
ar
X

iv
:1

71
0.

08
38

1v
1

 [
cs

.D
C

]
 2

3
O

ct
 2

01
7

Near-Optimal Clustering in the k-machine model

Sayan Bandyapadhyay ∗ Tanmay Inamdar ∗ Shreyas Pai ∗

Sriram V. Pemmaraju ∗

October 7, 2018

Abstract

The clustering problem, in its many variants, has numerous applications in operations research and
computer science (e.g., in applications in bioinformatics, image processing, social network analysis, etc.).
As sizes of data sets have grown rapidly, researchers have focused on designing algorithms for clustering
problems in models of computation suited for large-scale computation such as MapReduce, Pregel, and
streaming models. The k-machine model (Klauck et al., SODA 2015) is a simple, message-passing model
for large-scale distributed graph processing. This paper considers three of the most prominent examples
of clustering problems: the uncapacitated facility location problem, the p-median problem, and the p-
center problem and presents O(1)-factor approximation algorithms for these problems running in Õ(n/k)
rounds in the k-machine model. These algorithms are optimal up to polylogarithmic factors because this
paper also shows Ω̃(n/k) lower bounds for obtaining polynomial-factor approximation algorithms for
these problems. These are the first results for clustering problems in the k-machine model.

We assume that the metric provided as input for these clustering problems in only implicitly provided,
as an edge-weighted graph and in a nutshell, our main technical contribution is to show that constant-
factor approximation algorithms for all three clustering problems can be obtained by learning only a
small portion of the input metric.

1 Introduction

The problem of clustering data has a wide variety of applications in areas such as information retrieval,
bioinformatics, image processing, and social network analysis. In general, clustering is a key component of
data mining and machine learning algorithms. Informally speaking, the objective of data clustering is to
partition data into groups such that data within each group are “close” to each other according to some
similarity measure. For example, we might want to partition visitors to an online retail store (e.g., Amazon)
into groups of customers who have expressed preferences for similar products. As the sizes of data sets have
grown significantly over the last few years, it has become imperative that clustering problems be solved
efficiently in models of computation that allow multiple machines to process data in parallel. Distributing
input data across multiple machines is important not just for speeding up computation through parallelism,
but also because no single machine may have sufficiently large memory to hold a full data set. Motivated by
these concerns, recent research has considered problems of designing clustering algorithms [11][12] in systems
such as MapReduce [9] and Pregel [24]. Clustering algorithms [28] have also been designed for streaming
models of computation [2].

In this paper we present distributed algorithms for three of the most prominent clustering problems: the
uncapacitated metric facility location problem, the p-median problem, and the p-center problem. All three
problems have been studied for several decades now and are well-known to be NP-hard. On the positive
side, all three problems have constant-factor (polynomial-time) approximation algorithms. We consider these

∗Department of Computer Science, The University of Iowa {sayan-bandyapadhyay, tanmay-inamdar, shreyas-pai,

sriram-pemmaraju}@uiowa.edu

1

http://arxiv.org/abs/1710.08381v1

problems in the recently proposed k-machine model [21], a synchronous, message-passing model for large-
scale distributed computation. This model cleanly abstracts essential features of systems such as Pregel [24]
and Giraph (see http://giraph.apache.org/) that have been designed for large-scale graph processing1,
allowing researchers to prove precise upper and lower bounds. One of the main features of the k-machine
model is that the input, consisting of n items, is randomly partitioned across k machines. Of particular
interest are settings in which n is much larger than k. Communication occurs via bandwidth-restricted
communication links between every pair of machines and thus the underlying communication network is
a size-k clique. For all three problems, we present constant-factor approximation algorithms that run in
Õ(n/k) rounds in the k-machine model. We also show that these algorithms have optimal round complexity,
to within polylogarithmic factors, by providing complementary Ω̃(n/k) lower bounds for polynomial-factor
approximation algorithms2. These are the first results on clustering problems in the k-machine model.

1.1 Problem Definitions

The input to the uncapacitated metric facility location problem (in short, FacLoc) is a set V of points,
a metric d : V → R

+ that assigns distances to point-pairs, and a facility opening cost f : V → R
+

associated with each point v ∈ V . The problem is to find a subset F ⊆ V of points to open (as “facilities”)
so as to minimize the objective function

∑

i∈F fi +
∑

j∈V d(j, F), where d(j, F) = minx∈F d(j, x). (For
convenience, we abuse notation and use fi instead of f(i).) FacLoc is NP-hard and is in fact hard to
approximate with an approximation factor better than 1.463 [15]. There are several well-known constant-
factor approximation algorithms for FacLoc including the primal-dual algorithm of Jain and Vazirani [19]
and the greedy algorithm of Mettu and Plaxton [25]. The best approximation factor currently achieved by
an algorithm for FacLoc is 1.488 [22].

The input to the p-median problem (in short, pMedian) is a set V of points and a metric d : V → R
+

that assigns distances to point-pairs, and a positive integer p. The problem is to find a subset F ⊆ V of
exactly p points to open (as “facilities”) so as to minimize the objective function

∑

j∈V d(j, F). pMedian

is NP-hard and and is in fact hard to approximate with an approximation factor better than 1 + 2
e ≈ 1.736

[18]. A well-known approximation algorithm for the p-median problem is due to Jain and Vazirani [19], who
present a 6-approximation algorithm. This approximation factor has been improved by subsequent results
– see [4], for example. The input to the p-center problem (in short, pCenter) is the same as the input
to pMedian, but the objective function that is minimized is maxj∈V d(j, F). Like FacLoc and pMedian,
the pCenter problem is not only NP-hard, it is in fact hard to approximate with an approximation factor
strictly better than 2 [13]. There is also an optimal 2-approximation algorithm for this problem [13] obtained
via a simple, greedy technique called farthest first traversal.

In all three problems, it is assumed that each point is “connected” to the nearest open facility. So an
open facility along with the “clients” that are connected to it forms a cluster.

1.2 The k-machine Model and Input-Output Specification

Let n denote |V |. The k-machine model is a message-passing, synchronous model of distributed computation.
Time proceeds in rounds and in each round, each of the k machine performs local computation and then
sends, possibly distinct, messages to the remaining k − 1 machines. A fundamental constraint of the k-
machine model is that each message is required to be small; as is standard, we assume here that each
message is of size O(log n) bits. It is assumed that the k machines have unique IDs, that are represented by
O(log n)-bit strings.

As per the random partition assumption of k-machine model [21], the points in V are distributed uniformly
at random across the k machines. This results in Õ(n/k) points per machine, with high probability (w.h.p.)3.
We use mj , 1 ≤ j ≤ k, to denote the machines and H(mj) to denote the subset of points “hosted” by mj .

1Researchers at Facebook recently used Apache Giraph to process graphs with trillion edges [6].
2Throughout the paper, we use Õ(f(n)) as a shorthand for O(f(n) · poly(logn)) and Ω̃(f(n)) as a shorthand for

Ω(f(n)/poly(logn)).
3We use “with high probability” to refer to probability that is at least 1− 1/nc for any constant c ≥ 1.

2

The natural way to distribute the rest of the input, namely d : V × V → R
+ and f : V → R

+ (in the case of
FacLoc), is for each machine mj to be given fi and {d(i, x)}x∈V for each point i ∈ H(mj). The distribution
of f in this manner is fine, but there is a problem with distributing {d(i, x)}x∈V in this manner. Since n is
extremely large, it is infeasible for mj to hold the Ω̃(n2/k) elements in ∪i∈H(mj){d(i, x)}x∈V . (Recall that
n >> k.) In general, this explicit knowledge of the metric space consumes too much memory, even when
divided among k machines, to be feasible. So we make, what we call the graph-metric assumption, that the
metric d : V × V → R

+ is specified implicitly by an edge-weighted graph with vertex set V . Let G = (V,E)
be the edge-weighted graph with non-negative edge weights representing the metric d : V × V → R

+. Thus
for any i, j ∈ V , d(i, j) is the shortest path distance between points i and j in G.

Klauck et al. [21] consider a number of graph problems in the k-machine model and we follow their lead
in determining the initial distribution of G across machines. For each point i ∈ H(mj), machine mj knows
all the edges in G incident on i and for each such edge (i, x), machine mj knows the ID of the machine that
hosts x. Thus,

∑

i∈H(mj)
degreeG(i) elements are needed at each machine mj to represent the metric space

and if G is a sparse graph, this representation can be quite compact.
The graph-metric assumption fundamentally affects the algorithms we design. Since the metric d is

provided implicitly, via G, access to the metric is provided through shortest path computations on G. In
fact, it turns out that these shortest path computations are the costliest part of our algorithms. One way
to view our main technical contribution is this: we show that for all three clustering problems, there are
constant-factor approximation algorithms that only require a small (i.e., polylogarithmic) number of calls to
a subroutine that solves the Single Source Shortest Path (SSSP) problem.

For all three problems, the output consists of F , the set of open facilities, and connections between clients
(i.e., points that have not been open as facilities) and their nearest open facilities. More precisely, for any
machine mj and any point i ∈ H(mj):

• If i ∈ F , then mj knows that i has been opened as a facility and furthermoremj knows all (x, IDx)-pairs
where x is a client that connects to i and IDx is the ID of the machine hosting x.

• If i ∈ V \ F , then mj knows that i is a client and it also knows the (x, IDx) pair, where x is the open
facility that i connects to and IDx is the ID of the machine hosting x.

1.3 Our Results

We first prove Ω̃(n/k) lower bounds (in Section 2) for FacLoc, pMedian, and pCenter. For each problem,
we show that obtaining an α-approximation algorithm in the k-machine model, for any α = (poly(n)),
requires at least Ω̃(n/k) rounds. In the subsequent three sections, we present Õ(n/k)-round, constant-factor
approximation algorithms for the FacLoc, pMedian, and pCenter problem, respectively. Our lower bound
results show that our algorithms have optimal round complexity, at least up to polylogarithmic factors.

