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ABSTRACT
Alice and Bob are connected via a two-way channel, and Alice wants

to send a message of L bits to Bob. An adversary �ips an arbitrary

but �nite number of bits, T , on the channel. This adversary knows

our algorithm and Alice’s message, but does not know any private

random bits generated by Alice or Bob, nor the bits sent over the

channel, except when these bits can be predicted by knowledge of

Alice’s message or our algorithm. We want Bob to receive Alice’s

message and for both players to terminate, with error probability

at most δ > 0, where δ is a parameter known to both Alice and Bob.

Unfortunately, the value T is unknown in advance to either Alice

or Bob, and the value L is unknown in advance to Bob.

We describe an algorithm to solve the above problem while

sending an expected L +O
(
T +min

(
T + 1, L

log L

)
log

(
L
δ

))
bits. A

special case is when δ = O(1/Lc ), for some constant c . Then when

T = o(L/logL), the expected number of bits sent is L + o(L), and

whenT = Ω(L), the expected number of bits sent is L+O (T ), which

is asymptotically optimal.
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1 INTRODUCTION
What if we want to send a message over a noisy two-way channel,

and little is known in advance? In particular, imagine that Alice

wants to send a message to Bob, but the number of bits �ipped on

the channel is unknown to either Alice or Bob in advance. Further,

the length of Alice’s message is also unknown to Bob in advance.

While this scenario seems like it would occur quite frequently,

surprisingly little is known about it.

In this paper, we describe an algorithm to e�ciently address this

problem. To do so, we make a critical assumption on the type of

noise on the channel. We assume that an adversary �ips bits on

the channel, but this adversary is not completely omniscient. The

adversary knows our algorithm and Alice’s message, but it does not
know the private random bits of Alice and Bob, nor the bits that

are sent over the channel, except when these bits do not depend

on the random bits of Alice and Bob. Some assumption like this

is necessary : if the adversary knows all bits sent on the channel

and the number of bits it �ips is unknown in advance, then no

algorithm can succeed with better than constant probability (see

Theorem 6.1 from [10] for details
1
).

Our algorithm assumes that a desired error probability, δ > 0 is

known to both Alice and Bob, that the adversary �ips some number

T bits that is �nite but unknown in advance, and that the length of

Alice’s message, L is unknown to Bob in advance. Our main result

is then summarized in the following theorem.

Theorem 1.1. Our algorithm tolerates an unknown number of
adversarial errors,T , and for any δ > 0, succeeds in sending a message
of length L with probability at least 1 − δ , and sends an expected

L +O
(
T +min

(
T + 1, L

log L

)
log

(
L
δ

))
bits.

An interesting case to consider is when the error probability is

polynomially small in L, i.e. when δ = O(1/Lc ), for some constant

c . Then whenT = o(L/logL), our algorithm sends L+o(L) expected

bits. When T = Ω(L), the number of bits sent is L +O (T ), which is

asymptotically optimal.

1.1 Related Work
Interactive Communication Our work is related to the area of

interactive communication. The problem of interactive communica-

tion asks how two parties can run a protocol π over a noisy channel.

This problem was �rst posed by Schulman [29, 30], who describes a

1
Essentially, in this case, the adversary can run a man-in-the-middle attack to fool Bob

into accepting the wrong message
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deterministic method for simulating interactive protocols on noisy

channels with only a constant-factor increase in the total commu-

nication complexity. This initial work spurred vigorous interest in

the area (see [5] for an excellent survey).

Schulman’s scheme tolerates an adversarial noise rate of 1/240,

even if the adversary is not oblivious. It critically depends on the

notion of a tree code for which an exponential-time construction

was originally provided. This exponential construction time moti-

vated work on more e�cient constructions [6, 23, 27]. There were

also e�orts to create alternative codes [13, 25]. Recently, elegant

computationally-e�cient schemes that tolerate a constant adver-

sarial noise rate have been demonstrated [3, 14]. Additionally, a

large number of results have improved the tolerable adversarial

noise rate [4, 7, 8, 12, 15], as well as tuning the communication costs

to a known, but not necessarily constant, adversarial noise rate [16].

InteractiveCommunicationwithPrivateChannelsOur paper

builds on a recent result on interactive communication by Dani et

al [10]. The model in [10] is equivalent to the one in this paper

except that 1) they assume that Alice and Bob are running an

arbitrary protocol π ; and 2) they assume that both Alice and Bob

know the number of bits sent in π . In particular, similar to this

paper, they assume that the adversary �ips an unknown number of

bits T , and that the adversary does not know the private random

bits of Alice and Bob, or the bits sent over the channel.

If the protocol π just sends L bits from Alice to Bob, then the algo-

rithm from [10] can solve the problem we consider here. In that case,

the algorithm of [10] will send an expectedL+O
(√

L(T + 1) logL +T
)

bits, with a probability of error that isO(1/Lc ) for any �xed constant

c .

For the same probability of error, the algorithm in this paper

sends an expected L + O(min((T + 1) logL),L) + T ) bits. This is

never worse than [10], and can be signi�cantly better. For example,

when T = O(1), our cost is L + O(logL) versus L + O(
√
L logL)

from [10]. In general if T = o(L/logL) our cost is asymptotically

better than [10]. Additionally, unlike [10], the algorithm in this

paper does not assume that L is known in advance by Bob.

