

Author's Post-Print (final draft post-refereeing)

NOTICE: this is the author’s version of a work
that was accepted for publication in ACM
Transactions on Sensor Networks. Changes
resulting from the publishing process, such as
peer review, editing, corrections, structural
formatting, and other quality control
mechanisms may not be reflected in this
document. Changes may have been made to
this work since it was submitted for publication.
A definitive version was subsequently published
in ACM Transactions on Sensor Networks,
Volume 14 Issue 1, December 2017 Article No.
1 https://dl.acm.org/citation.cfm?id=3154424

39:2

Boundary node detection and unfolding of complex non-convex
ad hoc networks

SE-HANG CHEONG, University of Macau

YAIN-WHAR SI, University of Macau

Complex non-convex ad hoc networks (CNCAH) contain intersecting polygons and edges. In many

instances, the layouts of these networks are also not entirely convex in shape. In this paper, we propose a

Kamada-Kawai based algorithm called W-KK-MS for boundary node detection problem, which is capable

of aligning node positions while achieving high sensitivity, specificity and accuracy in producing a visual

drawing from the input network topology. The algorithm put forward in this paper selects and assigns

weights to top-k nodes in each iteration in order to speed up the updating process of nodes. We also

propose a novel approach to detect and unfold stacked regions in CNCAH networks. Experimental results

show that the proposed algorithms can achieve fast convergence on boundary node detection in CNCAH

networks and are able to successfully unfold stacked regions. The design and implementation of a

prototype system called ELnet for analyzing CNCAH networks is also described in this paper. The ELnet

system is capable of generating synthetic networks for testing, integrating with force-directed algorithms,

and visualizing and analyzing of algorithms’ outcomes.

CCS Concepts: • Networks → Ad hoc networks

Additional Key Words and Phrases: Kamada-Kawai, Boundary detection, Force-directed algorithm, Mobile

ad hoc Network

 INTRODUCTION 1.

Advances in low-power and miniaturization design have had tremendous

impact on the development of useful equipment and services. These new services and

devices can be used for high-end applications as well as for basic consumer oriented

products. Most of these devices have built-in wireless modules, even accelerometers

and GPS (Global Positioning System) features. Moreover, development of advanced

protocols in wireless communications and rapid advancement in electronic

technologies enable the large scale deployment of wireless devices in ad hoc networks.

To this end, localization problems in wireless and ad hoc networks formed by these

devises become an important research topic.

Force-directed algorithms are frequently used in network visualization.

Force-directed algorithms rely on spring forces. Forces between the nodes can be

computed based on their graph theoretic distances, determined by the lengths of

shortest paths between them. There are repulsive forces between all nodes, but also

attractive forces between nodes that are adjacent. Force-directed algorithms often

define an objective function. A layout for a graph is then calculated by finding a

minimum of this objective function in which adjacent nodes are near from each other,

and non-adjacent nodes are well spaced. Force-directed algorithms calculate the

layout of a graph using only information contained within the structure of the graph

itself. Graphs drawn with these algorithms tend to exhibit symmetries, and produce

crossing-free layouts for planar graphs [Tamassia 2007].
They can be used to produce a visual drawing that is proportional to the

given network topology by using the spring force exerted on nodes and edges. These

algorithms include Kamada-Kawai [4], Fruchterman Reingold [5], and Davidson

Harel [6]. The objective of the Kamada-Kawai algorithm is to draw a graph that is as

planar as possible. The Kamada-Kawai algorithm uses only the information of nodes

and edges when it produces visual drawings from the network topologies. The

Kamada-Kawai algorithm adjusts the positions of nodes iteratively in order to

achieve a state of equilibrium. It uses an energy function to represent the state of

equilibrium.

In this paper, we propose an algorithm called W-KK-MS for boundary node

detection which uses a batch weight updating algorithm and signal strength for node

adjustment. We target the localization problems associated with a particular type of

network called Complex Non-Convex Ad Hoc (CNCAH) Networks. A CNCAH

network comprises of intersecting edges and complex polygons (i.e. convex and non-

convex polygons). The layouts of CNCAH networks are usually not entirely convex in

shape [Bresenham et al. 1991].

Unfolding and boundary node detection are two major problem areas of

CNCAH. One particular example involving CNCAH networks is an ad hoc emergency

network which is designed for use in situations such as earthquakes or tsunami

[Cheong et al. 2011]. Most of the existing telecommunication networks are not

designed to be fault-tolerant and back-up systems are often not available during

emergencies. For instance, these telecommunication networks could be partially

destroyed or interrupted during natural disasters. This is often due to the damage

caused to the stations or the fact that networks become overwhelmed by sudden

transmission spikes in an effected area. During or after disasters, victims who

become trapped in the disaster areas or under debris could establish an ad hoc

mobile network by using their hand-held devices and might attempt to communicate

with the rescuers. Therefore, capabilities for determining node localization

information and estimating the network layout can be extremely helpful for the

rescue teams. In this paper, we propose an algorithm called W-KK-MS for boundary

node detection which uses a batch weight updating algorithm and signal strength for

node adjustment. The W-KK-MS is an extended version of Kamada-Kawai (KK)

algorithm and it can be applied to CNCAH network topologies. Moreover, the

proposed algorithm is also designed to unfold stacked regions in visual drawings.

Localization is a process of estimating the position of a node in a network according

to some spatial coordinate system [Perkins et al. 2005]. Locations of individual nodes

in practical applications such as highway, battlefield, and logistics are used in

routing protocols and network coverage analysis [Virrankoski 2003].

Boundary node detection is important in wireless sensor networks which

comprise of a set of small devices (nodes with tiny sensors) for applications such as

sensing, monitoring, and data collection. These nodes often form an ad hoc network

to collect data and report to a designated station. Coverage and connectivity are two

important aspects of a wireless sensor network. Any failure in the network caused by

the deployment, disconnection, or sensor failure can be analyzed by detecting the

boundary nodes. Such detection can reveal the status of the coverage and

connectivity of a given network [Zhang et al. 2006].

Unfolding is a process to open up twisted and stacked regions of the visual

drawing. Figure 1 illustrates the folded and unfolded regions of a visual drawing.

Folded and unfolded regions in the visual drawing are highlighted with light blue

color. Unfolding is important in network localization because it provides a valuable

insight into the structure and layout of networks. Unfolding is useful for large

complex networks that are groups of nodes, densely connected within and only

loosely connected with the rest of the network [Blondel et al. 2008; Subelj and Bajec

2011; Wickramaarachchi et al. 2014].

39:4

(a) (b)

Figure 1 (a) Folded regions of a visual drawing, (b) Unfolded regions of a visual drawing.

There are a number of systems and software libraries such as NetworkX

[NetworkX developer team 2014], Open Graph Drawing Framework [Gutwenger et al.

2013], and JGraphT [Naveh 2013] available for generating simple networks and

analyzing relevant properties. However, these systems cannot be easily tailored for

analyzing CNCAH networks. For instance, these applications cannot be easily

extended for generating CNCAH networks. Besides, the functions for integrating

with third party force directed algorithms, and visualization and analysis of these

algorithms’ outcomes are not supported. Against this background, we developed a

prototype system called ELnet which is capable of generating CNCAH network

topologies for experiments, simulating various force-directed algorithms for

evaluating their performance, and visualizing the algorithms’ performance.

 CONTRIBUTION 2.

The main objective of the paper is to find boundary nodes and unfold twisted

and folded regions in CNCAH networks. We also developed a prototype system called

ELnet for generating CNCAH networks and evaluating algorithms in this paper. For

example, ELnet generates CNCAH networks with combinations of arbitrary

geometric shapes for our experiments. The scientific and technical contributions of

this work are twofold.

