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Complex non-convex ad hoc networks (CNCAH) contain intersecting polygons and edges. In many 

instances, the layouts of these networks are also not entirely convex in shape. In this paper, we propose a 

Kamada-Kawai based algorithm called W-KK-MS for boundary node detection problem, which is capable 

of aligning node positions while achieving high sensitivity, specificity and accuracy in producing a visual 

drawing from the input network topology. The algorithm put forward in this paper selects and assigns 

weights to top-k nodes in each iteration in order to speed up the updating process of nodes. We also 

propose a novel approach to detect and unfold stacked regions in CNCAH networks. Experimental results 

show that the proposed algorithms can achieve fast convergence on boundary node detection in CNCAH 

networks and are able to successfully unfold stacked regions. The design and implementation of a 

prototype system called ELnet for analyzing CNCAH networks is also described in this paper. The ELnet 

system is capable of generating synthetic networks for testing, integrating with force-directed algorithms, 

and visualizing and analyzing of algorithms’ outcomes. 

CCS Concepts: • Networks → Ad hoc networks  

Additional Key Words and Phrases: Kamada-Kawai, Boundary detection, Force-directed algorithm, Mobile 

ad hoc Network 

 INTRODUCTION 1.

Advances in low-power and miniaturization design have had tremendous 

impact on the development of useful equipment and services. These new services and 

devices can be used for high-end applications as well as for basic consumer oriented 

products. Most of these devices have built-in wireless modules, even accelerometers 

and GPS (Global Positioning System) features. Moreover, development of advanced 

protocols in wireless communications and rapid advancement in electronic 

technologies enable the large scale deployment of wireless devices in ad hoc networks. 

To this end, localization problems in wireless and ad hoc networks formed by these 

devises become an important research topic.  

Force-directed algorithms are frequently used in network visualization. 

Force-directed algorithms rely on spring forces. Forces between the nodes can be 

computed based on their graph theoretic distances, determined by the lengths of 

shortest paths between them. There are repulsive forces between all nodes, but also 

attractive forces between nodes that are adjacent. Force-directed algorithms often 

define an objective function. A layout for a graph is then calculated by finding a 

minimum of this objective function in which adjacent nodes are near from each other, 

and non-adjacent nodes are well spaced. Force-directed algorithms calculate the 

layout of a graph using only information contained within the structure of the graph 

itself. Graphs drawn with these algorithms tend to exhibit symmetries, and produce 

crossing-free layouts for planar graphs [Tamassia 2007]. 
They can be used to produce a visual drawing that is proportional to the 

given network topology by using the spring force exerted on nodes and edges. These 

algorithms include Kamada-Kawai [4], Fruchterman Reingold [5], and Davidson 

Harel [6]. The objective of the Kamada-Kawai algorithm is to draw a graph that is as 

planar as possible. The Kamada-Kawai algorithm uses only the information of nodes 

and edges when it produces visual drawings from the network topologies. The 

Kamada-Kawai algorithm adjusts the positions of nodes iteratively in order to 

achieve a state of equilibrium. It uses an energy function to represent the state of 

equilibrium.  



 

In this paper, we propose an algorithm called W-KK-MS for boundary node 

detection which uses a batch weight updating algorithm and signal strength for node 

adjustment. We target the localization problems associated with a particular type of 

network called Complex Non-Convex Ad Hoc (CNCAH) Networks. A CNCAH 

network comprises of intersecting edges and complex polygons (i.e. convex and non-

convex polygons). The layouts of CNCAH networks are usually not entirely convex in 

shape [Bresenham et al. 1991].  

Unfolding and boundary node detection are two major problem areas of 

CNCAH. One particular example involving CNCAH networks is an ad hoc emergency 

network which is designed for use in situations such as earthquakes or tsunami 

[Cheong et al. 2011]. Most of the existing telecommunication networks are not 

designed to be fault-tolerant and back-up systems are often not available during 

emergencies. For instance, these telecommunication networks could be partially 

destroyed or interrupted during natural disasters. This is often due to the damage 

caused to the stations or the fact that networks become overwhelmed by sudden 

transmission spikes in an effected area. During or after disasters, victims who 

become trapped in the disaster areas or under debris could establish an ad hoc 

mobile network by using their hand-held devices and might attempt to communicate 

with the rescuers. Therefore, capabilities for determining node localization 

information and estimating the network layout can be extremely helpful for the 

rescue teams. In this paper, we propose an algorithm called W-KK-MS for boundary 

node detection which uses a batch weight updating algorithm and signal strength for 

node adjustment. The W-KK-MS is an extended version of Kamada-Kawai (KK) 

algorithm and it can be applied to CNCAH network topologies. Moreover, the 

proposed algorithm is also designed to unfold stacked regions in visual drawings. 

Localization is a process of estimating the position of a node in a network according 

to some spatial coordinate system [Perkins et al. 2005]. Locations of individual nodes 

in practical applications such as highway, battlefield, and logistics are used in 

routing protocols and network coverage analysis [Virrankoski 2003].   

Boundary node detection is important in wireless sensor networks which 

comprise of a set of small devices (nodes with tiny sensors) for applications such as 

sensing, monitoring, and data collection. These nodes often form an ad hoc network 

to collect data and report to a designated station. Coverage and connectivity are two 

important aspects of a wireless sensor network. Any failure in the network caused by 

the deployment, disconnection, or sensor failure can be analyzed by detecting the 

boundary nodes. Such detection can reveal the status of the coverage and 

connectivity of a given network [Zhang et al. 2006].         

Unfolding is a process to open up twisted and stacked regions of the visual 

drawing. Figure 1 illustrates the folded and unfolded regions of a visual drawing.  

Folded and unfolded regions in the visual drawing are highlighted with light blue 

color. Unfolding is important in network localization because it provides a valuable 

insight into the structure and layout of networks. Unfolding is useful for large 

complex networks that are groups of nodes, densely connected within and only 

loosely connected with the rest of the network [Blondel et al. 2008; Subelj and Bajec 

2011; Wickramaarachchi et al. 2014]. 
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(a)  (b)  

Figure 1 (a) Folded regions of a visual drawing, (b) Unfolded regions of a visual drawing. 

 

There are a number of systems and software libraries such as NetworkX 

[NetworkX developer team 2014], Open Graph Drawing Framework [Gutwenger et al. 

2013], and JGraphT [Naveh 2013] available for generating simple networks and 

analyzing relevant properties. However, these systems cannot be easily tailored for 

analyzing CNCAH networks. For instance, these applications cannot be easily 

extended for generating CNCAH networks. Besides, the functions for integrating 

with third party force directed algorithms, and visualization and analysis of these 

algorithms’ outcomes are not supported. Against this background, we developed a 

prototype system called ELnet which is capable of generating CNCAH network 

topologies for experiments, simulating various force-directed algorithms for 

evaluating their performance, and visualizing the algorithms’ performance. 

 CONTRIBUTION 2.

