that has the state(q, w2)). Intuitively, the runπj can be completed to an accepting run that
accumulates lower value thanπi, thus simulating it is redundant. We argue thatA andA− are equivalent.

TheA− simulates only a subset of slave automata. Since its value function issil(SUP) or sil(L IM SUP), for ev-
ery wordw, the value ofA− does not exceed the value ofA. Conversely, consider an accepting run(Π, π1, π2, . . .)
of Aλ onw. We can modify runs of slave automataπ1, π2, . . . so that the modified run(Π, π′

1, π
′
2, . . .) satisfies the

following condition (**): at every positionk in w, if runsπi, πj have states(q, w1), resp.(q, w2) at the positions
corresponding tok, then they accumulate the same value in the remaining part ofof the run. One can achieve that
by changing the suffix of the run that accumulates greater value to the suffix of the other run. Such an operation
of substituting a prefix decreases the value, hence it can be executed finitely many times for each run, and it will
not produce infinite runs of slave automata. Observe that themodified run is an accepting run ofAλ of the value
not exceeding the value of(Π, π1, π2, . . .).

Now, observe that for a run ofAλ satisfying (**), if runs πi, πj have states(q, w1), resp. (q, w2) at the
positionsk in w, with w1 > w2, the value ofπi is greater than the value ofπj , and the runπj can be discarded.
Such an operation corresponds to the condition (*) imposed by A−. Therefore, the values ofw assigned byAλ,A
andA− are equal.

The cardinality of the set of states ofA− is O((|A| · B)|A|), which is exponential in the input size.
The emptiness (resp. the universality) problem of a(f ;SUM+)-automatonA reduces to the emptiness (the

universality) problem forsil(f)-automatonA− of the exponential size in|A|+ log(λ). Hence, by Lemma 12, for
(f ;SUM+)-automata, the emptiness problem is in PSPACE and the universality problem is in EXPSPACE.

Remark 18. Let f ∈ {INF, L IM INF,SUP, L IM SUP}. Assume that the thresholdλ is given in unary. Then, for
(f ;SUM+)-automata, the emptiness problem is inPTIME and the universality problem isPSPACE-complete.

Proof. Let f ∈ {INF, L IM INF,SUP, L IM SUP}. Assuming that the threshold is given in unary and the total size
of slave automata is bounded, the size ofA− is polynomial in the size ofA. Therefore, the emptiness (resp.,
the universality) problem for(f ;SUM+)-automata reduce to the emptiness (resp., the universality) problem forf -
automata. The emptiness problem forf -automata is in PTIME and the universality problem is PSPACE-complete.
Hence, the result follows.

Finally, we establish decidability of the emptiness problem with limit-average master automaton and SUM+-
automata as slave automata. The key proof idea is to show thatvalues of certain runs of(L IM AVG;SUM+)-
automata coincide with the values of non-nested limit-average automata, and those runs have values arbitrarily
close to the infimum over values of all runs. This also allows us to show the decidability of the universality
problem for functional(L IM AVG;SUM+)-automata.
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Theorem 19. The emptiness problem for(L IM AVG;SUM+)-automata isPSPACE-hard and inEXPSPACE; and
the universality problem for functional(L IM AVG;SUM+)-automata isPSPACE-hard and inEXPSPACE.

We present the proof of part (1) from Theorem 15 in Section 6. In the following, we show the proof of part (2)
from Theorem 15.

Observe that for a run of a functional nested weighted automaton, as long as the run is accepting, its value
does not depend on the choices of transitions. Therefore, wewill focus on the construction of an accepting run
with the maximal value to compute the minimal threshold for the functionality problem.

Lemma 20. LetA be a functional(L IM AVG;SUM+)-automaton and letΛ be the value bounding weights in all
slave automata ofA. Then, one of the following holds:

1. For every accepting run, there is a positions0 such that every slave automaton started afters0 accumulates
the value not exceedingΛ · conf(A).

2. The automatonA has an accepting run of infinite value (whose value exceeds everyλ > 0).

Proof. Assume that (1) does not hold. Then, there is an accepting runsuch that some slave automaton returns
values that exceed the valueΛ · conf(A) infinitely often. Observe that if a slave automatonB accumulates a
value exceedingΛ · conf(A) during a runπ, then the nested weighted automatonA is in the same configuration
at least twice during the runπ and meanwhileB increases its value. Therefore, one can pump the run of the
nested weighted automaton to increase the value returned byB. It follows that we can pump successively the
run onA such that infinitely often the following holds: a slave automaton started at a positionk accumulates the
value exceedingk2. A run with such a property has an infinite weight according tothe semantics LIM AVG(π) =

lim supk→∞
1
k
·
∑k

i=1(C(π))[i].

Now, we are ready to prove decidability of the universality problem for functional(L IM AVG;SUM+)-
automata.

Proof of (2) from Theorem 15.If (1) holds, A is equivalent to a functional(L IM AVG;SUMB)-automatonA′,
whereB = Λ · conf(A). The size ofA′ is exponential in|A|. The universality problem for functional
(L IM AVG;SUMB)-automata is PSPACE-complete, which implies the the universality problem for functional
(L IM AVG;SUM+)-automata is in EXPSPACE. Otherwise, if (2) holds, then an answer to the universalityprob-
lem forA is “No” for everyλ. Now, it can be detected whether (1) or (2) holds by reductionto the universality
problem for functional(L IM SUP;SUM+)-automata, which is PSPACE-complete.

Remark 21. The size ofA′ is polynomial in the size of the master automaton ofA. Therefore, the universaility
problem is inPSPACE. The universality problem for functionalSUM+-weighted automata isPSPACE-hard, hence
the universality problem for(L IM AVG;SUM+)-automata isPSPACE-complete assuming that the total size of slave
automata is bounded.

4.4 Summary and Open problems

While we have established the decidability and undecidability of the decision problems for nested weighted au-
tomata for almost all cases, there is one open problem which we present as a conjecture.

Conjecture 22. The emptiness problem for non-deterministic(L IM AVG;SUM)-automata is decidable.

Tables 1 and 2 summarize our results.
Complexity.The decision problems are PSPACE-complete, in EXPSPACE, or undecidable. We show in Theorem 25
that (deterministic) nested weighted automata are exponentially more succinct than (non-deterministic) weighted
automata, which explains EXPSPACE complexity of some universality problems.

We present the proof of the emptiness case from Theorem 19 in Section 6.
Discussion on inclusion.The emptiness and universality problems reduce to the inclusion problem, where the
inclusion problem given two automataA1 andA2 asks whether for every wordw we haveLA1(w) ≤ LA2(w).
Therefore, for decidability of the inclusion problem both the emptiness and the universality problem must be
decidable. Hence, in the non-deterministic case, for valuefunctions studied in Table 2, the inclusion problem can
be decidable only in two cases:

1. for (f ; g)-automata, whereg is regular value function, andf ∈ InfVal \ {L IM AVG};
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INF SUP
L IM AVG

L IM INF L IM SUP

M IN,MAX Empt.
PSP.-c (13)

SUMB Univ.