An additional results of [10] is a theorem showing that private

channels are necessary in order to tolerate unknown T with better

than constant probability of error.

Rateless Codes Rateless error correcting codes enable generation

of potentially an in�nite number of encoding symbols from a given

set of source symbols with the property that given any subset

of a su�cient number of encoding symbols, the original source

symbols can be recovered. Fountain codes [20, 22] and LT codes [17,

19, 26] are two classic examples of rateless codes. Erasure codes

employ feedback for stopping transmission [19, 26] and for error

detection [17] at the receiver.

Critically, the feedback channel, i.e. the channel from Bob to

Alice, is typically assumed to be noise free. We di�er from this

model in that we allow noise on the feedback channel, and addition-

ally, we tolerate bit �ips, while most rateless codes tolerate only bit

erasures.

1.2 Formal Model
Initial State. We assume that Alice initially knows some message

M of length L bits that she wants to communicate to Bob, and

that both Alice and Bob know an error tolerance parameter δ > 0.

However, Bob does not know L or any other information about

M initially. Alice and Bob are connected by a two-way binary

communication channel.

The Adversary. We assume an adversary can �ip some a priori
unknown, but �nite number of bits T on the channel from Alice to

Bob or from Bob to Alice. This adversary knows M , and all of our

algorithms. However, it does not know any random bits generated

by Alice or Bob, or the bits sent over the channel, except when

these can be determined from other known information.

Channel steps. We assume that communication over the channel

is synchronous. A channel step is de�ned as the amount of time

that it takes to send one bit over the channel. As is standard in

distributed computing, we assume that all local computation is

instantaneous.

Silence on the channel. Similar to [10], when neither Alice nor

Bob sends in a channel step, we say that the channel is silent. In

any contiguous sequence of silent channel steps, the bit received

on the channel in the �rst step is set by the adversary for free. By

default, the bit received in the subsequent steps of the sequence

remains the same, unless the adversary pays for one bit �ip each

time it wants to change the value of the bit received.

1.3 Paper organization
The rest of the paper is organized as follows. We �rst discuss an al-

gorithm for the case when both Alice and Bob share the knowledge

of L in Section 2. We present the analysis for failure probability,

correctness, termination and number of bits sent by this algorithm

in Section 3. Then, we remove the assumption of knowledge of

L and provide an algorithm for the unknown L case in Section 4,

along with its analysis. Finally, in Section 5, we conclude the paper

by stating the main result and discuss some open problems.

2 KNOWN L
We �rst discuss the case when Bob knows L. We remove this

assumption later in Section 4.

Our algorithm makes critical use of Reed-Solomon codes from

[28]. Alice begins by encoding her message using a polynomial of

degree d = dL/logqe − 1 over GF (q), where q = 2
dlog Le

. She sends

the values of this polynomial computed at certain elements of the

�eld as message symbols to Bob. Upon receiving an appropriate

number of these points, Bob computes the polynomial using the

Berlekamp-Welch algorithm [31] and sends a �ngerprint of his

guess to Alice. Upon hearing this �ngerprint, if Alice �nds no

errors, she echoes the �ngerprint back to Bob, upon receiving a

correct copy of which, Bob terminates the algorithm. Unless the

adversary corrupts many bits, Alice terminates soon after.

However, in the case where Alice does not receive a correct

�ngerprint of the polynomial from Bob, she sends two more evalu-

ations of the polynomial to Bob. Bob keeps receiving extra evalua-

tions and recomputing the polynomial until he receives the correct

�ngerprint echo from Alice.
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2.1 Notation
Some helper functions and notation used in our algorithm are

described in this section. We denote by s ∈u.a.r. S the fact that s is

sampled uniformly at random from the set S .

Fingerprinting. For �ngerprinting, we use a well known theorem

by Naor and Naor [24], slightly reworded as follows:

Theorem 2.1. [24] Fix integer ` > 0 and realp ∈ (0, 1). Then there
exist constants Cs ,Ch > 0 and algorithm h such that the following
hold for a given string s ∈u.a.r. {0, 1}Cs log(`/p).

(1) For a stringm of length at most `, we have h (s,m,p, `) =
(s, f ), where f is a string of length Ch log(1/p).

(2) For any bit strings m and m′ of length at most `, if m =
m′, then h (s,m,p, `) = h (s,m′,p, `), else Pr{h (s,m,p, `) =
h (s,m′,p, `)} ≤ p.

We refer to h (s,m,p, `) as the �ngerprint of the messagem.

GetPolynomial. LetM be a multiset of tuples of the form (x ,y) ∈
GF (q) ×GF (q). For each x ∈ GF (q), we de�ne maj(M)(x) to be the

tuple (x , z) that has the highest number of occurrences inM, break-

ing ties arbitrarily. We de�ne maj(M) = ⋃
x ∈GF (q){(x , maj(M)(x))}.

Given the set S = maj(M), we de�ne GetPolynomial (S,d,q) as

a function that returns the degree-d polynomial over GF (q) that

is supported by the largest number of points in S, breaking ties

arbitrarily.

The following theorem from [28] [31] provides conditions under

which GetPolynomial (S,d,q) reconstructs the required polyno-

mial.