The main objective of the paper is to find boundary nodes and unfold twisted 

and folded regions in CNCAH networks. We also developed a prototype system called 

ELnet for generating CNCAH networks and evaluating algorithms in this paper. For 

example, ELnet generates CNCAH networks with combinations of arbitrary 

geometric shapes for our experiments. The scientific and technical contributions of 

this work are twofold. 

1. First, we extend the Kamada-Kawai (KK) algorithm for boundary node detection 

and unfolding of CNCAH networks. Generally, the KK algorithm is slow for large 

and complex networks [Nooy et al. 2005]. In this paper, we propose an algorithm 

called W-KK-MS, which is capable of adjusting the node positions while 

maintaining an acceptable level of sensitivity, specificity and accuracy in not only 

efficient in producing a visual drawing from the input network topology. W-KK-

MS algorithm is but also capable of discovering folded and twisted regions and 

minimize edge crossings in CNCAH networks. The proposed W-KK-MS algorithm 

considers signal strength in producing visual drawings. W-KK-MS not only 

minimizes the edge crossings, but also significantly improves the performance for 

locating boundary nodes. Therefore, the proposed algorithm is more appropriate 

for wireless sensor networks than KK. The visual drawing is then used for 

detecting boundary nodes from the input network topology. Moreover, for 

complex network topologies without anchor information, the quality of visual 

drawings produced by force directed algorithms such as KK can be poor for 

CNCAH networks [Efrat et al. 2010]. For instance, some parts of the network 

may be folded or twisted. For this reason, the proposed W-KK-MS algorithm is 

also designed to discover and unfold twisted regions. Experimental results show 

that the proposed algorithm can achieve fast convergence on boundary detection 

in CNACH networks and area able to successfully unfold stacked regions.  



 

2. Next, the design and implementation of a prototype system called ELnet for 

analyzing CNCAH networks is presented. To the best of authors’ knowledge, 

existing tools are incapable of generating CNCAH networks for testing. In this 

paper, we describe a prototype system which is capable of generating synthetic 

networks, integrating with third party algorithms, visualizing experiment 

outcomes and performance. As part of the system, we also develop a boundary 

node identification algorithm which can be used to discover nodes on outward 

boundary of a 2-dimensional plane. That is, after the visual drawing for a 

network topology is projected onto a geometric plane using force directed 

algorithms, we can use the boundary node identification algorithm to identify the 

true boundary nodes. Once the true boundary nodes are identified, we can 

compare them with the results obtained from the force directed algorithms. The 

graphical interface of ELnet also provides features for interactive visualization of 

boundary nodes from a visual drawing and functions to plot the results of the 

analysis. 

In Section 3, we summarise existing well-known force-directed methods and 

the recent studies on boundary node detection problem. In Section 4, we propose an 

algorithm called W-KK-MS for detecting boundary nodes and unfolding stacked 

regions in CNCAH networks. In Section 5, we briefly introduce the design of a 

prototype system called ELnet for analyzing CNCAH networks. In Section 6, we 

evaluate the performance of the proposed algorithm. In Section 7, we conclude the 

paper and discuss the future work. 

 RELATED WORK 3.

Force-directed algorithms are used in many application areas. They are 

especially useful for visualizing graphs from social networks [Quinn and Breuer 

1979]. Force-directed algorithms such as Kamada-Kawai (KK) [Quinn and Breuer 

1979] and Fruchterman Reingold (FR) [Fruchterman and Reingold 1991] are based 

on Eades’s spring-embedder model. These two approaches attempt to minimize the 

edge crossing and distribute nodes and edges uniformly. A similar algorithm was also 

proposed by Davidson Harel (DH) [Davidson and Harel 1996], which is based on a 

simulated annealing process for drawing of graphs.  

 Among these force-directed algorithms, KK focuses on the relations among 

the nodes from the entire network topology. It calculates the value of the energy 

remaining on every node, and then iteratively adjusts the nodes with highest energy 

until all nodes reach their minimum energy. An equilibrium state is obtained when 

the energy on the nodes is close or equal to 0. However, nodes in the visual drawing 

can be stacked together when force-directed algorithms such as KK is used for 

display. These algorithms generally cannot guarantee a planar result especially for 

large and complex networks. Furthermore, some parts of the network could be 

twisted in the final outcome. For example, a u-shaped network topology could be 

twisted into a w-shape or a z-shape [Kevin et al. 2010]. There are exiting studies 

using modularity to detect stacked nodes in the network topologies. Modularity is an 

attribute which specifies the distribution of nodes in a specified region. That is, if the 

modularity of a region is high, nodes in this region may be stacked [Alex et al. 2007; 

Blondel et al. 2008]. However, this assumption may not be always true for complex 

network topologies or network topologies with clusters. Since the distribution of 

nodes is non-uniform in complex non-convex network topologies. Nodes with high 

modularity may occur on the gap rather than on the boundary of clusters. In contrast 

to their approaches, our approach keeps track the changes of a visual drawing 

iteratively. Specifically, our algorithm locates the regions which are significantly 
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different from the initial network topology during the execution. When these regions 

are identified, the algorithm then attempts to repair these regions.  

 In previous studies about the localization of ad hoc networks, force-directed 

algorithms are used to perform position tracking to improve data flow in the network. 

Efrat et al. [Efrat et al. 2010] applied a multi-scale dead-reckoning algorithm for 

sensor localization in force-directed algorithms by using the length of edges and 

angular information. The performance of their approach was evaluated on non-

convex network topologies. A multi-scale algorithm usually uses multiple models at 

different scale to resolve a large scale of problem. After dividing a large network into 

smaller sub-networks, a multi-scale algorithm uses several level of stages to process 

these sub-networks. Specifically, sub-networks are processed in stages with local 

organization schema and each stage computes one or more sub-networks. Multi-scale 

algorithms can also compute some of the stages simultaneously and the results of 

stages are incrementally combined until all sub-networks are computed [Barth et al. 

2012; Weinan 2011]. Efrat et al. also use the dead reckoning for estimating the 

distance of nodes. Dead reckoning is an updating process of the current positions of 

nodes by using previously calculated positions or estimated speed over elapsed time 

and course. The problem of detecting boundary nodes and holes in hoc networks has 

been widely reported in literature. Dong et al. [Dong et al. 2009] proposed an 

algorithm for detecting holes in the network by using  fine-grained boundary 

recognition. This algorithm can be used to detect inner and outer boundary cycles 

using the information of nodes and edges of the network. The algorithm relies on 

global connectivity information of network in which  shortest path trees of primary 

boundary circle are used on the boundary refinements [Liu et al. 2012]. Wang et al. 