We bring to bear a wide variety of old and new techniques to derive our upper bound results including the
facility location algorithm of Mettu and Plaxton [25], the fast version of this algorithm due to Thorup [29],
the neighborhood-size estimation framework of Cohen [7, 8], the p-median Lagrangian relaxation algorithm
of Jain and Vazirani [19] and the recent distributed shortest path algorithms due to Becker et al. [5]. In our
view, an important contribution of this paper is to show how all of these techniques can be utilized in the
k-machine model.

1.4 Related Work

Following Klauck et al. [21], two other papers [27, 26] have studied graph problems in the k-machine model.
In [26], the authors present an Õ(n/k2)-round algorithm for graph connectivity, which then serves as the
basis for Õ(n/k2)-round algorithms for other graph problems such as minimum spanning tree (MST) and
approximate min-cut. The upper bound for MST does not contradict the Ω(n/k) lower bounds shown for
this problem in Klauck et al. [21] because Pandurangan et al. [26] use a more relaxed notion of how the
output MST is represented. Specifically, at the end of the algorithm in [26] every MST edge is known to
some machine, whereas Klauck et al. [21] use the stricter requirement that every MST edge be known to

3

the machines hosting the two end points of the edge. This phenomena in which the round complexity of the
problem is quite sensitive to the output representation may be relevant to our resuts as well and is further
discussed in Section 7.

Earlier in this section, we have mentioned models and systems for large-scale parallel computation such as
MapReduce and Pregel. Another model of large-scale parallel computation, that seems essentially equivalent
to the k-machine model is the Massively Parallel Computation model (MPC) which according to [30] is the
“most commonly used theoretical model of computation on synchronous large-scale data processing platforms
such as MapReduce and Spark.”

2 Lower Bound Results

In this section, we derive Ω̃(n/k) lower bounds for achieving poly(n)-factor approximation algorithms in
the k-machine model for all three problems considered in this paper. Our lower bounds are inspired by the
Ω(n/k) lower bound result from [21] for the Spanning Tree Computation problem.

To prove the lower bounds we describe a family of lower bound graphs Fb(X,Y) where X and Y are
sampled from the same distribution as the one used in [21]. That is, (X,Y) is chosen uniformly at random
from {0, 1}b × {0, 1}b, satisfying the constraint that for every i ∈ [b], Xi + Yi ≥ 1. Let b = n/2 − 1 and let
L = nc for some large enough constant c that depends on the approximation factor considered. The graph
Fb(X,Y) has 2b + 2 vertices u,w, u1, . . . , ub, w1, . . . , wb. We fix the ID’s of the vertices to be the first n
natural numbers which means that each machine knows whether a vertex v is u,w, ui, wi just by knowing
ID(v). For every i ∈ [b] there are three edges in the graph of the form {u, ui}, {ui, wi}, {wi, w} and the
weights of these edges depend on the bit values of Xi and Yi where X,Y ∈ {0, 1}b. In particular, we assign
weights to ({u, ui}, {ui, wi}, {wi, w}) as follows – if Xi = 1 and Yi = 0, the weights are (1, 1, L), if Xi = 0
and Yi = 1, the weights are (L, 1, 1), and if Xi = 1 and Yi = 1, the weights are (1, L, 1). There is no weight
assignment for the case when Xi = Yi = 0 because the distribution of (X,Y) places no probability mass on
this case.

In the following lemma we show that any protocol that reveals X and Y to a single machine must do so
by making it receive large messages from other machines. The proof is the same as the entropy argument
made in theorem 2.1 in [21] with the added simplification that the entropy at the end of the protocol is zero.
Nevertheless, we prove the lemma for completeness.

Lemma 1. Let Π be a public-coin ǫ-error randomized protocol in the k-machine model (k ≥ 4) on an n-
vertex input graph sampled uniformly at random from Fb(X,Y). If a machine knows both X and Y at the
end of the protocol Π then it must receive Ω(b) bit messages in expectation from other machines.

Proof. Let p be the machine that knows both X and Y at the end of the protocol. Since X and Y are
encoded in the edge weights of the graph, if the machine p hosts u then it knows the string X via the edges
{u, ui} and similarly it knows Y if it hosts w. But if p hosts both u and w then it knows X and Y before
the protocol even begins. This is a bad event so we condition on the event that no machine hosts both u
and w which happens with probability 1− 1/k.

Before the first round of communication, it can be shown that the entropy H(X,Y) ≥ H(Y | X) =
H(X | Y) = 2b/3. The machine p also hosts some vertices ui and wi giving it access to some bits of X
and Y . It is easy to see via the Chernoff bound that with very high probability p hosts at most (1 + ζ)2b/k
ui’s and wi’s for ζ = 0.01 which means it cannot know more than (1 + ζ)2b/k bits of X and Y by virtue of
hosting these vertices whp. The event where p hosts more vertices cannot influence H(X,Y) the entropy by

more than 2−ζ22b/(3k) · b = o(1) for b large enough. Hence, the entropy of X,Y given this initial information
(which we denote by a random variable A) is H(X,Y | A) ≥ 2b/3− (1 + ζ)2b/k − o(1). Note that if p hosts
either u or w then A will contain information about either X or Y respectively but that does not affect our
lower bound on the initial entropy.

Let Πp be the messages received by the machine p during the course of the protocol Π. With probability
1− ǫ, p knows both X and Y at the end of the protocol and therefore H(X,Y | Πp, A) = 0. This means that
I(X,Y ; Πp|A) = H(X,Y |A) ≥ 2b/3− (1 + ζ)b/k − o(1) and that |Πp| = Ω(b). This is under the assumption

4

that different machines host u and w and there is no error, therefore the expected number of messages
received by p must be at least (1− ǫ) · (1− 1/k) · Ω(b) = Ω(b).

Lemma 2. For any 1 ≤ α ≤ poly(n), every public-coin ǫ-error randomized protocol in the k-machine model
that computes an α-factor approximate solution of FacLoc on an n-vertex input graph has an expected
round complexity Ω̃(n/k).

Proof. To prove the lemma we consider the family of lower bound graphs Fb(X,Y) with the additional
property that the vertices u and w have facility opening cost 0 and every other vertex has opening cost L.

Consider the solution S to Facility Location where we open the vertices u and w and connect all other
vertices to the closest open facility. The cost of this solution is O(n) whereas any other solution will incur a
cost of at least Ω(L). By our choice of L, the solution S is optimal and any α-approximate solution is forced
to have the same form as S.

After the facility location algorithm terminates, with probability 1− ǫ, the machine p hosting u will know
the ID’s of the wi’s that u serves in S. This allows u to figure out Y because Yi = 0 if u serves wi and Yi = 1
otherwise. By Lemma 1, p receives Ω(b) bit messages in expectation throughout the course of the algorithm.
This implies an Ω̃(n/k) lower bound on the expected round complexity.

Lemma 3. For any 1 ≤ α ≤ poly(n), every public-coin ǫ error randomized protocol on a k-machine network
that computes a α-factor approximate solution of pMedian and pCenter on an n-vertices input graph has
an expected round complexity of Ω̃(n/k).

Proof. We show the lower bound for p = 2 on graphs that come from the family Fb(X,Y). An optimal
solution in a graph from this family is to open u and w which gives a solution of cost O(n) for pMedian and
O(1) for pCenter. But, we need to be a bit more careful because the pMedian or pCenter algorithms
can choose to open some of the ui’s and wj ’s instead of u and w with only a constant factor increase in
the cost of the solution. More specifically, there are four possible cases where we can open different pairs
of vertices to get an O(1)-approximate solution – (u,w), (ui, w), (ui, wj), and (u,wj) where ui and wj are
connected by an edge of weight 1 to u and w respectively. In all these cases, the opened vertices know both
X and Y at the end of the algorithm by virtue of knowing the vertices that it serves in the final solution.
This is because the value of L is high enough to ensure that the two clusters formed in any α-approximate
solution are the same as the optimal solution no matter what centers are chosen. Therefore, we can apply
lemma 1 to all these cases which gives us that the machine hosting one of these vertices will receive Ω(b) bit
messages in expectation during the course of the algorithm. This means that the expected round complexity
for both the algorithms is Ω̃(n/k).

3 Technical Preliminaries

Since the input metric is only implicitly provided, as an edge-weighted graph, computing shortest path
distances to learn parts of the metric space turns out to be a key element of our algorithms. The Single Source
Shortest Path (SSSP) problem has been considered in the k-machine model in Klauck et al. [21] and they
describe a (1+ǫ)-approximation algorithm that runs in the k-machine model in Õ(n/

√
k) rounds. This is too

slow for our purpose, since we are looking for an overall running time of Õ(n/k). We instead turn to a recent
result of Becker at al. [5] and using this we can easily obtain an Õ(n/k)-round SSSP algorithm. Becker et
al. do not work in the k-machine model; their result relevant to us is in the Broadcast Congested Clique model.
Informally speaking, the Congested Clique model can be thought of as a special case of the k-machine model
with k = n. The Broadcast Congested Clique model imposes the additional restriction on communication
that in each round each machine sends the same message (i.e., broadcasts) to the remaining n− 1 machines.
We now provide a brief description of the Congested Clique models. The Congested Clique model consists
of n nodes (i.e., computational entities) connected by a clique communication network. Communication is
point-to-point via message passing and each message can be at most O(log n) bits in length. Computation
proceeds in synchronous rounds and in each round, each node performs local computations and sends a

5

(possibly different) message to each of the other n− 1 nodes in the network. For graph problems, the input
is assumed to be a spanning subgraph of the underlying clique network and each node is initially aware of
the incident edges in the input. The Broadcast Congested Clique model differs from the Congested Clique
model only in that in each round, each node is required to send the same message to the remaining n − 1
nodes. For more details on the Congested Clique models, see [16, 10].

Theorem 1. (Becker et al. [5]) For any 0 < ǫ ≤ 1, in the Broadcast Congested Clique model, a deter-
ministic (1+ ǫ)-approximation to the SSSP problem in undirected graphs with non-negative edge-weights can
be computed in poly (logn)/poly (ǫ) rounds.

