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Abstract. Modern cryptocurrencies exploit decentralised blockchains
to record a public and unalterable history of transactions. Besides trans-
actions, further information is stored for different, and often undisclosed,
purposes, making the blockchains a rich and increasingly growing source
of valuable information, in part of difficult interpretation. Many data an-
alytics have been developed, mostly based on specifically designed and
ad-hoc engineered approaches. We propose a general-purpose framework,
seamlessly supporting data analytics on both Bitcoin and Ethereum —
currently the two most prominent cryptocurrencies. Such a framework
allows us to integrate relevant blockchain data with data from other
sources, and to organise them in a database, either SQL or NoSQL. Our
framework is released as an open-source Scala library. We illustrate the
distinguishing features of our approach on a set of significant use cases,
which allow us to empirically compare ours to other competing proposals,
and evaluate the impact of the database choice on scalability.

1 Introduction

The last few years have witnessed a steady growth in interest on blockchains,
driven by the success of Bitcoin and, more recently, of Ethereum. This has fos-
tered the research on several aspects of blockchain technologies, from their theo-
retical foundations — both cryptographic [5,9] and economic [17,30] — to their
security and privacy [1,6,10,13,20].

Among the research topics emerging from blockchain technologies, one that
has received major interest is the analysis of the data stored in blockchains.
Indeed, the two main blockchains contain several gigabytes of data (∼130GB
for Bitcoin, ∼300GB for Ethereum), that only in part are related to currency
transfers. Developing analytics on these data allows us to obtain several insights,
as well as economic indicators that help to predict market trends.

Many works on data analytics have been recently published, addressing an-
onymity issues, e.g. by de-anonymising users [19,20,26,28], clustering transac-
tions [11,31], or evaluating anonymising services [23]. Other analyses have ad-
dressed criminal activities, e.g. by studying denial-of-service attacks [2,33], ran-
somware [15], and various financial frauds [21,24,32]. Many statistics on Bit-
coin and Ethereum exist, measuring e.g. economic indicators [16,29], transaction
fees [22], the usage of metadata [3], etc.
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Analysis goal Gathered data Sources

Anonymity

Transactions graph
OP RETURN metadata
IP addresses
address tags
address tags

bitcoind [19,20,23,28,31], forum.bitcoin.org [28]
bitcoind [23]
bitcoin faucet [28], blockchain.info [23]
blockchain.info [19,20,31], bitcointalk.org [19,20,31]
bitcoin-otc.com [31], bitfunder.org [31]

Market
analytics

Transactions graph
IP addresses
address tags
trade data

bitcoind [16], blockexplorer.com [29]
blockchain.info, ipinfo.io [16]
blockchain.info [16]
bitcoincharts.com [16]

Cyber-crime

Transactions graph
mempool
unconfirmed transactions
no longer online services
list of DDoS attacks
mining pools
trades on assets/services
list of fraudulent services
address tags
exchange rate

bitcoind [2,32,33], blockchain.info [15,21], Bitcore [4]
bitcoind [2]
bitcoind [2]
archive.org [32,33]
bitcointalk.org [33]
blockchain.info, bitcoin wiki [33]
bitcoin wiki [33]
bitcointalk.org [15,32], badbitcoin.org [32], cryptohyips.com [32]
blockchain.info [32]
bitcoincharts.com [15,32], quandl.com [15]

Metadata
OP RETURN transactions
OP RETURN identifiers

bitcoind [3]
kaiko.com, opreturn.org, bitcoin wiki [3]

Transaction
fees

Transactions graph
exchange rate
mining pools

bitcoind [22]
coindesk.com [22]
blockchain.info [22]

Table 1. Data gathered by various blockchain analyses.

A common trait of these works is that they create views of the blockchain
which contain all the data needed for the goals of the analysis. In many cases, this
requires to combine data within the blockchain with data from the outside. These
data are retrieved from a variety of sources, e.g. blockchain explorers, wikis,
discussion forums, and dedicated sites (see Table 1 for a brief survey). Despite
such studies share several common operations, e.g., scanning all the blocks and
the transactions in the blockchain, converting the value of a transaction from
bitcoins to USD , etc., researchers so far tended to implement ad-hoc tools for
their analyses, rather than reusing standard libraries. Further, most of the few
available tools have limitations, e.g. they feature a fixed set of analytics, or they
do not allow to combine blockchain data with external data, or they are not
amenable to be updated. The consequence is that the same functionalities have
been implemented again and again as new analytics have been developed, as
witnessed by Table 1.