[Wang et al. 2006] proposed an algorithm to detect the boundaries of holes using the 

shortest path tree. In the proposed algorithm, distinct portions of similar paths that 

span the network are selected for detection [Li and Liu 2010]. The assumption of the 

proposed algorithm is that if there is not a hole between the nodes within the 

shortest path tree, the parts are more similar to straight lines. The proposed 

algorithm builds the shortest path tree by flooding the network from an arbitrary 

root node upon initialisation. Blondel et al. [Blondel et al. 2008] proposed an 

algorithm to unfold communities in large scale of social networks. This algorithm 

uses heuristic method that unfold the community structures of social networks based 

on the modularity optimization. That is, if the modularity of a region is high, the 

region may be folded. Wickramaarachchi et al. [Wickramaarachchi et al. 2014] 

proposed an algorithm for unfolding communities in large graphs by using a greedy 

modularity maximization approach. The algorithm is designed for parallel computing, 

unfolding communities, and minimizing the cross edges between folded communities 

in large graphs. 

 Volker et al. [Volker et al. 2012] also proposed an approach for tracking the 

position of nodes using a force-directed algorithm based on signal strength and step 

recognition. Step recognition is a process to collect the movement of sensors. Their 

approach uses movement information to adjust the assignment of force in the force-

directed algorithms.  That is, they use a built-in accelerometer which is installed on 

sensors to identify the step status of sensors so that they can collect the information 

of movement from sensors. Their approach was evaluated by using experimental data 

obtained from 60-device wireless sensor network deployed in two buildings. They 

evaluated the influence of position and errors of estimation with anchor points (the 

position of 60 devices is known) verses different kinds of distance estimation methods. 

In contrast to their approaches, our approach extends Kamada-Kawai by using a 

batch weight updating algorithm to guide the movement of nodes and edges during 



 

the execution. One of the key contributions of our approach is the ability to process 

CNCAH networks without any location information except the topology. 

Graph generators such as  NetworkX [NetworkX developer team 2014], Open 

Graph Drawing Framewor [Gutwenger et al. 2013], and JGraphT [Naveh 2013] are 

commonly used for generating network topologies. There are also tools and 

simulators available for visualizing wireless sensor networks [Buschmann et al. 2005; 

Ö sterlind et al. 2010; Shu et al. 2008]. However, these tools are not specially 

designed for the evaluation of force-directed algorithms for boundary node detection 

in ad hoc networks. 

 WEIGHTED KAMADA-KAWAI WITH MULTI-NODE SELECTION 4.

Kamada-Kawai (KK) [Kamada and Kawai 1989] is a visualization algorithm 

that is based on Eades’s  spring-embedder model [Eades 1984]. The objective of the 

algorithm is to distribute nodes and edges uniformly and minimize edge crossing 

[Chen 2006]. The key idea behind this algorithm is to use an energy function to 

model the spring on network topologies. The energy function    used in KK is 

described in equation 1. 

   ∑ ∑
 

 
    (|     |      )

 
 

     

   

   

 (1) 

The above energy function is used to calculate a visual position for nodes in 

the network topology so that their visual distance is proportional to their theoretical 

graphed distance. In the energy function,      is the stiffness of the spring of node   

and  ,    and    are the visual positions of node   and  , and      is the theoretical 

graphed distance of node   and  . The theoretical graphed distance of the spring (    ) 

between node   and   can be defined as follows: 

      
  

       
         (2) 

where      represents the hop count between node   and  .      is the shortest hop 

count of the path among all possible paths between node   and  .     is the side length 

of the drawing frame, if the drawing frame is a rectangle, the longest side of the 

rectangle is chosen as   . In addition, the stiffness of the spring of node   and   can be 

calculated by: 

      
 

    
  (3) 

where   is a constant for scaling. 

 

 KK iteratively updates the visual position of nodes by using the Newton-

Raphson method. For every iteration, the algorithm selects a node that has the 

highest value of energy remaining and updates its visual position in order to 

minimize the energy function  . From our preliminary testing, we find that KK is 

able to produce visual drawings of simple graphs with relatively fast convergence 

rate. This result is expected since the edge lengths in simple networks are not 

usually restricted by constraints. Hence, the length of the edges can vary 

significantly in a simple graph. However, for ad hoc networks in general and CNCAH 

networks in particular, the lengths of the edges are often constrained by the 

hardware limitation and signal strength. Therefore, in this article, we propose a 

number of extensions to the KK algorithm for unfolding and boundary node detection 

in CNCAH networks. The proposed algorithm called W-KK-MS is described in 

Algorithm 1 and an illustration of unfolding is depicted in Figure 2. 
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Figure 2 Illustration of unfolding by the W-KK-MS algorithm. 

 
 The W-KK-MS algorithm has four stages. The first stage is a batch weight 

updating approach for node movement which is designed to achieve fast convergence 

rate on boundary node detection. An array   stores the weights of the nodes. The size 

of the array equals to the number of nodes  . For example, if the networks has 1000 

nodes, then the size of the array   is 1000. The initial values of the weights are set to 

1. The second stage uses EstRegion algorithm to discover possible twisted and folded 

regions. The third stage is to unfold twisted and folded regions found in the second 

stage. The final stage is the substitution of visual position of nodes and refinement of 

the network.  
In the first stage, the W-KK-MS algorithm uses Batch Weight Updating 

(BWU) algorithm to iteratively update the visual position of nodes. The iterative 

updating is controlled by an input parameter   which is the percentage of the nodes 

designated for selection and node count   of the network. That is, the first stage of 

main algorithm will terminate when       nodes in the network have been 

updated. For example, if a network has 1000 nodes and   is 5%, the first stage of 

main algorithm will terminate when       (i.e.                  nodes have 

been updated. For each iteration, the W-KK-MS algorithm first executes CalWeight 

algorithm to determine the weights of the nodes. Weights are assigned to every node 

in the network topology to influence the node selection process of the algorithm. The 

smaller the weight, the smaller the chance the node will be selected for visual 

position updating. On the contrary, the higher the weight, the higher the chance the 

node will be selected. Next, the BWU algorithm is executed to update the visual 

position of the nodes by using the weights determined by CalWeight algorithm. 

CalWeight and BWU are executed repeatedly until       nodes in the network 

have been updated. The details of CalWeight and BWU algorithms are explained in 

section 4.1 and 4.2. 

In the second stage, EstRegion algorithm is first executed to find folded 

regions in the network. A number of strategies are also used in our implementation 

to repair folded regions from the network. The inner working of EstRegion is 

explained in section 4.3. 

At the third stage, the unfolding process is performed. Firstly, the W-KK-MS 

algorithm selects one of the folded regions found in the second stage to initiate the 



 

unfolding process. Secondly, the W-KK-MS algorithm adds additional edges to some 

of the nodes in the folded region where the density of edges is low. Unfolding process 

may fail if there are insufficient edge connections among the folded regions. This 

concept is analogous to the case of two large clusters with few edge connections in 

between. In these situations, force-directed algorithms are not able to unfold these 

regions effectively because their edge connections are weak. Therefore, additional 

edges are added to create stronger edge connections among folded regions. Edges will 

be added to the gaps of the folded regions if the average degree of folded regions 

(illustrated in Figure 3) is less than a threshold  . 

 
Figure 3 Gaps between folded regions. 

 

Thirdly, the W-KK-MS algorithm assigns weights to the nodes from the 

folded region by using CalWeight algorithm. Next, the W-KK-MS algorithm uses 

BWU algorithm to update the visual position of nodes in the selected region with new 

assignment of weights so that distorted regions in the visual drawing can be unfolded. 