It is easy to see that any Broadcast Congested Clique algorithm that runs in T rounds can be simulated
in the k-machine model in T · Õ(n/k) rounds. A more general version of this claim is proved in Klauck
et al. in the Conversion Theorem (Theorem 4.1 [21]). This leads to the following result about the SSSP
problem in the k-machine model.

Corollary 1. For any 0 < ǫ ≤ 1, there is a deterministic (1 + ǫ)-approximation algorithm in the k-
machine model for solving the SSSP problem in undirected graphs with non-negative edge-weights in O((n/k)·
poly(log n)/poly(ǫ)) rounds.

In addition to SSSP, our clustering algorithms require an efficient solution to a more general problem
that we call Multi-Source Shortest Paths (in short, MSSP). The input to MSSP is an edge-weighted graph
G = (V,E), with non-negative edge-weights, and a set T ⊆ V of sources. The output is required to be,
for each vertex v, the distance d(v, T) (i.e., min{d(v, u) | u ∈ T }) and the vertex v∗ ∈ T that realizes this
distance. The following lemma uses ideas from Thorup [29] to show that MSSP can be reduced to a single
call to SSSP and can be solved in an approximate sense in the k-machine model in Õ(n/k) rounds.

Lemma 4. Given a set T ⊆ V of sources known to the machines (i.e., each machine mj knows T ∩H(mj)),

we can, for any value 0 ≤ ǫ ≤ 1, compute a (1 + ǫ)-approximation to MSSP in Õ(1/poly(ǫ) · n/k) rounds,
w.h.p. Specifically, after the algorithm has ended, for each v ∈ V \ T , the machine mj that hosts v knows a

pair (u, d̃) ∈ T × R
+, such that d(v, u) ≤ d̃ ≤ (1 + ǫ) · d(v, T).

Proof. First, as in [29], we add a dummy source vertex s, and connecting s to each vertex u ∈ T by 0-weight
edges. The shortest path distance from s to any other vertex v ∈ V , is same as d(v, T) in the original graph.
This dummy source can be hosted by an arbitrary machine and the edge information can be exchanged in
Õ(n/k) rounds

Using Theorem 1, we can compute approximate shortest path distance d̃ that satisfies the first property
of the lemma, in Õ(n/k) rounds. By [5] (Section 2.3) we can compute an approximate shortest path tree
in addition to approximate distances in the Broadcast Congested Clique in O(poly(log n)/poly (ǫ)) rounds
w.h.p. and hence in the k-machine model in Õ(1/poly(ǫ) · n/k) rounds w.h.p.

Since a tree contains linear (in n) number of edges, all machines can exchange this information in Õ(n/k)
rounds so that every machine knows the computed approximate shortest path tree. Now, each machine mj

can determine locally, for each vertex v ∈ H(mj) the vertex u ∈ T which satisfies the properties stated in
the lemma.

Note that in the solution to MSSP, for each v ∈ T , d(v, T) = 0. For our algorithms, we also need the
solution to a variant of MSSP that we call ExclusiveMSSP in which for each v ∈ T , we are required to
output d(v, T \ {v}) and the vertex u∗ ∈ T \ {v} that realizes this distance. The following lemma uses ideas
from Thorup [29] to show that ExclusiveMSSP can be solved by making O(log n) calls to a subroutine
that solves SSSP.

Lemma 5. Given a set T ⊆ V of sources known to the machines (i.e., each machine mj knows T ∩H(mj)),

we can, for any value 0 ≤ ǫ ≤ 1, compute a (1+ ǫ)-approximation to ExclusiveMSSP in Õ(1/poly (ǫ) ·n/k)
rounds, w.h.p. Specifically, after the algorithm has ended, for each v ∈ T , the machine mj that hosts v knows

a pair (u, d̃) ∈ T \ {v} × R
+, such that d(v, u) ≤ d̃ ≤ (1 + ǫ) · d(v, T \ {v}).

6

rvv

xj

xk

xℓ

xp

xq

Figure 1: This illustration, which originally appeared in [17], shows B(v, rv), the radius-rv ball centered at
v. If we imagine the ball B(v, r) growing with increasing r and we reach a stage at which r = rv, then
the sum of the 5 distances, denoted by solid line segments from points within the ball to the ball-boundary
equals fv.

Proof. Breaking ties by machine ID, each vertex in T is assigned a log |T | size bit vector. We create 2 log |T |
subsets of T by making two sets T 0

i and T 1
i for each bit position i. The set T b

i contains vertices whose ith bit
value is b. Note that for all pairs of vertices v, w, there is at least one set T b

i such that v ∈ T b
i and w /∈ T b

i .
Now we run an MSSP algorithm for each T b

i using lemma 4. Now for each vertex v ∈ T d̃ is the smallest
d(v, T b

i) such that v /∈ T b
i and the vertex u is an arbitrary vertex that realizes the distance d̃.

4 Facility Location in Õ(n/k) rounds

At the heart of our k-machine algorithm for FacLoc is the well-known sequential algorithm of Mettu and
Plaxton [25], that computes a 3-approximation for FacLoc. To describe the Mettu-Plaxton algorithm
(henceforth, MP algorithm), we need some notation. For each real r ≥ 0 and vertex v, define the “ball”
B(v, r) as the set {u ∈ V | d(v, u) ≤ r}. For each vertex v ∈ V , we define a radius rv as the solution r to the
equation fv =

∑

u∈B(v,r)(r − d(v, u)). Figure 1 illustrates the definition of rv (note that rv is well-defined

for every vertex v).
The MP algorithm is the following simple, 2-phase, greedy algorithm:

Algorithm 1: MP Algorithm

1 Radius Computation Phase. For each vertex v ∈ V , compute rv.
2 Greedy Phase. Consider vertices v ∈ V in non-decreasing order of radii rv. Starting with S = ∅,

add v to S if d(v, S) > 2rv.

We will work with a slight variant of the MP algorithm, called MP-β in [3]. The only difference between
the MP algorithm and the MP-β algorithm is in the definition of each radius rv, which is defined for the
MP-β algorithm, as the value r satisfying β · fv =

∑

u∈B(v,r)(r − d(v, u)). (Thus, the MP-β algorithm with

β = 1 is just the MP algorithm.)
There are two challenges to implementing the MP-β algorithm efficiently in the k-machine model (and

more generally in a distributed or parallel setting): (i) The calculation of the radius rv by the machine

7

hosting vertex v requires that the machine know distances {d(v, u)}u∈V ; however the distance metric is
initially unknown and is too costly to fully calculate, and (ii) the Greedy Phase seems inherently sequential
because it considers vertices one-by-one in non-decreasing order of radii; implementing this algorithm as-is
would be too slow. In the next three sections, we describe how to overcome these challenges and we end the
section with a complete description of our FacLoc algorithm in the k-machine model.

4.1 Reducing Radius Computation to Neighborhood-Size Computation

To deal with the challenge of computing radii efficiently, without full knowledge of the metric, we use
Thorup’s approach [29]. Thorup works in the sequential setting, but like us, he assumes that the distance
metric is implicitly specified via an edge-weighted graph. He shows that it is possible to implement the MP
algorithm in Õ(m) time on an m-edge graph. In other words, it is possible to implement the MP algorithm
without computing the full distance metric (e.g., by solving the All Pairs Shortest Path (APSP) problem).
We now show how to translate Thorup’s ideas into the k-machine model. (We note here that Thorup’s ideas
for the FacLoc problem have already been used to design algorithms in “Pregel-like” distributed systems
[12].)

For some ǫ > 0, we start by discretizing the range of possible radii values using non-negative integer
powers of (1+ ǫ).4 For any vertex v and for any integer i ≥ 1, let qi(v) denote |B(v, (1+ ǫ)i)|, the size of the
neighborhood of v within distance (1 + ǫ)i. Further, let α(v, r) denote the sum

∑

u∈B(v,r)(r− d(v, u)). Now

note that if r increases from (1+ǫ)i to (1+ǫ)i+1, then α(v, r) increases by at least qi(v) ·((1+ǫ)i+1−(1+ǫ)i).

This implies that
∑t−1

i=0 qi(v) · ((1 + ǫ)i+1 − (1 + ǫ)i) is a lower bound on α(v, (1 + ǫ)t). This observation
suggests that we might be able to use, as an approximation to rv, the smallest value (1 + ǫ)t−1 for which
this lower bound on α(v, (1 + ǫ)t) exceeds fv. Denote by r̃v, this approximation of rv. In other words,

r̃v := (1 + ǫ)t−1, where t ≥ 1 is the smallest integer such that
∑t−1

i=0 qi(v) · ((1 + ǫ)i+1 − (1 + ǫ)i) > fv. It is
not hard to show that r̃v is a good approximation to rv in the following sense.

Lemma 6. For all v ∈ V , rv
1+ǫ ≤ r̃v ≤ rv(1 + ǫ).

Proof. The values r̃v and rv respectively depend on how
∑t−1

i=0 qi(v) · ((1 + ǫ)i+1 − (1 + ǫ)i) and α(v, rv) =
∑

u∈B(v,r)(r − d(v, u)) relate to fv.

Recall that qi(v) = |B(v, (1 + ǫ)i)|. Following calculations show that
∑t−1

i=0 qi(v) · ((1 + ǫ)i+1 − (1 + ǫ)i)
can be interpreted as

∑

u∈B(v,(1+ǫ)t)((1+ ǫ)t−d↑(v, u)) where d↑(v, u) is d(v, u) rounded up to nearest power

of (1 + ǫ).

t−1
∑

i=0

qi(v) · ((1 + ǫ)i+1 − (1 + ǫ)i) = ((1 + ǫ)t − 1) +
t−1
∑

i=1

[∣

∣B(v, (1 + ǫ)i) \B(v, (1 + ǫ)i−1)
∣

∣ ·
(

(1 + ǫ)t − (1 + ǫ)i
)]

= ((1 + ǫ)t − 1) +

t
∑

j=1

∑

u∈B(v,(1+ǫ)j)\B(v,(1+ǫ)j−1)

(1 + ǫ)t − (1 + ǫ)j

=
∑

u∈B(v,(1+ǫ)t)

((1 + ǫ)t − d↑(v, u))

Therefore, we can say that–

(1 + ǫ)α(v, (1 + ǫ)t−1) ≤
t−1
∑

i=0

qi(v) · ((1 + ǫ)i+1 − (1 + ǫ)i) ≤ α(v, (1 + ǫ)t)

4Without loss of generality we assume that all numbers in the input, i.e., {fv}v∈V and d(u, v)u,v∈V , are all at least 1.
O(1) rounds of preprocessing suffices to normalize the input to satisfy this property. This guarantees that the minimum radius
rv ≥ 1.