In this context, we believe that the introduction of an efficient, modular and
general-purpose abstraction layer to manage internal and external information
is key for blockchain data analytics, along the lines of the software engineering
best practices of reuse.

Contributions. The main contribution of this paper is a framework to create
general-purpose analytics on the blockchains of Bitcoin and Ethereum. The de-
sign of our tool is based on an exhaustive survey of the literature on the analysis
of blockchains. The results of our survey, summarized in Table 1, highlight the
need to process external data besides those already present on the blockchain.
To this purpose, the workflow supported by our tool consists of two steps: (i) we
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construct a view of the blockchain, also containing the needed external data, and
we save it in a database; (ii) we analyse the view by using the query language of
the DBMS. The first step is supported by a new Scala library. Distinguishably,
we allow views to be organised either as a MySQL database, or a MongoDB
collection. Our library supports the most commonly used external data, e.g. ex-
change rates, address tags, protocol identifiers, and can be easily extended by
linking the relevant data sources. We evaluate the effectiveness of our framework
by means of a set of paradigmatic use cases, which we distribute, together with
the source code of our library, under an open source license1. We exploit our use
cases to evaluate the performance of SQL vs. NoSQL databases for storing and
querying blockchain views. As a byproduct of our study, we provide a qualitative
comparison of the other tools for general-purpose blockchain analytics.

Structure of the paper. In Section 3 we will illustrate our framework through a se-
ries of use cases. We will perform experiments (using consumer hardware) which
analyse blockchain metadata, exchange rates transactions fees, and address tags.
In Section 4 we will discuss some implementation details of our framework, and
we will evaluate its effectiveness, and the choice between SQL or NoSQL. In Sec-
tion 5 we will compare the existing general-purpose blockchain parsers with ours,
and finally in Section 6 we will draw some conclusions.

2 Background on Bitcoin

Bitcoin is a decentralized cryptocurrency [25,5], that has recently reached a
market capitalization of 100 USD billions2. Bitcoin can be seen as a huge ledger
of transactions, which represent transfers of bitcoins (BTC ). This ledger —
usually called blockchain — is maintained by a peer-to-peer network of nodes,
and a consensus protocol ensures that it can only be updated consistently (e.g.,
one cannot tamper with or remove an already-published transaction).

To give the intuition on how Bitcoin works, we consider two transactions t0
and t1, which we graphically represent as follows:

t0

in: · · ·
in-script: · · ·

out-script(x): F0

value: v0

t1

in: hash(t0)
in-script: σ1

out-script(· · ·): · · ·
value: v1

The transaction t0 contains v0 bitcoins, which can be redeemed by putting on
the blockchain a transaction (e.g., t1), whose in field is the cryptographic hash
of the whole t0. To redeem t0, the in-script of t1 must contain a value σ1 which
makes the out-script of t0 evaluate to true. In its general form, the out-script is a
program in a (not Turing-complete) scripting language, featuring a limited set

1 https://github.com/bitbart/blockchain-analytics-api
2 Source: crypto-currency market capitalizations http://coinmarketcap.com
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of logic, arithmetic, and cryptographic operators. Typically, the out-script is just
a signature verification.

Now, assume that the blockchain contains t0, not yet redeemed, when some-
one tries to append t1. To validate this operation, the nodes of the Bitcoin
network check that v1 ≤ v0, and then they evaluate the out-script F0, by in-
stantiating its formal parameter x to the value σ1. If, after the substitution,
F0 evaluates to true, then t1 redeems t0, meaning that the value of t0 is trans-
ferred to the new transaction t1, and t0 becomes no longer redeemable. A new
transaction can now redeem t1 by satisfying its out-script.

Bitcoin transactions may be more general than the ones illustrated by the
previous example, in that there can be multiple inputs and outputs. Each output
has an associated out-script and value, and can be redeemed independently from
others. Consequently, in fields must specify which output they are redeeming.
Similarly, a transaction with multiple inputs associates an in-script to each of
them. To be valid, the sum of the values of all the inputs must be greater or
equal to the sum of the values of all outputs.