Finally, if more than one folded regions is found by the EstRegion algorithm in 

second stage of the W-KK-MS algorithm, the above steps are repeated for each folded 

region until all folded regions have been unfolded. 

From the result of the second stage of W-KK-MS algorithm, folded regions 

can be discovered from the visual drawing of network topology. In the W-KK-MS 

algorithm, folded regions formed by a selection of nodes will be stored in an array 

called         and the visual position of these nodes are all cloned from  . For 

example, a folded region is discovered by EstRegion algorithm at the second stage of 

W-KK-MS algorithm and the region is formed by three nodes         ,          and 

        . The process of cloning is to copy the visual positions (     of the nodes from 

  and insert them into        . That means, there are two identical copies of node  , 

  and   after the process of cloning. One copy of nodes is in   and another copy is in 

       .  

Next, the unfolding process is applied to         at the third stage of W-KK-

MS algorithm. The resulting unfolded regions (nodes with new visual positions 

assigned) are stored in another array called           by using the cloning process 

similar to previous one. After that, the array           and nodes of   will be passed 

to the next stage.         is discarded after the unfolding process. The last stage of 

W-KK-MS algorithm is to update (substitute) the visual position of the nodes in 

network topology   by using the result of unfolding process (         ) except for 

unfolded regions which still have high approximation error   after the unfolding 

process. Because           is the output of unfolding process and         is the input 

of unfolding process, both arrays contain the same nodes with different visual 

positions. That is the reason why the W-KK-MS algorithm needs to replace the visual 

position of nodes in   by using the visual position of nodes in          . Finally, the 

main algorithm will call BWU algorithm to refine the network topology  . 

 

ALGORITHM 1.  W-KK-MS algorithm 
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Algorithm 1 Pseudo code of main algorithm 

 Batch Weight Updating (BWU) algorithm 4.1

From our extensive testing, we find that KK updates the visual position of a 

node at each iteration and the updating process can be extremely slow. This is 

especially noticeable for large network topologies. Moreover, we also observe that 

nodes that are too close to each other within a particular region could have similar 

properties. They are more likely to have common neighbors and share similar signal 

strength. To make use of this property and to speed up the updating process, we 

extend the KK algorithm by selecting multiple nodes instead of a single node in each 

iteration. Specifically, the algorithm pushes the top-k nodes that have a larger 

change     onto an ordered stack. Next, the top-k nodes from the ordered stack are 

popped out from the stack and their visual positions are updated. The value of 

change     for these nodes is then recalculated again at the next iteration.   

In addition, weights are also assigned to the selected nodes in each iteration. 

The values of weights assigned to these nodes not only reflect the magnitudes of 

updating visual position but also determines which nodes should be updated. For 
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example, nodes within a closed region and have similar neighborhood are likely to be 

adjusted. Because these nodes have roughly the same value of average degree and 

therefore their positions should be updated in batches. Specifically, we can use 

weights to control the visual position update of nodes in some selected regions of the 

visual drawing as well as to keep other regions unchanged. The calculation of change 
    for a node   is given in equation (4). According to equation (4), weights are related 

to change    . The larger the weight, the higher the value of change. The higher the 

change a node has, the higher the chance the node will be selected for visual position 

update.  
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(4) 

where    is the weight for node  ,      is the distance of node   and   visual positions. 

     is the theoretical graphed distance of node   and  .    and    are x and y 

coordinates of the visual position of node  . The estimated distance used in this paper 

is based on the assumption of free-space path loss (FSPL) [Goldsmith 2005]. 

According to this assumption, the estimated distance is calculated based on the 

signal strength of the nodes. FSPL is a term used in telecommunication to denote the 

loss in signal strength of an electromagnetic wave as a result of a line-of-sight path. 

The estimated distance (in meters) of FSPL can be calculated as follows: 
 
 

    
                     

   (5) 

where   is the signal strength and   is the signal frequency in Mhz. 

The pseudo code of the Batch Weight Updating (BWU) algorithm is described 

in Algorithm 2. On initializaiton, the algorithm calcualtes the maximum change of 

every node by using equation (4) and stores them into an array   . The algorithm 

then sorts the array    in descending order. Once the array    has been sorted, the 

algorithm selects top K nodes stored in    having high value of energy remaining for 

the next step. 

The algorithm uses a nested loop which includes an outer and an inner loop 

to update the visual positions of the selected nodes. The visual position of selected 

nodes are updated by the inner loop which is also responsible for minimizing the 

energy function. The outer loop controls  the iteration of inner loop. BWU will 

terminate when the count of outer loop is greater than the ratio of   (node count) and 

  (percentage of nodes for selection), i.e 
    

 
.   

ALGORITHM 2.  BWU algorithm 
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Algorithm 2 Pseudo code of Batch Weight Updating algorithm 

 Weight determination and assignment 4.2

Recall that in BWU algorithm, an attribute called “weight” is assigned to 

every node in the network topology to influence the placement strategy. We also 

stated that the KK algorithm updates the visual positions of nodes iteratively. The 

smaller the weight, the smaller the chance the node will be selected for visual 

position updating. On the contrary, the larger the weight, the higher the chance the 

node will be selected for visual position updating. Therefore, weights play a major 

role in node selection.  

The pseudo code of CalWeight algorithm is described in Algorithm 3. In 

CalWeight algorithm, we define five scaling factors   ,   ,   ,   ,    for managing the 

weights. Scaling factors are real numbers between 0 and 1 and they are updated 

during the execution. The objective of these scaling factors is to determine the weight 

of the nodes.    denotes the maximum weight of the nodes which visual position are 

supposed to be updated immediately on the following iteration. For the purpose of 

this discussion, we label these nodes as “active” nodes.    specifies the maximum 

weight of active 1-hop nodes.    specifies the maximum weight of active 2-hop nodes. 

   specifies maximum weight of nodes which visual positions are either likely to be 

updated slightly or to remain unchanged. Finally,    specifies the maximum weight 

of nodes which are considered to be anchor points.  

For instance, nodes assigned with    may not require updating of visual 

positions during the execution of the algorithm. In that case, the weight of these 

nodes will carry a smaller value. On the contrary, the weight of “active” nodes will 

carry a higher value. Suppose that         and a node   is an “active “node. Also 

assume that the weight of node   is 0.9 at 100th iteration.  In this case, the new 

weight of node   is                                   . If the weight of node   

is still considered to be high after multiplying with a scaling factor, it will be selected 

again for visual position update in 101th iteration.  
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In addition, the CalWeight algorithm requires four inputs: (a) the network 

topology, (b) an array of anchor points (if any), (c) percentage of node for selection, 

and (d) the iteration of the first stage of main algorithm. CalWeight algorithm 

outputs a matrix to store the weights of nodes for BWU algorithm. CalWeight 

algorithm iteratively updates the weights of nodes by using a loop. On initialization, 

a node    (starting node) with high weight value is selected by CalWeight algorithm. 

