
A Byzantine Fault-Tolerant Ordering Service for the
Hyperledger Fabric Blockchain Platform

(Short Paper)

Alysson Bessani
LaSIGE, Faculdade de Ciências,

Universidade de Lisboa
Portugal

João Sousa
LaSIGE, Faculdade de Ciências,

Universidade de Lisboa
Portugal

Marko Vukolić
IBM Research Zurich

Switzerland

Abstract
We briefly describe the preliminary work on the design, im-
plementation and evaluation of a Byzantine-fault tolerant
ordering service for the Hyperledger Fabric Blockchain plat-
form using the BFT-SMaRt replication library.

CCS Concepts • Information systems→ Data replica-
tion tools; • Security and privacy→ Security services; •
Computer systems organization→Reliability;Depend-
able and fault-tolerant systems and networks;

Keywords Byzantine Fault Tolerance, Blockchain

ACM Reference Format:
Alysson Bessani, João Sousa, and Marko Vukolić. 2017. A Byzan-
tine Fault-Tolerant Ordering Service for the Hyperledger Fabric
Blockchain Platform: (Short Paper). In SERIAL’17: ScalablE and
Resilient InfrAstructures for distributed Ledgers, December 11–15,
2017, Las Vegas, NV, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3152824.3152830

The impressive growth of Bitcoin and other blockchain plat-
forms based on the Proof-of-Work (PoW) technique, made
evident the performance limitations of this approach. These
limitations are mostly related with perfomance: existing sys-
tems are capable of processing 10s-100s transactions per
second and present transaction confirmation latencies of up
to one hour. Several alternative blockchain platforms pro-
posed in the last years try to overcome these limitations by
employing more traditional Byzantine Fault-Tolerant (BFT)
consensus protocols for establishing consensus on the blocks
in a blockchain.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SERIAL’17, December 11–15, 2017, Las Vegas, NV, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5173-7/17/12. . . $15.00
https://doi.org/10.1145/3152824.3152830

HLF consenter

Recv Thread
Client
Threads

BFT-SMaRt Proxy

HLF SDK

Node Thread

Signing &
Sending
Threads

BFT-SMaRt Replica

HLF SDK

Block Cutter

B
F

T
 S

hi
m

Frontend Ordering Nodes

Figure 1. BFT-SMaRt ordering service architecture.

Hyperledger Fabric1 (HLF) is one of these platforms, tar-
geting business applications. It is built with flexibility and
generality as key design concerns, supporting thus a wide
variety of non-deterministic smart contracts (here called
chaincode) and pluggable services [3]. The support for plug-
gable components, gives the HLF an unprecedented level
of extensibility, and in particular the support for multiple
ordering services for writing transactions on the blockchain.
Despite of that, version 1.0 (launched in early 2017) comes
without any Byzantine fault-tolerant (BFT) ordering service,
supporting only crash tolerance through an ordering service
based on Apache Kafka.2

We addressed this limitation by designing and implement-
ing a BFT ordering service for HLF 1.0 based on the BFT-
SMaRt state machine replication/consensus library [1]. The
developed service is currently being integrated in the HLF
distribution. More details about this ongoing work can be
found in the full technical report available online [2].

1 BFT-SMaRt Ordering Service
HLF blockchain is implemented by nodes that can play many
roles, such as clients, endorsers, validators and consenters.
Clients submit transactions to the system, while endorsers
and validators maintain the blockchain and implement the
chaincode execution [3]. Consenters are the nodes that im-
plement the consensus protocol. They are responsible for
creating ordered blocks of transactions and disseminate them
to registered validators.

1https://www.hyperledger.org/projects/fabric.
2https://kafka.apache.org/

https://doi.org/10.1145/3152824.3152830
https://doi.org/10.1145/3152824.3152830
https://www.hyperledger.org/projects/fabric
https://kafka.apache.org/

SERIAL’17, December 11–15, 2017, Las Vegas, NV, USA J. Sousa et al.

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 16 32

T
hr

ou
gh

pu
t (

kt
ra

ns
/s

ec
)

Number of receivers

40 bytes
200 bytes

1 kbytes
4 kbytes

(a) 4 orderers

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32

T
hr

ou
gh

pu
t (

kt
ra

ns
/s

ec
)

Number of receivers

40 bytes
200 bytes

1 kbytes
4 kbytes

(b) 7 orderers

 0

 20

 40

 60

 80

 1 2 4 8 16 32

T
hr

ou
gh

pu
t (

kt
ra

ns
/s

ec
)

Number of receivers

40 bytes
200 bytes

1 kbytes
4 kbytes

(c) 10 orderers

Figure 2. BFT-SMaRt Ordering Service throughput for different transaction and cluster sizes.

