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ABSTRACT
Web-based notification services are used by a large range of busi-
nesses to selectively distribute live updates to customers, following
the publish/subscribe (pub/sub) model. Typical deployments can
involve millions of subscribers expecting ordering and delivery
guarantees together with low latencies. Notification services must
be vertically and horizontally scalable, and adopt replication to
provide a reliable service. We report our experience building and
operating MigratoryData, a highly-scalable notification service. We
discuss the typical requirements of MigratoryData customers, and
describe the architecture and design of the service, focusing on scal-
ability and fault tolerance. Our evaluation demonstrates the ability
of MigratoryData to handle millions of concurrent connections and
support a reliable notification service despite server failures and
network disconnections.

CCS CONCEPTS
• Computer systems organization → Dependable and fault-
tolerant systems; Distributed architectures;
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1 INTRODUCTION
Web-based notification services allow the timely dispatch of infor-
mation to large user populations in a variety of business scenarios.
User-side applications (fixed or mobile) connect to the notifica-
tion service in order to receive streams of updates for a subject
of interest, following the topic-based publish/subscribe paradigm
(pub/sub thereafter). Consumers of data are subscribers to particu-
lar topics, and producers of data are publishers to these topics. The
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notification service is in charge of dispatching notifications to all
interested subscribers, typically providing guarantees on ordering
and reliability.

We start by detailing the requirements set by an existing, largely-
deployed business operating a sports live update service. Web ap-
plications loaded at the user side subscribe to topics related to
ongoing games, in order to present events such as scores updates
and game statistics. Users expect to receive these notifications with
low latency from their generation by the publisher. Also, two users
subscribed to the same topic expect to receive its notifications in
the same order. Finally, subscribers must be able to recover missed
notifications in case of a disconnection or message loss. This service
has more than 100 million web and mobile users. During competi-
tions of popular tournaments such as UEFA Champions League, the
number of concurrent users connected to the notification service
easily exceeds one million with a substantial outgoing traffic, of
the order of 1 Gbps.

Supporting this scenario foremost requires scaling well with the
number of concurrently-connected subscribers. The ability to sup-
port 10,000 concurrent clients on a single server was informally de-
fined as the C10K problem in the late 1990s. The scale of our example
calls instead for being able to serve up to millions of concurrently-
connected clients while providing adequate quality of service, in
particular for latency. This requires solving the C1M problem, or
even the C10M problem depending on the required outgoing traf-
fic. When requiring more connections and/or when the volume
of traffic exceeds the capacity of a single server, the notification
service must scale horizontally. Another reason for using multiple
servers is to offer a reliable service that remains available despite
server faults. The required replication must, however, have a limited
impact on performance and scalability. Finally, these constraints
come together with restrictions on the deployment infrastructure.
In particular, businesses operating such services strongly prefer
using commodity hardware and unmodified OS kernels, one main
reason being the easier maintenance of the infrastructure.

Contribution. We present the design and implementation of Mi-
gratoryData, a Web-based notification service. MigratoryData is
deployed in production at many customers, and is tailored for
subscribers-dominated scenarios with large numbers of users. We
discuss the architecture and implementation of MigratoryData, and
how it achieves vertical and horizontal scalability. We detail how
it implements reliable delivery despite client and server faults. We
evaluate MigratoryData using a production-level deployment and
load scenarios inspired by the sports update service. Our results
show that MigratoryData is able to solve the C1M and C10M prob-
lems on a single server, while also scaling horizontally. We measure
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the impact of replication and assess that the occurrence of a fault
has a limited impact on performance and no impact on service
continuity.

Outline. The remaining of this paper is structured as follows. We
review related work in Section 2, and present the system and ser-
vice models in Section 3. We present how MigratoryData achieves
vertical scalability on a single server in Section 4. We detail how
partitioning allows horizontal scalability, our fault model and how
replication allows reliable delivery in Section 5. Our evaluation
results are in Section 6 and we conclude in Section 7.

2 RELATEDWORK
Existing pub/sub systems can be classified in two categories [7]:
content-based [1, 8, 10] and topic-based pub/sub. We focus in this
paper on the topic-based model. Reliability and Quality-of-Service
in pub/sub systems are covered in detail in two survey papers [2, 5].