CalWeight algorithm then updates the weights of nearby nodes (i.e. 1-hop nodes of   , 

2-hop nodes of    and so on) iteratively.  

The loop of CalWeight is terminated when the          is larger than the 

iteration count (denoted by the          variable) in the first stage of main algorithm. 

The lower bound of          is   and the upper bound of          is 
 

 
  where   is 

the node count of network topology. These bounds specify the minimum and 

maximum number of nodes for weight updating on each iteration. The variable 

        is initialized with a small value and is less than the          at the early 

stage of the processing. Therefore, a large number of nodes will be subjected to 

weight updating at the beginning. When the value of         is incremented 

gradually, fewer nodes will selected for weight updating except for those nodes which 

still carry high weight values.  

ALGORITHM 3.  CalWeight algorithm 
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Algorithm 3 Pseudo code of CalWeight algorithm 



 

 Estimation of folded regions 4.3

 The EstRegion algorithm for folded region estimation aims to discover 

regions in the visual drawing where there is significant variation in edge distribution 

in comparison to other regions. The pseudocode of EetRegion is given in Algorithm 4.  

The algorithm accepts (a) the estimated length of all edges (represented by signal 

strength), (b) the calculated length of all edges in visual drawing returned by BWU 

algorithm, and (c) a threshold for folded regions estimation. The EstRegion algorithm 

produces a subset of network topologies (nodes and edges) which is significantly 

different from others.  

First, the algorithm initializes the variable      for each edge in the network 

topology. The value      is used to determine the difference between the length of 

edges which is estimated from the signal strength and the length of edges in visual 

drawing returned by BWU algorithm. Second, EstRegion algorithm calculates the 

variable       which is the standard deviation of the     . Finally, EstRegion 

algorithm calculates the ratio   for every edge, which specifies the variation in the 

length of edges in the visual drawing. The calculation of approximation error   is 

shown in following equation: 

 

      
               

     
 

(6) 

 

 

 
Figure 4 Step by step construction of a folded region by the EstRegion algorithm 

 

A folded region is a set of edges situated near each other which having large 

approximation error  . The procedure of folded region construction will be executed 

after the approximation error of edges in the network topology has been calculated. 

The folded region construction procedure can be described in the following steps. 

Firstly, EstRegion algorithm compares the approximation error   of edges in the 

network topology with the threshold  . For instance, if the approximation error   of 

an edge   is less than  , then the edge is omitted. Otherwise, EstRegion algorithm 

finds all its adjacent edges which have high approximation error  . This can be 



39:16                                                                                                                             
 

achieved by searching 1-hop edges of the chosen edge  , 2-hop edges of  , and so on. 

Searching continues until no high approximation error   of edges can be found.  

Secondly, after the searching is done, EstRegion algorithm counts the total 

number of edges with high approximation error   found in the previous step. The 

algorithm will omit the result of searching if the number of edges with high 

approximation error   is less than 10. The reason for omitting is that if the numbers 

of edges are too small, the algorithm cannot unfold these small regions effectively.  

Finally, if sufficient number of edges were found in the previous step, 

EstRegion algorithm then constructs a folded region by connecting the end nodes of 

edges which have high approximation error  . The end nodes are the nodes belong to 

an edge. In other words, the construction of folded regions use the result of edge 

searching described in previous steps. For example, the edge   is from the result of 

edge searching and it has 5 end nodes. EstRegion algorithm will then append the 

edge   and its 5 end nodes into a region. The same procedure is applied to other 

edges with high approximation error  .  The algorithm repeats above steps iteratively 

until all edges in the network have been traversed. The pseudo code of EstRegion 

algorithm is given in Algorithm 4 and the steps of EstRegion algorithm are 

illustrated in Figure 4. 

 

ALGORITHM 4.  EstRegion algorithm 
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Algorithm 4 Pseudo code of EstRegion algorithm 

 ELNET SYSTEM FOR ANALYZING CNCAH NETWORKS 5.

 This section introduces the design and implementation of the prototype 

system called ELnet for CNCAH networks. The following functions are implemented 

in ELnet system: (a) generation of syntactic CNCAH or common network topologies, 

(b) editing of existing network topologies, (c) execution of force-directed algorithms 

(e.g. Fruchterman Reingold, Davidson Harel, W-KK-MS, etc.), and (d) visualization 

and analysis of force-directed algorithms’ outcomes. Figure 5 illustrates the main 

screen of ELnet system. 



39:18                                                                                                                             
 

 
Figure 5 The main menu of ELnet 

 Topology Generation 5.1

Creating a sizable number of syntactic network topologies is essential for any 

experiments in mobile ad hoc network research. These generated network topologies 

are especially useful when we evaluate existing force directed algorithms for 

boundary nodes detection problem.  

 There are already promising applications that can be used for simple 

(random) graph generation. Examples of graph generation applications include 

NetworkX (Python programming language) [NetworkX developer team 2014], Open 

Graph Drawing Framework (C++ programming language) [Gutwenger et al. 2013], 

and JGraphT (Java programming language) [Naveh 2013]. Although the functions 

provided in these applications are sufficient for generating random and simple 

network topologies, they are not designed to generate CNCAH network topologies 

with relatively large number of control parameters. For example, CNCAH network 

topology generation process can be guided by the parameters such as number of 

nodes, average degree, distribution of edges and nodes, and distribution of clusters. 

 One of the key functions of ELnet is the bulk generation of simple networks 

as well as CNCAH networks by the use of a graphical interface. The network 

topology generator is able to generate instances of network topologies featuring 

different distributions of clusters, nodes, and edges. Figure 6(a) and (b) show samples 

of two network topologies with different distributions of clusters. Note that these two 

samples have the same number of nodes and the average degree. 



 

  
   (a)     (b) 

Figure 6(a) Non-uniform distribution of network topology, (b) A uniform distribution of network topology. 

 

A network topology consists of a finite number of nodes and edges. Recall that 

physical locations of the nodes are unknown for the CNCAH networks addressed in 

the paper. Therefore, a network topology could have infinite number of corresponding 

visual drawings. If we consider the case where a visual drawing is represented by 

pixels, the number of visual drawings could be infinite for different combination of 

screen sizes and resolutions. For example, the two possible sizes of a visual drawing 

for a given network topology could be either 640×480 or 1920×1080. Therefore, a 

unified coordinate system is necessary for generating network topologies especially 

for force-directed algorithms. In ELnet system, we adopt a 1 by 1 windowed 

coordinate system and all nodes are fitted into that coordinate system during the 

algorithm execution. After the execution of the algorithms is completed, users can 

visualize the results by selecting a desired size of visual drawing (e.g. 1920×1080) in 

ELnet. For the case of 1920x1080, the x coordinates of nodes will be multiplied by 

1920 and the y coordinates of nodes will multiplied by 1080.  

Screen captures of ELnet’s topology generation methods are illustrated in 

Figure 10 and the parameters used by ELnet system in topology generation methods 

are summarized in Table 1. These parameters are used as the seeds for 

randomization.  
 