8

Which implies –

α(v, (1 + ǫ)t−1) ≤
t−1
∑

i=0

qi(v) · ((1 + ǫ)i+1 − (1 + ǫ)i) ≤ α(v, (1 + ǫ)t)

Note that by definition of r̃v, if r̃v = (1 + ǫ)t−1 then
∑t−1

i=0 qi(v) · ((1 + ǫ)i+1 − (1 + ǫ)i) > fv and
∑t−2

i=0 qi(v) · ((1 + ǫ)i+1 − (1 + ǫ)i) ≤ fv. Thus, there has to exist a value rv ∈ [(1 + ǫ)t−2, (1 + ǫ)t] such that
α(v, rv) = fv and this is the r-value computed by the MP algorithm. Since r̃v = (1 + ǫ)t−1, the Lemma
follows.

From the definition of r̃v one can see that in order to compute these values, we only require knowledge of
qi(v) for all i ≥ 0, rather than actual distances d(v, u) for all u ∈ V . We now state the high-level k-machine
model algorithm (Algorithm 2) for computing r̃v values.

Algorithm 2: RadiusComputation Algorithm (Version 1)

1 Neighborhood-Size Computation. Each machine mj computes qi(v), for all integers i ≥ 0 and
for all vertices v ∈ H(mj).

2 Local Computation. Each machine mj computes r̃v locally, for all vertices v ∈ H(mj). (Recall
that r̃v := (1 + ǫ)t−1 where t ≥ 1 is the smallest integer for which
∑t

i=0 qi(v) · ((1 + ǫ)i+1 − (1 + ǫ)i) > fv.)

In Algorithm 2, step 2 is just local computation, so we focus on Step 1 which requires the solution to the
problem of computing neighborhood sizes. More specifically, we define the problem NbdSizeComputation

as follows: given an edge-weighted graph, with non-negative edge weights, compute the size of B(v, d) for
each vertex v and positive real d. The output to the problem in the k-machine model is required to be a
distributed data structure (distributed among the k machines) such that each machine mj can answer any
query “What is |B(v, d)|?” for any v ∈ H(mj) and any positive real d, using local computation. Note that a
“trivial” way of solving NbdSizeComputation is to solve APSP, but as mentioned earlier this is too costly.
In the next subsection we show how to solve a “relaxed” version of this problem in the k-machine model in
Õ(n/k) rounds, making only O(poly(logn)) calls to a k-machine SSSP algorithm.

4.2 Neighborhood-Size Estimation in the k-machine Model

To solve NbdSizeComputation efficiently in the k-machine model, we turn to an elegant idea due to Cohen
[7, 8]. Motivated by certain counting problems, Cohen [7] presents a “size-estimation framework,” a general
randomized method in the sequential setting. Cohen’s algorithm starts by assigning to each vertex v a rank
rank(v) chosen uniformly from [0, 1]. These ranks induce a random permutation of the vertices. To compute
the size estimate of a neighborhood, say B(v, d), for a vertex v and real d > 0, Cohen’s algorithm finds the
smallest rank of a vertex in B(v, d). It is then shown (in Section 6, [7]) that the expected value of the smallest
rank in B(v, d) is 1/(1 + |B(v, d)|). Thus, in expectation, the reciprocal of the smallest rank in B(v, d) is
(almost) identical to |B(v, d)|. To obtain a good estimate of |B(v, d)| with high probability, Cohen simply
repeats the above-described procedure independently a bunch of times and shows the following concentration
result on the average estimator.

Theorem 2. (Cohen [7]) Let v be a vertex and d > 0 a real. For 1 ≤ i ≤ ℓ, let Ri denote the smallest
rank of a vertex in B(v, d) obtained in the i-th repetition of Cohen’s neighborhood-size estimation procedure.
Let R̂ be the average of R1, R2, . . . , Rℓ. Let µ = 1/(1 + |B(v, d)|). Then, for any 0 < ǫ < 1,

Pr(|R̂− µ| ≥ ǫµ) = exp(−Ω(ǫ2 · ℓ)).

This theorem implies that ℓ = O(log n/ǫ2) repetitions suffice for obtaining (1±ǫ)-factor estimates w.h.p. of
the sizes of B(v, d) for all v and all d.

9

Cohen proposes a modified Dijkstra’s SSSP algorithm to find smallest rank vertices in each neighborhood.
Let v1, v2, . . . , vn be the vertices of the graph in non-decreasing order of rank. Initiate Dijkstra’s algorithm,
first with source v1, then with source v2, and so on. During the search with source vi, if it is detected that
for a vertex u, d(u, vj) ≤ d(u, vi) for some j < i, then the current search can be “pruned” at u. This is
because the vertex vj has ruled out vi from being the lowest ranked vertex in any of u’s neighborhoods. In
fact, this is true not just for u, but for all vertices whose shortest paths to vi pass through u. Even though
this algorithm performs n SSSP computations, the fact that each search is pruned by the results of previous
searches makes the overall running time much less than n times the worst case running time of an SSSP
computation. In particular, by making critical use of the fact that the random vertex ranks induce a random
permutation of the vertices, Cohen is able to show that the algorithm runs in O(m log n+n log2 n) time, on
n-vertex, m-edge graphs, w.h.p.

We don’t know how to implement Cohen’s algorithm, as is, efficiently in the k-machine model. In
particular, it is not clear how to take advantage of pruning that occurs in later searches while simultaneously
taking advantage of the parallelism provided by the k machines. A naive implementation of Cohen’s algorithm
in the k-machine model is equivalent to n different SSSP computations, which is too expensive. Below,
in Algorithm NbdSizeEstimates (Algorithm 3), we show that we can reduce Cohen’s algorithm to a
polylogarithmic number of SSSP computations provided we are willing to relax the requirement that we find
the smallest rank in each neighborhood.

The goal of Algorithm 3 is to estimate |B(v, d)| for all v ∈ V and all d > 0. In Step 3, each vertex v ∈ V
picks a rank uniformly at random from [0, 1], which is rounded down to the closest value (1 + ǫ′)i/n2 for
some integer i (ǫ′ is suitably chosen in the algorithm). In Steps 5-7, in each iteration i, 0 ≤ i < ⌈log1+ǫ′(n

2)⌉,
we consider the set Ti of vertices that have rounded rank equal to (1 + ǫ′)i/n2 and solve an instance of the
MSSP problem (see Lemma 4) using the vertices in Ti as sources. We repeat the algorithm ⌈c logn/(ǫ′)2⌉
times for a suitably chosen constant c, so that the neighborhood size estimates satisfy the property provided
in Theorem 2 with high probability.

Notice that the algorithm’s behavior is not well-defined if a rank falls in the range [0, (1+ǫ′)/n2) However,
since ranks are chosen uniformly at random from [0, 1], the probability that the rank of a vertex falls in this
range is O(1/n2). By union bound, no rank falls in the interval [0, (1 + ǫ′)/n2] with probability at least
1− 1/n. We condition the correctness proof of this algorithm on this high probability event.

Algorithm 3: NbdSizeEstimates(G, ǫ)

1 ǫ′ := ǫ/(ǫ+ 4); t = ⌈2 log1+ǫ′ n⌉; ℓ := ⌈c logn/(ǫ′)2⌉
2 for j := 1, . . . , ℓ do
3 Local Computation. Each machine mj picks a rank rank(v), for each vertex v ∈ H(mj),

chosen uniformly at random from [0, 1]. Machine mj then rounds rank(v) down to the closest
(1 + ǫ′)i/n2 for integer i ≥ 0

4 for i := 0, 1, . . . , t− 1 do

5 Ti := {v ∈ W | rank(v) = (1 + ǫ′)i/n2}
6 Compute a (1 + ǫ)-approximate solution to MSSP using Ti as the set of sources ; let d̃(v, Ti)

denote the computed approximate distances
7 Local Computation. Machine mj stores d̃(v, Ti) for each v ∈ H(mj)

8 end

9 end

Running time. There are ℓ · t calls to the subroutine solving MSSP. By Corollary 1, each of these calls
takes Õ(1/poly(ǫ) · n/k) rounds. Since ℓ · t = O((1/poly(ǫ′) · log2 n), the overall round complexity of this
algorithm in the k-machine model is Õ(1/poly(ǫ) · n/k).
Answering queries. At the end of each iteration, each machine mj holds, for each vertex v ∈ H(mj), the

sequence of distances, {d̃(v, Ti)}t−1
i=0 . Over ℓ repetitions, machine mj holds ℓ such sequences for each vertex

v ∈ H(mj). Note that each distance d̃(v, Ti) is associated with the rounded rank (1+ ǫ′)i/n2. For any vertex

10

v ∈ V and real d > 0, let us denote the query “What is the size of B(v, d)?” by Q(v, d). To answer query
Q(v, d), we consider one of the ℓ sequences {d̃(v, Ti)}t−1

i=0 and find the smallest i, such that d̃(v, Ti) ≤ d, and
return the rounded rank (1+ ǫ′)i/n2. To get an estimate that has low relative error, we repeat this over the
ℓ sequences and compute the average R of the ranks computed in each iteration. The estimator is obtained
by subtracting 1 from the reciprocal of R.