The Bitcoin network is populated by a large set nodes, called miners, which
collect transactions from clients, and are in charge of appending the valid ones to
the blockchain. To this purpose, each miner keeps a local copy of the blockchain,
and a set of unconfirmed transactions received by clients, which it groups into
blocks. The goal of miners is to add these blocks to the blockchain, in order to get
a revenue. Appending a new block Bi to the blockchain requires miners to solve a
cryptographic puzzle, which involves the hash h(Bi−1) of block Bi−1, a sequence
of unconfirmed transactions 〈Ti〉i, and some salt R. The goal of miners is to win
the “lottery” for publishing the next block, i.e. to solve the cryptopuzzle before
the others; when this happens, the miner receives a reward in newly generated
bitcoins, and a fee for each transaction included in the mined block (the fee of
a transaction is the difference between the values of its inputs and outputs). If
a miner claims the solution of the current cryptopuzzle, the others discard their
attempts, update their local copies of the blockchain with the new block Bi, and
start mining a new block on top of Bi. In addition, miners are asked to verify
the validity of the transactions in Bi by executing the associated scripts.

3 Creating blockchain analytics

We illustrate our framework through some case studies, which, for uniformity,
have been developed for the Bitcoin case. We refer to our github repository1 for
some Ethereum examples. Our library APIs provide the following Scala classes
to represent the primitive entities of the blockchain:

– BlockchainLib: main library class. It provides the getBlockchainmethod,
to iterate over Block objects.

– Block: contains a list of transactions, and some block-related attributes (e.g.,
block hash and creation time).

– Transaction: contains various related attributes (e.g., transaction hash and
size).



1 object MyBlockchain {
2 def main(args: Array[String ]): Unit = {
3

4 val blockchain = BlockchainLib.getBitcoinBlockchain(
5 new BitcoinSettings("user", "password ", "8332", MainNet ))

6 val mongo = new DatabaseSettings("myDatabase", MongoDB , "user", "password
")

7 val myBlockchain = new Collection("myBlockchain", mongo)
8

9 blockchain.end(473100) .foreach (block => {

10 block.bitcoinTxs.foreach (tx => {
11 myBlockchain.append(List(

12 ("txHash", tx.hash),
13 ("blockHash", block.hash),
14 ("date", block.date),

15 ("inputs", tx.inputs),
16 ("outputs ", tx.outputs )

17 ))
18 })

19 })
20 }
21 }

Fig. 1. A basic view of the blockchain.

The library constructs the above-mentioned Scala objects by scanning a local
copy of the blockchain. It uses the client, either Bitcoin Core or Parity, to have
a direct access to the blocks, exploiting the provided indices. For Bitcoin, it uses
the BitcoinJ library as a basis to represent the various kinds of objects, while
for Ethereum it uses suitable Scala representations. The APIs allow constructed
objects to be exported as MongoDB documents or MySQL records. In MongoDB
(a widespread non-relational DBMS) a database is a set of collections, each of
them containing documents. Documents are lists of pairs (k,v), where k is a
string (called field name), and v is either a value or a MongoDB document.
Conversely, MySQL implements the relational model, and represents an objects
as a record in a table. In Sections 3.1 to 3.5 we develop a series of analytics on
Bitcoin. Full Scala code which builds the needed blockchain views, queries, and
analysis results can be found in the GitHub repository of the project1.

3.1 A basic view of the Bitcoin blockchain

Since all the analyses shown in Table 1 explore the transaction graph (e.g. they
investigate output values, timestamps, metadata, etc.), our first case study fo-
cusses on a basic view of the Bitcoin blockchain containing no external data.
The documents in the resulting collection represent transactions, and they in-
clude: (i) the transaction hash; (ii) the hash of the enclosing block; (iii) the date
in which the block was appended to the blockchain; (iv) the list of transaction
inputs and outputs.

We show in Figure 1 how to use our APIs to construct this collection.
Lines 1-2 are standard Scala instructions to define the main function. The object
blockchain constructed at line 4 is a handle to the Bitcoin blockchain. At line 5
we setup the connection to Bitcoin Core, by providing the needed parameters

https://bitcoin.org/en/bitcoin-core/
https://parity.io/
https://bitcoinj.github.io/
https://www.mongodb.com
https://www.mysql.com/


db.myBlockchain.aggregate([
{ $group : {

_id: {
year : { $year : "$date" },
month : { $month : "$date" },

day : { $dayOfMonth : "$date" },
},

avgIn: { $avg: {$size : "$inputs "} },
avgOut: { $avg: {$size : "$outputs "} }

}},

{ $sort : { _id : 1}}
]);

Fig. 2. A query to estimate the average number of inputs and outputs by date.

