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Abstract

The advent of mobile health (mHealth) technologies challenges the capabilities of current 

visualizations, interactive tools, and algorithms. We present Chronodes, an interactive system that 

unifies data mining and human-centric visualization techniques to support explorative analysis of 

longitudinal mHealth data. Chronodes extracts and visualizes frequent event sequences that reveal 

chronological patterns across multiple participant timelines of mHealth data. It then combines 

novel interaction and visualization techniques to enable multifocus event sequence analysis, which 

allows health researchers to interactively define, explore, and compare groups of participant 

behaviors using event sequence combinations. Through summarizing insights gained from a pilot 

study with 20 behavioral and biomedical health experts, we discuss Chronodes’s efficacy and 

potential impact in the mHealth domain. Ultimately, we outline important open challenges in 

mHealth, and offer recommendations and design guidelines for future research.
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1 INTRODUCTION

As revolutionary developments in mobile sensor technology extend to more applications in 

healthcare, the potential for understanding patterns and relationships among physiological 

factors is burgeoning. With these sensors, health researchers are afforded new capabilities to 

collect and analyze health data from study participants with more accuracy and precision 

than ever before. We have commenced a pioneering initiative to develop innovative methods 

that turn the wealth of mobile health (mHealth) sensor data unlocked by these emerging and 

evolving sensors into reliable and actionable health information. As smoking is the leading 

yet preventable cause of death in the United States, and as smoking lapse contributes to a 

high failure rate in quit attempts, smoking cessation is one of the most challenging research 

problems in this area. For this reason, we have selected smoking cessation and lapse as our 

primary topic of focused analysis and are currently developing tools to assist health 

researchers in discovering temporal, physiological, and behavioral patterns and factors that 

cause abstinent smokers to lapse.

To assess the behaviors surrounding smoking abstinence and relapse, health researchers need 

to to understand lifestyle choices and activities that are related to smoking relapse, and are 

particularly interested in the sequences of events leading up to lapse [5, 25]. Furthermore, 

whereas analysts are interested in determining universal indicators and causes of smoking 

relapse, behavioral variation between participant groups is equally relevant [2, 10]. Should 

younger individuals’ daily routines be distinguished from those of older? Will early morning 

and late night smokers exhibit different presmoking behaviors [26]?

To begin answering these questions, researchers need tools to discover which subsets 

(cohorts) of abstinent smokers exhibit similar or dissimilar behaviors, and to compare the 

groups as such. Ultimately, these methods must also represent longitudinal, high-resolution 

mHealth datasets. Figure 1 shows a snapshot of this complexity for only a few evenings’ 

worth of mHealth data—visualizing the data as-is is complex and difficult to make sense of. 

Exploring how chronological patterns relate to common behaviors is nontrivial, as it is a 

challenge not only to define groups of behaviors from mHealth data but also to examine and 

compare these groups interactively. In contrast to traditional electronic health records 

(EHRs) where temporal events are already explicitly defined, largely nonoverlapping, and do 

not repeat frequently throughout the day, mHealth analysis requires that event chronology is 

derived from overlapping sensor data streams that span daytime continuously.
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1.1 Our Contributions

• mHealth data introduces unique challenges that existing tools for analyzing 

EHRs do not adequately address. Chronodes is one of the first attempts to 

explore how to best represent and explore mHealth data, combining data mining 

and human-centric visualization techniques to aid data exploration, pattern 

discovery, and fine-grain analysis of longitudinal mHealth records.

• Chronodes introduces two novel capabilities that help health researchers 

interactively explore and combine sequences to ask important, complex questions 

such as “what happens between first lapses that precede high activity, and second 

lapses that follow low activity but high stress?” and then to generate and explore 

variations of this question interactively:

1. Although existing tools align on multiple occurrences of a single event 

type, Chronodes allows alignment on two or more event types so that 

users can see what happens in between (e.g., between a first and second 

lapse).

2. Chronodes’ alignment points can be a single event, or a sequence 

consisting of multiple events (e.g., smoking lapse → high activity), 

which can be defined constructively during event sequence exploration.

• We conducted an informal study with 20 expert researchers from a spectrum of 

mHealth related disciplines. By summarizing the insights gained, we outline 

important open research and design challenges in developing the mHealth field, 

and offer recommendations and design guidelines for future research.

2 RELATED WORK

Our research builds on prior works in multiple disciplines, from visualization, health 

research, and data mining.

2.1 Visualization of Multiple Timelines

For EHRs and mobile health data, aggregating the event data of multiple patient timelines 

into a single timeline can be difficult to make sense of–the order of events from one timeline 

to another is completely uncorrelated. This challenge is customary in healthcare analysis: 

apart from needing to understand the relationships between a patient’s various physiological 

records, analysts must do the same between thousands of patients on end [3]. Principally, 

Aigner et al. [1] and Brehmer et al. [6] provide a series of typologies and guidelines for 

visualizing timeline data according to a variety of data types and representational criteria. 

Meanwhile, approaches to “multifocus” timeline visualization [38, 42] compliment such 

techniques by enabling users to select multiple segments of time from timeline 

visualizations, which can then be displayed in a consolidated format and used to find similar 

patterns [43]. Fundamentally, visualizing dissimilar records side by side proposed in Fouse 

et al. [13] enables users to identify high-level correlations between the distinct data streams. 

However, even these visualization approaches become increasingly intractable as we scale to 

more patients and sensor kinds, which demands new visual and algorithmic techniques for 
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summarizing the data of multiple, concurrent timelines. Accordingly, in an effort to unify 

many patient timelines, CareFlow [28] visualizes the outcomes of 50,000 patients in a 

single, tree-like timeline. Although this approach provides an expressive high-level overview 

of similar patient groups, it has limited support for the specification of behavioral groups 

and repetitive event sequences. Whereas Chronodes also provides a summary of participant 

data in this fashion (Figure 1A), its functional concentration is a new sequence-based 

overview that reveals repeating event patterns at a glance.