Theorem 2.2. [28] [31] Let P be a polynomial of degreed over some
�eld F, and S ⊂ F × F. Let д be the number of elements (x ,y) ∈ S
such that y = P(x), and let b = |S| − д. Then, if д > b + d , we have
GetPolynomial (S,d,q) = P .

AlgebraicManipulation Detection Codes. Our algorithm also makes

use of Algebraic Manipulation Detection (AMD) codes from [9].

For a given η > 0, called the strength of AMD encoding, these

codes provide three functions: amdEnc, amdDec and IsCodeword.

The function amdEnc (m,η) creates an AMD encoding of a mes-

sage m. The function IsCodeword (m,η) takes a message m and

returns true if and only if there exists some messagem′ such that

amdEnc (m′,η) =m. The function amdDec (m,η) takes a messagem
such that IsCodeword (m,η) and returns a message m′ such that

amdEnc (m′,η) =m. These functions enable detection of bit corrup-

tion in an encoded message with high probability. The following

(slightly reworded) theorem from [9] helps establish this:

Theorem 2.3. [9] For any η > 0, there exist functions amdEnc,
amdDec and IsCodeword, such that for any bit stringm of length x :

(1) amdEnc (m,η) is a string of length x +Ca log(1/η), for some
constant Ca > 0

(2) IsCodeword (amdEnc (m,η) ,η) and amdDec (amdEnc (m,η) ,η) =
m

(3) For any bit string s , 0 of length x , we have

Pr (IsCodeword (amdEnc (m,η) ⊕ s,η)) ≤ η

With the use of Naor-Naor hash functions along with AMD codes,

we are able to provide the required security for messages with Alice

and Bob. Assume that the Bob generates the �ngerprint (s, f ),
which upon tampering by the adversary, is converted to (s ⊕ t1, f ⊕
t2) for some strings t1, t2 of appropriate lengths. Upon receiving

this, Alice compares it against the �ngerprint of her message m by

computing h (s ⊕ t1,m,p, |m |), for appropriately chosen p. Then,

we require that there exist a η ≥ 0 such that for any choice of t1, t2,

Pr{h
(
s ⊕ t1,m′,p, |m′ |

)
= (s ⊕ t1, f ⊕ t2)} ≤ η

for any stringm′ ,m. Theorem 2.3 provides us with this guarantee

directly.

Error-correcting Codes. These codes enable us to encode a mes-

sage so that it can be recovered even if the adversary corrupts a

third of the bits. We will denote the encoding and decoding func-

tions by ecEnc and ecDec, respectively. The following theorem, a

slight restatement from [28], gives the properties of these functions.

Theorem 2.4. [28] There is a constant Ce > 0 such that for any
messagem, we have |ecEnc (m) | ≤ Ce |m |. Moreover, ifm′ di�ers
from ecEnc (m) in at most one-third of its bits, then ecDec (m′) =m.

Finally, we observe that the linearity of ecEnc and ecDec ensure

that when the error correction is composed with the AMD code,

the resulting code has the following properties:

(1) If at most a third of the bits of the message are �ipped,

then the original message can be uniquely reconstructed

by rounding to the nearest codeword in the range of ecEnc.

(2) Even if an arbitrary set of bits is �ipped, the probability of

the change not being recognized is at most η, i.e. the same

guarantee as the AMD codes.

This is because ecDec is linear, so when noise η is added by the ad-

versary to the codeword x , e�ectively what happens is the decoding

function ecDec (x + η) = ecDec (x) + ecDec (η) = m + ecDec (η),
where m is the AMD-encoded message. But now ecDec (η) is an

random string that is added to the AMD-encoded codeword.

Silence. In our algorithm, silence on the channel has a very spe-

ci�c meaning. We de�ne the function IsSilence (s) to return true

i� the string s has fewer than |s |/3 bit alternations.

Other notation. We use 0b to denote the b-bit string of all zeros,

� for string concatenation and Listen (b) to denote the function

that returns the bits on the channel over the next b time steps. For

the sake of convenience, we will use logx to mean dlog
2
xe, unless

speci�ed otherwise. Let C = max{19,Ch +Ca +CeCs }.

2.2 Algorithm overview
Our algorithm for the case when L is known is given in two parts:

Algorithm 1 is what Alice follows and Algorithm 2 is what Bob

follows. Both algorithms assume knowledge of the message lengthL
and the error tolerance δ . The idea is for Alice to compute a degree-

d polynomial encoding of M over a �eld of size q. Here q = 2
dlog Le

and d = dL/logqe − 1. She begins by sending evaluations of this

polynomial over the �rst d + 1 �eld elements to Bob in plaintext,

which Bob uses to reconstruct the polynomial and retrieve the

message. He also computes a �ngerprint of this polynomial and

sends it back to Alice. He encodes this �ngerprint with AMD
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Algorithm 1 Alice’s algorithm

1: procedure Alice(M,δ ) . M is a message of length L

2: q ← 2
dlog Le . Field size

3: d ← dL/logqe − 1 . Degree of polynomial

4: Pa ← degree-d polynomial encoding of M over GF (q)
5: Send {P(0), P(1), . . . , P(d)}
6: for j = 1 to∞ do . Rounds for the algorithm

7: ηj ← (1/2) bj/d cδ/6d
8: bj ← C log

(
L/ηj

)
. Message size in this round

9: f ← ecDec
(
Listen

(
bj

) )
. Fingerprint from Bob

10: if IsCodeword
(
f ,ηj

)
then

11: (s, f1) ← amdDec
(
f ,ηj

)
12: if (s, f1) = h

(
s, Pa ,ηj ,L

)
then

13: Send ecEnc (f ) . Echo the �ngerprint

14: Send 0bj if the �ngerprint was not echoed.