1. First, we extend the Kamada-Kawai (KK) algorithm for boundary node detection

and unfolding of CNCAH networks. Generally, the KK algorithm is slow for large

and complex networks [Nooy et al. 2005]. In this paper, we propose an algorithm

called W-KK-MS, which is capable of adjusting the node positions while

maintaining an acceptable level of sensitivity, specificity and accuracy in not only

efficient in producing a visual drawing from the input network topology. W-KK-

MS algorithm is but also capable of discovering folded and twisted regions and

minimize edge crossings in CNCAH networks. The proposed W-KK-MS algorithm

considers signal strength in producing visual drawings. W-KK-MS not only

minimizes the edge crossings, but also significantly improves the performance for

locating boundary nodes. Therefore, the proposed algorithm is more appropriate

for wireless sensor networks than KK. The visual drawing is then used for

detecting boundary nodes from the input network topology. Moreover, for

complex network topologies without anchor information, the quality of visual

drawings produced by force directed algorithms such as KK can be poor for

CNCAH networks [Efrat et al. 2010]. For instance, some parts of the network

may be folded or twisted. For this reason, the proposed W-KK-MS algorithm is

also designed to discover and unfold twisted regions. Experimental results show

that the proposed algorithm can achieve fast convergence on boundary detection

in CNACH networks and area able to successfully unfold stacked regions.

2. Next, the design and implementation of a prototype system called ELnet for

analyzing CNCAH networks is presented. To the best of authors’ knowledge,

existing tools are incapable of generating CNCAH networks for testing. In this

paper, we describe a prototype system which is capable of generating synthetic

networks, integrating with third party algorithms, visualizing experiment

outcomes and performance. As part of the system, we also develop a boundary

node identification algorithm which can be used to discover nodes on outward

boundary of a 2-dimensional plane. That is, after the visual drawing for a

network topology is projected onto a geometric plane using force directed

algorithms, we can use the boundary node identification algorithm to identify the

true boundary nodes. Once the true boundary nodes are identified, we can

compare them with the results obtained from the force directed algorithms. The

graphical interface of ELnet also provides features for interactive visualization of

boundary nodes from a visual drawing and functions to plot the results of the

analysis.

In Section 3, we summarise existing well-known force-directed methods and

the recent studies on boundary node detection problem. In Section 4, we propose an

algorithm called W-KK-MS for detecting boundary nodes and unfolding stacked

regions in CNCAH networks. In Section 5, we briefly introduce the design of a

prototype system called ELnet for analyzing CNCAH networks. In Section 6, we

evaluate the performance of the proposed algorithm. In Section 7, we conclude the

paper and discuss the future work.

 RELATED WORK 3.

Force-directed algorithms are used in many application areas. They are

especially useful for visualizing graphs from social networks [Quinn and Breuer

1979]. Force-directed algorithms such as Kamada-Kawai (KK) [Quinn and Breuer

1979] and Fruchterman Reingold (FR) [Fruchterman and Reingold 1991] are based

on Eades’s spring-embedder model. These two approaches attempt to minimize the

edge crossing and distribute nodes and edges uniformly. A similar algorithm was also

proposed by Davidson Harel (DH) [Davidson and Harel 1996], which is based on a

simulated annealing process for drawing of graphs.

 Among these force-directed algorithms, KK focuses on the relations among

the nodes from the entire network topology. It calculates the value of the energy

remaining on every node, and then iteratively adjusts the nodes with highest energy

until all nodes reach their minimum energy. An equilibrium state is obtained when

the energy on the nodes is close or equal to 0. However, nodes in the visual drawing

can be stacked together when force-directed algorithms such as KK is used for

display. These algorithms generally cannot guarantee a planar result especially for

large and complex networks. Furthermore, some parts of the network could be

twisted in the final outcome. For example, a u-shaped network topology could be

twisted into a w-shape or a z-shape [Kevin et al. 2010]. There are exiting studies

using modularity to detect stacked nodes in the network topologies. Modularity is an

attribute which specifies the distribution of nodes in a specified region. That is, if the

modularity of a region is high, nodes in this region may be stacked [Alex et al. 2007;

Blondel et al. 2008]. However, this assumption may not be always true for complex

network topologies or network topologies with clusters. Since the distribution of

nodes is non-uniform in complex non-convex network topologies. Nodes with high

modularity may occur on the gap rather than on the boundary of clusters. In contrast

to their approaches, our approach keeps track the changes of a visual drawing

iteratively. Specifically, our algorithm locates the regions which are significantly

39:6

different from the initial network topology during the execution. When these regions

are identified, the algorithm then attempts to repair these regions.

 In previous studies about the localization of ad hoc networks, force-directed

algorithms are used to perform position tracking to improve data flow in the network.

Efrat et al. [Efrat et al. 2010] applied a multi-scale dead-reckoning algorithm for

sensor localization in force-directed algorithms by using the length of edges and

angular information. The performance of their approach was evaluated on non-

convex network topologies. A multi-scale algorithm usually uses multiple models at

different scale to resolve a large scale of problem. After dividing a large network into

smaller sub-networks, a multi-scale algorithm uses several level of stages to process

these sub-networks. Specifically, sub-networks are processed in stages with local

organization schema and each stage computes one or more sub-networks. Multi-scale

algorithms can also compute some of the stages simultaneously and the results of

stages are incrementally combined until all sub-networks are computed [Barth et al.

2012; Weinan 2011]. Efrat et al. also use the dead reckoning for estimating the

distance of nodes. Dead reckoning is an updating process of the current positions of

nodes by using previously calculated positions or estimated speed over elapsed time

and course. The problem of detecting boundary nodes and holes in hoc networks has

been widely reported in literature. Dong et al. [Dong et al. 2009] proposed an

algorithm for detecting holes in the network by using fine-grained boundary

recognition. This algorithm can be used to detect inner and outer boundary cycles

using the information of nodes and edges of the network. The algorithm relies on

global connectivity information of network in which shortest path trees of primary

boundary circle are used on the boundary refinements [Liu et al. 2012]. Wang et al.

[Wang et al. 2006] proposed an algorithm to detect the boundaries of holes using the

shortest path tree. In the proposed algorithm, distinct portions of similar paths that

span the network are selected for detection [Li and Liu 2010]. The assumption of the

proposed algorithm is that if there is not a hole between the nodes within the

shortest path tree, the parts are more similar to straight lines. The proposed

algorithm builds the shortest path tree by flooding the network from an arbitrary

root node upon initialisation. Blondel et al. [Blondel et al. 2008] proposed an

algorithm to unfold communities in large scale of social networks. This algorithm

uses heuristic method that unfold the community structures of social networks based

on the modularity optimization. That is, if the modularity of a region is high, the

region may be folded. Wickramaarachchi et al. [Wickramaarachchi et al. 2014]

proposed an algorithm for unfolding communities in large graphs by using a greedy

modularity maximization approach. The algorithm is designed for parallel computing,

unfolding communities, and minimizing the cross edges between folded communities

in large graphs.

 Volker et al. [Volker et al. 2012] also proposed an approach for tracking the

position of nodes using a force-directed algorithm based on signal strength and step

recognition. Step recognition is a process to collect the movement of sensors. Their

approach uses movement information to adjust the assignment of force in the force-

directed algorithms. That is, they use a built-in accelerometer which is installed on

sensors to identify the step status of sensors so that they can collect the information

of movement from sensors. Their approach was evaluated by using experimental data

obtained from 60-device wireless sensor network deployed in two buildings. They

evaluated the influence of position and errors of estimation with anchor points (the

position of 60 devices is known) verses different kinds of distance estimation methods.