2.2 Event Alignment

Tools such as EventFlow [24] and LifeFlow [39], as well as others in non–health-related 

fields such as Experiscope [17], allow users to select a specific event (e.g., drug A 

prescribed), thereby displaying the events that occur both before and after the selected event, 

for all data records. This technique of “event alignment” is useful for extrapolating event 

causation and chronological trends, and also for organizing event flows around a consistent 

visual reference point.

Still, even with alignment, the abundance of data presented by these interfaces, especially for 

large datasets, is complex and difficult to understand at a glance. To mitigate this visual 

overload, existing tools rely on techniques of simplification, such as Find-and-Replace [24], 

which can compress multiple user-specified events into one. Although this kind of 

simplification reduces the number of visual elements on the screen, it hides information as 

the user is repeatedly working toward an increasingly simplistic representation–it is difficult 

to recover how the simplified data stream represents the original data [24]. With an 

interactive strategy similar to event alignment, Chronodes reveals event-based patterns from 

aggregated data streams without the visual complexity of presenting mHealth data records as 

is. Then, as opposed to iteratively consolidating events to simplify the visualization of all 

participant records, Chronodes leverages the properties of frequent event sequences to depict 

patterns of behaviors that can be constructed and explored interactively.

2.3 Cohort Analysis

An alternate approach to understanding the trends of aggregated mHealth data streams is to 

consider groups of patients as cohorts, or individuals that share certain properties [4, 23]. In 

an effort to comparatively assess sequences of events between cohorts, projects such as 

CoCo (Cohort Comparison) [23] show the chronology of events associated with two user-

defined cohorts. Whereas this effectively reveals the different properties and event sequences 

between specified cohorts, CoCo focuses on specifying and comparing the attributes of two 

distinctly defined cohorts (e.g., male and female), and does not enable the user to 

interactively and dynamically redefine cohort groups by arranging sequences of events. 

Chronodes builds on the cohort comparison methodology by allowing the user to define 

cohorts constructively: rather than specifying cohorts for comparison and viewing their 

sequences of events, Chronodes allows cohorts to be specified by an arrangement of the 

events themselves. By pairing this functionality with event alignment, Chronodes enables 

the user to fluidly explore cohorts and their associated chains of events in tandem.
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2.4 Sequence Mining and Pattern Matching

Building machine learning and pattern matching algorithms into interactive visualizations 

presents promising opportunities for enhancing human pattern-finding abilities. Hochheiser 

and Shneiderman [18] and Buono et al. [7] demonstrated how users could select specific 

patterns in quantitative data streams and see where else they were found. For event-based 

data, Fails et al. [12] developed a query system to find patterns across multiple event 

histories. Gschwandtner et al. [16] provide users with more options to specify how these 

patterns are defined and lends detailed representations of how patterns compare.

Acknowledging the potential of frequent sequence mining in dense event-based data, Click-

stream [22] mines frequent sequences of events and visualizes them in clusters according to 

their similarity. In a more consolidated visual format, ActiviTree [37] renders frequent event 

patterns found throughout participant data as a visual tree of “common” event sequences. 

Frequence [29] and Scribe Radar [40] bridge this technique with CareFlow’s [28] 

representation of events and connecting edges, and then enable specification of cohorts by 

selecting sequential branches. Allowing users to extend events sequences as they are 

retrieved, Progressive Insights [36] offers an alternate, constructive methodology to 

specifying event sequences. Whereas TimeStitch [31] designed new interactive paradigms 

for specifying and manipulating event sequences in a constructive, nonlinear fashion, 

Coquito [21] enabled the same constructive definition of behavioral groups for cohorts. Both 

TimeStitch and Coquito implement kinds of visual query languages, as in Zgraggen et al. 

[41], that enable the interactive definition of queries on event-based data. Chronodes builds 

on this foundation of work with a constructive event-based querying system, enabling the 

exploration and discovery of frequent patterns across multiple continuous timelines of 

mHealth records.

3 DATASET, RESEARCH QUESTIONS, AND DESIGN MOTIVATIONS

Before beginning development on Chronodes, we obtained real-world mHealth datasets 

collected through field studies investigating the use of the AutoSense Sensor Suite for 

inferring a general stress state [11]. In the first of these studies, 6 participants (who smoke) 

wore the sensors for 3 days, totaling about 400 hours. In a later study, the same format of 

data was recorded for 52 participants before and after planned smoking abstinence (prequit 

and postquit, respectively), with each participant’s data totaling approximately 6 days [33]. 

The sensor suite recorded 40 data streams for each participant, capturing a wide variety of 

physiological signals, such as electrocardiogram (ECG), galvanic skin response (GSR), and 

heart rate variability (HRV) measurements. The resulting datasets consisted of more than 

750,000 and 4,650,000 data points, respectively (sampled at 1Hz). The AutoSense data 

represents one of the few mHealth data initiatives available for research use, as collecting 

good-quality mHealth data is a great technical challenge due to limitations in sensor 

hardware and battery technologies [9, 11, 15].

Following data collection, we regularly discussed with health researchers on our team, 

whereby we worked to determine questions about this data that an interactive visualization 

tool should help to answer. As we developed Chronodes, we showed them iterative designs 

of our prototype for feedback and improvement suggestions. Accordingly, specialists in 
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health psychology and statistics (see Table 1) identified four initial questions that informed 

tasks in mHealth data analysis, which primarily concern identifying physiological states, 

habitual patterns, and external circumstances that can be correlated to smoking lapses, across 

participant demographics:

Q1 What are the events preceding and proceeding each instance of smoking lapse 

[5]?