SUM
Empt. PSP.-c (16) Undec.(15)

Open (22)
Univ. Undec.(15) PSP.-c (16)

SUM+ Empt.
PSP.-c (13) EXPSP. (19)

Univ.

Table 1: Decidability and complexity of the emptiness and universality problems for functional(f ; g)-automata.
Functionsf are listed in the first row and functionsg are in the first column. The undecidability results hold even
for deterministic automata. Next to each result there is a reference to the corresponding theorem or conjecture.
PSP. (resp. EXPSP.) denotes PSPACE (resp. EXPSPACE).

INF SUP
L IM AVG

L IM INF L IM SUP

M IN,MAX Empt. PSP.-c (13)
SUMB Univ. EXPSP. (13) Undec.(6)

SUM
Empt. PSP.-c (16) Undec.(15) Open (22)
Univ. Undec.(15) Undec.(6) Undec.(6)

SUM+ Empt. PSP.-c (16) EXPSP. (19)
Univ. EXPSP. (16) Undec.(6)

Table 2: Decidability and complexity of the emptiness and universality problems for non-deterministic(f ; g)-
automata. PSP. (resp. EXPSP.) denotes PSPACE (resp. EXPSPACE). The alignment is as in Table 1.

INF SUP
L IM AVG

L IM INF L IM SUP

M IN,MAX Empt. PTIME

SUMB Univ. PSPACE-c

SUM
Empt. PTIME Undec.

Open (22)
Univ. Undec. PSPACE-c

SUM+ Empt. PTIME

Univ. PSPACE-c

Table 3: Decidability and complexity of the emptiness and universality problems for functional(f ; g)-automata
whose slave automata have size bounded by a constant. The alignment is as in Table 1.

INF SUP
L IM AVG

L IM INF L IM SUP

M IN,MAX Empt. PTIME

SUMB Univ. PSPACE-c Undec.

SUM
Empt. PTIME Undec. Open (22)
Univ. Undec. Undec. Undec.

SUM+ Empt. PTIME

Univ. PSPACE-c Undec.

Table 4: Decidability and complexity of the emptiness and universality problems for non-deterministic(f ; g)-
automata whose slave automata have size bounded by a constant. The alignment is as in Table 1.
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2. for (f ;SUM+)-automata, wheref ∈ InfVal \ {L IM AVG}.

In fact, in case (2), the inclusion problem is undecidable aswell. Indeed, inclusion of SUM+-automata
over finite words reduces to the inclusion of(f ;SUM+)-automata, wheref ∈ {INF, L IM INF,SUP, L IM SUP}.
It has been shown in [1] that the inclusion problem for SUM+-automata is undecidable. Therefore, the in-
clusion problem in case (2) is undecidable. As automata in case (1) are equivalent tosil(f)-automata for
f ∈ {INF, L IM INF,SUP, L IM SUP} (Lemma 10), which are essentially equivalent tof -automata, the inclusion
problem is decidable [12].

Remark 23 (Parametric complexity). The complexity results summarized in Tables 1 and 2 are givenw.r.t. the
size of a nested automaton, i.e., the sum of the size of the master automaton and the total size of slave automata.
However, if the total size of slave automata is bounded by a constant, then we show that the complexity of all
emptiness problems decreases fromPSPACE (resp. EXPSPACE) to PTIME, and all the universality problems
becomePSPACE-complete (Remarks 11 and 39). In other words, we show that the complexity of emptiness and
universality in the size of the master automaton (with the total size of slave automata considered as constant)
matches that of Boolean non-nested automata. (For everyf ∈ InfVal the universality problem for functional
f -automata isPSPACE-complete [19]). Interestingly, bounding the total size ofslave automata does not change
decidability status; all undecidability results still hold. The parametric complexity results are summarized in
Table 3 and Table 4.

5 Applications

In this section we discuss several applications of nested weighted automata.

5.1 Quantitative system properties

We have shown (Example 5) that basic properties such as average response time can be expressed conveniently
as a nested weighted automaton. We also argue that our framework is a natural extension of the framework of
monitor automata for Boolean verification, and is a step towards quantitative run-time verification.

Quantitative monitor automata.In verification of Boolean properties, the formalism withmonitor automatais a
very convenient way to express system properties [26]. The specification for a system can be decomposed into
subproperties, each monitor automaton tracks a subproperty, and the logical value of the specification is inferred
from the results of the monitor automata. To be more specific,given an LTL specification, the logical value of
every subformula is tracked by a monitor automaton. A monitor automaton is a transducer that at each position
of the word outputs whether the current suffix satisfies the given subformula. The monitor automata for complex
formulae are constructed from monitor automata for their immediate subformulae. Finally, the answer whether a
given word satisfies the specification is encoded as the first output of the monitor that corresponds to the whole
LTL formula. Our nested weighted automata framework can be seen as a natural extension of the formalism
provided by monitor automata. Below we argue how nested weighted automata provide a convenient framework
for specification, with added expressiveness, and is a first step towards quantitative run-time verification.

• Ease of specification.A specification formalism is a convenient framework if complex specifications can
be easily decomposed. For Boolean properties, monitor automata were introduced for this purpose: in other
words, for Boolean properties, though monitor are not more expressive than the standard automata, yet they
are widely used as they provide a framework where specifications can be conveniently described. In our
setting, in the spirit of monitor automata, each slave automaton can specify a subproperty of the system,
and the master automaton combines the result obtained from all the slave automata. This (as in the case
of monitor automata) allows decomposing quantitative properties into subproperties and thus eases the task
of specification. For example as shown in Example 5 to computeaverage response time, for each request
the master automaton invokes a slave automaton that computes the response time (a subproperty for every
request) and then the master automaton with limit-average value function combines the subproperties to
obtain the average response time.

Example 24 (Average resource consumption). Consider a system with at mostn concurrently running
processes, in which processes can be started and terminated. The system has available resourcesr1, . . . , rk.
The quantitative property ofaverage resource consumption, which asks what is the average number of
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different resources allocated by processes, can be expressed in a convenient way by a (deterministic) nested
weighted automatonA defined as follows. The master automaton ofA starts a separate slave automaton
B when a new process is started. The slave automatonB runs until the process terminates and counts
how many different resourcesr1, . . . , rk the given process allocates. The counting can be implemented by
a MAX -automaton with weights{0, 1, . . . , k}. Then, the master automaton computes the limit average of
resource consumption computed by slave automata. Since every (L IM AVG;MAX)-automaton is equivalent
to somesil(L IM AVG)-automaton (Lemma 10), average resource consumption can also be expressed by a
weighted automaton. However, construction of such a weighted automaton is cumbersome and it essentially
follows the proof of Lemma 10.

We use Example 24 to show that (deterministic) nested weighted automata can be exponentially more suc-
cinct than (non-deterministic) weighted automata. LetARC(n) denote the average resource consumption
property forn-processes.

Theorem 25. There is a deterministic(L IM AVG;MAX)-automaton of the sizeO(n) expressingARC(n),
while every non-deterministicsil(L IM AVG)-automaton expressingARC(n) has2Ω(n) states.