The BFT-SMaRt ordering cluster is composed by a set of
3f + 1 nodes, tolerating up to f Byzantine faults, that collect
transactions from other clients and execute BFT-SMaRt’s
replication protocol to totally order those transactions. Once
a node gathers a predetermined number of transactions, it
creates a new block containing these transactions and the
hash of the previously created block, generates a digital
signature on the block, and disseminates the block across
all frontends, which collect 2f + 1 matching blocks from
ordering nodes.

The frontend is composed by the HLF consenter and a BFT
shim (see Figure 1). The HLF consenter is implemented in
Go and provides an interface for the HLF codebase to submit
transaction. These transactions are relayed to the Java shim
using sockets. This shim maintains a client thread pool that
receive transactions from the consenter and relays them to
the ordering cluster, and a receiver thread that collects blocks
from the cluster. Transactions (resp. blocks) are sent to (resp.
received from) the cluster through the proxy.
The ordering nodes are implemented on top of the BFT-

SMaRt service replica, thus receiving a stream of totally
ordered transactions. Each node maintains an object named
blockcutter, where they store the transactions received from
the service replica. Once the blockcutter holds a certain num-
ber of transactions (the block size), it creates the next block.
The new block is associated with a header containing a se-
quence number and the hash of previous block, and then
submitted to the signing thread pool. Notice that this thread
pool does not cause non-determinism across the nodes be-
cause (1) the block header and transactions to be assigned
to new blocks are generated sequentially within the node
thread, and (2) the only structures each node needs to main-
tain as the application state is the block header from the
previous iteration of the node thread. Once a block is signed,
it is transmitted to all active frontends.

2 Preliminary Results
We conducted some preliminary experiments to evaluate the
BFT-SMaRt ordering service by using clients that emulate
the behaviour of multiple ordering service frontends. The
environment is comprised by a cluster of Dell PowerEdge

R410 nodes, running Linux, and connected through a Gigabit
ethernet. We conducted experiments for different transac-
tion sizes, each one representing: (1) a SHA-256 hash (40
bytes); (2) three ECDSA endorsement signatures (200 bytes);
and (3) general transactions of 1 and 4 kbytes (the expected
size of a small HLF transaction). Figure 2 shows through-
put results for different ordering cluster sizes and number
of receivers (registered frontends for endorsers/validators).
Performance is constrained by the CPU load of block signing,
the maximum throughput of the consensus algorithm, and
the dissemination of the blocks after ordering.

The results show that, even though the throughput drops
when increasing the number of receivers, the impact of the
number of receivers is considerably smaller for larger (more
representative) transactions (1k and 4 kbytes). This happens
because in this workload, the overhead of the replication
protocol is greater than the overhead of signing or trans-
mitting blocks of 100 and 400 kbytes to a large number of
receivers. For smaller transaction sizes, the transmission of
blocks becomes the predominant overhead. Even transmit-
ting blocks of 400 kbytes to 32 receivers in a cluster of 10
nodes, the ordering service still reaches a peak throughput of
approximately 2200 transactions/second – which is more 2×
of Ethereum’s theoretical peak of 1000 transactions/second,
and vastly superior to Bitcoin’s 7 transaction/second.

Acknowledgments. Thisworkwas supported by FCT through
projects LaSIGE (UID/ CEC/00408/2013) and IRCoC (PTDC/EEI-
SCR/6970/2014), by the European Commission through the
H2020 SUPERCLOUD project (643964) and by an IBM Faculty
Award.

References
[1] Alysson Bessani, Joao Sousa, and Eduardo Alchieri. 2014. State Machine

Replication for the Masses with BFT-SMART. In Proceedings of the 44th
IEEE/IFIP International Conference on Dependable Systems and Networks.

[2] J. Sousa and A. Bessani. 2017. A Byzantine Fault-Tolerant Ordering
Service for the Hyperledger Fabric Blockchain Platform. Technical Report
arXiv:1709.06921. Cornell University Library.

[3] Marko Vukolić. 2017. Rethinking Permissioned Blockchains. In Proceed-
ings of the ACMWorkshop on Blockchain, Cryptocurrencies and Contracts.
Abu Dhabi, United Arab Emirates, 5. https://doi.org/10.1145/3055518.
3055526

https://doi.org/10.1145/3055518.3055526
https://doi.org/10.1145/3055518.3055526

	Abstract
	1 BFT-SMaRt Ordering Service
	2 Preliminary Results
	References