Q2 What habitual events or cues (e.g., smoking every day after lunch) are correlated 

to smoking lapse [25]?

Q3 What are the correlations between smoking lapse and other physiological factors, 

such as stress [2, 10]?

Q4 What event patterns are specific to individual participants, and otherwise 

universal to all participants [26]?

Using these target questions as our point of departure, we identified existing techniques in 

visual analytics and mHealth data analysis (as elaborated in Section 2) that would assist in 

answering these questions with respect to the AutoSense data. Principally, we identified that 

event alignment would assist in answering Q1 by allowing users to align participant 

timelines around smoking lapse events. We also determined that an implementation of 

cohort definition would provide support to answering Q3 and Q4: users should have the 

capability to select particular groups of participants—according to specific physiological 

factors or event patterns of interest—that would reveal factors specific to these populations.

Accordingly, in acknowledging that Q1, Q2, and Q3 each addressed the importance of 

discovering event patterns, we experimented with frequent sequence mining as an approach 

to defining participant cohorts. To accomplish this, we first produced a series of sketches and 

graphical mock-ups that envisioned how event patterns could be used to represent cohort 

groups, with a particular emphasis on the representation of when event patterns occur over 

time. Concurrently, we produced “dummy” event-based data that reflected the size and 

dimensions of the AutoSense data, and experimented with a series of frequent sequence 

mining algorithms to determine whether such an algorithmic approach was tractable and 

could reveal event patterns preceding and proceeding smoking events.

As an outcome of these experiments, we identified that mining mHealth data for recurring 

event sequences operates to answer Q2 and Q4: it permits investigations of participant 

behaviors within days, across days, and between participants. However, to address Q1, we 

needed to provide users with the capability to select events of interest, such as smoking lapse 

events. Accordingly, by adapting “event alignment” into “frequent sequence alignment,” we 

developed an approach to answering Q1: we allow Chronodes users to investigate the 

frequent sequences that occur before and after aligned sequences of interest. Then, to 

address Q3—finding correlations between smoking events and physiological factors—we 

developed an approach to representing physiological factors as events (Section 6). For 

example, we can consider a high-stress activity and a drive to work as different events, and 

represent them within frequent sequences once they are mined. As we intend for Chronodes 

to be applied to a wide variety of health conditions, it was additionally important that the 
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process of converting physiological factors to events was made user adjustable. Accordingly, 

we enable users to adjust event definitions interactively as in Fails et al. [12], before the 

events are mined for event sequence patterns. How these events are derived, and the 

implications of defining events in this way, are discussed in later sections.

4 CHRONODES OVERVIEW

To preface Chronodes’ contributions, we provide a high-level overview of the system’s 

fundamental features.

4.1 Description of the User Interface

The Chronodes user interface (Figure 2) is comprised of two areas that update to the user’s 

interactions. The Event Orchestra, fixed to the bottom of the screen (Figure 2B), lists a 

subset of participants represented by our dataset and displays the series of events that these 

participants perform over the course of 24-hour days. On the right, a legend indicates the 

event types (Figure 2C) for smoking episodes [33] (red circles), intensity of physical activity 
[32] (encoded by shades of blue), and stress probabilities [19] (encoded by size of white 

dots). In Section 6.1, we describe in detail how these measures are derived and defined. As 

the user interacts with event sequences, participants and events that are associated with each 

sequence “light up” correspondingly (mousing over  in Figure 2). The Event 
Orchestra demonstrates to new users how derived event sequences relate to the “raw” event 

data, and also serves as a continuous indicator of the subset of data selected elsewhere in the 

interface (highlighted). In this way, the Event Orchestra’s primary role is as a guiding frame 

of reference but is not essential to interacting with Chronodes and can be minimized.

The Sequence Stage is the primary area of user interaction and accounts for the largest 

amount of space in the Chronodes interface (Figure 2A). It is within the Sequence Stage that 

the user selects, manipulates, and compares frequent event sequences. To demonstrate how 

the user performs these operations, we will describe Chronodes’s functionality through a use 

case scenario.

4.2 Use Case Walk-Through

This scenario demonstrates how the pilot study data described in Section 1 is used with 

Chronodes in practice. Our user Jane is a health researcher who intends to discover and 

understand physiological events commonly associated with smoking episodes. Upon launch, 

Chronodes displays the events that occur throughout the participants’ days in the Event 
Orchestra. In the Sequence Stage, Chronodes displays the frequent event sequences derived 

from this event data. By initially displaying both the raw event data and the derived 

sequences side by side as in Vrotsou et al. [37], we lend Jane introductory information about 

how event sequences are derived, what they represent, and where they occur.

Initially, the frequent sequences are displayed in a scatterplot (Figure 2A) that helps Jane 

identify frequent sequences of interest. The axes of this scatterplot will be described in detail 

later on; for now, Jane is interested foremost in events surrounding smoking episodes, so she 

chooses a smoking → high-activity event sequence (  in Figure 2A) from the 

scatterplot. As she moves the cursor over this sequence, the Event Orchestra highlights the 
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multiple occurrences of this sequence across multiple participants and days of data. By then 

clicking the sequence, it becomes a focal sequence and moves to the center of the Sequence 
Stage. Whereas the Event Orchestra remains fixed in place (Figure 2B), the scatterplot 

(Figure 2A) moves upward until it is off-screen, which allows Jane to scroll upward to view 

it at any time. Once the scatterplot is off-screen and the focal sequence is centered, 

Chronodes reveals the adjacent event sequences that occur most frequently before and after 

the smoking event sequence that Jane selected (Step 1 of Figure 3).