Proof. Recall the the automatonA from Example 24 that expresses average resource consumption. Its size
is linearly bounded in the number of processesn. It remains to show that everysil(L IM AVG)-automaton
expressingARC(n), average resource consumption forn processes, has2Ω(n) states. To show that, we need
to give a more precise description of the system in consideration and its modeling.

We assume for simplicity that there is only a single resource. Each processi ∈ {1, . . . , n} is associated with
the following actions:start (si), allocation of the resource (ai), andtermination(ti). Formally, average
resource consumption inw is defined as the limit average over all positionsp at which a process starts
w[p] = si (for somei) of the indicator (0/1) whetherai occurs inw between positionp and the first
occurrence ofti pastp.

We show that unless asil(L IM AVG)-automaton has at least20.5n states, it cannot compute average resource
consumption. Assume towards contradiction that asil(L IM AVG)-automatonA has less than20.5n states
and computes average resource consumption. For everyA ⊆ {a1, . . . , an}, we define a worduA ∈ A∗

as a periodic listing of all letters fromA |A| times, i.e.,(b1 . . . bs)|A|, where{b1, . . . , bs} = A. Consider
execution traceswA = (suAt)

ω , wheres = s1 . . . sn, t = t1 . . . tn. Given a wordwA, letπA be a run ofA
onwA of the minimal value. Due to periodicity ofwu, such a run exists. We show the following claim:

(*) There exist cyclescA, cB in the automatonA such that (1)cA, cB are labeled with words over different
alphabetsA,B, with |A| = |B| = 0.5n, (2) cA, cB share a stateq that occurs in both runsπA, πB with
positive density, and (3) each ofcA, cB is either silent or its average weight is0.5n.

We shall prove (*) later; first we show that (*) implies thatA does not express average resource consumption.
Indeed, consider a paircA, cB from (*) andai from B \ A. We insert into the runπA the cyclecB at all
positions whereq occurs. Letπ′

A be the resulting run, and letw′
A be the word that corresponds toπ′

A. The
resulting runπ′

A has the same value asπA, 1
2 , but average resource consumption inw′

A is higher. Indeed,
in all blockssut, for someu, in whichu is different fromuA, the number of different letters inu is at least
|A|+1. In the remaining blocks, the number of different letters is|A|. Since blockssut with u 6= uA occur
with positive density, average resource consumption inw′

A is strictly higher than12 . But, the value ofw′
A

does not exceed12 asπ′
A is an accepting run onw′

A of the value1
2 . It follows thatA does not express the

average resource consumption property.

Now, we prove (*). Consider a wordwA and an occurrence ofuA at positionp in wA. Since|uA| >
|A| + 2 · |A|, there is a stateq that occurs twice in the runπA between positionsp andp + |uA| (the part
corresponding to the considered occurrence ofuA) and the distance between occurrences ofq between|A|
and|uA| − |A|. These occurrences ofq indicate a cycle,cA,p, in A, which is labeled with all letters fromA.
Indeed, among any|A| consecutive letters inuA each letter fromA occurs. Now, we selectcA from cycles
cA,i, wherei varies, that occurs with positive density inπA. Let qA be the state that occurs incA.

As there are more than20.5n subsets of{a1, . . . , an} of cardinality0.5n, there is a state that occurs in two
cyclescA, cB with A 6= B. It remains to show thatcA, cB are either silent or their average weight is1

2 . If the
average weight ofcA is greater than12 , we can decrease the value ofπA by removing all occurrences ofcA.
Recall that the length ofcA is at most|uA| − |A|, therefore if we remove all parts ofwA that correspond to
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cA, each process in the resulting word has resource consumption0.5n, hence average resource consumption
is still 1

2 . But, the value of the corresponding run is lower than1
2 , a contradiction. Conversely, if the value is

lower than1
2 , we can pump that cycle to obtain a run of the value smaller than 1

2 on a word whose resource
consumption for each process is0.5n. Thus,cA is either silent or its average weight value is1

2 .

• Expressiveness.More importantly, as mentioned above, for Boolean properties, monitor automata only
add convenience but not expressiveness, whereas we show that for quantitative properties, nested weighted
automata are strictly more expressive than non-nested weighted automata. Moreover, we show that the
added expressiveness of nested weighted automata comes with the ability to express natural quantitative
properties (like average response time) that could not be expressed as non-nested weighted automata.

• Quantitative run-time verification.Finally, monitor automata are specially useful for safety properties,
and widely used in run-time verification [20]. Our nested weighted automata can be seen as the first step
towards quantitative run-time verification. Each slave automaton acts as a monitor and returns values of
subproperties of the system. If the value function of the master automaton is commutative (as in all our
examples), the master automaton can compute an on-the-fly approximation of the value function for finite
words.

5.2 Model measuring

Themodel-measuringproblem [21] asks, given a model and a specification, what is the maximal distanceρ such
that all models within distanceρ from the model satisfy the specification. Formally, a modelM and a specification
S are Boolean automata. GivenM , asimilarity measure(of M ) is a functiondM from infinite words to positive
real numbers such that for all tracesw in LM we havedM (w) = 0. Similarity measures extend to models in
a natural way; i.e.,dM (M ′) = sup{dM (w) : w is a trace ofM ′}. The stability radiusof S in M w.r.t. the
similarity measuredM , denoted bysrdM

(M,S), is defined assrdM
(M,S) = sup{ρ ≥ 0 : ∀M ′(dM (M ′) < ρ ⇒

LM ⊆ LS)}. We are interested in similarity measuresdM defined by nested weighted automata (resp. weighted
automata as in [21]). Note thatdM is independent of the specification. The model-measuring decision problem
of whethersrdM

(M,S) ≤ λ reduces to the emptiness decision question [21]. We now showhow nested weighted
automata can define interesting similarity measuresdM .

Example 26 (Bounded delays). Consider the modelM for two processes communicating through a channel,
where every sent packet is delivered in the next state. Let$ denote the event of neither sending or receiving
packets,s1 andr1 (resp.s2 andr2) the send and receive for process 1 (resp. process 2). The language ofM can
be described as a regular expression as follows:(($)∗ · (s1r1)∗ · ($)∗ · (s2r2)∗)ω.

Note thatdM must assign value 0 to every trace in the language ofM . AlsodM needs to assign values to
traces where the delivery of packets can be delayed by a finiteamount. Hence we first need to relax the language
of M asMR such that every packet sent is received with a finite delay; and dM assigns values to traces in the
language ofMR. The relaxed languageMR is obtained as follows: consider the following languagesL1 andL2

L1 = ($∗ · (s1$
∗r1)

∗ · $∗)ω; andL2 = ($∗ · (s2$
∗r2)

∗ · $∗)ω;

whereL1 denotes that every sent for process 1 can be delayed by a finiteamount and analogouslyL2 for process 2.
The language ofMR is theshuffle(arbitrary interleavings) ofL1 andL2.

The similarity measuredM is defined as a(SUP;SUM+)-automatonAD that computes the maximum delay
in the following way. When a packet is sent, the master automaton starts a slaveSUM+-automaton that counts
the number of transition until the packet is delivered. If nopacket is sent, the master automaton takes a silent
transition. The product automatonMR andAD defines the desired similarity measure.