Some topic-based pub/sub systems adopt a decentralized or peer-
to-peer architecture [3, 4, 14]. They suffer from the resulting com-
plexity and, due to the multiple indirections between publishers
and subscribers, of large notification delays. They also make it hard
to guarantee reliability and ordered delivery, or do so at a high
cost [13]. Industrial deployments of topic-based pub/sub typically
adopt a more centralized approach, with a set of dedicated servers
or brokers as the only intermediaries between publishers and sub-
scribers. Some work has proposed to deploy brokers in multiple
geographical locations (e.g., DYNATOPS [20]) but we will focus on
the more common case of a service hosted in a single cluster.

The history of use of topic-based pub/sub starts with enter-
prise application integration systems such as IBM MQ, Tibco’s
Rendezvous and SonicMQ [12]. Other similar enterprise-class topic-
based pub/sub services include Apache Kafka and JBoss HornetQ.
Being designed for enterprise application integration, these mes-
saging systems focus on a relatively limited number of clients (cor-
responding to back-end applications).

Lightstreamer and Caplin Liberator were among the pioneers to
extend messaging from the enterprise to Web browsers over the
Internet. Focusing mainly on the capital markets by streaming non-
free content such as market data and financial news, the number of
users typically handled by these web messaging systems was much
higher than that of enterprise messaging systems but still limited
(of the order of thousands or at most tens of thousands).

With the evolution of the Internet, new web and mobile applica-
tions providing typically freely available content (e.g. e-commerce,
news, social media) gained an unprecedented audience and a new
generation of web messaging pub/sub systems with a focus on han-
dling millions of users emerged such as Kaazing andMigratoryData,
along with hosted (SaaS) solutions such as PubNub or Pusher. In
particular, the focus of Kaazing has been on a new Internet protocol,
WebSockets, which is now a widely-adopted IETF standard, also
supported by MigratoryData.

The fast growing Internet-of-Things (IoT) industry with forecasts
of trillions of connected IoT devices adopt the topic-based pub/sub
model using the MQTT ISO standard for machine-to-machine com-
munication. The WAMP protocol similarly provides pub/sub com-
munication capabilities for IoT scenarios. Popular implementations
of MQTT include AWS IoT, HiveMQ, Loop, Mosquitto, and Xively.

MigratoryData
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Figure 1: Systemmodel of MigratoryData. Plain lines repre-
sent WebSockets with the arrow indicating the initiator of
the connection. Dashed lines represent the flow of informa-
tion.

Differently from MigratoryData, these implementations target de-
ployments where the number of publishers, the number of sub-
scribers, and the number of topics are of the same order of magni-
tude. MigratoryData offers QoS guarantees corresponding to the
levels 0 and 1 of MQTT: at-most-once and at-least-once in-order
delivery for each topic. MQTT systems can also offer exactly-once
delivery. Allowing duplicate receptions is a design decision inMigra-
toryData, allowing scaling better with the number of subscribers.

HiveMQ supports horizontal scaling by using topic-partitioning
where MigratoryData uses subscribers-partitioning. It allows form-
ing server groups responsible for the reliable handling of a topic
through replication. muMQ [15] is a vertically-scalable MQTT bro-
ker that targets the efficient use of multi-core architectures, by
employing a user-level network stack, mTCP [11] on top of a spe-
cialized network kernel driver. Our practical experience, however,
is that administrators at our customers prefer to use off-the-shelf
operating systems with unmodified kernels for easier maintenance
and compliance with security policies.

RabbitMQ is a topic-based pub/sub broker implementing the
AMQP standards and supporting MQTT using the appropriate
plugins. Built using Erlang, it leverages the language support for
event-driven architectures, lightweight threads and asynchronous
I/O to achieve vertical scalability [6]. RabbitMQ can also be deployed
as a federation for horizontal scaling and reliability. These design
choices are similar to the ones made by MigratoryData.

3 SYSTEM AND SERVICE MODELS
Figure 1 shows the interactions in a MigratoryData deployment.
Clients typically download the client-side logic as a web applica-
tion. Publishers and subscribers connect to a MigratoryData server
over WebSockets (or HTTP), benefiting from the guarantees on
ordering and completeness of the underlying persistent TCP con-
nections. Client-side application logic is responsible for detecting
disconnections and establishing a new channel.