(user, password, and port), and by indicating that we want to use the main net-
work (alternatively, the parameter TestNet allows to use the test network). At
line 6 we setup the connection to MongoDB (alternatively, the parameter MySQL
allows to use MySQL). Since lines 1-6 are similar for all our case studies, for
the sake of brevity we will omit them in the subsequent listings. We declare the
target collection myBlockchain at line 7. At this point, we start navigating the
blockchain (from the origin block up to block number 473100) to populate the
collection. To do that we iterate over the blocks (line 9) (note that b => {...}
is an anonymous function, where b is a parameter, and {...} is its body), and
for each block we iterate over its transactions (at line 10). For each transaction
we append a new document to myBlockchain (lines 11-16). This document is a
set of fields of the form (k,v), where k is the field name, and v is the associated
value. For instance, at line 12 we stipulate that the field txHash will contain the
hash of the transaction, represented by tx.hash. This value is obtained by the
API BitcoinTransaction.

Running this piece of code results in a view, which we can process to ob-
tain several standard statistics, like e.g. the number of daily transactions, their
average value, the largest recent transactions, etc.3 Hereafter we consider an-
other kind of analysis, i.e. the evolution over the years of the number of trans-
action inputs and outputs. To this purpose, we run the MongoDB query shown
in Figure 2. The query first groups the documents with the same date. Then,
for each group, it computes the average number of inputs and outputs. Finally,
the results are sorted in ascending order. The results of the query are graphi-
cally rendered in Figure 3, which shows the average number of inputs/outputs
by date. We see that, after an initial phase, the average number of inputs and
outputs has stabilised between 2 and 3. This is mainly due to the fact that most
transactions are published through standard wallets, which try to minimise the
number of inputs; a typical transaction has two outputs, one to perform the pay-
ment and the other for the change. We also observe a few peaks in the number
of inputs and outputs, which are probably related to experimentation of new
services, like e.g. CoinJoin.

3 Note that one could also perform these queries during the construction of the view.
However, this would not be convenient in general, since — as we will see also in the
following case studies — many relevant queries can be performed on the same view.

https://blockchain.info/charts/n-transactions
https://bitinfocharts.com/comparison/bitcoin-transactionvalue.html
https://blockchain.info/largest-recent-transactions
https://en.bitcoin.it/wiki/CoinJoin
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Fig. 3. Average number of inputs (red line) and outputs (blue line) by date.

1 val opReturnOutputs = new Collection("opReturn ", mongo)

2

3 blockchain.start (290000) .end(473100) .foreach (block => {

4 block.bitcoinTxs.foreach (tx => {
5 tx.outputs .foreach (out => {
6 if(out.isOpreturn()) {

7 opReturnOutputs.append(List(
8 ("txHash", tx.hash),

9 ("date", block.date),
10 ("protocol ", OpReturn .getApplication(out.outScript.toString )),

11 ("metadata ", out.getMetadata())
12 ))
13 }

14 })
15 })

16 })

Fig. 4. Exposing OP RETURN metadata.

3.2 Analysing OP RETURN metadata

Besides being used as a cryptocurrency, Bitcoin allows for appending a few
bytes of metadata to transaction outputs. This is done preeminently through
the OP RETURN operator. Several protocols exploit this feature to implement
blockchain-based applications, like e.g. digital assets and notarization services [3].

We now construct a view of the blockchain which exposes the protocol meta-
data. More specifically, the entries of the view represent transaction outputs, and
are composed of: (i) the hash of the transaction containing the output; (ii) the
date in which the transaction has been appended to the blockchain; (iii) the
name of the protocol that produced the transaction; (iv) the metadata con-
tained in the OP RETURN script. Figure 4 shows the Scala code to construct
this collection (we omit the declaration of the main method, already shown
in Figure 1). At line 3 we scan the blockchain, starting from block 290,000
since OP RETURN transactions were only relayed as standard transactions af-
ter the release 0.9.0 of Bitcoin Core. We then iterate through transactions at
line 4, and through their outputs at line 5. We append a new document to our
collection (lines 7-11) whenever the output of the corresponding transaction is
an OP RETURN (line 6). The method OpReturn.getApplication of our APIs
takes as input a piece of metadata, and returns the name of the associated
protocol. This is inferred by the results of the analysis in [3].

https://en.bitcoin.it/wiki/OP_RETURN
https://bitcoin.org/en/release/v0.9.0


The obtained view can be used to perform various analyses. For instance,
we show in Figure 5 the number of transactions associated with the most used
protocols (only those with at least 1000 transactions). The protocol with the
highest number of transactions is Colu, which is used to certify and transfer the
ownership of physical assets. The second most used protocol is Omni, followed
by Blockstore, a key-value store upon which other protocols are based.
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Fig. 5. Number of transactions per protocol (only protocols with > 1000 transactions).