15: f2 ← Listen
(
bj

)
16: if IsSilence (f2) then
17: Terminate . Bob has likely left

18: else
19: Ma ← polynomial evaluation tuples of Pa at next two points of the �eld (cyclically)

20: Send ecEnc
(
amdEnc

(
Ma ,ηj

) )
Algorithm 2 Bob’s algorithm

1: procedure Bob(L,δ )

2: q ← 2
dlog Le . Field size

3: d ← dL/logqe − 1 . Degree of polynomial

4: B ← ∅ . B ∈ GF (q) ×GF (q)
5: Listen to �rst d + 1 evaluations from Alice

6: Add the corresponding polynomial evaluation tuples to B
7: for j = 1 to∞ do
8: ηj ← (1/2) bj/d cδ/6d
9: bj ← C log

(
L/ηj

)
. Message size in this round

10: Pb ← GetPolynomial (maj(B),d,q)
11: Sample a string s ∈u.a.r. {0, 1}Csbj /C
12: fb ← amdEnc

(
h
(
s, Pb ,ηj ,L

)
,ηj

)
13: Send ecEnc (fb ) . Send Alice the �ngerprint of the polynomial

14: f ′b = ecDec
(
Listen

(
bj

) )
. Listen to Alice’s echo

15: if f ′b = fb then
16: Terminate
17: else
18: Send a string f ′

2
∈u.a.r. {0, 1}bj

19: Receive polynomial evaluation tuples for the next two �eld elements and add to B

encoding and then ECC encoding, so that any successful tampering

will require at least a third of the bits in the encoded �ngerprint to be

�ipped and will be detected with high probability. If Alice receives

a correct �ngerprint, she echoes it back to Bob. Upon listening to

this echo, Bob terminates. The channel from Bob to Alice is now

silent, after incepting which Alice terminates the protocol as well.

If the adversary �ips bits on the channel so that Bob’s �ngerprint

mismatches, Alice recognizes this mismatch with high probability

and exchanges more evaluations of her polynomial with Bob, pro-

ceeding in rounds. In each round, Alice sends two more evaluations

of the polynomial on the next two �eld elements and sends them

to Bob. Bob uses these to reconstruct his polynomial and sends a

�ngerprint back to Alice. The next round only begins if Alice did

not terminate in this round, which will require this �ngerprint to

match and for Alice to intercept silence after Bob has terminated.

We will bound the number of rounds and the failure probability for

our algorithm in the next section.

2.3 Example Run
We now discuss an example of a run of our protocol to make the dif-

ferent steps in the algorithm more clear. We illustrate this example

in Fig. 1 and provide a step-by-step explanation below.



Sending a Message with Unknown Noise Submi�ed to ICDCN’18, January 2018, Varanasi, India

Alice Bob

Message
0011…10

P

… P(d) P(0) … P(d)

Pb

Hash(P)
Fingerprint	mismatch!

000…00 Pb is	incorrect!

Noise

P

P(d+1) P(d+2) P(0) … P(d) P(d+1) P(d+2)

Pb =	P
Encoded

Echo Echo	matches!	
Terminate

Message
0011…10

Silence	on	the	channel!	Terminate

Fingerprint	match!

Recovered

Hash(P) =

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Hash(Pb)Hash(Pb)

Hash(Pb) Hash(Pb)

(8)

Hash(P)

Bob	needs	resend!

…P(0)

Figure 1: Example run of our protocol for the case when the adversary corrupts one polynomial evaluation tuple in plaintext
and fewer than a third of the bits in the encoded tuples that are sent during the resend. The blue boxes represent bits from
our protocol, red boxes represent bits �ipped by the adversary, and the dar blue box emphasizes the fact that the contained
bits are encoded using ECC and AMD codes.

(1) Alice begins by computing a polynomial P corresponding

to the message and sends its evaluation on the �rstd+1 �eld

elements to Bob, in plaintext. The adversary now corrupts

one of the evaluation tuples so that the polynomial Pb that

Bob reconstructs is di�erent than P .

(2) Bob computes the �ngerprint of this polynomial, depicted

Hash(Pb ) for brevity, and sends it to Alice. Alice compares

this �ngerprint against the hash of her own polynomial,

Hash(P), and notices a mismatch.

(3) In response, Alice remains silent. Bob is now convinced

that his version of the polynomial is incorrect, so he sends

noise to Alice to ask her for a resend.

(4) Alice encodes two more evaluations of P at the next two

�eld elements and sends them to Bob. The adversary tries

to tamper with these evaluations by �ipping some bits.

For this example, we assume that he �ips fewer than a

third of the total number of bits in the encoded evaluations.

Upon decoding, Bob is able to successfully recover both

the evaluations and uses the GetPolynomial subroutine

to recompute Pb , which in this case matches P .