Table 1 Parameters used in topology generation methods 

Parameter Description 
 

 

Number of nodes ( ) Expected number of nodes within the network 

topology 

Average degree ( ) Expected average degree for the network topology 

Node distribution ratio 

( ) 
Minimum distance between nodes 

Edge radius ( ) Maximum distance between edges 

Edge connectivity (  ) The probability value used for generation of edges 

Edge distribution ( ) The minimum distribution distance between edges 

 
The network topology generation algorithm consists of two stages; the node 

generation and edge generation. The first stage of the algorithm executes iteratively 

until the count of nodes exceeds the parameter ( ). In every iteration, a newly 

generated node is assigned with a randomized   and   coordinates. The node will be 
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accepted when it satisfies the parameters input by the user (e.g.,  ,  , etc). If the 

node does not satisfy one of the parameters, the node is discarded. 

The second stage of the algorithm uses the parameter   to determine how 

many edges should be generated randomly for the network topology. Edge 

randomization is performed iteratively by randomly selecting a node and generating 

the corresponding edges. Similar to the first stage, a generated edge will be accepted 

when it satisfies the parameters input by the user. Otherwise, the edge will be 

discarded. The loop for the generation of edges will terminate when the average 

degree of network topology exceeds the threshold ( ) input by the user. The pseudo 

code of network topology generation algorithm is described in Algorithm 5. 

ALGORITHM 5.  Network topology generation algorithm  
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Algorithm 5 Pseudo code of network topology generation 



 

 

ELnet also provides several visualization features on manipulating network 

topologies. For example, users can zoom in and zoom out on various network 

topologies. Users can also change the color of nodes which have high average degree. 

Users can also hide or display the nodes or the edges during the visualization. These 

features are shown in Figure 7(a) and Figure 7(b). 

 
   (a)     (b) 

Figure 7(a) An enhanced view of the nodes in a network topology, (b) An enhanced view of the edges in a 

network topology. 

 

  Editing of existing network topologies 5.2

In ELnet system, users can also construct complex network topologies based 

on existing network topologies. For instance, users are able to alter existing network 

topologies and construct variations of these network topologies. Users can also add or 

remove nodes and edges from existing network topologies. New nodes and edges can 

also be generated within a selected region of the network. Figure 8(a) and Figure 8(b) 

show examples of generating a network topology and modifying it later. 

 
   (a)     (b) 

Figure 8(a) A visualization of a network topology, (b) After removing certain nodes and edges from (a). 

 
Through the interface, users can also alter parameters as shown in Table 1 

and produce a new network instantly without regenerating the entire network 

topology. Specifically, users can fine-tune an existing network topology or 

dynamically build the different network topologies from a single source. Moreover, 

ELnet can perform clipping operations for existing network topologies. The graphical 

user interface of ELnet provides features which can be used to generate complex and 

irregular shapes such as u-shape, circle, star, etc. Figure 9 illustrates two irregular 
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shapes network topologies generated by ELnet. Figure 10 illustrates a screenshot of 

ELnet for generating an irregular shaped network topology through a user interface.  

 

 
Figure 9 Examples of irregular network topologies. 

 

 
Figure 10 The screen capture of network topology generator. 

During the network topology generation, the number of nodes, the 

distribution of nodes and edges, and the average degree of network topology can 

affect the structure of the network topology. Node distribution ratio     and edge 

distribution ratio     from Table 1 can be used to control the proximity of the nodes 

and edges. The lower these values, the higher the chance that the nodes will stick to 

each other. The higher the value, the more sparse the edges and nodes will be. By 

adjusting these distribution ratios, it is easy to modify an existing network into a 

sparse or an uniformly distributed topology. In addition, by assigning a lower value 

to the node distribution ratio     and maintaining the value of the edge distribution 



 

ratio     and edge radius    , users can construct clusters within each network 

topology. The reason for this is that the lower the node distribution ratio    , the 

higher the density of the nodes in some regions of the network topology. By balancing 

these parameters, we can obtain sparse or uniform distribution of clusters. 

  For testing CNCAH networks, ELnet provides a feature that allows users to 

generate network topologies with irregular shapes. The system can construct 

network topologies with polygons. The following is a sample script used to generate a 

network topology with an irregular shape. The result of the script is shown in Figure 

9. 
                  
                           

                                            

                           
 

The coordinates used in the script are within a 1 by 1 windowed coordinate 

system. The   and – signs in the script specify the areas where nodes and edges can 

be generated. Nodes and edges can only be generated in open areas which are 

denoted by   label. Nodes and edges cannot be generated in the closed areas denoted 

by – labels. Moreover, ELnet supports three kinds of polygons: ellipse, rectangle (rect) 

and polygon (poly).  

 Ellipse requires four parameters: the first two are the x, y coordinates 

of left-top corner and the last two are the width and height of the 

ellipse.  

 A rectangle can be defined with four parameters: the x, y coordinates 

of left-top corner and the x, y coordinates of the right-bottom corner. 

 A polygon can be specified with at least four parameters: the number 

of points (first parameter) and the coordinates of at least three points.  

 True boundary node identification in a visual graph 5.3

A boundary node identification algorithm is implemented in ELnet system. 

The algorithm identifies boundary nodes in a visual graph where screen positions (x 

and y coordinates) of the nodes are known. The purpose of this algorithm is to 

identify the true boundary nodes so that they can be compared with the boundary 

nodes detected by the forced directed algorithms such as KK which solely relies on 

the network topology information.  

In plane geometry, a plane consists of nodes and edges. An atomic plane is a 

plane which does not embed any other planes or sub-planes. In ELnet system, the 

visual graph for the network topology is first projected onto a two-dimensional 

drawing frame before executing the boundary node identification algorithm. Outward 

boundary is the plane in the two-dimensional drawing frame which does not intersect 

and embed any other sub-planes. Therefore, the largest intersection-free plane of the 

two-dimensional drawing frame is the outward boundary. That is, nodes on the 

largest plane are considered to be the boundary nodes. Figure 11(a) illustrates all 

possible planes of a two-dimensional drawing frame consisting nodes A, B, C, D, E, 

and F. The three planes in the polygon are      (atomic plane),        and      

(atomic plane). The largest plane is        and it is also the boundary of the two-

dimensional drawing frame. The time complexity for the node identification 

algorithm is            where   and   are the node count and the edge count. The 

pseudo code of boundary node identification is given in Algorithm 6. 
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   (a)     (b) 

Figure 11(a) An example of planes, (b) Adding two dummy node to crossing edges. 

 
The algorithm performs following steps for boundary node identification. 

1. Determine the clockwise or counterclockwise ordering of the edges. 

2. Separate all crossing edges by adding dummy nodes (X1 and X2) as shown in 

Figure 11 (b). 

3. Calculate the angle of the edges on each node in order to traverse the planes 

(either clockwise or counterclockwise). 

4. Select a starting edge by choosing a node located at the corner and picking 

one of the edges connected to the node. 