The following lemma shows the correctness of Algorithm 3 in the sense that even though we might
not get an approximately correct answer to Q(v, d), the size |B(v, d)| is guaranteed to be “sandwiched”
between the answers to two queries with nearby distances. This guarantee is sufficient to ensure that the
RadiusComputation Algorithm produces approximately correct radii (see Section 4.3).

Lemma 7. Let s denote |B(v, d)| for some vertex v and real d > 0. For any 0 < ǫ < 1, w.h.p., Algorithm 3
satisfies the following properties:

• for the query Q(v, d/(1 + ǫ)), the algorithm returns an answer that is at most s(1 + ǫ).

• for the query Q(v, d(1 + ǫ)), the algorithm returns an answer that is at least s/(1 + ǫ).

Proof. Fix a particular repetition j, 1 ≤ j ≤ ℓ, of the algorithm and a ranking of the vertices. Let rankj(v, d)
denote the smallest rank in B(v, d) in repetition j. To answer query Q(v, d/(1+ ǫ)), the algorithm examines
the sequence of approximate distances {d̃(v, Ti)}t−1

i=0 , finds the smallest i such that d̃(v, Ti) ≤ d/(1 + ǫ), and

uses Rj := (1 + ǫ′)i/n2 as an approximation for rankj(v, d). Since d̃(v, Ti) ≤ d/(1 + ǫ) there is a vertex

u ∈ Ti such that d̃(v, u) ≤ d/(1 + ǫ). Since we compute a (1 + ǫ)-approximate solution to MSSP, the
actual distance d(v, u) ≤ d. Thus the rank of u is at least rankj(v, d) and therefore the rounded-rank of
u is at least rankj(v, d)/(1 + ǫ′). Since u ∈ Ti, the rounded-rank of u is simply Rj and so we get that
Rj ≥ rankj(v, d)/(1 + ǫ′).

Over all ℓ repetitions, the algorithm computes the average R of the sequence {Rj}ℓj=1. Letting r(v, d)

denote the average of rankj(v, d) over all ℓ repetitions, we see that R ≥ r(v, d)/(1 + ǫ′). From Theorem 2,
we know that w.h.p. r(v, d) ≥ (1 − ǫ′)/(1 + s). Combining these two inequalities, we get

1

R
≤

(

1 + ǫ′

1− ǫ′

)

· (s+ 1)

1

R
− 1 ≤

(

1 + ǫ′

1− ǫ′

)

· s+
(

2ǫ′

1− ǫ′

)

≤
(

1 + 3ǫ′

1− ǫ′

)

· s

≤ (1 + ǫ) · s.
The second last inequality above follows from the fact s ≥ 1, since v ∈ B(v, d). The last inequality follows
from the setting ǫ′ = ǫ/(ǫ+ 4).

Now we consider query Q(v, d · (1 + ǫ)). Again, fix a repetition j, 1 ≤ j ≤ ℓ, of the algorithm and a
ranking of the vertices. Let u ∈ B(v, d) be a vertex with rank equal to rankj(v, d). We get two immediate

implications: (i) the rounded-rank of u is at most rankj(v, d) and (ii) d̃(v, u) ≤ d(1+ǫ). Together these imply
that Rj , the approximate rank computed by the algorithm in repetition j is at most rankj(v, d). Averaging
over all ℓ repetitions we get that R ≤ r(v, d). Using Theorem 2, we know that w.h.p. r(v, d) ≤ (1+ǫ′)/(1+s).
Combining these two inequalities, we that get R ≤ (1 + ǫ′)/(1 + s). This leads to

1

R
− 1 ≥

(

1 + s

1 + ǫ′

)

− 1

≥
(

1− ǫ′

1 + ǫ′

)

· s

≥ s

1 + ǫ
.

The second last inequality follows from the fact that s ≥ 1. A little bit of algebra shows that ǫ′ = ǫ/(ǫ+ 4)
implies that (1− ǫ′)/(1 + ǫ′) ≥ 1/(1 + ǫ) and the last inequality follows from this.

11

4.3 Radius Computation Revisited

Having designed a k-machine algorithm that returns approximate neighborhood-size estimates we restate
the RadiusComputation algorithm (Algorithm 2) below.

Algorithm 4: RadiusComputation Algorithm (Version 2)

1 Neighborhood-Size Computation. Call the NbdSizeEstimates algorithm (Algorithm 3) to
obtain approximate neighborhood-size estimates q̃i(v) for all integers i ≥ 0 and for all vertices v.

2 Local Computation. Each machine mj computes r̃v locally, for all vertices v ∈ H(mj) using the
formula r̃v := (1 + ǫ)t−1 where t ≥ 1 is the smallest integer for which
∑t

i=0 q̃i(v) · ((1 + ǫ)i+1 − (1 + ǫ)i) > fv.

We show below that even though the computed neighborhood-sizes are approximate, in the sense of
Lemma 7, the radii that are computed by the RadiusComputation algorithm (Version 2) are a close
approximation of the actual radii.

Lemma 8. For every v ∈ V , rv
(1+ǫ)3 ≤ r̃v ≤ (1 + ǫ)3rv.

Proof. By Lemma 7, we have the following bounds on q̃i(v):

1

(1 + ǫ)
qi−1(v) ≤ q̃i(v) ≤ (1 + ǫ)qi+1(v)

Similar bounds will apply for the terms ((1 + ǫ)i+1 − (1 + ǫ)i)q̃i(v). Adding the respective inequalities
for these terms, yields the following inequality:

t−1
∑

i=0

((1 + ǫ)i − (1 + ǫ)i−1)qi−1(v) ≤
t−1
∑

i=0

((1 + ǫ)i+1 − (1 + ǫ)i)q̃i(v) ≤
t−1
∑

i=0

((1 + ǫ)i+2 − (1 + ǫ)i+1)qi+1(v).

Now we obtain the following bound using similar arguments as in Lemma 6:

α(v, (1 + ǫ)t−2) ≤
t−1
∑

i=0

q̃i(v) · ((1 + ǫ)i+1 − (1 + ǫ)i) ≤ α(v, (1 + ǫ)t+1).

This means that there must exist a value rv ∈ [(1+ ǫ)t−3, (1+ ǫ)t+1] such that α(v, rv) = fv. The lemma
follows since r̃v = (1 + ǫ)t−1.

4.4 Implementing the Greedy Phase

Referring to the two phases in the MP Algorithm (Algorithm 1), we have now completed the implementation
of the Radius Computation Phase in the k-machine model. Turning to the Greedy Phase, we note that
discretizing the radius values results in O(log1+ǫ n) distinct values. If we can efficiently process each batch
of vertices with the same (rounded) radius in the k-machine model, that would yield an efficient k-machine
implementation of the Greedy Phase as well. Consider the set W of vertices with (rounded) radius r̃. Note
that a set I ⊆ W is opened as facilities by the Greedy Phase iff I satisfies two properties: (i) for any two
vertices u, v ∈ I, d(u, v) > 2r̃ and (ii) for any w ∈ W \ I, d(w, I) ≤ 2r̃. Thus the set I can be identified by
computing a maximal independent set (MIS) in the graph Gr̃[W], where Gr̃ is the graph with vertex set V
and edge set Er̃ = {{u, v} | u, v ∈ V, d(u, v) ≤ r̃}. (Gr̃[W] denotes the subgraph of Gr̃ induced by W .)

The well-known distributed MIS algorithm of Luby [23] runs in O(log n) rounds w.h.p. and it can be easily
implemented in the k-machine model in O(n/k · logn) rounds. However, Luby’s algorithm assumes that the
graph on which the MIS is being computed is provided explicitly. This is not possible here because explicitly
providing the edges of a graph Gd would require pairwise-distance computation, which we’re trying to avoid.

12

Another problem with using Luby’s algorithm is that it uses randomization, where the probabilities of certain
events depend on vertex-degrees. The degree of a vertex v in Gd[W] is exactly |B(v, d) ∩W | and this is the
quantity we would need to estimate. Unfortunately, the correctness guarantees for Algorithm 3 proved in
Lemma 7 are not strong enough to give good estimates for |B(v, d) ∩W |. We deal with these challenges by
instead using the beeping model MIS algorithm of Afek et al. [1], which is quite similar to Luby’s algorithm
except that it does require knowledge of vertex-degrees. In Luby’s algorithm vertices “mark” themselves at
random as candidates for joining the MIS. After this step, if a marked vertex v detects that a neighbor has
also marked itself, then v “backs off.” In the current setting, this step would require every marked vertex v
to detect if there is another marked vertex within distance d. We use ideas from Thorup [29] to show that
this problem can be solved using O(log n) calls to a subroutine that solves ExclusiveMSSP (Lemma 5). In
Luby’s algorithm marked vertices that do not back off, join the MIS (permanently). Then, any vertex v that
has a neighbor who has joined the MIS will withdraw from the algorithm. Determining the set of vertices
that should withdraw in each iteration requires a call to an MSSP subroutine. Because the calls to the
ExclusiveMSSP and MSSP subroutines return only approximate shortest path distances, what Algorithm
5 computes is a relaxation of an MIS, that we call (ǫ, d)-approximate MIS.