To indicate which of these sequences occurs before and after the focal sequence, Chronodes 

displays the adjacent sequences as on a timeline: sequences that occur before the focal 
sequence are placed on the left, and those that occur after are on the right (Figure 3). In the 

default implementation of Chronodes, the adjacent sequences are ranked vertically by 

frequency so that the most frequent ones are topmost. However, following from event 

sequence visualization approaches developed in Perer and Wang [29] and Polack et al. [31], 

event sequences can also be sorted by duration, cardinality, or the time at which they occur, 

which gives users more control over the event sequences that are made prominently visible.

Altogether, sequence frequency is not the only thing that matters to Jane; distance in time 

from the focal sequence is also relevant. To account for this, Chronodes positions sequences 

horizontally based on their proximity in time to the focal sequence. In other words, 

sequences that tend to occur immediately before or after the focal sequence are closer to it 

(notice the horizontal staggering between sequences in Step 1 of Figure 3).

Critically, it is important for our users to understand at a glance that chronology on the 

Sequence Stage timeline is relative to the focal sequence and not absolute as in a normal 

timeline. This is distinct from existing healthcare analysis visualizations, which depict 

participant timelines with linear temporality. To demonstrate this visually, Chronodes 

displays the frequent sequences on white tracks that depict the flow of time (Figure 3). In 

this way, every track that Jane can trace with her eyes is a sequence of sequences that occurs 

somewhere in the participants’ data. The tracks “bottleneck” at the focal sequence because it 

is the focal sequence that every other sequence has in common in its proximity. In addition, 

the relative frequency or “volume” of each adjacent frequent sequence is indicated by bars of 

varying height (Figure 3). The height of each bar, determined by the number of times the 

frequent sequence occurs in the data, is relative to the topmost adjacent frequent sequence.

To reduce visual clutter, only the top 10 most frequent sequences on each side are displayed, 

but Jane can scroll vertically through these options to reveal more. Jane sees a low-activity 

high-stress event (  in Step 1 of Figure 3) that occurs only sixth most frequently, but 

immediately, after her focal sequence. She selects it, and it becomes a second focal sequence 

along the tracks (Step 2 of Figure 3).

Now that Jane has selected two focal sequences, Chronodes displays the sequences that 

occur only where both focal sequences are present (i.e., ) To illustrate this 

comprehension to new users, the events satisfied by Jane’s two focal sequences remain 

dimly lit in the Event Orchestra (as in Figure 2B). Although the adjacent sequences before 

and after these focal sequences are still visible, another feature now emerges: Jane can click 
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a + symbol in between the focal sequences (Step 2 in Figure 3) to reveal the sequences that 

occur between two focal sequences (Step 3 in Figure 3). This functionality reveals a 

fundamental advantage of interactive frequent sequence alignment: the capacity to reveal the 

trends that occur between two or more events of interest.

Jane can clearly see the frequent sequences that occur before, between, and after the two 

focal sequences, but which participants do these adjacent sequences belong to? What time of 

the day are they occurring? As before, Jane can simply mouse over any sequence to reveal 

its associated events in the Event Orchestra. By doing so, Jane discovers that the sequences 

she is observing are shared by a certain subset of participants. Furthermore, for each of these 

participants, the events she is highlighting tend to occur in the evening. This shows that by 

defining these two focal sequences, Jane has effectively navigated to a “cohort” of 

participants that mutually exhibit the event behaviors she specified. This demonstrates the 

interactive and expressive capabilities of Chronodes, to use event patterns to discover 

cohorts of participants.

Finally, Jane can delete one of her focal sequences to return to a previous state of her 

analysis. As adding more focal sequences defines a more specific cohort because it 

resembles an AND operation, deleting focal sequences, conversely, broadens the cohort. 

Jane can continue to explore subsets of her participants’ behaviors in this fashion.

5 CHRONODES CONTRIBUTIONS

Now that an overview of the Chronodes interface has been presented, we proceed in this 

section to describe these features in terms of the contributions they lend to research in 

visualization, data mining, and mHealth analysis.

5.1 Visualizing Frequent Sequences for Interaction

Chronodes develops on event-based timelines by replacing events with sequences of events 

that can be rearranged interactively. Every event sequence, whether discovered by frequent 

sequence mining or defined interactively by the user, is an interactive element. As in “event 

alignment,” any event sequence can be designated as a focal sequence so that all events 

before and after it are displayed chronologically (Figure 3).

Representing mined frequent sequences for interaction is a novel integration of data mining 

and visualization with a series of conceptual and computational challenges that Chronodes is 

designed to solve. Fundamentally, it is important for our users to understand that although 

we represent frequent sequences as singular visual elements, they in actuality represent 

many event sequences over time. This relationship is demonstrated by the Event Orchestra: 

when the user mouses over a frequent sequence on the Stage, the corresponding event 

sequences across any number of participants are highlighted in the Orchestra. In other 

words, a frequent sequence in the Sequence Stage (Figure 2A) inherently represents many 

event sequences that frequently occur in the Event Orchestra (Figure 2B).

We represent frequent sequences as a “kebab” ( ), so as to convey the fact that frequent 

sequences are a series of events on a timeline, potentially separated by time. Therefore, the 
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length and distancing of events within the frequent sequences (intrasequence, within the 

) is determined by averaging the timestamps of these events, wherever they occur in the 

associated event sequences. However, as every frequent sequence represents event sequences 

that occur at variable times, indicating chronology between sequences (intersequence) is not 

as simple as averaging the timestamps of the constituent sequences together. Although an 

average of event sequence timestamps, unlike a median, preserves intersequence chronology, 

we need to ensure that the average does not oversimplify what our users need to see during 

alignment. For instance, if event sequence A occurs both before and after focal sequence B, 

should we place A before, after, or within focal sequence B? As a solution, we consider the 

sequences before and the sequences after focal points as distinct so that in this scenario, 

sequence A appears both before and after focal sequence B.