5. Start traversing the two-dimensional plane from the selected edge in 

counterclockwise or clockwise direction until returning to the selected edge 

(i.e. all edges and nodes have been traversed and all the planes have been 

found). 

6. Merge the planes found in the previous step and eliminate any dummy nodes. 

7. Nodes on the largest plane are the boundary nodes. 

ALGORITHM 6.  True boundary nodes identification algorithm 
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Algorithm 6 Pseudo code of true boundary nodes identification algorithm 

 Execution of force-directed algorithms 5.4

Classical force-directed algorithms (e.g. Kamada-Kawai, Fruchterman 

Reingold, Davidson Harel, etc) and the proposed W-KK-MS algorithms were 

implemented in the proposed ELnet system. The screenshots of the event logs and 

algorithm selection are shown in Figure 12. In ELnet system, users can schedule the 

algorithms to be executed in batch. For example, users can select algorithms 

Kamada-Kawai, Fruchterman Reingold, Davidson Harel, and W-KK-MS to be tested 
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on a u-shape network topology for evaluation or select other algorithms and network 

topologies where are saved in a local directory. Furthermore, users can set various 

termination requirements for the algorithms. The termination requirements 

implemented for all force-directed algorithms are as follows: 

 Number of iterations 

 Percentage of sensitivity 

 Percentage of specificity 

 Percentage of accuracy 

 Time limit 

The ELnet system was developed in Java programming language and generic 

programming technology was used during the implementation process.  

 
Figure 12 The screenshots of algorithm evaluation. 

 Visualization and analysis of force-directed algorithms 5.5

A logging mechanism is also implemented in the ELnet system. In ELnet 

system, the algorithm executions are logged and traceable. The traceable information 

which is recorded for every iteration of the algorithm includes: 

1. The accuracy, sensitivity, and specificity.  

2. The time spent. 

3. The true positive, false negative, false positive, and true negative information 

of boundary node detection.  

4. The visual drawing of network topology.  

5. The nodes and edges information.  



 

Elnet provides an analysis function based on traceable information. An 

example of visualization of experimental results and analysis of algorithms is shown 

in Figure 13.   

 

 
Figure 13 The screenshot of visualization of intermediate iterations and performance analyzing. 

 EXPERIMENTS 6.

In this section, we evaluate the proposed W-KK-MS algorithm for CNCAH 

networks with Kamada-Kawai (KK), Fruchterman Reingold (FR) and Davidson 

Harel (DH). We also examine the visual drawings of the algorithms’ output during its 

iteration process. These experiments were performed with a personal computer 

containing an Intel Pentium T2390 processor, 4GB of memory and Windows XP 32-

bit. 

By using ELnet system, we generated several benchmarks of CNCAH 

networks that had been adopted in previous studies [Efrat et al. 2010], [Saukh et al. 

2010] for our experiments.  Node counts and average degree of these networks are 

1000 and 8 respectively. In these benchmark topologies, there are 4 kinds of irregular 

shapes. We used the ELnet system to generate five CNCAH networks per each 

irregular shape. In total, the experiment consisted of 20 instances of network 

topologies. 

We set       ,        ,       ,         and     ,     and       for 

the experiments. Figure 14 illustrates CNCAH networks generated for the 

experiment. 

     
Figure 14 Samples of CNCAH networks generated for the experiments by the ELnet system. 

 

In the experiments, we measure four types of performance metrics: the 

sensitivity, specificity, accuracy and execution time with respect to the varying 
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Figure 15 Experiment settings 

number of nodes and different average degrees. The definition of them are described 

in Table 2. 

Table 2 Performance evaluation metrics 

Metrics Description  

Sensitivity/True 

positive rate 

The percentage of boundary nodes 

on the initial network topology 

correctly identified as boundary 

nodes by algorithms 

The higher the better 

Specificity/True 

negative rate 

The percentage of non-boundary 

nodes on the initial network 

topology correctly identified as 

non-boundary nodes by 

algorithms 

The higher the better 

Accuracy 

The sum of the true positive count 

(i.e., boundary nodes correctly 

identified as boundary nodes) and 

the true negative count (i.e., non-

boundary correctly identified as 

non-boundary nodes) divided by 

the total number of nodes 

examined 

The higher the better 

Execution time 
Total amount of execution time 

that the algorithm ran in seconds 
The lower the better 

 
 Figure 15 illustrates the experiment settings to obtain the sensitivity, 

specificity and accuracy of W-KK-MS algorithm by using the Algorithm 6 given in 

section 5.3.  



 

 Evaluation of execution time for detecting boundary nodes and unfolding 6.1

In this section, we compare the total time spent by all algorithms for 

achieving 90% sensitivity for CNCAH networks. Two stopping criteria were set for 

this experiment. The algorithm will stop when it either archives 90% sensitivity or 

the sensitivity of algorithm remains unchanged up to 100 iterations. 

  Figure 16 summarizes the results of the evaluation. The horizontal axis in 

Figure 16 is used to denote the average execution time for each shape. From the 

experiments, we found that FR and DH could not reach 90% sensitivity. Although FR 

had a faster converge rate compared to KK and DH, but FR could not improve the 

sensitivity any further. The average sensitivity of FR is approximately in the range of 

50% to 60% for all network topologies we have evaluated. We also found that DH 

could not reach 90% sensitivity and it does not significantly improve the sensitivity. 

It is the reason why the execution time of DH is flat on all experiments. KK is able to 

reach 90% sensitivity in experiments and it spent approximately 1000 to 3800 time 

units to reach that level. From the experimental results, we can see that the 

proposed W-KK-MS is able to reach 90% sensitivity in the shortest time. 

 

     
   (a)      (b) 

 

   
   (c)      (d) 

Figure 16 Evaluation of execution time. 

 

A number of interesting results were also observed during the experiments. 

When we compared the final visual drawings of these irregular shapes, we found that 

the final visual drawing of the donut shape is similar to that of original shape except 

that it was rotated. Besides, we also found that in the final visual drawing of the 

smile shape, the algorithm could not properly display the polygons from the inner 

holes which consist of a triangle, a rectangle, and a square. The star shape and u-

shape also had the same problem as the donut and smile shapes. They were rotated 

and the visual drawing was collapsed in the region where the nodes had low average 

degree. In the following sections, we compare the visualization of each shape at 

various time units when different algorithms are used. 
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6.1.1 Visualization of force-directed algorithms for star shape 

 Figure 17 depicts an intermediate visualization results of a star shape for 

four different algorithms. From the results shown in Figure 16(d), we can see that W-

KK-MS took just 5 time units whereas KK took approximately 1000 time units to 

achieve 90% sensitivity for a star shape. The visualizations of the star shape at 90% 

sensitivity are depicted in the last column of Figure 17. We can also observe that FR 

and DH could not achieve 90% sensitivity within 1000 time units when they are 

compared to KK and W-KK-MS. 