5.3 Model repair

Themodel-repairproblem, given a model and a specification, asks for the minimal restriction of the model such
that the specification is satisfied. Given a modelM , a repair measuredM is a function from infinite words to real
numbers such thatdM (w) < ∞ iff w ∈ LM . Intuitively, the measure evaluates the hardness of tracesof M , which
can be used to evaluate severity of the violation of the specification. We are interested indM specified by nested
weighted automata (resp. weighted automata). Given a modelM , a repair measuredM , and a real numberr, we
define the languaged<r

M as{w : dM (w) < r}. The model-repair decision problem, given a modelM , a repair
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measuredM , and a specificationS, asks whethersup{r : d<r
M ⊆ LS} ≤ λ. The model-repair decision problem

also reduces to the emptiness question.

Example 27(Context-switches). Consider a system consisting of a scheduler and two programs. The scheduler
starts processes infinitely often and does preemptive scheduling. To obtain a finite-state model, we consider that
only a single instance of each program may run at a given time.Consider the repair measuredM that represents
the negative of theminimal slot length, i.e., for allw we havedM (w) = −k iff each process in the executionw
runs for at leastk steps. The repair measure can be defined by a functional(SUP;SUM)-automatonAR as follows.
After each context-switch, the master automaton starts an automaton that computes the running time until the next
context-switch and multiplies it by−1 (i.e., add−1 at each step). At steps at which there is no context switch,
the master automaton takes a silent transition. It follows that the supremum of all those values is the length of
the shortest running time of a process multiplied by−1. Although, the emptiness problem is undecidable for
(SUP;SUM)-automata, the automatonAR has only non-positive weights. The emptiness problem for(SUP;SUM)-
automata with non-positive weights reduces to the universality problem for (INF;SUM+)-automata, which is
decidable.

Remark 28 (Decidability of examples). Note that for all examples presented in the paper, they belong to the class
of nested weighted automata for which we establish decidability of the emptiness problem.

Remark 29 (Robustness of nested weighted automata). The model of nested weighted automata is robust with
respect to several changes, e.g., (i) instead of labeling function on transitions we can have labeling function on
states; or (ii) instead of invoking one slave automaton in every transition a constant number of slave automata
can be invoked. These changes do not change the expressive power, nor the decidability and the complexity results
for nested weighted automata.

6 Emptiness of(L IM AVG; SUM+)-automata is in EXPSPACE

In this section we prove that the emptiness problem for(L IM AVG;SUM+)-automata is in EXPSPACE ((1) from
Theorem 19), as the proof itself is interesting and requiresnew and non-standard techniques. We first present an
overview of the proof.

Overview of the proof.The key argument will be tosimulatea given(L IM AVG;SUM+)-automatonA by a
sil(L IM AVG)-automaton, however, the main conceptual difficulty is that(L IM AVG;SUM+)-automata are strictly
more expressive thansil(L IM AVG)-automata. We circumvent this problem (which is non-standard for weighted
automata) in the following way:

1. Step 1.We establish a propertyC on runs of a(L IM AVG;SUM+)-automatonA such that (a) the infimum
over values of runs satisfyingC is the same as the infimum over values of all runs, and (b) thereis a
sil(L IM AVG)-automaton that simulatesA on runs satisfyingC.

2. Step 2.We give the construction of asil(L IM AVG)-automatonA specified in the condition (b) from Step 1.

Although,A simulatesA, weighted automata and nested weighted automata accumulate weights in a differ-
ent way; a run ofA that satisfiesC and the corresponding run ofA can have different values.

3. Step 3.We show that the infima over values of all runs ofA andA are equal.

Proof of Step 1.We first introduce the notion of bounded multiplicity.

Configuration and multiplicities.In nested weighted automata, starting a slave automaton canbe seen as a uni-
versal transition in the sense of alternating automata. We adapt the power-set construction, which is used to
convert alternating automata to non-deterministic automata, to the nested weighted automata case. Given a nested
weighted automatonA, we defineconfigurationsandmultiplicitiesof A as follows. LetQslv be the disjoint union
of the sets of states of all slave automata ofA. For a run ofA, we say that(qm, A) is theconfigurationat position
p if qm is the state of the master automaton at positionp andA ⊆ Qslv is the set of states of slave automata at
positionp. We denote byconf(A) the number of configurations ofA. We define themultiplicitymult at positionp
as the functionmult : Qslv 7→ N, such thatmult(q) specifies the number of slave automata in the stateq at position
p. The configuration together with the multiplicity give a complete description of the state ofA at positionp.
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Optimal runs. The general idea to solve the emptiness problem for(L IM AVG;SUM+)-automata is to simulate
a given(L IM AVG;SUM+)-automaton by asil(L IM AVG)-automaton that keeps track of configurations and mul-
tiplicities. Unfortunately, unbounded multiplicities cannot be encoded in a finite set of states of asil(L IM AVG)-
automaton. But, the emptiness problem can be solved by inspecting only selected runs. More precisely, given a
(L IM AVG;SUM+)-automatonA, we say that runs satisfying a conditionC areoptimal for A iff the infima over
values of all runs ofA and runs that satisfyC are equal. We identify a condition such that the runs satisfying it are
optimal and can be simulated by asil(L IM AVG)-automaton. First, we observe that without loss of generality we
can assume that nested weighted automata are deterministic. Basically, non-deterministic choices can be encoded
in the input alphabet.

Lemma 30. Given a(L IM AVG;SUM+)-automatonA overΣ, one can compute in polynomial space a determinis-
tic (L IM AVG;SUM+)-automatonA′ over an alphabetΣ×Γ such thatinfw∈Σ+ LA(w) = infw′∈(Σ×Γ)+ LA′(w′).
Moreover,conf(A) = conf(A′).

Proof. The proof consists of two steps. We show that (i) for every run(Π, π1, π2, . . . ) of A there exists asimple
run ofA of the value not exceeding the value of(Π, π1, π2, . . . ). Next, we show that (ii) there exists a deterministic
(L IM AVG;SUM+)-automatonA′ over an extended alphabet such that the sets of accepting simple runs ofA and
accepting runs ofA′ coincide and each run has the same value in both automata. Then (i) and (ii) imply the lemma
statement.

(i): A run of a nested weighted automaton issimpleif at every position in the run slave automata that are in the
same state take the same transition. Now, consider a run(Π, π1, π2, . . . ) of A. Suppose thatπi, πj that are in the
same state at the positions in the word, i.e.,πi[i

′] = πj [j
′], wherei′, j′ are the position inπi, πj corresponding to

the positions in w.
We choose from the suffixesπi[i

′, |πi|], πj [j
′, |πj |] the one with the smaller value and change the suffixes of

both runs to the chosen one. If these suffixes have the same value, we chose the shorter one. Such a transformation
does not increase the value of the partial sums and does not introduce infinite runs of slave automata. Indeed, a
run of each slave automaton can be changed by such an operation only finitely many times. Thus, this transfor-
mation can be applied to any pair of slave runs to obtain a simple run of the value not exceeding the value of
(Π, π1, π2, . . . ).