For Chronodes’ initial scatterplot, retaining intersequence chronology is not an issue, as 

sequences are positioned according to the axes. The y-axis represents the average number of 

times an event sequence occurs per day—that is, if a sequence of events tends to occur five 

times every day, its position on the y-axis is 5. The x-axis indicates the total number of days 

the event sequence is found: if the event sequence occurs for only one participant’s Monday, 

Tuesday, and Wednesday, its position on the x-axis is 3. As an emergent result, sequences 

are distributed into a two-dimensional spectrum of sequence prevalence (Figure 4).

One consequence of representing frequent event sequences as kebabs is that event icons may 

occlude one another. Such occlusions could be mitigated by representing events as 

rectangles, as in the Event Orchestra, or by increasing the horizontal time scale of the kebabs 

(i.e., each kebab represents a longer duration of time). However, we represent frequent event 

sequences as kebabs to emphasize the distinction between, on the one hand, chronological 

event sequences and, on the other, continuous event data that is not averaged across multiple 

timelines, as reflected in the Event Orchestra. In this way, the kebabs provide a consistent 

visual iconography to represent event sequences that are averaged and represented on 

relative—as opposed to absolute—time scales [6]. More generally, the kebab representation 

on the Sequence Stage helps to differentiate frequent event sequences from continuous 

events in the Event Orchestra.

5.2 Multiple Sequence Alignments

Unlike existing work on event-based alignment, Chronodes does not limit user interaction to 

single alignment on single events; instead, it encourages the user to create multiple 

alignments on any number of events side by side. As exhibited in Figure 3, this also permits 

the user to find sequences of events between events of interest, unprecedented in existing 

event alignment techniques.

5.3 Comparing and Cloning Cohorts

When Jane specified the first  sequence from the Sequence Stage scatterplot, this 

sequence appeared as a focal sequence with its own tracks and adjacent sequences (Step 1 in 

Figure 3). As she continued to select more adjacent sequences like the proceeding , she 

narrowed down on a more specific subset of the participant data: only days that included all 

of  were displayed (Step 2 in Figure 3). In this way, Chronodes provides the 
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functionality to constructively define cohorts using sequences of events. This extends the 

capabilities of prior work that enables users to display participants that exhibit a specified 

sequence of events but does not permit the interactive rearrangement of these events once 

they are set.

To return to a broader subset of the participant data, Jane can either remove a focal point or 

clear the entire current timeline and return to the scatterplot. However, she also has the 

option to clone the entire timeline (Figure 5), which duplicates it on the Sequence Stage. By 

modifying the second timeline, she can compare the properties of related cohorts side by 

side. For example, by adding another smoking event ( ) to the second timeline, Chronodes 

displays the differences between the event-based behavior of the original cohort timeline 

 and its clone  As demonstrated in Figure 5, once the new  is 

appended as a focal sequence to the bottom timeline, the adjacent sequences before and after 

are updated accordingly.

6 DERIVING INTERACTIVE EVENT SEQUENCES

Whereas Chronodes presents novel visual and interactive paradigms for analyzing 

chronological patterns, it is important that the system also be developed for use by mHealth 

researchers. Here, we highlight Chronodes’ technical contributions in providing new 

methods of event sequence analysis—namely, the techniques, variables, and considerations 

involved in the process of deriving events, finding event sequences, and visualizing these 

sequences for the purposes of interaction.

6.1 Deriving Events From mHealth Sensor Data

Before analyzing mHealth data for chronological patterns to answer our research questions 

(Q1 through Q4), each participant’s physiological data streams must be represented in a 

consistent and comparable format. From each participant’s array of AutoSense data streams, 

we extrapolated timestamped measures of (1) activity from three-axis accelerometer chest 

sensors [32], (2) probability of stress from physiological sensors (ECG and respiration) [19], 

and (3) instances of smoking from inertial wrist sensors (three-axis accelerometer and three-

axis gyroscope) [33]. Whereas smoking episodes are described by discrete Boolean values 

of 1 if smoking and 0 if not, activity and probability of stress are variable between 

participants and need to be normalized before further interpretation.

Once normalized, physiological data streams are classified as being either “none,” “low,” or 

“high” magnitudes at every 5-minute interval of time (Figure 6). Our selection of this three-

phase classification model is informed by Sharmin et al. [35], which suggests that even for 

experts, a finer-grain classification increases complexity without offering additional 

analytical benefits. Whereas darkness of the blue indicates activity intensity, the size of the 

inner white circle indicates probability of stress. At a given point of time, the probability of 

stress ranges from 0 to 1, or is simply −1 to indicate that data is unavailable (in the 

occasional event that only the activity sensor is enabled). In addition, for events where 

activity is high, stress cannot be accurately inferred [19], indicated by a white slash (  in 

Figure 6). Adjacent time intervals of the same magnitude are summed into single events so 

that resulting events are variable in length. As participants may not be wearing the sensors at 
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all times, such as during sleep, consecutive events that are separated by long gaps of no data 

collection at all are not merged past a user-defined threshold (60 minutes of sensor inactivity 

by default).

Before mining participants’ daily routines for recurrent sequential patterns, we should define 

what constitutes a “day”: although the majority of participant activity in our study occurred 

during daytime hours, some instances of irregular sleeping patterns and nighttime activity 

were present. Some participants even continued to wear the sensors during sleep. This 

justifies calculations that determine participant waking hours, but presently, for consistency 

and simplicity, Chronodes defines a day as a hard 24-hour time period from midnight to 

midnight, accounting for behaviors that repeat at consistent times across days as demanded 

by Q2.