In contrast to their approaches, our approach extends Kamada-Kawai by using a

batch weight updating algorithm to guide the movement of nodes and edges during

the execution. One of the key contributions of our approach is the ability to process

CNCAH networks without any location information except the topology.

Graph generators such as NetworkX [NetworkX developer team 2014], Open

Graph Drawing Framewor [Gutwenger et al. 2013], and JGraphT [Naveh 2013] are

commonly used for generating network topologies. There are also tools and

simulators available for visualizing wireless sensor networks [Buschmann et al. 2005;

Ö sterlind et al. 2010; Shu et al. 2008]. However, these tools are not specially

designed for the evaluation of force-directed algorithms for boundary node detection

in ad hoc networks.

 WEIGHTED KAMADA-KAWAI WITH MULTI-NODE SELECTION 4.

Kamada-Kawai (KK) [Kamada and Kawai 1989] is a visualization algorithm

that is based on Eades’s spring-embedder model [Eades 1984]. The objective of the

algorithm is to distribute nodes and edges uniformly and minimize edge crossing

[Chen 2006]. The key idea behind this algorithm is to use an energy function to

model the spring on network topologies. The energy function used in KK is

described in equation 1.

 ∑ ∑

 (| |)

 (1)

The above energy function is used to calculate a visual position for nodes in

the network topology so that their visual distance is proportional to their theoretical

graphed distance. In the energy function, is the stiffness of the spring of node

and , and are the visual positions of node and , and is the theoretical

graphed distance of node and . The theoretical graphed distance of the spring ()

between node and can be defined as follows:

 (2)

where represents the hop count between node and . is the shortest hop

count of the path among all possible paths between node and . is the side length

of the drawing frame, if the drawing frame is a rectangle, the longest side of the

rectangle is chosen as . In addition, the stiffness of the spring of node and can be

calculated by:

 (3)

where is a constant for scaling.

 KK iteratively updates the visual position of nodes by using the Newton-

Raphson method. For every iteration, the algorithm selects a node that has the

highest value of energy remaining and updates its visual position in order to

minimize the energy function . From our preliminary testing, we find that KK is

able to produce visual drawings of simple graphs with relatively fast convergence

rate. This result is expected since the edge lengths in simple networks are not

usually restricted by constraints. Hence, the length of the edges can vary

significantly in a simple graph. However, for ad hoc networks in general and CNCAH

networks in particular, the lengths of the edges are often constrained by the

hardware limitation and signal strength. Therefore, in this article, we propose a

number of extensions to the KK algorithm for unfolding and boundary node detection

in CNCAH networks. The proposed algorithm called W-KK-MS is described in

Algorithm 1 and an illustration of unfolding is depicted in Figure 2.

39:8

Figure 2 Illustration of unfolding by the W-KK-MS algorithm.

 The W-KK-MS algorithm has four stages. The first stage is a batch weight

updating approach for node movement which is designed to achieve fast convergence

rate on boundary node detection. An array stores the weights of the nodes. The size

of the array equals to the number of nodes . For example, if the networks has 1000

nodes, then the size of the array is 1000. The initial values of the weights are set to

1. The second stage uses EstRegion algorithm to discover possible twisted and folded

regions. The third stage is to unfold twisted and folded regions found in the second

stage. The final stage is the substitution of visual position of nodes and refinement of

the network.
In the first stage, the W-KK-MS algorithm uses Batch Weight Updating

(BWU) algorithm to iteratively update the visual position of nodes. The iterative

updating is controlled by an input parameter which is the percentage of the nodes

designated for selection and node count of the network. That is, the first stage of

main algorithm will terminate when nodes in the network have been

updated. For example, if a network has 1000 nodes and is 5%, the first stage of

main algorithm will terminate when (i.e. nodes have

been updated. For each iteration, the W-KK-MS algorithm first executes CalWeight

algorithm to determine the weights of the nodes. Weights are assigned to every node

in the network topology to influence the node selection process of the algorithm. The

smaller the weight, the smaller the chance the node will be selected for visual

position updating. On the contrary, the higher the weight, the higher the chance the

node will be selected. Next, the BWU algorithm is executed to update the visual

position of the nodes by using the weights determined by CalWeight algorithm.

CalWeight and BWU are executed repeatedly until nodes in the network

have been updated. The details of CalWeight and BWU algorithms are explained in

section 4.1 and 4.2.

In the second stage, EstRegion algorithm is first executed to find folded

regions in the network. A number of strategies are also used in our implementation

to repair folded regions from the network. The inner working of EstRegion is

explained in section 4.3.

At the third stage, the unfolding process is performed. Firstly, the W-KK-MS

algorithm selects one of the folded regions found in the second stage to initiate the

unfolding process. Secondly, the W-KK-MS algorithm adds additional edges to some

of the nodes in the folded region where the density of edges is low. Unfolding process

may fail if there are insufficient edge connections among the folded regions. This

concept is analogous to the case of two large clusters with few edge connections in

between. In these situations, force-directed algorithms are not able to unfold these

regions effectively because their edge connections are weak. Therefore, additional

edges are added to create stronger edge connections among folded regions. Edges will

be added to the gaps of the folded regions if the average degree of folded regions

(illustrated in Figure 3) is less than a threshold .

Figure 3 Gaps between folded regions.

Thirdly, the W-KK-MS algorithm assigns weights to the nodes from the

folded region by using CalWeight algorithm. Next, the W-KK-MS algorithm uses

BWU algorithm to update the visual position of nodes in the selected region with new

assignment of weights so that distorted regions in the visual drawing can be unfolded.

Finally, if more than one folded regions is found by the EstRegion algorithm in

second stage of the W-KK-MS algorithm, the above steps are repeated for each folded

region until all folded regions have been unfolded.

From the result of the second stage of W-KK-MS algorithm, folded regions

can be discovered from the visual drawing of network topology. In the W-KK-MS

algorithm, folded regions formed by a selection of nodes will be stored in an array

called and the visual position of these nodes are all cloned from . For

example, a folded region is discovered by EstRegion algorithm at the second stage of

W-KK-MS algorithm and the region is formed by three nodes , and

 . The process of cloning is to copy the visual positions (of the nodes from

 and insert them into . That means, there are two identical copies of node ,

 and after the process of cloning. One copy of nodes is in and another copy is in

 .

Next, the unfolding process is applied to at the third stage of W-KK-

MS algorithm. The resulting unfolded regions (nodes with new visual positions

assigned) are stored in another array called by using the cloning process

similar to previous one. After that, the array and nodes of will be passed

to the next stage. is discarded after the unfolding process. The last stage of

W-KK-MS algorithm is to update (substitute) the visual position of the nodes in

network topology by using the result of unfolding process () except for

unfolded regions which still have high approximation error after the unfolding

process. Because is the output of unfolding process and is the input

of unfolding process, both arrays contain the same nodes with different visual

positions. That is the reason why the W-KK-MS algorithm needs to replace the visual

position of nodes in by using the visual position of nodes in . Finally, the

main algorithm will call BWU algorithm to refine the network topology .