Definition 1 ((ǫ, d)-approximate MIS). For an edge-weighted graph G = (V,E), and parameters d, ǫ > 0,
an (ǫ, d)-approximate MIS is a subset I ⊆ V such that

1. For all distinct vertices u, v ∈ I, d(u, v) ≥ d
1+ǫ .

2. For any u ∈ V \ I, there exists a v ∈ I such that d(u, v) ≤ d · (1 + ǫ).

Algorithm 5: ApproximateMIS(G,W, d, ǫ)

1 Each machine mj initializes Uj := ∅
/* Let Wj denote W ∩H(mj). */

2 for i := 0, 1, . . . , ⌈logn⌉ do
3 for ⌈c logn⌉ iterations do

4 Each machine mj marks each vertex v ∈Wj with probability 2i/n
/* Let Rj ⊂Wj denote the set of marked vertices hosted by mj, let

R := ∪kj=1Rj */

5 Solve an instance of the ExclusiveMSSP problem using R as the set of sources (see Lemma

5) to obtain (1 + ǫ)-approximate distances d̃
6 Each machine mj computes Tj := {v ∈ Rj | d̃(v,R \ {v}) > d}
7 Each Machine mj sets Uj := Uj ∪ Tj

/* Let T := ∪kj=1Tj */

8 Solve an instance of the MSSP problem using T as the set of sources (see Lemma 4) to

obtain (1 + ǫ)-approximate distances d̃
9 Each machine mj computes Qj = {v ∈ Wj | d̃(v, T) ≤ d}

10 Each machine mj sets Wj := Wj \ (Tj ∪Qj)

11 end

12 end

13 return U := ∪kj=1Uj

The algorithm consists of ⌈logn⌉ stages and in each Stage i, we run a Luby-like MIS algorithm for ⌈c logn⌉
iterations (for some constant c > 0) with fixed marking probability which we double in each stage. In each
iteration of the two for loops, the set Rj is the set of marked vertices in machine mj . The machines solve an
ExclusiveMSSP instance in Step 5 with all marked vertices to ensure that marked vertices that are within
approximated distance d of each other back-off. The marked vertices in machine mj that do not back-off
(i.e., vertices in Tj) join the MIS (U). The machines then solve an instance of the MSSP problem in Step

13

8 to remove the vertices that within approximate distance d from the vertices in the MIS. We formalize the
correctness of Algorithm 5 in the following Lemma.

Lemma 9. For a given set W ⊆ V , Algorithm 5 finds an (O(ǫ), d)-approximate MIS I of G[W] whp in
Õ(n/k) rounds.

Proof. We first bound the running time of the algorithm. The double nested loop runs for O(log2 n) itera-
tions. In each iteration, Steps 5 and 8 run in Õ(n/k) rounds via Lemmas 5 and 4 respectively and all other
steps are local computations. This means that the overall running time is Õ(n/k).

By the analysis in [1] and the guarantees provided by the solution to ExclusiveMSSP, no two vertices
in W at distance at most d/(1+ ǫ) end up in T . Similarly, by the analysis in [1] and the guarantees provided
by the solution to MSSP, every vertex in W \ U is at distance at most d(1 + ǫ) from U . Thus U is an
(O(ǫ), d)-approximate MIS and it is computed in the k-machine model in Õ(n/k) rounds.

4.5 Putting It All Together

Algorithm 6: β-MettuPlaxton(G)

/* Start Phase 1 of the β-MP algorithm */

1 Call the RadiusComputation algorithm Version 2 (Algorithm 4) to compute approximate radii.
/* Start Phase 2 of the β-MP algorithm */

2 Let S = ∅
3 for i = 0, 1, 2, . . . do
4 Let W be the set of vertices w ∈ V across all machines with r̃w = r̃ = (1 + ǫ)i

5 Using Lemma 4, remove all vertices from W within distance 2(1 + ǫ)2 · r̃ from S
6 I ← ApproximateMIS(G,W, 2(1 + ǫ)3 · r̃, ǫ)
7 S ← S ∪ I

8 end

9 return S

Our k-machine model algorithm for FacLoc is shown in Algorithm 6. We could analyze the algorithm
as done in [29] to show the constant approximation guarantee. However, we want to use this algorithm for
obtaining a p-median algorithm in the next section. Therefore, we take an approach similar to [20] and [3],
to show a stronger approximation guarantee in Lemma 18 (see appendix). We require several claims, which
are along the lines of those in Thorup [29], and Archer et al. [3]. The details are technical and since they
largely appear in Thorup [29] and Archer et al. [3], they are deferred to the appendix. Finally, using Lemma
18, we get the following theorem.

Theorem 3. In Õ(n/k) rounds, whp, Algorithm 6 finds a factor 3 + O(ǫ) approximate solution S to the
facility location problem. Furthermore, if F is the total facility cost of the algorithm’s solution, C is the
total connection cost of the algorithm’s solution, OPT is the optimal solution cost, and β ∈ [1, 3/2] then
C + 2βF ≤ 3(1 + ǫ)

∑

j vj ≤ 3(1 + ǫ)OPT

Proof. Algorithm 6 consists of two phases which correspond to the Radius Computation and Greedy Phases
of the MP algorithm (Algorithm 1). We bound the running time of both these phases. There are at most
O(log1+ǫ nN) = O(log nN) = O(log n) possible values of i and hence at most O(log n) iterations in the two
phases of Algorithm 6 (where N = poly(n) is the largest edge weight). In each iteration of Algorithm 4
consists of a call to Algorithm 3 which runs in Õ(n/k) rounds and hence Phase 1 of Algorithm 6) requires
Õ(n/k) rounds. Each iteration in Phase 2 Algorithm 6 takes Õ(n/k) rounds therefore we conclude that the
overall running time is Õ(n/k) rounds.

As for the approximation guarantee, we note by Lemma 18, we get that for each vertex j ∈ V , we have
shown that there exists an opened facility c(j) ∈ S such that (3 + ǫ) · vj ≥ d(j, c(j)) + βsj which gives the

14

desired guarantee. Finally, we note that the cost of any feasible dual solution is a lower bound on the optimal
cost. Then, by setting β ∈ [1, 3/2] appropriately, the theorem follows.

5 A p-median algorithm

In this section, we describe an Õ(n/k) round algorithm for the p-median problem. We will follow the random-
ized rounding algorithm of Jain and Vazirani [20] which shows an interesting connection between p-median
and uniform facility location problems. As observed in [20], the similarities between the linear programming
formulations of the uniform facility location problem, and the p-median problem can be exploited to obtain
an O(1) approximation algorithm for the p-median problem, if one has a subroutine that returns an O(1)
approximation for the uniform facility location problem, with a specific property. This is summarized in the
following lemma.

Lemma 10 (Modified from [20]). Let A be a polynomial time uniform facility location algorithm that takes
the facility opening cost z as input and returns a solution such that, C + µ · Fz ≤ µ · OPT where C is the
total connection cost, F is the number of facilities opened by the algorithm, and OPT is the optimal solution
cost. Then there exists a randomized p-median algorithm A′ that returns a solution with expected cost at
most 2µ times the optimal p-median cost.

Note that the facility location algorithm described in Section 4 returns a solution satisfying the guarantee
in Lemma 10 (cf. Theorem 3). All that we need to show is that the randomized rounding algorithm can be
efficiently implemented in the k-machine model. In the following sections, we first describe the sequential
randomized algorithm A′ [20], and then discuss how to implement it in k-machine model.

5.1 The Sequential Algorithm

Let cmax and cmin be the maximum and minimum inter-point distances respectively. Using a Facility Location
algorithm that has the guarantee of Lemma 10, we perform binary search on the facility opening cost z in the
range [0, n · cmax]. If we come across a solution A′ such that |A′| = p, then we have a µ-approximate solution
and we stop. Otherwise, we find two solutions A and B, such that |A| < p < |B|, with zA−zB ≤ cmin/(12n

2),
where zA and zB are the facility opening costs corresponding to the solutions A and B respectively. Let
p1 = |A| and p2 = |B|. We now obtain a solution C from A and B, such that |C| = p.

Construct the set B′ ⊆ B as follows. Starting with an empty set, for each vertex in A, add the closest
vertex in B to B′, breaking ties arbitrarily. If at this point, |B′| < p1, add arbitrary vertices from B\B′ to B′

until |B′| = p1. Set C = A, with probability a, and C = B′ with probability b, where a = p2−p
p2−p1

, b = p−p1

p2−p1

.

Now, pick a set of p − p1 vertices from B \ B′, and add it to C. It is clear that |C| = p, and this is the
claimed solution with expected cost 2µ times that of the optimal p-median cost.

5.2 Implementation in the k-machine Model

In order to implement the sequential algorithm in the k-machine model, we will assign a special machine (say
the machine with the smallest ID), which executes the key steps of the sequential algorithm. For convenience,
we refer to this machine as M1. First, each machine sends the weights of minimum and maximum weight
edges incident on any of the vertices hosted by it to M1. This allowsM1 to figure out the smallest edge weight
wmin and the largest edge weight wmax in the input graph and it sets cmin = wmin and cmax = n · wmax

(which is a crude polynomial upper bound). The machines perform binary search on the facility opening
cost to obtain two solutions A, and B by using Algorithm 6 (modified appropriately to take facility opening
cost as input parameter). We assume that each machine knows the subsets of the vertices hosted by it that
belong to A and B respectively.

Now, we show how the machines identify the set B′ ⊆ B in Õ(n/k) rounds. Using Lemmas 4 and 5 with
T = B, for each vertex in A, we determine the approximately closest vertex from B in Õ(n/k) rounds, and
let B′′ be this set. At this point, each machine also knows which of its vertices belongs to B′′. In O(1)

15

rounds, each machine sends the number of its vertices belonging to A,B, and B′′, to M1. If M1 discovers
that |B′′| < p1, then it decides arbitrary p1 − |B′′| vertices from B, and informs the respective machines to
mark those vertices as belonging to B′, and update the counts accordingly. This takes Õ(n/k) rounds.

Now, M1 locally determines whether A or B′ will be included in the solution set C (with probability a
and b respectively) and informs all other machines. Note that M1 knows the number of vertices in B \ B′

that belong to each of the machines so it can sample p− p1 vertices in the set B′′ ⊆ B \B′ as follows. For
a machine Mj , M1 sends it the number tj which is the number of vertices from B \ B′ hosted by Mj that
are chosen by M1 uniformly at random to be in B′′. Finally, each machine Mj chooses a set of tj vertices
uniformly at random from the set B \B′ that it hosts. It is easy to see that this procedure guarantees that
each vertex from the set B \ B′ has probability b of getting chosen in the set B′′. The set C ← C ∪ B′′ is
the final solution.