(ii): Without loss of generality, we can assume that for every slave automaton inA final states have no outgoing
transitions. LetQall be the disjoint union of the sets of states of the master automaton and all slave automata ofA.
We defineΓ as the set of all partial functionsh : Qall 7→ Qall. We define a(L IM AVG;SUM+)-automatonA′ over
the alphabetΣ× Γ by modifying only the transition relations and labeling functions of the master automaton and
slave automata ofA; the sets of states and accepting states are the same as in theoriginal automata. The transition
relation and the labeling function of the master automatonA′

mas of A′ is defined as follows: for all statesq, q′,
(q, 〈a, h〉, q′) iff h(q) = q′ andAmas has the transition(q, a, q′). The label of the transition(q, 〈a, h〉, q′) is the
same as the label of the transition(q, a, q′) in Amas. Similarly, for each slave automatonBi in A, the transition
relation of the corresponding slave automatonB

′
i in A′ is defined as follows: for all statesq, q′ of B′

i, (q, 〈a, h〉, q
′)

iff h(q) = q′ andBi has the transition(q, a, q′). The label of the transition(q, 〈a, h〉, q′) is the same as the label
of the transition(q, a, q′) in Bi.

First, we see thatconf(A) = conf(A′). Second, observe that the master automatonA′
mas and all slave

automataB′
i are deterministic. Moreover, since we assumed that for every slave automaton inA final states

have no outgoing transitions, slave automataB
′
i recognize prefix free languages. Finally, it follows from the

construction that (i) for every simple run(Π, π1, π2, . . . ) of A is also a run ofA of the same value. One needs
to encode non-deterministic transitions in functionsh ∈ Γ. The value of each transition is the same by the
construction. Conversely, (ii) a run(Π, π1, π2, . . . ) of A′ is a simple run ofA of the same value. Indeed, the fact
that transitions are directed by functionsh ∈ Γ implies that the run is simple.

We attempt to simulate(L IM AVG;SUM+)-automatonA by a sil(L IM AVG)-automaton. For that, we need
to show that runs with bounded multiplicities or bounded values returned by slave automata are optimal forA;
otherwise the state space of the simulating automaton wouldhave to be unbounded. However, such a direct
statement does not hold as we see in the following example.

Example 31. Consider a(L IM AVG;SUM+)-automatonA over{a, b} such that on lettera (resp. b) the master
automaton starts a slave automatonBa (resp.Bb). The automatonBa accepts wordsa∗b, and for a wordakb
assigns valuek mod 2. The automatonBb accepts wordsba∗b, and for a wordbakb assigns valuek+2. Observe
that the infimum over all runs ofA is 3

2 .
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At the end of a block ofk lettersa, the number of slave automata running concurrently isk+1, one automaton
Bb and k automataBa, and the value returned byBb is k + 2. It follows that if the multiplicity of a run is
bounded byk+1 or the maximal returned values are bounded byk+2, lengths of all block ofa’s are bounded by
k. However, if the length of block’s of lettera are bounded byk, the value of such a run is at least3·k+4

2·(k+1) . Thus,
runs of bounded multiplicity or bounded returned value are not optimal forA.

Example 31 shows that we cannot bound the number of slave automata running concurrently or the values
returned by slave automata. However, we can combine these two conditions, i.e., we show that while computing
the infimum over values of runs of an(L IM AVG;SUM+)-automaton, there is a constantN such that we can discard
runs in which more thanN slave automata accumulate value aboveN. Then, slave automata that return bounded
values are essentially bounded sum automata, and can be eliminated, and only bounded number of slave automata
returning unbounded values remain. E.g. the automatonA from Example 31 is equivalent to a(L IM AVG;SUM+)-
automatonA# that, instead of starting a slave automatonBa, guesses the parity of the following block of letters
a and, based on that guess, startsBa0 or Ba1, which terminates after a single transition and returns0 (Ba0) or 1
(Ba1). The master automaton verifies the correctness of the guessed parity.

Synchronized silent transitions.The bounded multiplicity property enables simulation ofA by sil(L IM AVG)-
automaton, but it does not guarantee that the correspondingruns have the same value. We impose the following
condition on optimal runs ofA. We say that a run ofA hassynchronized silent transitionsif at every position
where the master automaton takes a silent transition, each slave automaton takes a transition of weight0. On
runs ofA with synchronized silent transitions, thesil(L IM AVG)-automaton can take a silent transition whenever
the master automaton ofA takes a silent transition as no weighted transition is lost.To achieve synchronization
of silent transitions, we modify slave automata so that during silent transitions of the master automaton, slave
automata accumulate their values in their states, while taking transitions of weight0, and flush the accumulated
valueλ by taking transition of weightλ once the master automaton takes a non-silent transition. Weprove that
runs with sequences of silent transitions bounded byconf(A) are optimal forA, therefore slave automata have to
accumulate only bounded weights.

We combine the ideas for bounding the multiplicity and synchronization of silent transitions in the following
lemma.

Lemma 32. LetA be a deterministic(L IM AVG;SUM+)-automaton. There is a constantc quadratically bounded
in conf(A) and a deterministic(L IM AVG;SUM+)-automatonA0 equivalent toA such that runs that have (1) mul-
tiplicities bounded byc, and (2) synchronized silent transitions, are optimal forA0. The size ofA0 is exponentially
bounded in|A|.

Before we prove Lemma 32, we show its vital components:

Lemma 33. Let A be a deterministic(L IM AVG;SUM+)-automaton that has an accepting run. Runs such that
among every consecutiveconf(A) steps, the master automaton ofA takes a non-silent transition are optimal for
A.

Proof. Consider a run ofA on a wordw and positionsi, j such thati + 2 · conf(A) < j andA takes only silent
transitions betweeni andj.

Observe that there are positionsi < i′, j′ < j with the same configuration (defined in Section 6). Consider
a wordw′ resulting from removingw[i′, j′] from w. The partial sum of the weights of the master automaton up
to the positionj − (j′ − i′) onw′ does not exceed the partial sum up to the positionj onw. These partial sums
are divided, in the average, by the same number of steps. Thus, the value of the word will not increase even if
we can carry out this operation infinitely often. One should be careful not to remove all positions with accepting
states. However, it is not a serious problem as we can insert sparsely subwords with an accepting state (after
1, 2, . . . , 2k, . . . time increase steps). Such an operation will not increase the limit average of the run.

Lemma 34. LetA be a deterministic(L IM AVG;SUM+)-automaton that recognizes a non-empty language. Let
N = (|Qs| + 2) · conf(A). The runs that eventually (for every positions greater than some positions0) satisfy
the following condition (*) are are optimal forA: (*) among slave automata active at positions, at most2 · N
will accumulate value greater than4 ·N.