ALGORITHM 1. W-KK-MS algorithm

39:10

End If

Algorithm 1 Pseudo code of main algorithm

 Batch Weight Updating (BWU) algorithm 4.1

From our extensive testing, we find that KK updates the visual position of a

node at each iteration and the updating process can be extremely slow. This is

especially noticeable for large network topologies. Moreover, we also observe that

nodes that are too close to each other within a particular region could have similar

properties. They are more likely to have common neighbors and share similar signal

strength. To make use of this property and to speed up the updating process, we

extend the KK algorithm by selecting multiple nodes instead of a single node in each

iteration. Specifically, the algorithm pushes the top-k nodes that have a larger

change onto an ordered stack. Next, the top-k nodes from the ordered stack are

popped out from the stack and their visual positions are updated. The value of

change for these nodes is then recalculated again at the next iteration.

In addition, weights are also assigned to the selected nodes in each iteration.

The values of weights assigned to these nodes not only reflect the magnitudes of

updating visual position but also determines which nodes should be updated. For

39:12

example, nodes within a closed region and have similar neighborhood are likely to be

adjusted. Because these nodes have roughly the same value of average degree and

therefore their positions should be updated in batches. Specifically, we can use

weights to control the visual position update of nodes in some selected regions of the

visual drawing as well as to keep other regions unchanged. The calculation of change
 for a node is given in equation (4). According to equation (4), weights are related

to change . The larger the weight, the higher the value of change. The higher the

change a node has, the higher the chance the node will be selected for visual position

update.

 √(∑ (

)

)

 (∑ (

)

)

(4)

where is the weight for node , is the distance of node and visual positions.

 is the theoretical graphed distance of node and . and are x and y

coordinates of the visual position of node . The estimated distance used in this paper

is based on the assumption of free-space path loss (FSPL) [Goldsmith 2005].

According to this assumption, the estimated distance is calculated based on the

signal strength of the nodes. FSPL is a term used in telecommunication to denote the

loss in signal strength of an electromagnetic wave as a result of a line-of-sight path.

The estimated distance (in meters) of FSPL can be calculated as follows:

 (5)

where is the signal strength and is the signal frequency in Mhz.

The pseudo code of the Batch Weight Updating (BWU) algorithm is described

in Algorithm 2. On initializaiton, the algorithm calcualtes the maximum change of

every node by using equation (4) and stores them into an array . The algorithm

then sorts the array in descending order. Once the array has been sorted, the

algorithm selects top K nodes stored in having high value of energy remaining for

the next step.

The algorithm uses a nested loop which includes an outer and an inner loop

to update the visual positions of the selected nodes. The visual position of selected

nodes are updated by the inner loop which is also responsible for minimizing the

energy function. The outer loop controls the iteration of inner loop. BWU will

terminate when the count of outer loop is greater than the ratio of (node count) and

 (percentage of nodes for selection), i.e

.

ALGORITHM 2. BWU algorithm

 [] √(∑ (

)

)

 (∑ (

)

)

 []

 ∑∑

 (

)

Algorithm 2 Pseudo code of Batch Weight Updating algorithm

 Weight determination and assignment 4.2

Recall that in BWU algorithm, an attribute called “weight” is assigned to

every node in the network topology to influence the placement strategy. We also

stated that the KK algorithm updates the visual positions of nodes iteratively. The

smaller the weight, the smaller the chance the node will be selected for visual

position updating. On the contrary, the larger the weight, the higher the chance the

node will be selected for visual position updating. Therefore, weights play a major

role in node selection.

The pseudo code of CalWeight algorithm is described in Algorithm 3. In

CalWeight algorithm, we define five scaling factors , , , , for managing the

weights. Scaling factors are real numbers between 0 and 1 and they are updated

during the execution. The objective of these scaling factors is to determine the weight

of the nodes. denotes the maximum weight of the nodes which visual position are

supposed to be updated immediately on the following iteration. For the purpose of

this discussion, we label these nodes as “active” nodes. specifies the maximum

weight of active 1-hop nodes. specifies the maximum weight of active 2-hop nodes.

 specifies maximum weight of nodes which visual positions are either likely to be

updated slightly or to remain unchanged. Finally, specifies the maximum weight

of nodes which are considered to be anchor points.

For instance, nodes assigned with may not require updating of visual

positions during the execution of the algorithm. In that case, the weight of these

nodes will carry a smaller value. On the contrary, the weight of “active” nodes will

carry a higher value. Suppose that and a node is an “active “node. Also

assume that the weight of node is 0.9 at 100th iteration. In this case, the new

weight of node is . If the weight of node

is still considered to be high after multiplying with a scaling factor, it will be selected

again for visual position update in 101th iteration.

39:14

In addition, the CalWeight algorithm requires four inputs: (a) the network

topology, (b) an array of anchor points (if any), (c) percentage of node for selection,

and (d) the iteration of the first stage of main algorithm. CalWeight algorithm

outputs a matrix to store the weights of nodes for BWU algorithm. CalWeight

algorithm iteratively updates the weights of nodes by using a loop. On initialization,

a node (starting node) with high weight value is selected by CalWeight algorithm.

CalWeight algorithm then updates the weights of nearby nodes (i.e. 1-hop nodes of ,

2-hop nodes of and so on) iteratively.

The loop of CalWeight is terminated when the is larger than the

iteration count (denoted by the variable) in the first stage of main algorithm.

The lower bound of is and the upper bound of is

 where is

the node count of network topology. These bounds specify the minimum and

maximum number of nodes for weight updating on each iteration. The variable

 is initialized with a small value and is less than the at the early

stage of the processing. Therefore, a large number of nodes will be subjected to

weight updating at the beginning. When the value of is incremented

gradually, fewer nodes will selected for weight updating except for those nodes which

still carry high weight values.

ALGORITHM 3. CalWeight algorithm

 [] []
 [] []
 [] []
 [] []
 [] []

 (

)

Algorithm 3 Pseudo code of CalWeight algorithm

 Estimation of folded regions 4.3

 The EstRegion algorithm for folded region estimation aims to discover

regions in the visual drawing where there is significant variation in edge distribution

in comparison to other regions. The pseudocode of EetRegion is given in Algorithm 4.

The algorithm accepts (a) the estimated length of all edges (represented by signal

strength), (b) the calculated length of all edges in visual drawing returned by BWU

algorithm, and (c) a threshold for folded regions estimation. The EstRegion algorithm

produces a subset of network topologies (nodes and edges) which is significantly

different from others.

First, the algorithm initializes the variable for each edge in the network

topology. The value is used to determine the difference between the length of

edges which is estimated from the signal strength and the length of edges in visual

drawing returned by BWU algorithm. Second, EstRegion algorithm calculates the

variable which is the standard deviation of the . Finally, EstRegion

algorithm calculates the ratio for every edge, which specifies the variation in the

length of edges in the visual drawing. The calculation of approximation error is

shown in following equation:

(6)

Figure 4 Step by step construction of a folded region by the EstRegion algorithm

A folded region is a set of edges situated near each other which having large

approximation error . The procedure of folded region construction will be executed

after the approximation error of edges in the network topology has been calculated.

The folded region construction procedure can be described in the following steps.

Firstly, EstRegion algorithm compares the approximation error of edges in the

network topology with the threshold . For instance, if the approximation error of

an edge is less than , then the edge is omitted. Otherwise, EstRegion algorithm

finds all its adjacent edges which have high approximation error . This can be

39:16

achieved by searching 1-hop edges of the chosen edge , 2-hop edges of , and so on.

Searching continues until no high approximation error of edges can be found.

Secondly, after the searching is done, EstRegion algorithm counts the total

number of edges with high approximation error found in the previous step. The

algorithm will omit the result of searching if the number of edges with high

approximation error is less than 10. The reason for omitting is that if the numbers

of edges are too small, the algorithm cannot unfold these small regions effectively.