(5) Bob computes Hash(Pb ) and sends it to Alice. Upon see-

ing this hash and verifying that it matches Hash(P), Alice

is now convinced that Bob has the correct copy of the

polynomial, and hence, the original message.

(6) Alice echoes the hash back to Bob, upon hearing which

Bob extracts the message from the polynomial (using its

coe�cients) and terminates the protocol. Silence follows

on the channel from Bob to Alice.

(7) Alice intercepts silence and terminates the protocol as well.

The message has now successfully been transmitted from Alice to

Bob.

3 ANALYSIS
We now prove that our algorithm is correct with probability at least

1 − δ , and compute the number of bits sent. Before proceeding to

the proof, we de�ne three bad events:

(1) Unintentional Silence. When Bob executes step 18 of his

algorithm, the string received by Alice is interpreted as

silence.

(2) Fingerprint Error. Fingerprint hash collision as per Theo-

rem 2.1.

(3) AMD Error. The adversary corrupts an AMD encoded mes-

sage into an encoding of a di�erent message.

Rounds. For both Alice and Bob, we de�ne a round as one it-

eration of the for loop in our algorithm. We refer to the part of

the algorithm before the for loop begins as round 0. The AMD

encoding strength η is equal to δ/6d initially and decreases by a

factor of 2 every d rounds. This way, the number of bits added to
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the messages increases linearly every d rounds, which enhances

security against corruption.

3.1 Correctness and Termination
We now prove that with probability at least 1 − δ , Bob terminates

the algorithm with the correct guess of Alice’s message.

3.1.1 Unintentional Silence. The following lemmas show that

Alice terminates before Bob with probability at most δ/3.

Lemma 3.1. For b ≥ 71, the probability that a b-bit string sampled
uniformly at random from {0, 1}b has fewer than b/3 bit alternations
is at most e−b/19.

Proof. Let s be a string sampled uniformly at random from

{0, 1}b , where b ≥ 71. Denote by s[i] the ith bit of s . Let Xi be

the indicator random variable for the event that s[i] , s[i + 1], for

1 ≤ i < b. Note that all Xi ’s are mutually independent. Let X be

the number of bit alternations in s . Clearly, X =
∑b−1
i=1 Xi , which

gives E(X ) = ∑b−1
i=1 E(Xi ), using the linearity of expectation. Since

E(Xi ) = 1/2 for all 1 ≤ i < b, we get E(X ) = (b − 1)/2. Using the

multiplicative version of Cherno� bounds [11] for 0 ≤ t ≤
√
b − 1,

Pr

{
X <

b − 1
2

− t
√
b − 1
2

}
≤ e−t

2/2.

To obtain Pr{X < b/3}, set t = b−3
3

√
b−1

to get,

Pr{X < b/3} ≤ e
− (b−3)

2

18(b−1) ≤ e−b/19 for b ≥ 71.

�

Lemma 3.2. Alice terminates the algorithm before Bob with proba-
bility at most δ/3.

Proof. Let ξ be the event that Alice terminates before Bob. This

happens when the string sent by Bob in step 18 after possible

adversarial corruptions is interpreted as silence by Alice. Let ξ j
be the event that Alice terminates before Bob in round j of the

algorithm. Then, using a union bound over the rounds, the fact

that C ≥ 19 and Lemma 3.1, we get

Pr{ξ } ≤
∑
j≥1

Pr{ξ j } ≤
∑
j≥1

e−bj /19 ≤
∑
j≥1

2
−bj /19

=
∑
j≥1

2
−C log(L/ηj )/19 ≤

∑
j≥1

2
− log(L/ηj ) =

∑
j≥1

log(ηj/L)

≤ δ

6Ld

∑
j≥0

(
1

2

) bj/d c
≤ δ

3L
≤ δ

3

Note that Lemma 3.1 is applicable here because for each j ≥ 1,

we have bj ≥ 71. To see this, use the fact that d ≤ 2L/logL and

δ < 1 to obtain the condition L2 ≥ 2
71/C/12, which is always true

because L2 > 4 > 2
71/C/12. �

3.1.2 Fingerprint Failure. The following lemma proves that the

�ngerprint error happens with probability at most δ/3, ensuring

the correctness of the algorithm.

Lemma 3.3. Upon termination, Bob does not have the correct guess
of Alice’s message with probability at most δ/3.

Proof. Let ξ be the event that Bob does not have the correct

guess of Alice’s message upon termination. Note that in round j,
from Theorem 2.1, the �ngerprints fail with probability at most ηj .
Using a union bound over these rounds, we get

Pr{ξ } ≤
∑
j≥1

ηj =
∑
j≥1

δ

6d

(
1

2

) bj/d c
≤ δ

6

∑
j≥0
(1/2)j = δ

3

�

3.1.3 AMD Failure.

Lemma 3.4. The probability of AMD failure is at most δ/3.

Proof. Note that in round j, from Theorem 2.3, AMD failure

occurs with probability at most ηj . Hence, using a union bound

over the rounds, the AMD failure occurs with probability

∑
j≥1 ηj =∑

j≥1
δ
6d

(
1

2

) bj/d c
≤ δ

6

∑
j≥0(1/2)j = δ

3
. �

3.2 Probability of Failure
Lemma 3.5. Our algorithm succeeds with probability at least 1−δ .

Proof. Lemmas 3.2, 3.3 and 3.4 ensure that the three bad events,

as de�ned previously, each happen with probability at most δ/3.