Algorithm 
Visualization at 1 time 

unit 

Visualization at 3 

time unit 

Visualization at 

100 time unit 

Visualization 

at  90% 

sensitivity 

(Final result) 

W-KK-

MS 

    

KK 

  
  

FR 

   

Unable to 

reach 90% 

sensitivity 

DH 

   

Unable to 

reach 90% 

sensitivity 

Figure 17 (Column #2) star shape on 1 time unit, (Column #3) star shape on 3 time units, (Column #4) star 

shape on 100 time units, and  (Column #5) star shape on 90% sensitivity and specificity. 

6.1.2 Visualization of force-directed algorithms for u-shape 

Figure 18 depicts an intermediate results of a u-shape visualization. 

According to the evaluation result reported in Figure 16(a), W-KK-MS took just 6 

time units whereas KK took approximately 3800 time units to achieve 90% 

sensitivity for a u-shape. Similar to the previous case, FR and DH also cannot reach 

90% sensitivity for the u-shape.   

 

Algorithm 
Visualization at 1 

time unit 
Visualization at 

2 time unit 
Visualization at 

100 time unit 

Visualization 

at  90% 

sensitivity 

(Final result) 



 

W-KK-

MS 

    

KK 

  
  

FR  

   

Unable to 

reach 90% 

sensitivity 

DH 

   

Unable to 

reach 90% 

sensitivity 

  
Figure 18 (Column #2) u-shape results for 1 time unit, (Column #3) u-shape results for 2 time units, 

(Column #4) u-shape results for 100 time units and (Column #5) u-shape results for 90% sensitivity and 

specificity. 

6.1.3 Visualization of force-directed algorithms for smile shape 

Figure 19 depicts the intermediate results of a smile shape. According to the 

evaluation result reported in Figure 16(c), W-KK-MS took just 4 time units and KK 

took approximately 1800 time units to achieve 90% sensitivity for a smile shape. 

Similar to the previous cases, FR and DH also cannot reach 90% sensitivity for the 

smile shape when they are compared to KK and W-KK-MS.    

 

Algorith

m 
Visualization at 1 time 

unit 
Visualization 

at 2 time unit 
Visualization at 

100 time unit 

Visualization 

at  90% 

sensitivity 

(Final result) 

W-KK-

MS 

    

KK 

    

FR 

   

Unable to 

reach 90% 

sensitivity 
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DH 

   

Unable to 

reach 90% 

sensitivity 

 

Figure 19 (Column #2) smile shape results for 1 time unit, (Column #3) smile shape results for 2 time 

units, (Column #4) smile shape results for 100 time units,  (Column #5) smile shape results for 90% 

sensitivity and specificity. 

6.1.4 Visualization of force-directed algorithms for donut shape 

The intermediate results of a donut shape visualization is depicted in Figure 

20. According to the evaluation result in Figure 16(b), W-KK-MS took just 13 time 

units and KK took approximately 1700 time units to achieve 90% sensitivity for the 

donut shape. Similar to the previous cases, FR and DH also cannot reach 90% 

sensitivity for donut shape when they are compared to KK and W-KK-MS. 

 

Algorith

m 

Visualization at 1 time 

unit 
Visualization at 

5 time unit 
Visualization at 

100 time unit 

Visualization at  

90% sensitivity 

(Final result) 

W-KK-

MS 

    

KK 

    

FR  

   

Unable to 

reach 90% 

sensitivity 

DH 

   

Unable to 

reach 90% 

sensitivity 

 
Figure 20 (Column #2) Donut results for 1 time unit, (Column #3) Donut results for 5 time units, (Column 

#4) Donut results for 100 time units and (Column #5) Donut results for 90% sensitivity and specificity. 

 Evaluation of sensitivity, specificity and accuracy in boundary node detection 6.2

We also compared the sensitivity, specificity and accuracy of W-KK-MS for 

CNCAH networks with KK, FR, and DH. Two stopping criteria are used for this 

experiment. The algorithm will be stopped when it has either executed 60 time units 

or the value of the energy function equals to zero. 



 

     
   (a)     (b) 

     
   (c)     (d) 

Figure 21(a) 60 time unit for U-Shape, (b) 60 time unit for Donut, (c) 60 time unit for Smile and (d) 60 time 

unit for Star. 

Figure 21 shows the results of our evaluation verses different kinds of 

network topologies. According to the results of this evaluation, W-KK-MS algorithm 

achieved at least 93% in all three measures (sensitivity, specificity, and accuracy) for 

all the shapes tested in the experiment. It indicates that the performance of W-KK-

MS algorithm was consistently high for W-KK-MS while some of the algorithms 

performed significantly lower. In particular, we can observe that W-KK-MS achieved 

the highest sensitivity and accuracy among all the algorithms compared. The result 

indicates that a large percentage of the boundary nodes have been identified except 

for a few nodes that are still distorted (especially around the corners). 

Figure 22 shows the final visual drawings after each algorithm has been 

executed for 60 time units. These samples drawings were selected among other 

samples from the benchmark topologies. 
Algorith

m 

 

Shape 

W-KK-MS 
Kamada-

Kawai 

Fruchterman 

Reingold 
Davidson Harel 

Donut 

 
   

Smile 
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Star 

 
 

  

U-Shape 

    
 

Figure 22 (Row #2) donut shape for 60 time units, (Row #3) smile shape for 60 time units, (Row #4) star 

shape for 60 time units and (Row #5) u-shape for 60 time units. 
 

 CONCLUSION 7.

Our study targets the problem of using force-directed algorithms for detecting 

boundary nodes and visualizing CNCAH networks. The main contributions of our 

work is two-folds. First, we proposed a batch weight updating approach for KK in 

adjusting the node positions. The proposed algorithm called W-KK-MS is capable of 

discovering folded and twisted regions in CNCAH networks. To achieve fast 

convergence rate on boundary node detection, several approaches are proposed to 

control the node movements. An algorithm called EstRegion is also proposed to 

discover and repair possible folded and twisted regions. Experimental results show 

that W-KK-MS can achieve fast convergence on boundary detection in CNCAH 

networks and is able to successfully unfold stacked regions.  

Second, the detailed design and implementation of a prototype system called 

ELnet for analyzing CNCAH networks is also presented in this paper. The primary 

purpose of system is to generate benchmark network topologies for testing, to enable 

the integration with third party algorithms, to visualize and analyze algorithms’ 

performance. As part of the system, we also design an algorithm which can be used to 

identify boundary nodes from a visual drawing where the screen positions of the 

nodes are known. The output of this algorithm can be used to compare with the 

boundary nodes detected in topology-based algorithms such as KK, FR, DH, and the 

proposed W-KK-MS. The graphical interface of ELnet also provides features to 

visualize boundaries nodes on a visual drawing.  

For the future work, we are planning to implement a distributed version of 

the proposed algorithm. Moreover, to improve the accuracy in constructing network 

topologies, we are planning to adopt technologies that are available for distance 

estimation over signal strength, e.g. RSSI (Received signal strength indication), and 

enhancement filtering, etc. [Volker et al. 2012]. We are planning to investigate the 

impact of noise and error measures in distance estimation since different hardware 

chipsets and environments could likely to produce variable results [Lui et al. 2011].  
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