3.3 Exchange rates

Several analyses in Table 1 use exchange rates for quantifying the economic im-
pact of various phenomena (e.g. cyber-crime attacks, transaction fees, business
activities). In this section we analyse how the value transferred in transactions
is affected by the exchange rate between USD and BTC over the years. Since
exchange rates are not stored in the Bitcoin blockchain, we need to obtain these
data from an external source, e.g. the Coindesk APIs. Using these data, we con-
struct a blockchain view where each transaction is associated with the exchange
rate at the time it has been appended to the blockchain. More specifically, we
construct a MongoDB collection whose documents represent transactions con-
taining: (i) the transaction hash; (ii) the date in which the transaction has been
appended to the blockchain; (iii) the sum of its output values (in BTC ); (iv) the
exchange rate between BTC and USD in such date.

Figure 6 shows the Scala code which builds this collection, using our APIs.
At line 1 we declare the collection that we are going to build, txWithRates. At
lines 3-4 we iterate over all the transactions in the Bitcoin blockchain. For each
one, at lines 5-9 we add a new document to txWithRates. The total amount of
BTC sent by the current transaction is stored in the field outputSum (line 8).
The exchange rate is obtained by invoking the method Exchange of our APIs
(line 9). This method takes a date and retrieves from Coindesk the exchange
rate BTC /USD in that date.

https://www.colu.com/
http://www.omnilayer.org/
https://github.com/blockstack/blockchain-id/wiki/Blockstore
http://www.coindesk.com/price/bitcoin-price-index/


1 val txWithRates = new Collection("txWithRates", mongo)
2

3 blockchain.end(473100) .foreach (block => {
4 block.bitcoinTxs.foreach (tx => {
5 txWithRates.append(List(

6 ("txHash", tx.hash),
7 ("date", block.date),

8 ("outputSum", tx.getOutputsSum()),
9 ("rate", Exchange .getRate (block.date))
10 ))

11 })
12 })

Fig. 6. Exposing exchange rates.

We can analyse the obtained collection in many ways, in order to study
how exchange rates are related to the movements of currency in Bitcoin. For
instance, one can obtain statistics about the daily transaction volume in USD ,
the market capitalization, the list of richest addresses, etc. Hereafter, we mea-
sure the average value of outputs (in BTC ) of the transactions in intervals of
exchange rates. The diagram in Figure 7 shows the results of this analysis, where
we have split exchange rates in 7 intervals of equal size. In the first five inter-
vals we observe the expected behaviour, i.e. the value of outputs decreases as
the exchange rate increases. Perhaps surprisingly, the last two intervals show an
increase in the value of outputs when the value BTC has surpassed 1500 USD .
This may be explained by speculative operations on Bitcoin.
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Fig. 7. Average value of outputs (in BTC ) by exchange rate.

3.4 Transaction fees

In this section we study transaction fees, which are earned by miners when they
append a new block to the blockchain. Each transaction in the block pays a
fee, which in Bitcoin is defined as the difference between its input and output
values. While the values of outputs are stored explicitly in the transaction, those
of inputs are not: to obtain them, one must retrieve from a past block the
transaction that is redeemed by the input. This can be obtained through a “deep”
scan of the blockchain, which is featured by our library. We show in Figure 8

https://blockchain.info/charts/estimated-transaction-volume-usd
http://blockchain.info/charts/market-cap
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html


1 val blockchain = BlockchainLib.getBitcoinBlockchain(new BitcoinSettings("user","
password ","8332",MainNet ,true))

2 val mongo = new DatabaseSettings("myDatabase", MongoDB , "user", "password ")
3 val txWithFees = new Collection("txWithFees", mongo)

4

5 blockchain.end(473100) .foreach (block => {
6 block.bitcoinTxs.foreach (tx => {

7 txWithFees.append(List(
8 ("blockHash", block.hash),

9 ("txHash", tx.hash),
10 ("fee", tx.getInputsSum() - tx.getOutputsSum()),

11 ("date", block.date),
12 ("rate", Exchange .getRate (block.date))
13 ))

14 })
15 })

Fig. 8. Exposing transaction fees.

how to construct a collection which contains, for each transaction: (i) the hash of
the enclosing block; (ii) the transaction hash; (iii) the fee; (iv) the date in which
the transaction was appended to the blockchain; (v) the exchange rate between
BTC and USD in such date.