6.2 Deriving Frequent Sequences From Events

Once participant data streams are represented as a continuous series of events, sequence 

mining provides Chronodes users with meaningful chronological relationships and 

sequences of events that can be manipulated interactively. Upon launch, Chronodes finds 

daily event sequences present throughout all participant events using the PrefixSpan [27] 

sequence mining algorithm. PrefixSpan retrieves patterns that occur frequently among 

sequential events and is an efficient algorithm for mining frequent sequences from a large 

number of individual event strings (i.e., a large number of 24-hour days). Algorithms of this 

kind are increasingly useful as we scale up to more participants. However, before the mined 

frequent sequences can be rendered as individual visual components with which the user can 

interact, we must first modify PrefixSpan to consider variations in repetitive, gapped, and 

closed sequence mining.

When PrefixSpan runs, it returns a list of frequent sequences ranked by frequency, with their 

positions in the participant data. Importantly, the algorithm does not mine for repetitive 
frequent sequences: if a smoking episode occurs three times every day, PrefixSpan only 

recovers the first occurrence per day. To extend the algorithm to find repetitive sequences, 

we use the locations of the initially found frequent sequences to search the remainder of the 

24-hour day for repetitions.

Also by default, PrefixSpan mines for gapped event sequences: events can be considered as a 

part of the same sequence even if they are separated by many other events (a “gap”). This is 

not ideal for scenarios where healthcare analysts are only interested in the events 

immediately preceding or proceeding smoking relapse; however, preventing gaps entirely 

would not allow our users to understand relationships between event behaviors that occur 

hours apart. To suit this range of use cases, we set a maximum gap parameter that Chronodes 

users can dynamically adjust.

Ultimately, PrefixSpan does not limit mining to closed sequences. For example, it 

redundantly returns both the closed  and its subset  Although we can modify 

PrefixSpan to return only the closed frequent sequences, Chronodes’ design lends interactive 

capabilities that allow us to do something more comprehensive. By initially providing only 

the shorter frequent sequences that have a longer variation (in our example, present only 
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), by selecting this sequence as a focal sequence we can see all of the variations that 

are related to it. As Chronodes displays the sequences that come after the focal sequence 

once it is selected (like ), it is also displaying longer variations of the focal sequence as a 

side effect (  is equivalent to ). In doing so, we enable a new interactive 

method for exploring event sequences mined with frequent sequence mining, whereby users 

can constructively narrow in on related sequences. Additionally, as an emergent result, we 

can keep the frequent sequence “entry points” on the scatterplot simple.

6.3 Interacting With Frequent Sequences

Chronodes maps every mined frequent sequence to its recurring location in the event data so 

that mousing over or selecting each sequence indicates its distribution in the Event Orchestra 
(Figure 2). In addition, as every frequent sequence is related to a particular cohort of 

participants (either all or some participants have the sequence), we can use information 

about the associated cohort to limit our searches for adjacent sequences. Any participant or 

day outside of the currently specified cohort does not need to be searched for sequences, 

thereby limiting use of computational resources as we scale to more participants and data 

streams.

Specific care is taken to ensure that when a frequent sequence is selected in Chronodes, 

users can understand the effects of their action on the visualization. Upon selection, 

sequences animate to the center as the nearby sequences fade away, and the new tracks grow 

outward. Such animations or “visual cues” help principally to direct users to changes in the 

visualization layout [20], and in the particular case of Chronodes, they indicate that new 

event sequences have been appended to the Sequence Stage, relative to the focal sequences. 

After these animations complete, the Event Orchestra updates to indicate the focal sequences 

and new cohort of participants being observed.

6.4 System Implementation

Chronodes’s front-end visualization component is Web based and written in JavaScript 

(jQuery,1 React,2 D33), and served by a Python Web server (web.py4). The front-end 

interface sends API requests to the Web server that returns data processed for display. 

Timestamped inferences about participant activity, stress, and smoking episodes are stored in 

an SQLite database5 for its cross-platform compatibility, integration with Python, and 

support for the dataset size of our pilot study.

7 USER STUDY WITH HEALTH EXPERTS

We conducted an informal pilot investigation with 20 behavioral, biomedical, and 

computational health experts coming from a large research team to gain insights into the 

efficacy and limitations of Chronodes. Through the study, we intended to understand how 

Chronodes may help them with mHealth data exploration, pattern discovery, and decision 

1http://jquery.org.
2http://facebook.github.io/react.
3http://d3js.org.
4http://webpy.org.
5http://sqlite.org.
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making. The interdisciplinary nature of the research team presents the unique opportunity 

for us to gain insight into how Chronodes may be used by experts with diverse backgrounds. 

Table 1 highlights some of their domain expertise and experience. We refer to these 

participants as “experts” to avoid confusion with the AutoSense participants (from whom the 

mHealth data was collected).

7.1 Method

Each study session began with a demonstration of the Chronodes interface. The participants 

were welcome to ask questions at any time. After the demonstration, the participants were 

instructed to think aloud in describing their perspectives and criticisms of the interface’s 

features. Comments were recorded and organized according to which interface feature they 

pertained: (1) event derivation and representation; (2) frequent sequence derivation, 

representation, and placement; (3) frequent sequence mining and placement of adjacent 

sequences around focal sequences; and (4) the use of multiple focal sequences. Due to the 

nature of our informal study, we did not record audio of the demonstrations. We took notes 

to capture feedback on the usability, effectiveness, and limitations and possible 

improvements of the system. Remarks included in this section are paraphrased summaries of 

this feedback.

8 RESULTS AND IMPLICATIONS FOR FUTURE RESEARCH

In this section, we summarize insights gleaned from the user study, present open challenges, 

and provide recommendations for future visualization and analysis research with mHealth 

data.

8.1 Representing mHealth Data

The challenge of analyzing and representing mHealth data is one of variability (continuous 

quantitative data streams), uncertainty (missing or incorrect measurements), high volume 

(data from many sensors simultaneously), and high dimensionality (many participants and 

many data streams). To represent continuous mHealth data streams across many participants 

effectively, focused investigations into each of these factors are necessary for future 

research.