Hence, using a union bound over the occurrence of these three

events, the total probability of failure of the algorithm is at most δ .

If the three bad events do not occur, then Alice will continue to send

evaluations of the polynomial until Bob has the correct message.

Since T is �nite, Bob will eventually have the correct message and

terminate. �

3.3 Cost to the algorithm
Recall that Alice and Bob compute their polynomials Pa and Pb ,

respectively, over GF (q). We refer to every (x ,y) ∈ GF (q) ×GF (q)
that Bob stores after receiving the evaluation y, that has potentially

been tampered with, of the polynomial Pa at x from Alice as a

polynomial evaluation tuple. We call a polynomial evaluation tuple

(x ,y) in Bob’s set B good if Pa (x) = y and bad otherwise.

We begin by stating two important lemmas that relate the num-

ber of bits �ipped by the adversary to makem polynomial evaluation

tuples bad to the number of bits required to send them.

Lemma 3.6. Let f (m) be the number of bits �ipped by the adversary
to make m polynomial evaluation tuples bad. Then, f (m) ≥ m if
m ≤ d + 1, and

f (m) ≥ (d + 1) + C

6

(
(m − d − 1) log(6Ld/δ ) + (m − d − 3)

2

4d

)
otherwise.

Proof. Let m = m1 +m2, where m1 ≤ d + 1 is the number

of polynomial evaluation tuples that were not encoded and m2

is the number of AMD and error-encoded polynomial evaluation

tuples. Clearly, f (m1) =m1. Each of the remaining m2 polynomial

evaluation tuples are sent in pairs, one pair per round. Since the



Sending a Message with Unknown Noise Submi�ed to ICDCN’18, January 2018, Varanasi, India

adversary needs to �ip at least a third of the number of bits for each

encoded polynomial evaluation tuple to make it bad, we have

f (m) ≥ m1 +
1

3

m2/2∑
j=1

bj

=m1 +
C

3

m2/2∑
j=1

(
log

(
6Ld

δ

)
+

⌊
j

d

⌋)
≥ m1 +

C

6

(
m2 log

(
6Ld

δ

)
+
(m2 − 2)2

4d

)
Since the number of bits per polynomial evaluation tuple increases

monotonically, the expression above becomes f (m) ≥ m ifm ≤ d+1,

and

f (m) ≥ (d + 1) + C

6

(
(m − d − 1) log(6Ld/δ ) + (m − d − 3)

2

4d

)
otherwise. �

Lemma 3.7. Let д(m) be the number of bits required to send m
polynomial evaluation tuples, wherem ≥ d + 1. Then,

д(m) ≤ L + 5C

(
(m − d − 1)

2

log(6Ld/δ ) + (m − d + 1)
2

8d

)
.

Proof. If m < d + 1, then we have д(m) = m logq ≤ L, since

each of thesem polynomial evaluation tuples is of length logq. For

m > d + 1, taking into account the fact that each round involves

exchange of at most 5 messages between Alice and Bob, we get

д(m) ≤ L + 5

(m−d−1)/2∑
j=1

bj

= L + 5C

(m−d−1)/2∑
j=1

(
log

(
6Ld

δ

)
+

⌊
j

d

⌋)
≤ L + 5C

(
(m − d − 1)

2

log(6Ld/δ ) + (m − d + 1)
2

8d

)
�

Lemma 3.8. Let L ≥ 3, and r be any round at the end of which
Pb , Pa . Then the number of bad polynomial evaluation tuples
through round r is at least r/4.

Proof. We call a �eld element x ∈ GF (q) good if (x , Pa (x)) ∈
maj(B), and bad otherwise. Let дe be the number of good �eld

elements and be be the number of bad �eld elements up to round

r . Similarly, let дt be the number of good polynomial evaluation

tuples and bt be the number of bad polynomial evaluation tuples

up to round r . Then, from Theorem 2.2, we must have be ≥ дe − d .

Note that the total number of �eld elements for which Bob has

received polynomial evaluation tuples from Alice through round r
is be +дe = min(d + 2r + 1,q). Adding this equality to the previous

inequality, we have

be ≥
1

2

min(2r + 1,q − d). (3.1)

The total number of polynomial evaluation tuples received by

Bob up to round r is given by

bt + дt = d + 2r + 1. (3.2)

Note that every bad �eld element is associated with at least

⌊
bt+дt

2(be+дe )

⌋
polynomial evaluation tuples. This gives bt ≥ be

⌊
bt+дt

2(be+дe )

⌋
. Using

this inequality with Eqs. (3.1) and (3.2), we have

bt ≥
1

2

min(2r + 1,q − d)
⌊

d + 2r + 1

2min(d + 2r + 1,q)

⌋
≥ 1

2

⌊
d + 2r + 1

2min(d + 2r + 1,q) min(2r + 1,q − d)
⌋ (3.3)

Case I: (d + 2r + 1 ≤ q) For this case, we have

1

2

⌊
d + 2r + 1

2min(d + 2r + 1,q) min(2r + 1,q − d)
⌋
=

1

2

⌊
2r + 1

2

⌋
≥ r

4

(3.4)

Case II: (d + 2r + 1 > q) For this case, we have

1

2

⌊
d + 2r + 1

2min(d + 2r + 1,q) min(2r + 1,q − d)
⌋
=

1

2

⌊
(d + 2r + 1)(q − d)

2q

⌋
≥ 1

2

⌊
2r + 1

2

(
1 − d

q

)⌋
≥ r

4

(3.5)

where the last inequality holds since d/q ≤ 1/3 for L ≥ 3.