Finally, if sufficient number of edges were found in the previous step,

EstRegion algorithm then constructs a folded region by connecting the end nodes of

edges which have high approximation error . The end nodes are the nodes belong to

an edge. In other words, the construction of folded regions use the result of edge

searching described in previous steps. For example, the edge is from the result of

edge searching and it has 5 end nodes. EstRegion algorithm will then append the

edge and its 5 end nodes into a region. The same procedure is applied to other

edges with high approximation error . The algorithm repeats above steps iteratively

until all edges in the network have been traversed. The pseudo code of EstRegion

algorithm is given in Algorithm 4 and the steps of EstRegion algorithm are

illustrated in Figure 4.

ALGORITHM 4. EstRegion algorithm

 []
 []

 []

 ∑√([])

 []
 []

 []

 []

 []

 []

 []

Algorithm 4 Pseudo code of EstRegion algorithm

 ELNET SYSTEM FOR ANALYZING CNCAH NETWORKS 5.

 This section introduces the design and implementation of the prototype

system called ELnet for CNCAH networks. The following functions are implemented

in ELnet system: (a) generation of syntactic CNCAH or common network topologies,

(b) editing of existing network topologies, (c) execution of force-directed algorithms

(e.g. Fruchterman Reingold, Davidson Harel, W-KK-MS, etc.), and (d) visualization

and analysis of force-directed algorithms’ outcomes. Figure 5 illustrates the main

screen of ELnet system.

39:18

Figure 5 The main menu of ELnet

 Topology Generation 5.1

Creating a sizable number of syntactic network topologies is essential for any

experiments in mobile ad hoc network research. These generated network topologies

are especially useful when we evaluate existing force directed algorithms for

boundary nodes detection problem.

 There are already promising applications that can be used for simple

(random) graph generation. Examples of graph generation applications include

NetworkX (Python programming language) [NetworkX developer team 2014], Open

Graph Drawing Framework (C++ programming language) [Gutwenger et al. 2013],

and JGraphT (Java programming language) [Naveh 2013]. Although the functions

provided in these applications are sufficient for generating random and simple

network topologies, they are not designed to generate CNCAH network topologies

with relatively large number of control parameters. For example, CNCAH network

topology generation process can be guided by the parameters such as number of

nodes, average degree, distribution of edges and nodes, and distribution of clusters.

 One of the key functions of ELnet is the bulk generation of simple networks

as well as CNCAH networks by the use of a graphical interface. The network

topology generator is able to generate instances of network topologies featuring

different distributions of clusters, nodes, and edges. Figure 6(a) and (b) show samples

of two network topologies with different distributions of clusters. Note that these two

samples have the same number of nodes and the average degree.

 (a) (b)

Figure 6(a) Non-uniform distribution of network topology, (b) A uniform distribution of network topology.

A network topology consists of a finite number of nodes and edges. Recall that

physical locations of the nodes are unknown for the CNCAH networks addressed in

the paper. Therefore, a network topology could have infinite number of corresponding

visual drawings. If we consider the case where a visual drawing is represented by

pixels, the number of visual drawings could be infinite for different combination of

screen sizes and resolutions. For example, the two possible sizes of a visual drawing

for a given network topology could be either 640×480 or 1920×1080. Therefore, a

unified coordinate system is necessary for generating network topologies especially

for force-directed algorithms. In ELnet system, we adopt a 1 by 1 windowed

coordinate system and all nodes are fitted into that coordinate system during the

algorithm execution. After the execution of the algorithms is completed, users can

visualize the results by selecting a desired size of visual drawing (e.g. 1920×1080) in

ELnet. For the case of 1920x1080, the x coordinates of nodes will be multiplied by

1920 and the y coordinates of nodes will multiplied by 1080.

Screen captures of ELnet’s topology generation methods are illustrated in

Figure 10 and the parameters used by ELnet system in topology generation methods

are summarized in Table 1. These parameters are used as the seeds for

randomization.

Table 1 Parameters used in topology generation methods

Parameter Description

Number of nodes () Expected number of nodes within the network

topology

Average degree () Expected average degree for the network topology

Node distribution ratio

()
Minimum distance between nodes

Edge radius () Maximum distance between edges

Edge connectivity () The probability value used for generation of edges

Edge distribution () The minimum distribution distance between edges

The network topology generation algorithm consists of two stages; the node

generation and edge generation. The first stage of the algorithm executes iteratively

until the count of nodes exceeds the parameter (). In every iteration, a newly

generated node is assigned with a randomized and coordinates. The node will be

39:20

accepted when it satisfies the parameters input by the user (e.g., , , etc). If the

node does not satisfy one of the parameters, the node is discarded.

The second stage of the algorithm uses the parameter to determine how

many edges should be generated randomly for the network topology. Edge

randomization is performed iteratively by randomly selecting a node and generating

the corresponding edges. Similar to the first stage, a generated edge will be accepted

when it satisfies the parameters input by the user. Otherwise, the edge will be

discarded. The loop for the generation of edges will terminate when the average

degree of network topology exceeds the threshold () input by the user. The pseudo

code of network topology generation algorithm is described in Algorithm 5.

ALGORITHM 5. Network topology generation algorithm

 〈 〉

Algorithm 5 Pseudo code of network topology generation

ELnet also provides several visualization features on manipulating network

topologies. For example, users can zoom in and zoom out on various network

topologies. Users can also change the color of nodes which have high average degree.

Users can also hide or display the nodes or the edges during the visualization. These

features are shown in Figure 7(a) and Figure 7(b).

 (a) (b)

Figure 7(a) An enhanced view of the nodes in a network topology, (b) An enhanced view of the edges in a

network topology.

 Editing of existing network topologies 5.2

In ELnet system, users can also construct complex network topologies based

on existing network topologies. For instance, users are able to alter existing network

topologies and construct variations of these network topologies. Users can also add or

remove nodes and edges from existing network topologies. New nodes and edges can

also be generated within a selected region of the network. Figure 8(a) and Figure 8(b)

show examples of generating a network topology and modifying it later.

 (a) (b)

Figure 8(a) A visualization of a network topology, (b) After removing certain nodes and edges from (a).

Through the interface, users can also alter parameters as shown in Table 1

and produce a new network instantly without regenerating the entire network

topology. Specifically, users can fine-tune an existing network topology or

dynamically build the different network topologies from a single source. Moreover,

ELnet can perform clipping operations for existing network topologies. The graphical

user interface of ELnet provides features which can be used to generate complex and

irregular shapes such as u-shape, circle, star, etc. Figure 9 illustrates two irregular

39:22

shapes network topologies generated by ELnet. Figure 10 illustrates a screenshot of

ELnet for generating an irregular shaped network topology through a user interface.

Figure 9 Examples of irregular network topologies.

Figure 10 The screen capture of network topology generator.

During the network topology generation, the number of nodes, the

distribution of nodes and edges, and the average degree of network topology can

affect the structure of the network topology. Node distribution ratio and edge

distribution ratio from Table 1 can be used to control the proximity of the nodes

and edges. The lower these values, the higher the chance that the nodes will stick to

each other. The higher the value, the more sparse the edges and nodes will be. By

adjusting these distribution ratios, it is easy to modify an existing network into a

sparse or an uniformly distributed topology. In addition, by assigning a lower value

to the node distribution ratio and maintaining the value of the edge distribution

ratio and edge radius , users can construct clusters within each network

topology. The reason for this is that the lower the node distribution ratio , the

higher the density of the nodes in some regions of the network topology. By balancing

these parameters, we can obtain sparse or uniform distribution of clusters.