8.1.1 Leveraging Temporal Variation During Event Derivation—Drawing on prior 

works [23, 24], Chronodes represents mHealth data as discrete events, which supports the 

visualization and analysis of chronological patterns, their frequencies, and their 

relationships. In EHR scenarios where health data is already described by discrete events 

(e.g., medications administered in asthma treatment in EventFlow [24] and hospital 

administration events in CoCo [23]), discretization from continuous data streams to discrete 

events is not required. However, working with quantitative data streams in mHealth provides 

the opportunity to define more complex event types than Chronodes initially considered, 

leveraging temporal variation to define discrete events that capture the ways physiology 

changes over time.
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For example, Expert H described that when an event occurs, health analysts are often 

interested in the residual effects of the event over time and how these effects might in turn 

affect our understanding of the events that follow. Additionally, some events are better 

described as fluctuating, quantitative values altogether. In other words, being able to 

investigate the underlying causes or emergent effects of an mHealth event is useful for 

understanding why it is present in the first place and what kinds of implications it has. For 

this, Expert H provided the example of stress: although we may certainly represent a high-

stress episode as happening at a discrete point in time, it may be more effectively 

represented as a state with a variable magnitude and with variable effects that are sustained 

until after the high stress is sensed.

Describing mHealth data as temporal features [16] or motifs [8] are potential routes for 

addressing this challenge. To this end, we enhanced Chronodes with an event derivation 

system (Figure 7) to discover temporal patterns in mHealth data, which can then be 

organized in Chronodes. In particular, the event derivation system gives data analysts 

additional control over the kinds of events presented in Chronodes, which provides an 

alternative to the default event derivation procedures described in Section 6.1 (Figure 6). To 

find temporal patterns for use in Chronodes, the event derivation system employs the 

Symbolic Aggregate approXimation and Vector Space Model (SAX-VSM) [34] to represent 

the time series in the mHealth data (e.g., stress levels and activity intensities) as temporal 

segments that are then clustered into groups with k-means [14, 30]. After discovering these 

groups of trends, or motifs, across participant records, the event derivation system allows 

users to examine where these motifs occur and select any number of them. Once selected, 

motifs can be defined as events for use in Chronodes thereafter, represented as glyphs of the 

sidebar motifs (Figure 7B). Accordingly, whereas the event derivation system enables 

analysts to identify granular patterns in continuous temporal mHealth data, Chronodes 

enables analysts to identify chronological relationships between these patterns as such.

8.1.2 Addressing Uncertainty in mHealth Data—mHealth data bestows unique 

relationships between recorded high-resolution data points and high-level human behaviors 

that can be inferred from them at varying degrees of certainty. In this way, Expert H was 

interested in how Chronodes might portray the relationships between ground truth sensor 

events and the behavioral variables that can be inferred from them (e.g., high stress inferred 

from increased heart rate). Similarly, prior research suggests that there is a characteristic 

discrepancy between the actual time of a self-reported event and the time at which it is 

reported: smokers often report smoking episodes prior to or after the actual smoking event 

[33]. Designing a temporal visualization that mediates conflicts between self-reported events 

and sensor-collected objective event points thus introduces novel challenges that need to be 

further investigated. Recent work has made a first attempt [35], but further research is 

warranted to find optimal solutions as to how to best integrate self-reported data into sensor 

recorded data, and to visualize these integrations.

8.1.3 Sense Making From High-Volume mHealth Data—Experts C and J 

commended Chronodes’ approach to making sense of high-volume event data by way of 

interaction with event sequences, which was echoed by other experts consistently. These 
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remarks suggested Chronodes’ niche role in exploring mHealth data interactively with event 

sequences, particularly as these methods relate to other existing healthcare analysis 

techniques that focus on event-based analysis (e.g., Malik et al. [23] and Monroe et al. [24]). 

Ultimately, we can use the existing interactive techniques in Chronodes to mine high-volume 

mHealth data more effectively, such as learning how tools like Progressive Insights [36] 

permit exploration of data as it is being mined.

8.2 Context and Homologous Events

8.2.1 Instantial Context—Expert D noted that in some cases, events may be identical in 

terms of their content but different in the context of how they were registered or defined. A 

specific example given to us was this: how do we denote the difference between a self-

reported smoking event and one detected by carbon monoxide sensors? Of course, as these 

events are instantiated in different ways, we could represent them as visually distinct; 

however, in developing Chronodes, we would prefer to design a more robust way for users to 

understand the relationships between, and the existence of, these homologous events. 

Visually coding events according to their provenance and particular metadata attributes 

therefore remains an important challenge.

8.2.2 Situational Context—Expert D described the differences between events that might 

depend on location and spatial context, such as between a smoking event at home and at 

work. Already we are designing a next iteration of Chronodes to account for these 

situational contexts. As our frequent sequence mining algorithm supports events that occur 

simultaneously, we are able to consider and represent “smoking” event (behavioral) 

occurring “at home” (spatial) at once. As a result, these events in parallel provide context to 

one another by being present at the same time. However, visualizing multiple contextual 

events in parallel may confound which events relate to one another in the first place, 

especially as we scale to more event types. Further research is needed to determine the kinds 

of computational, visual, and interactive techniques required to indicate how a variety of 

mHealth events relate to their situational contexts.

8.2.3 Temporal Context—Expert A is working to determine false positives in sensor-

detected smoking episodes and indicated a need to understand the differences between 

events that depend on time, such as between a smoking event in the morning and at night. 

We are also designing a solution for this kind of temporal context: as the Event Orchestra 
represents a timeline, we can use it or a minified summary as an interactive filter to specify 

the time regions in which we are interested. In our scenario, Jane should be able to highlight 

the morning in the Event Orchestra and choose a smoking episode focal sequence limited to 

that specified time area. In this way, she would see only the events that occur before and 

after smoking episodes in the morning. This is a principal update that we are working to 

develop in our next version of Chronodes.