The extra parameter true in the BitcoinSettings constructor (missing in
the previous example), triggers the “deep” scan. When scanning the blockchain
in this way, the library maintains a map which associates transaction outputs to
their values, and inspects this map to obtain the value of inputs4. The methods
getInputsSum (resp., getOutputsSum) at line 10 returns the sum of the values
of the inputs (resp., the outputs) of a transaction.

The obtained collection can be used to perform several standard statistics,
e.g. the daily total transaction fees, the average fee, the percentage earned by
miners from transaction fees, etc. Here we analyse the so-called whale trans-

actions [14], which pay a unusually high fee to miners. To obtain the whale
transactions, we first compute the average x̄ and standard deviation σ of the
fees in all transactions: in USD , we have x̄ = 0.41, σ = 12.09. Then, we de-
fine whale transactions as those which pay a fee greater than x̄ + 2σ = 24.58
USD . Overall we collect 242, 839 whale transactions; those with biggest fee are
displayed in Figure 9.

Fee (USD) Date Transaction hash

136243.37 2016-04-26 14:15:22 cc455ae816e6cdafdb58d54e35d4f46d860047458eacf1c7405dc634631c570d
56493.50 2017-01-04 20:01:28 d38bd67153d774a7dab80a055cb52571aa85f6cac8f35f936c4349ca308e6380
39502.15 2017-05-31 14:28:51 cb95ab3aef378c14bc59d0db682d96202b981c1f8fad7d66e23e0be06f2a00c4
25095.71 2017-05-31 14:28:51 8e12a1aba87e4657f5fabec1121ed57f706805ad6d4ffe88c6fce78596bd9b75
23518.00 2013-08-28 10:45:17 4ed20e0768124bc67dc684d57941be1482ccdaa45dadb64be12afba8c8554537

Fig. 9. The five biggest whale transactions.

4 Since inputs can only redeemed transactions on past blocks, the map always contains
the required output. Although coinbase inputs do not have a value in the map, we
calculate their value using the total fees of the current block and the block height
(reward is halved each 210,000 blocks).

https://blockchain.info/charts/transaction-fees
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html


1 val mySQL = new DatabaseSettings("outwithtags", MySQL , "user", "password ")
2 val tags=new Tag("src/main/scala/tcs/custom/input.txt")
3 val outTable = new Table(sql"""

4 create table if not exists tagsoutputs(
5 id serial not null primary key,

6 transactionHash varchar (256) not null ,
7 txdate TIMESTAMP not null ,

8 outvalue bigint unsigned ,
9 address varchar (256),
10 tag varchar (256)

11 )""", mySQL)
12

13 blockchain.end(473100) .foreach (block => {
14 block.bitcoinTxs.foreach (tx => {
15 tx.outputs .foreach (out => {

16 out.getAddress(MainNet ) match {
17 case Some(add) =>

18 tags.getValue (add) match {
19 case Some(tag) => {

20 outTable .insert (sql"insert into tagsoutputs (transactionHash ,
txdate, outvalue , address , tag) values (${tx.hash.toString
}, ${block.date}, ${out.value}, ${add.toString }, ${tags.

getValue (add)})")}
21 case None => }

22 case None =>
23 }
24 })

25 })
26 })

Fig. 10. Associating transaction outputs with tags (SQL version).

3.5 Address tags

The webpage blockchain.info/tags hosts a list of associations between Bit-
coin addresses and tags which briefly describe their usage5. Table 1 shows that
address tags are widely adopted, e.g. analytics for cyber-crime usually retrieve
addresses tagged as scam or ransomware on forums; market analyses exploit
tags for recognising addresses of business services; anonymity studies tag the
addresses that seem to belong to the same entity. In this section we construct
a blockchain view where outputs are associated with the tags of the address
which can redeem them (we discard the outputs with untagged addresses). More
specifically, we construct an SQL table whose columns represent transaction
outputs containing: (i) hash of the enclosing transaction; (ii) the date in which
the transaction has been appended to the blockchain; (iii) the output value (in
BTC ); (iv) the address receiving the payment; (v) the tag associated to the
address.