 For testing CNCAH networks, ELnet provides a feature that allows users to

generate network topologies with irregular shapes. The system can construct

network topologies with polygons. The following is a sample script used to generate a

network topology with an irregular shape. The result of the script is shown in Figure

9.

The coordinates used in the script are within a 1 by 1 windowed coordinate

system. The and – signs in the script specify the areas where nodes and edges can

be generated. Nodes and edges can only be generated in open areas which are

denoted by label. Nodes and edges cannot be generated in the closed areas denoted

by – labels. Moreover, ELnet supports three kinds of polygons: ellipse, rectangle (rect)

and polygon (poly).

 Ellipse requires four parameters: the first two are the x, y coordinates

of left-top corner and the last two are the width and height of the

ellipse.

 A rectangle can be defined with four parameters: the x, y coordinates

of left-top corner and the x, y coordinates of the right-bottom corner.

 A polygon can be specified with at least four parameters: the number

of points (first parameter) and the coordinates of at least three points.

 True boundary node identification in a visual graph 5.3

A boundary node identification algorithm is implemented in ELnet system.

The algorithm identifies boundary nodes in a visual graph where screen positions (x

and y coordinates) of the nodes are known. The purpose of this algorithm is to

identify the true boundary nodes so that they can be compared with the boundary

nodes detected by the forced directed algorithms such as KK which solely relies on

the network topology information.

In plane geometry, a plane consists of nodes and edges. An atomic plane is a

plane which does not embed any other planes or sub-planes. In ELnet system, the

visual graph for the network topology is first projected onto a two-dimensional

drawing frame before executing the boundary node identification algorithm. Outward

boundary is the plane in the two-dimensional drawing frame which does not intersect

and embed any other sub-planes. Therefore, the largest intersection-free plane of the

two-dimensional drawing frame is the outward boundary. That is, nodes on the

largest plane are considered to be the boundary nodes. Figure 11(a) illustrates all

possible planes of a two-dimensional drawing frame consisting nodes A, B, C, D, E,

and F. The three planes in the polygon are (atomic plane), and

(atomic plane). The largest plane is and it is also the boundary of the two-

dimensional drawing frame. The time complexity for the node identification

algorithm is where and are the node count and the edge count. The

pseudo code of boundary node identification is given in Algorithm 6.

39:24

 (a) (b)

Figure 11(a) An example of planes, (b) Adding two dummy node to crossing edges.

The algorithm performs following steps for boundary node identification.

1. Determine the clockwise or counterclockwise ordering of the edges.

2. Separate all crossing edges by adding dummy nodes (X1 and X2) as shown in

Figure 11 (b).

3. Calculate the angle of the edges on each node in order to traverse the planes

(either clockwise or counterclockwise).

4. Select a starting edge by choosing a node located at the corner and picking

one of the edges connected to the node.

5. Start traversing the two-dimensional plane from the selected edge in

counterclockwise or clockwise direction until returning to the selected edge

(i.e. all edges and nodes have been traversed and all the planes have been

found).

6. Merge the planes found in the previous step and eliminate any dummy nodes.

7. Nodes on the largest plane are the boundary nodes.

ALGORITHM 6. True boundary nodes identification algorithm

 []

 []

 [][]

Algorithm 6 Pseudo code of true boundary nodes identification algorithm

 Execution of force-directed algorithms 5.4

Classical force-directed algorithms (e.g. Kamada-Kawai, Fruchterman

Reingold, Davidson Harel, etc) and the proposed W-KK-MS algorithms were

implemented in the proposed ELnet system. The screenshots of the event logs and

algorithm selection are shown in Figure 12. In ELnet system, users can schedule the

algorithms to be executed in batch. For example, users can select algorithms

Kamada-Kawai, Fruchterman Reingold, Davidson Harel, and W-KK-MS to be tested

39:26

on a u-shape network topology for evaluation or select other algorithms and network

topologies where are saved in a local directory. Furthermore, users can set various

termination requirements for the algorithms. The termination requirements

implemented for all force-directed algorithms are as follows:

 Number of iterations

 Percentage of sensitivity

 Percentage of specificity

 Percentage of accuracy

 Time limit

The ELnet system was developed in Java programming language and generic

programming technology was used during the implementation process.

Figure 12 The screenshots of algorithm evaluation.

 Visualization and analysis of force-directed algorithms 5.5

A logging mechanism is also implemented in the ELnet system. In ELnet

system, the algorithm executions are logged and traceable. The traceable information

which is recorded for every iteration of the algorithm includes:

1. The accuracy, sensitivity, and specificity.

2. The time spent.

3. The true positive, false negative, false positive, and true negative information

of boundary node detection.

4. The visual drawing of network topology.

5. The nodes and edges information.

Elnet provides an analysis function based on traceable information. An

example of visualization of experimental results and analysis of algorithms is shown

in Figure 13.

Figure 13 The screenshot of visualization of intermediate iterations and performance analyzing.

 EXPERIMENTS 6.

In this section, we evaluate the proposed W-KK-MS algorithm for CNCAH

networks with Kamada-Kawai (KK), Fruchterman Reingold (FR) and Davidson

Harel (DH). We also examine the visual drawings of the algorithms’ output during its

iteration process. These experiments were performed with a personal computer

containing an Intel Pentium T2390 processor, 4GB of memory and Windows XP 32-

bit.

By using ELnet system, we generated several benchmarks of CNCAH

networks that had been adopted in previous studies [Efrat et al. 2010], [Saukh et al.

2010] for our experiments. Node counts and average degree of these networks are

1000 and 8 respectively. In these benchmark topologies, there are 4 kinds of irregular

shapes. We used the ELnet system to generate five CNCAH networks per each

irregular shape. In total, the experiment consisted of 20 instances of network

topologies.

We set , , , and , and for

the experiments. Figure 14 illustrates CNCAH networks generated for the

experiment.

Figure 14 Samples of CNCAH networks generated for the experiments by the ELnet system.

In the experiments, we measure four types of performance metrics: the

sensitivity, specificity, accuracy and execution time with respect to the varying

39:28

Figure 15 Experiment settings

number of nodes and different average degrees. The definition of them are described

in Table 2.

Table 2 Performance evaluation metrics

Metrics Description

Sensitivity/True

positive rate

The percentage of boundary nodes

on the initial network topology

correctly identified as boundary

nodes by algorithms

The higher the better

Specificity/True

negative rate

The percentage of non-boundary

nodes on the initial network

topology correctly identified as

non-boundary nodes by

algorithms

The higher the better

Accuracy

The sum of the true positive count

(i.e., boundary nodes correctly

identified as boundary nodes) and

the true negative count (i.e., non-

boundary correctly identified as

non-boundary nodes) divided by

the total number of nodes

examined

The higher the better

Execution time
Total amount of execution time

that the algorithm ran in seconds
The lower the better

 Figure 15 illustrates the experiment settings to obtain the sensitivity,

specificity and accuracy of W-KK-MS algorithm by using the Algorithm 6 given in

section 5.3.

 Evaluation of execution time for detecting boundary nodes and unfolding 6.1

In this section, we compare the total time spent by all algorithms for

achieving 90% sensitivity for CNCAH networks. Two stopping criteria were set for

this experiment. The algorithm will stop when it either archives 90% sensitivity or

the sensitivity of algorithm remains unchanged up to 100 iterations.