Proof. For a multiplicitymult we define its restriction toN, mult ↾N, asmult ↾N (q) = min(mult(q),N), for
everyq ∈ dom(mult).
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Consider any worduw such that at the position|u| there are2 · N slave automata that will accumulate inw
(past the position|u| in uw) value greater than4·N. We show a transformation ofuw touw′, such thatuw′ has the
same value and at the position|u| no slave automaton will accumulate inw′ value greater than4 ·N. Let j0 > |u|
be a position inuw with an accepting state and letj1, . . . , jn be the positions at which each of slave automata
started before the position|u| finishes. Note thatn ≤ |Qs|. As slave automata work on finite words suchj1, . . . , jn
exist. Finally, letj be the first position greater thanmax(j0, j1, . . . , jn) with the configurationCuw[1,j−|u|] = Cu
and multiplicitymultuw[1,−|u|] ↾N= multu ↾N. There are only finitely many positions|u| for which suchj does
not exist. Next, as there is no bound onj, we remove fromw[1, j − |u|] all cycles that do not overlap with
any position from{j0, . . . , jn}. The resulting wordv has the length bounded by(|Qs| + 2) · conf(A) = N as
n ≤ |Qs|. It follows that for everyq ∈ A we havemultuv(q) ≤ N andmultuv(q) ≤ multu(q) ↾N. Indeed,
since cycle removal does not increase the multiplicity, foreveryq ∈ A we havemultuv(q) ≤ multuw[1,j](q) and
multuw[1,j] ↾N= multu ↾N. We show that the partial sum of weights of the master automaton at the position|uv|
in uvw is smaller than the partial sum at the position|u| is uw, which implies that the transformationuw → uvw,
removes a position violating our assumption, and even applied infinitely many times, does not increase the value
of the resulting words.

Let val be a function withdom(val) = dom(multu) such thatval(q) is the value accumulated inw (past
the position|u| i uw) by any slave automaton that is in the stateq at the position|u|. Equivalently, that is the
value accumulated by the same automaton past the position|uv| in uvw. We call a slave automatonactive if
val(q) ≥ 4 ·N, whereq is the state of that automaton at the position|u| (resp.|uv|). The value of the partial sum
up to the position|u| in uw is the value of all slave automata started before|u|. It consists of(1) + (2), where

• (1) is the value all inactive slave automata plus the value of active slave automata accumulated up to the
position|u|, and

• (2) is the value accumulated inw by all active automata past the position|u|.

Observe that(2) =
∑

q∈A val(q) · multu(q), whereA is the set of states of active slave automata at the position
|u|. The value of the partial sum up to the position|uv| in uvw consists of(1)′ + (2)′ + (3), where

• (1)′ is the value of all inactive slave automata plus the value of active slave automata accumulated up to the
position|u|,

• (2)′ is the value accumulated by active automata inw past position|uv|, and

• (3) is the value accumulated by all active slave automata on the word v, i.e., between the positions|u| and
|uv| in uvw.

Note that(1)′ is bounded by(1), (3) is bounded by2 · N · |v| ≤ 2 · N2, and(2)′ =
∑

q∈A val(q) · multuv(q).
We claim that(2) − (2)′ > (3), which means that the partial sum at the position|uv| in uvw is smaller than the
partial sum at the position|u| in uw. Indeed,

∑
q∈A multu(q)−multuv(q

′) > 2 ·N−N = N and for eachq ∈ A,
val(q) ≥ 4 ·N, therefore(2)− (2)′ is at least4 ·N2, which is greater than(3).

It follows that aforementioned transformation, even applied infinitely many times, will not increase the value
of the resulting word. Therefore, for every run ofA of valueλ, there iss0 and an a run of the value not exceeding
λ such that at each positions > s0 at most2 ·N will accumulate value greater than4 ·N.

Proof of Lemma 32.We transform the automatonA to an equivalent deterministic(L IM AVG;SUM+)-automaton
A0 for which runs that at each position (1) at mostc slave automata run, and (2) if the master automaton takes
a silent transition, each slave automaton takes a silent transition, are optimal. Due to Lemma 34 runs for which
eventually at most2 · N slave automata accumulate value greater than4 · N are optimal forA. Moreover, by
Lemma 33 runs in which at least one in everyconf(A) transitions is non-silent are optimal forA.

We define an automatonA0 by modifyingA in two ways. First, we extend the input alphabet to include the
marking of the positions0 past which at most2 ·N slave automata accumulate value greater than4 ·N are optimal
for A0. Prior to that marking, a modified automaton starts only dummy slave automata that immediately terminate.
Past that markingA0 simulatesA. Second, we modify each slave automaton ofA in such a way that is runs as
long as it can accumulate the value exceeding4 ·N. More precisely, the master automaton starts only automata
that return values exceeding4 · N. For other slave automata it “guesses” their value from the set {0, . . . , 4 ·N}
and runs a dummy automaton that takes only a single transition of this weight. As it is deterministic, we assume
that the “guess” is encoded in the input word. Started slave automata run as long as they can accumulate the value
exceeding4 ·N. Once a slave automaton guesses that this is not possible, ittakes a transition of the weight4 ·N
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and terminates. Again, that “guess” is encoded in the input word, therefore the master automaton is able to verify
that this “guess” is correct.

The automatonA0 simulates the runs ofA past the positions0 and each running slave automaton accumulates
the value exceeding4 · N. Therefore, there is a run ofA0 on a word corresponding towopt such that at most
2 · N + 1 slave automata run concurrently. The automatonA0 is equivalent toA, as the return values of slave
automata past the positions0 are the same and the LIM AVG value function does not depend on finite prefixes.
Therefore, runs satisfying conditions (1) and (2) are optimal forA0.

The size of the automatonA0 from Lemma 32 is polynomial in the size of the master automaton ofA.

Proof of Step 2.We now prove Step 2 which basically involves the classic power-set construction.

Construction ofA. We adapt the classic power-set construction to construct asil(L IM AVG)-automatonA that
simulates runs of a given(L IM AVG;SUM+)-automatonA with bounded multiplicities and synchronized silent
transitions. LetA be a deterministic(L IM AVG;SUM+)-automaton. Without loss of generality (Lemma 32), we
assume that runs with (1) multiplicities bounded byc and (2) synchronized silent transitions are optimal forA.
The automatonA, which simulates runs satisfying (1) and (2), keeps track ofthe current configuration and the
multiplicity of A. That is, the set of states ofA is Qm × c

Qslv, whereQm, Qslv are respectively the set of states
of the master automaton and the union of the sets of states of all slave automata ofA. The componentcQslv

encodes a part of configuration and multiplicity. For all states(q1, h1), (q2, h2) of A and every lettera, A has
a transition〈(q1, h1), a, (q2, h2)〉 iff the master automaton has a transition(q1, a, q2) with the labeli and the
multiplicitiesh2 follow from h1 according to transitions of the slave automata and invocation ofBi. The weights
of transitions ofA are defined as follows. If the transition(q1, a, q2) of the master automaton ofA is silent, the
transition〈(q1, h1), a, (q2, h2)〉 is silent. Otherwise, the weight of〈(q1, h1), a, (q2, h2)〉 equals the sum of weights
of the corresponding transitions of simulated slave automata multiplied by their multiplicitiesh1. Recall that the
simulated runs have silent transitions synchronized, therefore, the values accumulated by each slave automaton
and the corresponding simulated automaton are equal.