Figure 10 shows the Scala script which builds this table. At line 1, we con-
nect to the MySQL database. We retrieve tags from an external source, the
blockchain.info website. While in the previous case studies we have retrieved
external data by querying the source (e.g. the Coindesk APIs), in this case we
query a local file in which we have stored the data fetched from blockchain.info.
At line 2, given the file containing tags, the Tag class builds a Map which asso-

5 For instance, address 1PQCrkzWweCw4huVLcDXttAZbSrrLbJ92L is associated to
tag Linux Mint Donations http://www.linuxmint.com/donors.php

https://blockchain.info/tags
https://blockchain.info/address/1PQCrkzWweCw4huVLcDXttAZbSrrLbJ92L
http://www.linuxmint.com/donors.php


ciate each address to the correspondent tag. At lines 4-11 we create a new table.
At lines 13-15 we iterate over all the transaction outputs. At line 16 we try to
extract the address which can redeem the current output. If we find it (line 17),
then we search the map for the associated tag (line 18); if a tag is found (line 19)
we insert a new row into the tagsoutputs table (line 20).

Using the obtained view, one can aggregate transactions on different busi-
ness levels [16] to obtain statistics about the total number of transactions, the
amount of BTC exchanged, the geographical distributions of tagged service, etc.
In particular, we aggregate all addresses whose tag starts with SatoshiDICE, and
then we measure the number of daily transactions which send BTC to one of
these addresses. The diagram in Figure 11 shows the results of this analysis. The
fall in the number of transactions at the start of 2015 may be due to the fact
that SatoshiDICE is using untagged addresses.
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Fig. 11. Number of daily transactions to addresses tagged with SatoshiDICE*.

4 Implementation and validation

We implement the Ethereum-side of our library by exploiting Parity, queried by
means of the web3j library. Bitcoin data is provided by both BitcoinJ and the
RPC interface of Bitcoin Core. While BitcoinJ APIs only allow the programmer
to retrieve a block by its hash, Bitcoin Core’s interface exposes calls to do so
by its height on the chain. Furthermore, BitcoinJ’s “block objects” do not carry
information about block height and the hash of the next block (they only have
backward pointers, as defined in the blockchain), which can be fetched by using
Bitcoin Core. Our APIs allow to navigate blockchains. Particularly, in the Bitcoin
case, we do this by iterating over these steps: (i) get the hash h of the block
of height i, by using Bitcoin Core; (ii) get the block with hash h, by using
BitcoinJ; (iii) increment i. By default, the loop starts from 0 and stops at the last
block. The methods blockchain.start(i), and blockchain.end(j) allow to
scan an interval of blockchains, as shown in Section 3.2. We write the SQL queries
exploiting ScalikeJDBC, a SQL-based DB access library for Scala. ScalikeJDBC
provides also a DSL for writing SQL queries.

https://github.com/web3j/web3j
http://scalikejdbc.org/


Case study
MongoDB MySQL

Create Query Size Create Query Size

Basic view 9 h 2860 s 300 GB 9 h 3.5 h 266 GB
OP RETURN metadata 2 h 0.5 s 0.5 GB 1.4 h 2.5 s 0.5 GB

Exchange rates 5 h 477 s 34 GB 4.5 h 243 s 27 GB
Transaction fees 9 h 448 s 51 GB 8.5 h 614 s 43.5 GB
Address tags 4 h 1.8 s 0.8 GB 2.3 h 2.7 s 0.6 GB

Table 2. Performance evaluation of our framework.

We carry out our experiments using consumer hardware, i.e. a PC with a
quad-core Intel Core i5-4440 CPU @ 3.10GHz, equipped with 32GB of RAM
and 2TB of hard disk storage. All the experiments scan the Bitcoin blockchain
from the origin block up to block number 473100 (added on 2017/06/27). Table 2
displays a comparison of the size of each view, and the time required to create
and query it.

Note that the size of the blockchain view constructed in Basic (Section 3.1)
is more than twice than the current Bitcoin blockchain. This is because, while
Bitcoin stores scripts in binary format, our library writes them as strings, so
to allow for constructing indices and performing queries on scripts. Moreover,
the SQL query in Basic is particularly slow because of the join operations it
performs. Note instead that the query times in SQL and MongoDB are quite
similar in all the other cases, where no join operation is required.

5 Comparison with related tools

We now compare other general-purpose blockchain analysis tools with ours. Ta-
ble 3 summarises the comparison, focussing on the target blockchain, the DBMS
used, the support for creating a custom schema, and for embedding external
data. The rightmost column indicates the date of the most recent commit in the
repository. Note that all the tools which support Bitcoin also work on Bitcoin-
based altcoins.