 Figure 16 summarizes the results of the evaluation. The horizontal axis in

Figure 16 is used to denote the average execution time for each shape. From the

experiments, we found that FR and DH could not reach 90% sensitivity. Although FR

had a faster converge rate compared to KK and DH, but FR could not improve the

sensitivity any further. The average sensitivity of FR is approximately in the range of

50% to 60% for all network topologies we have evaluated. We also found that DH

could not reach 90% sensitivity and it does not significantly improve the sensitivity.

It is the reason why the execution time of DH is flat on all experiments. KK is able to

reach 90% sensitivity in experiments and it spent approximately 1000 to 3800 time

units to reach that level. From the experimental results, we can see that the

proposed W-KK-MS is able to reach 90% sensitivity in the shortest time.

 (a) (b)

 (c) (d)

Figure 16 Evaluation of execution time.

A number of interesting results were also observed during the experiments.

When we compared the final visual drawings of these irregular shapes, we found that

the final visual drawing of the donut shape is similar to that of original shape except

that it was rotated. Besides, we also found that in the final visual drawing of the

smile shape, the algorithm could not properly display the polygons from the inner

holes which consist of a triangle, a rectangle, and a square. The star shape and u-

shape also had the same problem as the donut and smile shapes. They were rotated

and the visual drawing was collapsed in the region where the nodes had low average

degree. In the following sections, we compare the visualization of each shape at

various time units when different algorithms are used.

39:30

6.1.1 Visualization of force-directed algorithms for star shape

 Figure 17 depicts an intermediate visualization results of a star shape for

four different algorithms. From the results shown in Figure 16(d), we can see that W-

KK-MS took just 5 time units whereas KK took approximately 1000 time units to

achieve 90% sensitivity for a star shape. The visualizations of the star shape at 90%

sensitivity are depicted in the last column of Figure 17. We can also observe that FR

and DH could not achieve 90% sensitivity within 1000 time units when they are

compared to KK and W-KK-MS.

Algorithm
Visualization at 1 time

unit

Visualization at 3

time unit

Visualization at

100 time unit

Visualization

at 90%

sensitivity

(Final result)

W-KK-

MS

KK

FR

Unable to

reach 90%

sensitivity

DH

Unable to

reach 90%

sensitivity

Figure 17 (Column #2) star shape on 1 time unit, (Column #3) star shape on 3 time units, (Column #4) star

shape on 100 time units, and (Column #5) star shape on 90% sensitivity and specificity.

6.1.2 Visualization of force-directed algorithms for u-shape

Figure 18 depicts an intermediate results of a u-shape visualization.

According to the evaluation result reported in Figure 16(a), W-KK-MS took just 6

time units whereas KK took approximately 3800 time units to achieve 90%

sensitivity for a u-shape. Similar to the previous case, FR and DH also cannot reach

90% sensitivity for the u-shape.

Algorithm
Visualization at 1

time unit
Visualization at

2 time unit
Visualization at

100 time unit

Visualization

at 90%

sensitivity

(Final result)

W-KK-

MS

KK

FR

Unable to

reach 90%

sensitivity

DH

Unable to

reach 90%

sensitivity

Figure 18 (Column #2) u-shape results for 1 time unit, (Column #3) u-shape results for 2 time units,

(Column #4) u-shape results for 100 time units and (Column #5) u-shape results for 90% sensitivity and

specificity.

6.1.3 Visualization of force-directed algorithms for smile shape

Figure 19 depicts the intermediate results of a smile shape. According to the

evaluation result reported in Figure 16(c), W-KK-MS took just 4 time units and KK

took approximately 1800 time units to achieve 90% sensitivity for a smile shape.

Similar to the previous cases, FR and DH also cannot reach 90% sensitivity for the

smile shape when they are compared to KK and W-KK-MS.

Algorith

m
Visualization at 1 time

unit
Visualization

at 2 time unit
Visualization at

100 time unit

Visualization

at 90%

sensitivity

(Final result)

W-KK-

MS

KK

FR

Unable to

reach 90%

sensitivity

39:32

DH

Unable to

reach 90%

sensitivity

Figure 19 (Column #2) smile shape results for 1 time unit, (Column #3) smile shape results for 2 time

units, (Column #4) smile shape results for 100 time units, (Column #5) smile shape results for 90%

sensitivity and specificity.

6.1.4 Visualization of force-directed algorithms for donut shape

The intermediate results of a donut shape visualization is depicted in Figure

20. According to the evaluation result in Figure 16(b), W-KK-MS took just 13 time

units and KK took approximately 1700 time units to achieve 90% sensitivity for the

donut shape. Similar to the previous cases, FR and DH also cannot reach 90%

sensitivity for donut shape when they are compared to KK and W-KK-MS.

Algorith

m

Visualization at 1 time

unit
Visualization at

5 time unit
Visualization at

100 time unit

Visualization at

90% sensitivity

(Final result)

W-KK-

MS

KK

FR

Unable to

reach 90%

sensitivity

DH

Unable to

reach 90%

sensitivity

Figure 20 (Column #2) Donut results for 1 time unit, (Column #3) Donut results for 5 time units, (Column

#4) Donut results for 100 time units and (Column #5) Donut results for 90% sensitivity and specificity.

 Evaluation of sensitivity, specificity and accuracy in boundary node detection 6.2

We also compared the sensitivity, specificity and accuracy of W-KK-MS for

CNCAH networks with KK, FR, and DH. Two stopping criteria are used for this

experiment. The algorithm will be stopped when it has either executed 60 time units

or the value of the energy function equals to zero.

 (a) (b)

 (c) (d)

Figure 21(a) 60 time unit for U-Shape, (b) 60 time unit for Donut, (c) 60 time unit for Smile and (d) 60 time

unit for Star.

Figure 21 shows the results of our evaluation verses different kinds of

network topologies. According to the results of this evaluation, W-KK-MS algorithm

achieved at least 93% in all three measures (sensitivity, specificity, and accuracy) for

all the shapes tested in the experiment. It indicates that the performance of W-KK-

MS algorithm was consistently high for W-KK-MS while some of the algorithms

performed significantly lower. In particular, we can observe that W-KK-MS achieved

the highest sensitivity and accuracy among all the algorithms compared. The result

indicates that a large percentage of the boundary nodes have been identified except

for a few nodes that are still distorted (especially around the corners).

Figure 22 shows the final visual drawings after each algorithm has been

executed for 60 time units. These samples drawings were selected among other

samples from the benchmark topologies.
Algorith

m

Shape

W-KK-MS
Kamada-

Kawai

Fruchterman

Reingold
Davidson Harel

Donut

Smile

39:34

Star

U-Shape

Figure 22 (Row #2) donut shape for 60 time units, (Row #3) smile shape for 60 time units, (Row #4) star

shape for 60 time units and (Row #5) u-shape for 60 time units.

 CONCLUSION 7.

Our study targets the problem of using force-directed algorithms for detecting

boundary nodes and visualizing CNCAH networks. The main contributions of our

work is two-folds. First, we proposed a batch weight updating approach for KK in

adjusting the node positions. The proposed algorithm called W-KK-MS is capable of

discovering folded and twisted regions in CNCAH networks. To achieve fast

convergence rate on boundary node detection, several approaches are proposed to

control the node movements. An algorithm called EstRegion is also proposed to

discover and repair possible folded and twisted regions. Experimental results show

that W-KK-MS can achieve fast convergence on boundary detection in CNCAH

networks and is able to successfully unfold stacked regions.