At this point, each machine knows the subset of C that is hosted by it. We use Lemmas 4 and 5 to
identify for each vertex u ∈ V , the approximately closest vertex v ∈ C in Õ(n/k) rounds. In additional
Õ(n/k) rounds, M1 can compute the approximate cost of the solution. Note that in this step, and while
computing B′, we use an (1 + ǫ)-approximate SSSP algorithm, instead of an exact SSSP algorithm. Using
this fact in the analysis of [20], it can be shown that this does not increase the expected cost of the solution
by more than an O(ǫ) factor. We omit the details. Thus, the solution obtained by our algorithm has cost at
most 6+O(ǫ) times the optimal solution with high probability. Finally, setting the value of ǫ for the facility
location algorithm appropriately yields the following theorem.

Theorem 4. For any constant ǫ > 0, there exists a randomized algorithm to obtain a 6 + ǫ factor approxi-
mation to the p-median problem in the k-machine model in Õ(n/k) rounds w.h.p.

6 A p-center algorithm

In this section, we describe a constant factor approximation algorithm for the p-center problem. It is a
well-known that (see for example [14]), if d∗ is an optimal p-center cost, then any distance-2d∗ MIS is a
2-approximation for the p-center. But since we do not know how to compute a distance-d MIS efficiently in
the k-machine model, we show in the following Lemma that an (ǫ, 2 · (1 + ǫ)d∗)-approximate MIS suffices to
get an O(1)-approximation.

Lemma 11. For a graph G = (V,E), if d∗ is an optimal p-center cost, then any (ǫ, 2(1+ ǫ)d∗)-approximate
MIS is an 2(1 + ǫ)2 approximation.

Proof. Let O = {o1, o2, · · · , op} ⊆ V be an optimal p-center solution (we assume without loss of generality
that O contains exactly p centers). Define a partition {Vi} of the vertex set V , by defining the set Vi for
each oi ∈ O as follows. For each oi ∈ O, let Vi ⊆ V be the set of vertices, for which oi is the closest center
in O. Here we break ties arbitrarily, so that each vertex appears in exactly one of the sets Vi. Note that if
v ∈ Vj for some j, then d(v, oj) = d(v,O) ≤ d∗.

Now let I ⊆ V be any (ǫ, 2(1 + ǫ)d∗)-approximate MIS. We first show that I is feasible, i.e. |I| ≤ p, by
showing that for any i ∈ {1, 2, · · · , p}, |Vi ∩ I| ≤ 1. Assume this is not the case, i.e. for some i, there exist
distinct v1, v2 ∈ Vi ∩ I. But this implies that d(v1, v2) ≤ d(v1, oi) + d(oi, v2) ≤ 2d∗, which is a contradiction
to the fact that I is an (ǫ, 2(1 + ǫ)d∗)-approximate MIS.

Finally, the approximation guarantee follows from the definition of an approximate MIS – for any v ∈ V ,
there exists an u ∈ I such that d(u, v) ≤ 2(1 + ǫ)2d∗.

Although we do not know the optimal p-center cost d∗ we can find it by doing a binary search to get
the largest d such that an (ǫ, 2(1 + ǫ)d)-approximate MIS has size at most p. There are at most O(log n)
iterations of the binary search because of our assumption that the distances bounded by poly(n). This along
with Lemma 9 gives us the following theorem.

Theorem 5. For any constant ǫ > 0, there exists a randomized algorithm to obtain a (2 + ǫ)-factor approx-
imation to the p-center problem in the k-machine model in Õ(n/k) rounds w.h.p.

16

7 Conclusions

This paper initiates the study of clustering problems in the k-machine model and presents near-optimal (in
rounds) constant-factor approximation algorithms for these problems. The near-optimality of our algorithms
is established via almost-matching lower bounds on on the number of rounds needed to solve these problems
in the k-machine model. However, the lower bounds critically depend a certain assumption regarding how
the output of the clustering algorithms is to be represented. Specifically, we require that every machine with
an open facility knows all clients connecting to that facility. This requirement forces some machines to learn
a large volume of information distributed across the network and this leads to our lower bounds.

We could alternately, impose a rather “light weight” output requirement and, for example, require each
machine with an open facility to simply know the number of clients connecting to it or the aggregate
connection cost of all the clients connecting to it. (Of course, independent of this change, the output requires
that each client know the facility it connects to.) So the main open question that follows from our work is
whether we can design optimal k-machine algorithms under this relaxed output requirement. Ω(n/k2) lower
bounds do not seem difficult to prove in this setting, but to obtain Õ(n/k2)-round constant-approximation
algorithms seems much harder. Alternately, can we prove stronger lower bounds even in this, more relaxed,
setting?

References

[1] Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama Barkai, and Ziv Bar-Joseph. A biological
solution to a fundamental distributed computing problem. Science, 331(6014):183–185, 2011.

[2] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency
moments. In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 20–29, New York, NY, USA, 1996. ACM.

[3] Aaron Archer, Ranjithkumar Rajagopalan, and David B. Shmoys. Lagrangian relaxation for the k-
median problem: New insights and continuity properties. In Giuseppe Di Battista and Uri Zwick,
editors, Algorithms - ESA 2003: 11th Annual European Symposium, Budapest, Hungary, September
16-19, 2003. Proceedings, pages 31–42, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[4] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka Pandit.
Local search heuristic for k-median and facility location problems. In Proceedings of the Thirty-third
Annual ACM Symposium on Theory of Computing, STOC ’01, pages 21–29, New York, NY, USA, 2001.
ACM.

[5] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-Optimal
Approximate Shortest Paths and Transshipment in Distributed and Streaming Models. In Andréa W.
Richa, editor, 31st International Symposium on Distributed Computing (DISC 2017), volume 91 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:16, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[6] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukrishnan. One
trillion edges: Graph processing at facebook-scale. Proc. VLDB Endow., 8(12):1804–1815, August 2015.

[7] Edith Cohen. Size-Estimation Framework with Applications to Transitive Closure and Reachability.
Journal of Computer and System Sciences, 55(3):441–453, 1997.

[8] Edith Cohen. All-Distances Sketches, Revisited: HIP Estimators for Massive Graphs Analysis. IEEE
Transactions on Knowledge and Data Engineering, 27(9):2320–2334, 2015.

[9] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: A flexible data processing tool. Commun. ACM,
53(1):72–77, January 2010.

17

[10] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique model. In
Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC ’14, pages
367–376, New York, NY, USA, 2014. ACM.

[11] Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using mapreduce. In Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11,
pages 681–689, New York, NY, USA, 2011. ACM.

[12] Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and Mauro Sozio. Scalable facility
location for massive graphs on pregel-like systems. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management, CIKM ’15, pages 273–282, New York, NY,
USA, 2015. ACM.

[13] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci.,
38:293–306, 1985.

[14] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer
Science, 38:293–306, 1985.

[15] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms. In
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’98, pages
649–657, Philadelphia, PA, USA, 1998. Society for Industrial and Applied Mathematics.

[16] James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardeshmukh, and Michele
Scquizzato. Toward optimal bounds in the congested clique: Graph connectivity and mst. In Proceedings
of the 2015 ACM Symposium on Principles of Distributed Computing, PODC ’15, pages 91–100, New
York, NY, USA, 2015. ACM.

[17] James W. Hegeman and Sriram V. Pemmaraju. Sub-logarithmic distributed algorithms for metric
facility location. Distrib. Comput., 28(5):351–374, October 2015.

[18] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility location
problems. In Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC
’02, pages 731–740, New York, NY, USA, 2002. ACM.

[19] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and k-median
problems using the primal-dual schema and lagrangian relaxation. J. ACM, 48(2):274–296, March 2001.

[20] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and k-median
problems using the primal-dual schema and lagrangian relaxation. J. ACM, 48(2):274–296, 2001.

[21] Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson. Distributed computa-
tion of large-scale graph problems. In Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’15, pages 391–410, Philadelphia, PA, USA, 2015. Society for Industrial
and Applied Mathematics.

[22] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. In Proceedings
of the 38th International Conference on Automata, Languages and Programming - Volume Part II,
ICALP’11, pages 77–88, Berlin, Heidelberg, 2011. Springer-Verlag.

[23] M. Luby. A simple parallel algorithm for the maximal independent set. SIAM Journal on Computing,
15:1036–1053, 1986.

[24] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: A system for large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, SIGMOD ’10, pages 135–146, New
York, NY, USA, 2010. ACM.

18

[25] Ramgopal R. Mettu and C. Greg Plaxton. The online median problem. SIAM J. Comput., 32(3):816–
832, March 2003.

[26] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. Fast distributed algorithms for connec-
tivity and mst in large graphs. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’16, pages 429–438, New York, NY, USA, 2016. ACM.

[27] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. Tight bounds for distributed graph
computations. CoRR, abs/1602.08481, 2016.

[28] Jonathan A. Silva, Elaine R. Faria, Rodrigo C. Barros, Eduardo R. Hruschka, André C. P. L. F. de
Carvalho, and João Gama. Data stream clustering: A survey. ACM Comput. Surv., 46(1):13:1–13:31,
July 2013.

[29] Mikkel Thorup. Quick k-Median, k-Center, and Facility Location for Sparse Graphs. SIAM Journal on
Computing, 34(2):405–432, 2005.

[30] G. Yaroslavtsev and A. Vadapalli. Massively Parallel Algorithms and Hardness for Single-Linkage
Clustering Under ℓ p-Distances. ArXiv e-prints, October 2017.

A Technical Proofs from Section 4.5

In this appendix, we give some of the technical proofs required to prove Lemma 18, and then give its proof.
Throughout this section, we condition on the event that the outcome of all the randomized algorithms

is as expected (i.e. the “bad” events do not happen). Note that this happens with w.h.p. We first need the
following facts along the lines of [29].

Lemma 12 (Modified From Lemma 8 Of [29]). There exists a total ordering ≺ on the vertices in V such
that u ≺ v =⇒ ru ≤ (1+ ǫ) · rv, and v is added to S if and only if there is no previous u ≺ v in S such that
d(u, v) ≤ 2(1 + ǫ)2rv.