Combining Eqs. (3.4) and (3.5), we get bt ≥ r/4. �

We now state a lemma that is crucial to the proof of Theorem 1.1.

Lemma 3.9. If Bob terminates before Alice, the total number of bits
sent by our algorithm is

L +O

(
T +min

(
T + 1,

L

logL

)
log

(
L

δ

))
.

Proof. Let r ′ be the last round at the end of which Pb , Pa , or

0 if Pb = Pa at the end of round 1 and for all subsequent rounds.

Let T1 be the number of bits corrupted by the adversary through

round r ′. Let A1 represent the total cost through round r ′ and A2

be the cost of the algorithm after round r ′. Note that after round r ′,
the adversary must corrupt one of either (1) the �ngerprint, or (2)

its echo, or (3) silence on the channel in Step 15 of Alice’s algorithm,

in every round to delay termination. Also, after round r ′, Alice and

Bob must exchange at least a �ngerprint and an echo even if T = 0.

Thus, we have,

A2 = O(T + log(L/δ )) (3.6)

Recall that the number of polynomial evaluation tuples sent up

to round r ′ is d + 2r ′ + 1. Then, from Lemma 3.7, we have

A1 ≤ д(d + 2r ′ + 1)

≤ L + 5C

(
r ′ log(6Ld/δ ) + (r

′ + 1)2
2d

)
.

(3.7)

From Lemma 3.8, we have that the number of bad polynomial

evaluation tuples is at least dr ′/4e. Thus, from Lemma 3.6, we have

T1 ≥ f (dr ′/4e), which impliesT1 ≥ r ′/4 if r ′/4 ≤ d + 1. Otherwise,

we have

T1 ≥ (d + 1) +
C

6

(
(r ′/4 − d − 1) log(6Ld/δ ) + (r

′/4 − d + 3)2
4d

)
(3.8)
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Case I : (r′/4 ≤ d + 1) SinceT1 is at least the number of bad polyno-

mial evaluation tuples, from Lemma 3.8, we have T1 ≥ r ′/4, which

gives r ′ ≤ min(4T1, 4(d + 1)). Hence, using Eq (3.7), we get,

A1 ≤ L + 5C

(
r ′ log(6Ld/δ ) + (r

′ + 1)2
2d

)
≤ L + 5C

(
min(4T1, 4(d + 1)) log(6Ld/δ ) +

(4d + 5)2
2d

)
= L +O

(
min

(
T1,

L

logL

)
log(L/δ ) + L

logL

)
(3.9)

where the last equality holds because d ≤ L/logL + 1.

Case II : (r′/4 > d + 1) From Eq. (3.8), we have

T1 ≥ (d + 1) +
C

6

(
(r ′/4 − d − 1) log(6Ld/δ ) + (r

′/4 − d + 3)2
4d

)
.

(3.10)

Since each summand in the inequality above is positive and C > 6,

we get (r ′/4 − d − 1) log(6Ld/δ ) ≤ T1, which gives

r ′ log(6Ld/δ ) ≤ 4T1 + 4(d + 1) log(6Ld/δ ). (3.11)

Since
(r ′/4−d+3)2

4d ≤ T1, we have r ′ ≤ 8

√
T1d + 4d − 12. Building on

this, we get,

(r ′ + 1)2
2d

≤

(
8

√
T1d + 4d − 11

)
2

2d
(3.12)

Hence, from Eqs. (3.7), (3.11) and (3.12) , we get

A1 ≤ L + 5C

(
r ′ log(6Ld/δ ) + (r

′ + 1)2
2d

)
≤ L + 5C

©­­«4T1 + 4(d + 1) log(6Ld/δ ) +
(
8

√
T1d + 4d − 11

)
2

2d

ª®®¬
= L +O

(
T1 +

(
L

logL

)
log(L/δ )

)
(3.13)

where the last equality holds because d ≤ L/logL+1 andT1 ≥ d+1
from inequality (3.10).

Combining Eqs. (3.6), (3.9) and (3.13), the total number of bits

sent by the algorithm becomes

A1 +A2 = L +O

(
T +min

(
T + 1,

L

logL

)
log

(
L

δ

))
�

Putting it all together, we are now ready to state our main theo-

rem.

Theorem 3.1. Our algorithm tolerates an unknown number of
adversarial errors, T , and for a given δ ∈ (0, 1), succeeds with proba-

bility at least 1−δ , and sends L+O
(
T +min

(
T + 1, L

log L

)
log

(
L
δ

))
bits.

Proof. By Lemmas 3.5, with probability at least 1 − δ , Bob

terminates before Alice with the correct message. If this happens,

then by Lemma 3.9, the total number of bits sent is

L +O

(
T +min

(
T + 1,

L

logL

)
log

(
L

δ

))
�

4 UNKNOWN L
We now discuss an algorithm for the case when the message length

L is unknown to Bob. The only parameter now known to both Alice

and Bob is δ .