Given a run ofA one can construct a run ofA with multiplicities bounded byc, and vice versa. Hence, for a
run ofA (resp.A) we refer to the corresponding run ofA (resp.A). We can solve the emptiness problem forA
assil(L IM AVG)-automata behave similarly to LIM AVG-automata:

Lemma 35. (1) The emptiness problem forsil(L IM AVG)-automata is inNLOGSPACE. (2) For everysil(L IM AVG)-
automatonA that recognizes a non-empty language, there is a runη of A such that (a) the value ofη is minimal
among values of all runs ofA, (b) at least one in every|A| transitions is non-silent, and (c) partial sums converge,
i.e.,

lim sup
k→∞

1

k
·

k∑

i=1

(C(η))[i] = lim inf
k→∞

1

k
·

k∑

i=1

(C(η))[i]

Proof. Let A = (Σ, Q, q0, δ, F, C) be asil(L IM AVG)-automaton. We show that if there is a run ofA of the value
not exceedingλ there is a lasso run such that the average weight in its cycle does not exceedλ, i.e. there is a run
π = π[0]π[1] . . . π[n] of lengthn ≤ |λ| on a wordw = w[1] . . . w[n] such thatπ[0] = q0, for somei < n we have
π[i] = π[n] (such a runπ is called a lasso),π[0], . . . , π[n − 1] are distinct and 1

n−i
(C(π[i], w[i + 1], π[i+ 1]) +

. . .+ C(π[n− 1], w[n], π[n])) ≤ λ. The existence of such a lasso can be decided in NLOGSPACE, which shows
(1). As there are only finite number of values of lassos, thereis λ0 which is the smallest. It follows that there is
no run ofA of the valueλ′ smaller thanλ0; otherwise there would be a lasso of the value not exceedingλ′. Thus,
the lasso of the valueλ0 has the minimal value among values of all runs, and the sequence of partial averages
converge.

First, we define a LIM AVG-automatonAfix such that for every accepting runη of A, the runη′, resulting from
η by removing silent transitions, is an accepting run ofAfix, and vice versa, every accepting run ofAfix can be
extended to a run ofA by inserting silent transitions. The set of states ofAfix is the same asA and the transition
relation ofAfix consists of(q1, a, q2) such that there is(q′1, a, q

′
2) ∈ δ andq′1 (resp.q2) is reachable fromq1 (resp.

q′2) by a path consisting of only silent transitions. The weightof such a transition is the infimum over the weights
of transitions(q′1, a, q

′
2) ∈ δ that generate(q1, a, q2). It follows from the construction thatAfix has the stipulated

properties and their corresponding runs have the same value. Therefore,Afix has a lassol0 such that the average
weight in its cycle does not exceedλ. The lassol0 can be extended to a lassol1 in A, which can have states that
occur multiple times. We can remove duplicate states in the following way, if the average weight betweeni andj
with l1[i] = l1[j] is aboveλ, we remove all the states betweeni+ 1 andj. Otherwise, if the average weight does
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not exceedλ, we can remove all the states followingπ[j]. Hence, we have shown that ifA has a run of the value
λ it has a lasso such that the average weight in its cycle does not exceedλ.

Proof of Step 3.We now prove Step 3, i.e., we show that the emptiness problemsfor A andA coincide. The main
problem is that, even though a run ofA and the corresponding run ofA represent the same sequences of weights,
they can have different values. Still, we show that infima over values of all runs ofA andA are equal.

Accumulation of weights.The automataA andA compute their values differently. InA a slave automaton started
at a positionk computes its value and returns it as a weight of the transition at positionk, whereas inA, simulated
slave automata run concurrently and add their weights to thepartial sum at each step. To visualize this, consider a
matrix such that the value at(i, j) is the weight of the transition ofj-th slave automaton at positioni in the input
word. Then, the value ofA is the limit average of the sums of rows, whereas the value ofA is the limit average of
the sums of columns.

2 3 1 0 0 master automaton

0 1 0 1 slave automaton 1

1 0 1 1 slave automaton 2

0 1 0 slave automaton 3

0 2 0 3 1

simulation weights

0 1 0 1

1 0 1 1

0 1 0

Figure 2: The matrix depicting the difference in aggregation of weights byA andA.

In consequence, a run ofA and the corresponding run ofA can have different values.

Example 36. Consider the automatonA# that has been discussed above as a modification of an automaton from
Example 31 and a wordw = bab . . . ba2

k−1b . . .. At position2k + 1, the partial sum
∑k

i=1(C(πi)) is equal to

the sum of (1) the values of blocksbab, . . . , ba2
k−1−1b and (2) the value ofBb started at the beginning ofba2

k−1b

equal2k − 1. The value of a blockba2
i−1b equals2i − 1 (accumulated byBb) plus2i−1 − 1 (accumulated by

Ba1). Thus, the value (1) equals2k + 2k−1 − 2 · k, i.e.,2k + 2k−1 − O(k). Therefore, the partial average at
position2k+1 is 5

2 −O( k
2k
). Thus, the value ofw assigned byA# is 5

2 . In contrast, the automatonA# simulating
A# simply takes a transition of weight0 on letterb, 1 on even occurrences of lettera and2 on odd occurrences
of lettera. The value ofw assigned byA# is 3

2 .

Nevertheless, we show that the emptiness problems forA andA coincide. In the following lemma we will use
a notion ofreset wordsused to terminate long runs of slave automata.

Reset words.Given a wordw, a finite wordu is a reset wordfor A at positioni if in w[1, i]uw[i + 1,∞] we
have (1) the configuration ofA at positionsi andi + |u| is the same (recall thatA is deterministic), and (2) all
slave automata active at positioni terminate before positioni + |u|. We say that the wordw[1, i]uw[i + 1,∞]
is the result of injecting a reset word at positioni. Observe that (1) implies thatA acceptsw iff it accepts
w[1, i]uw[i+ 1,∞]. As in an accepting run ofA past some finite position all configurations occur infinitelyoften
and all slave automata terminate after finite number of steps, therefore at almost all positionsp, there exists a
reset word that can be injected atp. Basically, that word occurs already at positionp. In addition, by simple
(un)pumping argument we can show that for almost all positions there exist reset words with length bounded by
|Qslv| · conf(A).

Lemma 37. The emptiness problems forA andA coincide.