8.3 Extensibility to Other mHealth Analysis Scenarios

Across the study sessions, Chronodes was deemed generalizable to a variety of uses in 

healthcare and mHealth data analysis. We describe these applications in this section to 

motivate future work in this area.
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8.3.1 Behavioral Analysis—Expert B commented on the applicability of the Chronodes 

interface to behavioral scientists and suggested to perform evaluative studies with this 

research area next. Particularly, after we had explained how timelines represented cohorts 

and could be cloned, Expert B described the value of imposing constraints on the cohort 

timelines other than event order. A specific example given was investigating the differences 

in event chronology between male and female participants. This is a comparative strategy 

emphasized in prior motivating works such as CoCo [23], and when paired with online event 

sequence specification is foreseeably powerful.

8.3.2 mHealth Interventions

Expert B also expressed interest in Chronodes’ potential applications in investigating the 

effects of just-in-time adaptive interventions. Specifically, marking different kinds of 

interventions as events and specifying them as focal sequences would be a significant step to 

not only planning interventions but also understanding their outcomes across participant 

groups. For other end users, Expert J suggested that Chronodes could play an important role 

in clinicians interacting with these participants, where participants could be asked to recall 

why they tended to exhibit certain behaviors after a specified event.

8.3.3 Health Sensor Development and Validation

Expert F described Chronodes as a useful tool for mHealth sensor developers who need to 

understand the relationships between the data elements that they record. Expert C described 

how Chronodes could be used to help sensor developers identify false positives from sensor 

alerts and corresponding user reports. With this insight, we are deeply considering 

Chronodes’ applications not only in end user behavioral analysis but also in the validation of 

mHealth technologies in the first place.

9 CONCLUSION

We presented Chronodes, a system that unifies data mining and human-centric visualization 

techniques to support the explorative analysis of longitudinal mHealth data. Chronodes 

extracts and visualizes frequent behavioral sequences, and promotes them as interactive 

elements, enabling health researchers to interactively define, explore, and compare groups of 

participant behaviors using event sequence combinations. We evaluated Chronodes with an 

informal study with 20 expert health researchers, and determined the application’s utility 

across a variety of healthcare and computational disciplines. From these insights, we are 

continuing to develop Chronodes for applications to other health data analysis scenarios, 

including understanding the health events surrounding congestive heart failure and diabetes 

management, and observing the effects of just-in-time adaptive interventions from 

perspectives in behavioral science.
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Fig. 1. 
From mobile health (mHealth) event data, Chronodes extracts frequent patterns of events 

that users can interactively explore. (A) Multiple days of mHealth sensor data are 

represented as discrete events over time. Only a snapshot of the full dataset is shown. (B) 

Chronodes mines frequent sequences of events that users can interactively combine to reveal 

patterns that occur before and after them (left and right). All figures are best viewed in color. 

Red, smoking episodes; blue, activity intensity.
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Fig. 2. 
The Chronodes Sequence Stage showing a scatterplot of frequent sequences (A) and the 

Event Orchestra below it displaying the participant event data from which these sequences 

were mined (B). Whereas all sequences in the Event Orchestra are grayed out by default, 

when the user mouses over a frequent sequence on the Sequence Stage, its location 

throughout the participant data is highlighted in the Event Orchestra. (C) The legend for this 

pilot dataset is magnified here for better readability.
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Fig. 3. 
Varying configurations of focal sequences and the sequences of events that occur around 

them. Step 1 shows one focal sequence with the sequences before and after it. The user 

clicks a sequence after and it becomes a second focal sequence in Step 2: the two focal 
sequences with the sequences before and after them. The user clicks the + symbol and the 

timeline becomes Step 3: the two focal sequences with the sequences between them.
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Fig. 4. 
Ordinary sequences occur so frequently that they are not very interesting (e.g., walking). 

Habitual sequences occur on many days but do not repeat frequently on the days that they 

occur (e.g., exercising once every day). Rare sequences occur very infrequently.
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Fig. 5. 
An original timeline of focal sequences (top) that has been cloned and then modified 

(bottom). By adding another focal sequence to the bottom timeline, the event sequences 

before and after it are changed. In this way, Chronodes enables users to view the 

comparative differences between timelines, which each represent a cohort of participants.
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Fig. 6. 
Participants’ activity intensity and probability of stress were sampled and inferred once per 

second. For Participant 10, this totaled more than 168,000 data points in the scatterplot. 

These data points were then discretized into events with quartile thresholds (e.g., median). 

For events with high activity (top), stress cannot be accurately inferred.
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Fig. 7. 
(A) The event derivation interface showing probability of stress (gray), activity intensity 

(blue), and smoking episodes (red vertical dotted lines) for multiple participants. (B) The 

sidebar displays common temporal trends (motifs) identified from this data using time series 

motif mining. (C) The user selects a motif to highlight where it occurs in the data. (D) 

Zoomed-in view of a 3-hour region showing two instances of the highlighted motif (gray 

border added to enhance clarity). Motifs selected from the sidebar can be defined as events 

for use in Chronodes.
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Table 1

Expert Participants, Their Diverse Domain Expertise, and Years in the Field (12 to 38 Years)

ID Domain Expertise Years in Field

A Health psychologist 13

B Statistician (focus: clinical design, analytics) 26

C Behavioral health researcher 38

D Machine learning 10

E Health informatics 31

F HCI, human-centered computing 26

G Sensor and hardware designer 16

H Clinician & health informatics 25

J mHealth software designer 13

K mHealth software architect 12

Note: These experts’ characteristics are representative of the 20 experts in our study.
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