Second, the detailed design and implementation of a prototype system called

ELnet for analyzing CNCAH networks is also presented in this paper. The primary

purpose of system is to generate benchmark network topologies for testing, to enable

the integration with third party algorithms, to visualize and analyze algorithms’

performance. As part of the system, we also design an algorithm which can be used to

identify boundary nodes from a visual drawing where the screen positions of the

nodes are known. The output of this algorithm can be used to compare with the

boundary nodes detected in topology-based algorithms such as KK, FR, DH, and the

proposed W-KK-MS. The graphical interface of ELnet also provides features to

visualize boundaries nodes on a visual drawing.

For the future work, we are planning to implement a distributed version of

the proposed algorithm. Moreover, to improve the accuracy in constructing network

topologies, we are planning to adopt technologies that are available for distance

estimation over signal strength, e.g. RSSI (Received signal strength indication), and

enhancement filtering, etc. [Volker et al. 2012]. We are planning to investigate the

impact of noise and error measures in distance estimation since different hardware

chipsets and environments could likely to produce variable results [Lui et al. 2011].

ACKNOWLEDGEMENT

 This research was funded by the Research Committee of University of Macau,

grant MYRG2017-00029-FST and MYRG2016-00148-FST.

REFERENCES

Alex, A., Duch, J., Fernández, A. and Gómez, S. 2007. Size reduction of complex

networks preserving modularity. New Journal of Physics 9, 6 (2007), 176.

Barth, T.J., Chan, T. and Haimes, R. 2012. Multiscale and Multiresolution

Methods: Theory and Applications. Springer.

Blondel, V.D., Guillaume, J.L., Lambiotte, R. and Lefebvre, E. 2008. Fast

unfolding of communities in large networks. Journal of Statistical Mechanics-

Theory and Experiment (Oct 2008), 12.

Bresenham, J.E., Earnshaw, R.A. and Pitteway, M.L.V. 1991. Fundamental

Algorithms for Computer Graphics. Springer.

Buschmann, C., Pfisterer, D., Fischer, S., Fekete, S.P. and Kröller, A. 2005.

SpyGlass: A Wireless Sensor Network Visualizer. ACM Sigbed Review 2, 1

(2005), 1-6.

Chen, C. 2006. Information Visualization Beyond the Horizon. Springer.

Cheong, S.-H., Lee, K.-I., Si, Y.-W. and U, L.H. 2011. Lifeline: Emergency Ad

Hoc Network. In Proceedings of the Computational Intelligence and Security

(CIS), 2011 Seventh International Conference on. IEEE, 283 - 289.

Davidson, R. and Harel, D. 1996. Drawing graphs nicely using simulated

annealing. ACM Transactions on Graphics 15, 4 (1996), 301 - 331.

Dong, D., Liu, Y. and Liao, X. 2009. Fine-grained boundary recognition in

wireless ad hoc and sensor networks by topological methods. In Proceedings of

the tenth ACM international symposium on Mobile ad hoc networking and

computing. ACM, 135 - 144.

Eades, P. 1984. A heuristic for graph drawing. Congressus numerantium 42

(1984), 149 - 160.

Efrat, A., Forrester, D., Iyer, A., Kobourov, S.G., Erten, C. and Kilic, O. 2010.

Force-directed approaches to sensor localization. ACM Transactions on Sensor

Networks 7, 3 (2010), 27.

Fruchterman, T.M.J. and Reingold, E.M. 1991. Graph drawing by force-directed

placement. Software: Practice & Experience 21, 11 (1991), 1129 - 1164.

Goldsmith, A. 2005. Wireless Communications. Cambridge University Press.

Gutwenger, C., Chimani, M. and Klein, K. 2013. Open Graph Drawing

Framework.

Kamada, T. and Kawai, S. 1989. An algorithm for drawing general undirected

graphs. Information Processing Letters 31, 1 (1989), 7 - 15.

Kevin, C., Khare, V., Kobourov, S.G. and Katz, B. 2010. MSDR-D network

localization algorithm. In Proceedings of the In Algorithms for Sensor Systems.

Springer Berlin Heidelberg, 148-160.

Li, M. and Liu, Y. 2010. Rendered Path: Range-Free Localization in Anisotropic

Sensor Networks With Holes. IEEE/ACM Transactions on Networking 18, 1

(2010), 320 - 332.

Liu, W., Jiang, H., Bai, X., Tan, G., Wang, C., Liu, W. and Cai, K. 2012. Skeleton

Extraction from Incomplete Boundaries in Sensor Networks based on Distance

Transform. In Proceedings of the 32nd IEEE International Conference on

Distributed Computing Systems. IEEE, 42 - 51.

39:36

Lui, G., Gallagher, T., Li, B., Dempster, A.G. and Rizos, C. 2011. Differences in

RSSI readings made by different Wi-Fi chipsets: A limitation of WLAN

localization. In Proceedings of the Localization and GNSS (ICL-GNSS), 2011

International Conference on, 53 - 57.

Naveh, B. 2013. JGraphT.

Networkx Developer Team 2014. NetworkX.

Nooy, W.D., Mrvar, A. and Batagelj, V. 2005. Exploratory Social Network

Analysis with Pajek. Cambridge University Press.

österlind, F., Eriksson, J. and Dunkels, A. 2010. Cooja TimeLine: a power

visualizer for sensor network simulation. In Proceedings of the SenSys '10

Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems,

385-386.

Perkins, D.D., Tumati, R., Wu, H. and Ajbar, I. 2005. Localization in Wireless Ad

Hoc Networks. In Resource Management in Wireless Networking, M. Cardei, I.

Cardei and D.-Z. Du Eds. Springer US, Boston, MA, 507-542.

Quinn, N. and Breuer, M.A. 1979. A forced directed component placement

procedure for printed circuit boards. In Proceedings of the Circuits and Systems,

IEEE Transactions, 377-388.

Saukh, O., Sauter, R., Gauger, M. and Marrón, P.J. 2010. On boundary

recognition without location information in wireless sensor networks. ACM

Transactions on Sensor Networks 6, 3 (2010), 20.

Shu, L., Wu, C., Zhang, Y., Chen, J., Wang, L. and Hauswirth, M. 2008. NetTopo:

beyond simulator and visualizer for wireless sensor networks. ACM SIGBED

Review 5, 3 (2008).

Subelj, L. and Bajec, M. 2011. Unfolding communities in large complex networks:

Combining defensive and offensive label propagation for core extraction.

Physical Review E 83, 3 (Mar 2011), 12.

Tamassia, R. 2007. Handbook of Graph Drawing and Visualization. Chapman &

Hall/CR.

Virrankoski, R. 2003. Localization in Ad-Hoc Sensor Networks. In postgraduate

seminar report, Control Engineering Laboratory, Helsinki University of

Technology, Spring.

Volker, M., Wagner, D., Schmid, J., Gadeke, T. and Muller-Glaser, K. 2012.

Force-directed tracking in wireless networks using signal strength and step

recognition. In Proceedings of the Localization and GNSS (ICL-GNSS). IEEE, 1-8.

Wang, Y., Gao, J. and Mitchell, J.S.B. 2006. Boundary recognition in sensor

networks by topological methods. In Proceedings of the 12th Annual

International Conference on Mobile Computing and Networking, 122 - 133

Weinan, E. 2011. Principles of Multiscale Modeling. Cambridge University Press.

Wickramaarachchi, C., Frincu, M., Small, P., Prasanna, V.K. and Ieee 2014. Fast

Parallel Algorithm For Unfolding Of Communities In Large Graphs. In 2014 Ieee

High Performance Extreme Computing Conference Ieee, New York.

Zhang, C., Zhang, Y. and Fang, Y. 2006. Detecting coverage boundary nodes in

wireless sensor networks. In 2006 IEEE International Conference on Networking,

Sensing and Control IEEE, 868-873.