Proof Sketch. The ordering is obtained by listing in each iteration, the vertices in I that are included in S
before the rest of the vertices of W . Note that the extra (1 + ǫ)2 factor appears because of the definition of
(ǫ, d)-approximate MIS.

Claim 1 (Modified From Claim 9.2 Of [29]). For any two distinct vertices u, v ∈ S, we have that d(u, v) ≥
2(1 + ǫ)3 ·max{ru, rv}.
Proof Sketch. Without loss of generality, assume that u ≺ v, so ru ≤ (1+ ǫ) · rv. Now the claim follows from
lemma 12, and the definition of (ǫ, d)-approximate MIS.

In the rest of the section, we follow the primal-dual analysis of [3], again with necessary modifications
arising from various approximations. For completeness, we state the primal and dual LP relaxations below.
We reserve the subscript i for facilities and j for clients. Note that in our case, i, j ∈ V .

min.
∑

i

fiyi+
∑

i,j

d(i, j) · xij max.
∑

j

vj

s.t.
∑

i

xij = 1 ∀j s.t.
∑

j

wij − fi ≤ 0 ∀i

yi − xij ≥ 0 ∀i, j vj − wij − d(i, j) ≤ 0 ∀i, j
yi, xij ≥ 0 ∀i, j vj , wij ≥ 0 ∀i, j

Let β ≥ 1 be the parameter that is used in the Facility Location algorithm. Set wij = 1
β max{0, ri −

d(i, j)}. Say that j contributes to i if wij > 0. Then, set vj = mini∈V d(i, j) +wij . It is easy to see that the
v and w values are dual feasible.

19

Define for each j ∈ V , sj = wij if there exists an i ∈ S with wij > 0 and 0 otherwise. Note that sj is
uniquely defined, if it is not zero. This is because of the fact that the balls B(v, rv) and B(u, ru) are disjoint
using Claim 1. Also note that fi =

∑

j∈V wij , therefore,
∑

i∈S fi =
∑

j∈V sj .
For j ∈ V , call the facility i ∈ P that determines the minimum in vj = mini∈V d(i, j)+wij , the bottleneck

of j. We say that a facility (or a vertex) is closed if it does not belong to the set S, and it is opened otherwise.
Furthermore, we say that a facility v ∈ S caused another facility u /∈ S was closed, if at the time u was
removed in the Algorithm 6, Line 5, d(u, v) ≤ 2(1 + ǫ)i. Before showing the approximation guarantee, we
need the following four lemmas. (cf. Lemmas 1-4 from [3])

Lemma 13. For any i, j ∈ V , we have that r̃i ≤ (1 + ǫ)3 · (βwij + d(i, j)). Furthermore, if for some
i, j ∈ V,wij > 0, then r̃i ≥ 1

(1+ǫ)3 (βwij + d(i, j)).

Proof. We have that βwij ≥ ri − d(i, j). Now using the appropriate upper and lower bounds from lemma 8
for ri to get the desired inequality.

Lemma 14. If β ≤ 3, and if i is a bottleneck for j, then 3(1 + ǫ)3vj ≥ 2r̃i.

Proof.

vj = d(i, j) + wij (Since i is the bottleneck for j)

=⇒ 3(1 + ǫ)4vj ≥ (1 + ǫ)4(2 · d(i, j) + 2 · β) (Using the fact that β ≤ 3(1+ǫ)4

2)

≥ 2 · ri (Using Lemma 13.)

Lemma 15. If an open facility is a bottleneck for j, then j cannot contribute to any other open facility.

Proof. Suppose i′ ∈ S is j’s bottleneck. Also assume that j contributes to another i ∈ S, i.e. wij > 0.
Using triangle inequality, we have that d(i, i′) ≤ d(i, j) + d(i′, j) ≤ d(i, j) + d(i′, j) < ri + d(i′, j). In the last
inequality, we use the fact that wij > 0, which means that d(i, j) < ri. Now there are two cases, depending
on whether wi′j > 0 or wi′j = 0.

In the first case, if wi′j > 0, then again using similar reasoning, we have that d(i′, j) ≤ ri′ . However, this
implies that d(i, i′) < ri + ri′ ≤ 2(1+ ǫ)2(ri + ri′) ≤ 2(1+ ǫ2)max{ri, ri′}, which is a contradiction to Claim
1.

In the second case, wi′j = 0. However, since i′ is also a bottleneck for j, this implies that vj =
mini∈V d(i, j) = d(i′, j). That is, i′ is the closest vertex to j, i.e. d(i, j) ≤ d(i′, i). However, this implies
d(i, i′) ≤ 2d(i′, j) ≤ 2d(i′, j) < 2ri′ ≤ 2(1 + ǫ)2ri′ , which is again a contradiction to Claim 1.

Lemma 16. If a closed facility i /∈ S is a bottleneck for j ∈ V , and k ∈ S is the open facility that caused i
to close, then max{2β, 3} · (1 + ǫ)7 · vj ≥ d(k, j).

Proof.

d(k, j) ≤ d(k, i) + d(i, j) (Triangle inequality)

≤ 2(1 + ǫ)3ri + d(i, j) (k caused i to close, so using Lemma 12.)

≤ 2(1 + ǫ)3ri + d(i, j)

≤ 2(1 + ǫ)3 · (1 + ǫ)4(βwij + d(i, j)) + d(i, j) (Using Lemma 13.)

≤ 2β(1 + ǫ)7wij + (2(1 + ǫ)7 + 1) · d(i, j)
≤ max{2β(1 + ǫ)7, 2(1 + ǫ)7 + 1} · vj (Since i is the bottleneck for j)

≤ max{2β, 3} · (1 + ǫ)7 · vj

20

Lemma 17. If a closed facility i /∈ S is a bottleneck for j ∈ V , and k ∈ S is the open facility that caused i
to close, then max{2β, 3} · (1 + ǫ)7 · vj ≥ d(k, j).

Proof.

d(k, j) ≤ d(k, i) + d(i, j) (Triangle inequality)

≤ 2(1 + ǫ)2ri + d(i, j). (Using Lemma 12)

≤ 2(1 + ǫ)4r̃i + d(i, j) (Using Lemma 8)

≤ 2(1 + ǫ)7(βwij + d(i, j)) + d(i, j) (Using Lemma 13)

= max{2β, 3} · (1 + ǫ)7 · vj (Because i is the bottleneck for j)

We are finally ready to prove the main guarantee of the modified MP-β algorithm, as in [3]. The basic
idea is to show that (3+O(ǫ)) times the dual variable vj pays for the distance traveled by j, as well as, βsj ,
which is a part of the facility opening cost. We formalize this in the following lemma.

Lemma 18. For any vertex j ∈ V , there exists a facility c(j) ∈ S such that 3(1+O(ǫ))vj ≥ d(j, c(j))+βsj .

Proof. Consider a vertex j ∈ V . We prove the theorem by doing a careful case analysis.
Case 1. Some open facility i ∈ S is the bottleneck for j. Connect j to i.

If d(i, j) ≤ ri, we have that 0 < wij = sj . Also, vj = d(i, j) + sj .
Otherwise, wij = 0, and vj = d(i, j).

Case 2. Some closed facility i /∈ S is the bottleneck for j, and j does not contribute to any open facility
(i.e. sj = 0).
There must be some open facility k ∈ S that caused i to close. Connect j to k. By Lemma 17, we know
that 3(1 + ǫ)7vj ≥ d(k, j).

Case 3. Some closed facility i /∈ S is the bottleneck for j, and there exists an open facility ℓ ∈ S with
wℓj > 0, but ℓ was not the reason why i was closed.
Since wℓj > 0, sj = wℓj , by the uniqueness of sj . Connect j to ℓ.
By Lemma 13, we have that r̃ℓ ≥ 1

(1+ǫ)3 (d(ℓ, j) + wℓj). Also, there must be some open facility k ∈ S which

prevented i from opening. Using similar reasoning as in the previous case, we have that d(k, j) ≤ 3(1+ ǫ)7vj .
Now,

d(ℓ, k) ≥ 2(1 + ǫ)3rℓ ≥ 2(d(ℓ, j) + βwℓj) (Using Claim 1 and Lemma 13.)

=⇒ 2(d(ℓ, j) + βwℓj) ≤ d(ℓ, k) ≤ d(ℓ, j) + d(k, j) (Triangle inequality)

=⇒ d(ℓ, j) + 2βwℓj ≤ d(k, j) ≤ 3(1 + ǫ)7vj

Case 4. Some closed facility i /∈ S is the bottleneck for j. Furthermore, there is an open facility k ∈ S
such that wkj > 0, and k caused i to be closed. Connect j to k.
Again, by uniqueness of sj , we have that sj = wkj . Also, from Lemma 14, 3(1+ ǫ)3vj ≥ 2r̃i. Since k caused i
to be closed, we have that r̃i ≥ r̃k ≥ 1

(1+ǫ)3 (d(k, j)+βwkj) =
1

(1+ǫ)3 (d(k, j)+βsj), by Lemma 14. Combining

the previous inequalities yields, 3(1 + ǫ)6vj ≥ d(k, j) + 2βsj .
Finally, we use the well-known fact that for any ǫ ∈ (0, 1), (1 + ǫ)7 ≤ (1 + cǫ) for some constant c, and

the lemma follows.

21

	1 Introduction
	1.1 Problem Definitions
	1.2 The k-machine Model and Input-Output Specification
	1.3 Our Results
	1.4 Related Work

	2 Lower Bound Results
	3 Technical Preliminaries
	4 Facility Location in (n/k) rounds
	4.1 Reducing Radius Computation to Neighborhood-Size Computation
	4.2 Neighborhood-Size Estimation in the k-machine Model
	4.3 Radius Computation Revisited
	4.4 Implementing the Greedy Phase
	4.5 Putting It All Together

	5 A p-median algorithm
	5.1 The Sequential Algorithm
	5.2 Implementation in the k-machine Model

	6 A p-center algorithm
	7 Conclusions
	A Technical Proofs from Section ??