Proof. Observe that for every run(Π, π1, π2, . . .) of A with at mostc concurrently running slave automata, and
the corresponding simulation runη of A at every positionk we have

∑k
i=1(C(η))[i] ≤

∑k
i=1(C(πi)). Therefore,

the infimum over runs ofA does not exceed the infimum over runs ofA.
Conversely, due to Lemma 35,A has a runη of the minimal value and whose sequence of partial averages

converges. First, we show that there is a runη′ of the same value asη such that in the corresponding run ofA,
for everyk greater than some constant, each slave automaton started before positionk, terminates before position
k + log(k). Then, we show thatη′ and the run ofA corresponding toη′ have the same value.
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Consider a sequence{ai}i≥0 wherea0 is the least position past which every configuration occurs infinitely
often andai+1 = ai + log ai. Observe that|{ai : ai < k}| = o(k), i.e., limk→ ∞ |{ai:ai<k}|

k
= 0. Let η′ be a

run obtained fromη by injecting reset words on positionsai in η. The value ofη′ is the same as the value ofη.
Indeed, for almost allk we have

k∑

i=1

(C(η′))[i] ≤
k∑

i=1

(C(η))[i] + o(k)

It follows from the fact that there are|{ai : ai < k}| = o(k) reset words up to positionk and the total increase
of the partial sum due to each of them is bounded by the productof (1),(2),(3), where (1) is the maximal length
of a reset word, (2) is the number of currently running slave automata, and (3) is the maximal weight a slave
automaton can take. Note that (1),(2),(3) are bounded by a constant, hence up to positionk, the total increase of
the partial sum due to injected reset words iso(k). Due to Lemma 35, there are at leastk

|A| non-silent transitions
up to positionk. Hence the values ofη′ do not exceed the value ofη, which is minimal. Hence, the values ofη, η′

are equal.
Now, we consider a run of(Π, π1, π2, . . .) of A that corresponds toη′. Observe that each slave automaton

started at positionk, terminates after at mostlog k steps. Therefore, the partial sum of weights of(Π, π1, π2, . . .)
up tok is bounded by the partial sum of weights inη′ up tok + log k, i.e., for almost allk we have

k∑

i=1

(C(η′))[i] ≤
k∑

i=1

(C(πi)) ≤

k+log k∑

i=1

(C(η′))[i]

However, each(C(η′))[i] is bounded by a constant. Therefore,
∑k+log k

i=k+1 (C(η′))[i] = O(log k). Again, as the

number of non-silent transitions up to positionk isΩ(k), we havelimk→∞
O(log k)
Ω(k) = 0. SinceA andA take non-

silent transitions at the same positions, the limit averages of(C(η′))[1], (C(η′))[2], . . . andC(π1), C(π2), . . . are
equal. Thus, the value of the infimum over runs ofA does not exceed the value of the infimum over runs ofA.
This implies that the emptiness problems forA andA coincide.

Finally, we prove the main statement.

Lemma 38. The emptiness problem for(L IM AVG;SUM+)-automata is inEXPSPACE.

Proof. First, we transform a given(L IM AVG;SUM+)-automatonA to a deterministic(L IM AVG;SUM+)-
automatonAd (Lemma 30). The transformation does not change the cardinality of the set of configurations,
i.e.,C(A) = C(Ad). Next, we transformAd to an equivalent automatonA′ for which runs with (1) multiplicities
bounded byc and (2) synchronized silent transitions are optimal (Lemma32). Finally, we define asil(L IM AVG)-
automatonA that simulatesA′ on runs that satisfy (1) and (2). Since the emptiness problems forA′ andA coincide
(Lemma 37), we solve the former.

Observe that the size ofA is doubly exponential in the size ofA. Indeed, letQ′
slv be the disjoint union of

the sets of states of the slave automata ofA′. The size ofQ′
slv is exponential in the size ofA, therefore|cQ

′

slv| is
doubly-exponential. However, the emptiness problem forA is decidable in NLOGSPACE (Lemma 35). Hence,
the emptiness problem for(L IM AVG;SUM+)-automata is in EXPSPACE.

Remark 39. The transformations from Lemma 30 and Lemma 32 are polynomial in the size of the master automa-
ton of a given nested automatonA. Then, the number of configurations and, in consequence,c are polynomial
in the size of the master automaton ofA. Finally, the set of states of thesil(L IM AVG)-automatonA constructed
in Step 2 isQm × c

Qslv. Thus, it is polynomial in the size of the master automaton ofA as well as its weights.
Therefore, the emptiness problem of(L IM AVG;SUM+)-automata is inPTIME if the total size of slave automata
is bounded by a constant.

7 Related work

In this section we discuss various related work.

Weighted counterpart of Boolean nested automata.Weighted nested automata have been considered in [7] in the
context of finite words, where the weights are given over semirings. It is further required that the semirings of
all master and slave automata coincide, while in our case, the value functions may differ. Since the semirings of
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master and slave automata must coincide for [7], it can be interpreted as defining weighted counterpart of Boolean
nested automata over finite words. Adding nesting structureto words and trees have been extensively studied
for non-weighted automata in [2, 5] and also applied to software model checking [3]. The work of [7] defines
a weighted counterpart of nesting of finite words, whereas weconsider nesting of various weighted automata to
express properties of infinite behaviors of systems. Properties such as long-run average response time cannot be
expressed in the framework of [7].

Weighted MSO Logics.Quantitative properties can be expressed in weighted logics, for example,Weighted MSO
Logics [17] and weighted temporal logic [6]. For the basic decisionproblems for weighted logics over infinite
words, the reduction is to weighted automata. For a given setof value functions that assigns values to infinite runs
(such asFinVal andInfVal), weighted MSO logics are as expressive as weighted automata with the same class of
value functions [17]. It follows that withFinVal andInfVal as the value functions, weighted MSO logic cannot
express the average response property. One can express average response time in weighted MSO logics by adding
average response time itself as a primitive value function in theω-valuation monoid. The decidability of weighted
MSO logics with such a primitive can be established by a reduction to weighted automata that are able to express
average response time, such as nested weighted automata. However, the reduction is non-elementary, as the basic
decision problems for even non-weighted MSO logic have non-elementary complexity, whereas our complexity
results range from PSPACE-complete to EXPSPACE.

Register automata.Another related model for specifying quantitative properties areregister automata[4], which
are parametrized by cost functions. The main differences between [4] and nested weighted automata are as follows:
(i) register automata are over finite words, whereas we consider infinite words, and (ii) we consider nested control
of automata, whereas register automaton are non-nested. Asa result, both in terms of expressiveness and decid-
ability results nested weighted automata are very different from register automata. For example, the emptiness of
register automata with max and sum value functions is decidable, while we show emptiness to be undecidable for
deterministic nested weighted automata with these value functions.

Other related models.Other possible quantitative models are visibly pushdown automata (VPA) with limit-average
functions, or quantitative models consider in [24]. The framework of [24] neither captures the average response
time property nor presents any decidability results. For VPA with limit-average functions it follows from [14] that
even perfect-information VPA games (that correspond to simulation) with limit-average objectives are undecidable
(the undecidability proof of [14] is for general pushdown games, but the proof itself also works for VPA games).
Thus though there exist many other quantitative models, there exists no framework that can express the average
response time property and have elementary-time complexity algorithms for the basic decision problems.

8 Conclusion and Future Work

Motivated by important system properties such as long-run average response time, we introduced the framework
of nested weighted automata as a new, expressive, and convenient formalism for specifying quantitative properties
of systems. We answered the basic decision questions for nested weighted automata. There are several directions
for future work. First, we have an open conjecture (Conjecture 22) regarding the decidability of the emptiness of
(L IM AVG;SUM)-automata. Second, another interesting direction would beto establish optimal complexity results
for the decision problems. Third, there are several possible extensions of the nested weighted automaton model,
such as (i) two-way master and slave automata, (ii) multiplelevels of nesting, and (iii) instead of infimum across
paths consider average measures across paths (i.e., probability distributions over runs and expected value of the
runs, as in [10]).
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