The projects blockparser and rusty-blockparser allow one to perform
full scans of the blockchain, and to define custom listeners which are called
each time a new block or transaction is read. Unlike our library, these tools offer
limited built-in support for combining blockchain and external data. The website
blockchainsql.io has a GUI through which one can write and execute SQL
queries on the Bitcoin blockchain. This is the only tool, among those mentioned
in Table 3, that does not need to store a local copy of the blockchain. A drawback
is that the database schema is fixed, hence it is not possible to use it for analytics
which require external data. While the other tools store results on secondary
memory, blockparser and BlockSci keep all the data in RAM. Although this
speeds up the execution, it demands for “big memory servers”, since the size of
the blockchains of both Bitcoin and Ethereum has largely surpassed the amount
of RAM available on consumer hardware. Note instead that the disk-based tools
also work on consumer hardware. Some low-level optimizations, combined with

https://github.com/znort987/blockparser
https://github.com/mikispag/rusty-blockparser


Tool Blockchain Database Schema Ext. data Updated

blockparser BTC RAM-only Custom Custom 2015-12
rusty-blockparser BTC SQL, CSV Fixed Custom 2017-09
blockchainsql.io BTC SQL Fixed None N/A

BlockSci BTC RAM-only Custom Custom 2017-09
python-parser BTC None None Custom 2017-05

Our framework BTC, ETH MySQL, MongoDB Custom Custom 2017-09

Table 3. General-purpose blockchain analytics frameworks.

an in-memory DBMS, help [12] to overwhelm the performance of the disk-based
tools. Unlike the other tools, [12] provides also data about transactions broadcast
on the peer-to-peer network.

Remarkably, as far as we know none of the analyses mentioned in Table 1 uses
the general-purpose tools in Table 3. Instead, several of them acquire blockchain
raw data by using Bitcoin Core6 (the reference Bitcoin client), and encapsulate
them into Java objects with the BitcoinJ APIs before processing. However, nei-
ther Bitcoin Core nor BitcoinJ are natural tools to analyse the blockchain: the
intended use of BitcoinJ is to support the development of wallets, and so it only
gives direct access to blocks and transactions from their hash, but it does not
allow to perform forward scans of the blockchain. On the other hand, Bitcoin
Core would provide the means to scan the blockchain, but this requires expertise
on its low-level RPC interface, and even doing so would result in raw pieces of
JSON data, without any abstraction layer.

A precise comparison of the performance of these tools against ours is beyond
the goals of this paper. The performance analysis in Table 2 is a first step towards
the definition of a suite of benchmarks for evaluating blockchain parsers.

6 Conclusions and future work

We have presented a framework for developing general-purpose analytics on the
blockchains of Bitcoin and Ethereum. Its main component is a Scala library
which can be used to construct views of the blockchain, possibly integrating
blockchain data with data retrieved from external sources. Blockchain views can
be stored as SQL or NoSQL databases, and can be analysed by using their query
languages. Our experiments confirmed the effectiveness and generality of our
approach, which uniformly comprises in a single framework several use cases ad-
dressed by various ad-hoc approaches in literature. Indeed, the expressiveness of
our framework overcomes that of the closer proposals in the built-in support for
external data, and the support of different kinds of databases and blockchains.
Importantly, coming in the form of an open source library for a mainstream
language, our framework is amenable of being validated and extended by a com-
munity effort, following reuse best practices.

6 https://bitcoin.org/en/bitcoin-core. Another popular tool for accessing the
blockchain was Bitcointools (https://github.com/gavinandresen/bitcointools),
but it seems no longer available.

https://bitcoinj.github.io
https://bitcoin.org/en/bitcoin-core
https://github.com/gavinandresen/bitcointools


On the comparison of SQL vs NoSQL, our experiments did not highlight sig-
nificant differences in the complexity of writing and executing queries in the two
languages. Instead, we observed that the schema-less nature of NoSQL databases
simplifies the Scala scripts. From Table 2 we see that both creation and query
time are comparable as order of magnitude. As already discussed in Section 4,
the difference in the execution time of queries is due to join operations in SQL.
A more accurate analysis, carried over a larger benchmark, is scope for future
work. Anyway, it is worth recalling that the goal of our proposal is provide to the
final user the flexibility to choose the preferred database, rather than ascertain
an idea of best-fit-for-all in the choice.

Although our framework is general enough to cover most of the analyses
in Table 1, it has some limitations that can be overcome with future extensions.
In particular, some analyses addressing e.g. information propagation, forks and
attacks [7,8,18,27] require to gather data from the underlying peer-to-peer net-
work. To support this kind of analyses one has to run a customized node (either
of Bitcoin or Ethereum). Such an extension would also be helpful to obtain
on-the-fly updates of the analyses.
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