Our main idea is to make use of an algorithm from [1], which

enables Alice to send a message of unknown length to Bob in our

model, but is ine�cient.
2

We thus use a two phase approach. First,

we send the length of the message M (i.e. a total of logL bits) from

Alice to Bob using the algorithms of [1]. Second, once Bob learns

the value L, we use the algorithm from Section 2 to communicate

the message M . We will show that the total number of bits sent by

this two phase algorithm is asymptotically similar to the case when

the message length is known by Bob in advance.

4.1 Algorithm Overview
Let π1 be a noise-free protocol in which Alice sends L to Bob, who

is unaware of the length (logL in this case) of the message. Let

π2 be a noise-free protocol in which Alice sends M to Bob, who

knows the length L = |M | a priori. W can write the noise-free

protocol π to communicate M from Alice to Bob, who does not

know L, as a composition of π1 and π2 in this order. Let π ′
1
,π ′

2
and

π ′ be the simulations of π1,π2 and π , respectively, that are robust

to adversarial bit �ipping.

To simulate π ′ with desired error probability δ > 0, we proceed

in two steps. We �rst make π1 robust with δ1 = δ/2 error tolerance

using Algorithm 3 from [1], setting n = 2. Then, we make π2 robust

with δ2 = δ/2 error tolerance using Algorithms 1 and 2. This way,

when we compose the robust versions of π1 and π2, we get π ′

with error probability at most δ1 + δ2 = δ (by union bound). The

correctness of π ′ immediately follows from the correctness of π ′
1

and π ′
2
, by construction.

4.2 Probability of Failure
The failure events for π ′ are exactly the failure events for π ′

1
and

π ′
2
. In other words, we say π ′ fails when one or both of π ′

1
and π ′

2

fail. Thus, the failure probability of π ′ is at most δ/2 + δ/2 = δ , by

a simple union bound over the two sub-protocols.

4.3 Number of bits sent
To analyze the number of bits sent, let T1 be the number of bits

�ipped by the adversary in π ′
1

and T2 be the number of bits �ipped

by the adversary in π ′
2
. Recall that the length of the message from

Alice to Bob in π ′
1

is logL and that in π ′
2

is L. LetA1 be the number of

bits sent in π ′
1

and A2 be the number of bits sent in π ′
2
. Thus, using

Theorem 1.1(2) from [1] (with n = 2,L = logL,T = T1,δ1 = δ/2

2
We refer the reader to [1] for details on this algorithm; we discuss only its use in this

paper.
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and α = 1), we get

A1 = O (logL · log logL +T1)

Similarly, using Theorem 3.1 from this paper (with δ2 = δ/2), we

get

A2 = L +O (T2 +min (T2 + 1,L/logL) logL))

Using T = T1 + T2, the total number of bits sent by π ′ is then

A1 +A2 = L +O (T +min (T + 1,L/logL) logL). The proof of The-

orem 1.1 now follows directly from the above analysis.

Note that another approach to sending a message of unknown

length from Alice to Bob would have been to directly use the algo-

rithm in [1] with n = 2. However, this would have incurred a higher

blowup than the approach that we take in this paper. More speci�-

cally, when T is small, the direct use of the multiparty algorithm

gives a multiplicative logarithmic blowup in the number of bits,

while our current approach maintains the constant overall blowup

in the number of bits by using the heavy weight protocol for the

length of the message instead (which is exponentially smaller than

the message).

5 CONCLUSION
We have described an algorithm for sending a message over a two-

way noisy channel. Our algorithm is robust to an adversary that

can �ip an unknown but �nite number of bits on the channel. The

adversary knows our algorithm and the message to be sent, but

does not know the random bits of the sender and receiver, nor the

bits sent over the channel. The receiver of the message does not

know the message length in advance.

Assume the message length is L, the number of bits �ipped by

the adversary is T , and δ > 0 is an error parameter known to both

players. Then our algorithm sends an expected number of bits

that is L + O
(
T +min

(
T + 1, L

log L

)
log

(
L
δ

))
, and succeeds with

probability at least 1 − δ . When T = Ω(L) and δ is polynomially

small in L, the number of bits sent is L +O (T ), which is asymptoti-

cally optimal; and when T = o(L/logL), the number of bits sent is

L + o(L).
Many open problems remain including the following. First, Can

we determine asymptotically matching upper and lower bounds on

the number of bits required for our problem? Our current algorithm

is optimal for T = Ω(L), and seems close to optimal for T = O(1),
but is it optimal for intermediate values of T ? Second, Can we

tolerate a more powerful adversary or di�erent types of adversaries?

For example, it seems like our current algorithm can tolerate a

completely omniscient adversary, if that adversary can only �ip

a chosen bit with some probability that is 1 − ϵ for some �xed

ϵ > 0. Finally, can we extend our result to the problem of sending

our message from a source to a target in an arbitrary network

where nodes are connected via noisy two-way channels? This

�nal problem seems closely related to the problem of network

coding [2, 18, 21], for the case where the amount of noise and the

message size is not known in advance. In this �nal problem, since

there are multiple nodes, we would likely also need to address

problems of asynchronous communication.
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