A publisher who emits a publication for a topic can require to
receive an acknowledgement. An acknowledged publication is guar-
anteed to be forwarded to all subscribers to this topic. Otherwise,
the publisher must re-send the publication. If the acknowledge-
ment was simply lost on its way to the publisher, the republication
may lead to a duplicate. This implements the at-least-once deliv-
ery semantics (equivalent to QoS level 1 in MQTT). Subscribers
are responsible for filtering out duplicate receptions, if it at all
matters for the application. Typically, a small buffer containing
the identifiers of recently-received messages is sufficient for this
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Figure 2: Overview of a MigratoryData server.

task. If acknowledgments are not used, the delivery semantics is
at-most-once (QoS level 0 in MQTT). While the acknowledgement
of messages by subscribers and per-subscriber state at the server
would allow implementing the exactly-once delivery semantics (QoS
level 2 in MQTT), this would impair the ability to scale with the
number of connected subscribers and is not a reasonable option in
practice.

Subscribers are guaranteed to receive all messages published
to a topic in the same order. The MigratoryData service assigns
sequence numbers to incoming messages for a topic. This order
respects the order of acknowledged publications sent by individual
publishers, but messages from different publishers may be ordered
arbitrarily. Each server maintains a history of messages for all
topics. A subscriber can detect and ask for missed messages upon a
reconnection using these sequence numbers.

4 VERTICALLY-SCALING SINGLE-NODE
ENGINE

We start our description of the architecture of MigratoryData with
the single-node case, with a focus on vertical scalability in the
number of connected subscribers.

The MigratoryData server is implemented entirely in the Java
programming language. Its design consists of two layers as shown
in Figure 2. The first layer is responsible for the communication
with the clients. It employs a configurable number of IoThreads
for performing I/O operations asynchronously. The second layer
employs a configurable number of Workers and a Cache to pro-
vide the MigratoryData logic including matching publishers with
subscribers, replication, caching, batching, and conflation.

Clients are equally partitioned among the IoThreads. Because
each client is handled by a fixed thread during its connection time,
this highly reduces the lock contention of the I/O layer. For ex-
ample, the read buffer of a publisher client (which may contain a
partial message) can be accessed at a later time to append the new
bytes arrived from that client without the need to acquire a lock,
the access being always by the same IoThread for a given client.
This efficient thread model, together with the ability to configure
the number of IoThreads up to the number of available CPUs (by

default) or higher, represents the foundation for allowing the I/O
layer to scale up vertically.

Whenever a new client is assigned to an IoThread, the latter as-
signs to that client a Worker which remains unchanged throughout
the connection time of the client, just as its assigned IoThread. Each
Worker runs in its own thread. Clients are also balanced among
the Workers using a hashing function on their IP addresses, and
the number of Workers is also configurable up to the number of
available CPUs (by default) or higher. As in the case of the I/O layer,
this opens the possibility to vertically scale the MigratoryData logic
up to the entire hardware capacity of the machine.

Workers and IoThreads communicate using efficient thread-safe
queues. Whenever an IoThread receives enough bytes from a client
to decode them as a MigratoryData message, it adds that message
to the queue of the Worker assigned to that client. Whenever a
Worker has to send a message to a client, it encodes the message in
a serialized form, and adds the resulting bytes to the queue of the
IoThread that handles that client.

The Cache component is used to maintain for each topic the
history of recent messages necessary for failure recovery. This
is necessary to meet the service model and allow clients that re-
connect after a temporary loss of connectivity to recover missed
messages. The cache is also used when using replication in order to
implement recovery for failed servers, as we will detail in Section 5.
The cache of a server is updated as part of the replication protocol
for each message replicated either by itself or by other servers of
the cluster. Hence, it is important in order to scale up vertically
to avoid contention for writes to the cache. Topics are therefore
grouped in topic groups using a hashing function on their name,
and cache data structures for each group are locked independently.
Because, as we will detail in Section 5 each server of the cluster
replicates messages for a distinct subset of topic groups, this allows
parallel and generally un-contended writes operations.

In addition to the design above, MigratoryData provides batching
and conflation to reduce the number of I/O operations. These tech-
niques significantly improve the vertical scalability for use cases
where clients have to be updated at a high frequency. Batching is
the process of collecting messages together for a period of time
or until a total size is reached before sending them in a single I/O
operation to a client. Conflation is the process of aggregating mes-
sages for a period of time and sending the result of aggregation in
a single I/O operation to a client.

Finally, while deployment constraints typically prohibit from us-
ing a modified kernel, various kernel configuration tweaks can help
to improve vertical scalability. One of the most important is to dis-
tribute the network load across CPUs. In Linux, this can be achieved
by disabling the irqbalance daemon and statically balance the
hardware interrupts corresponding to the tx/rx queues of the net-
work adapter across the CPUs by modifying their smp_affinity.
Each CPU handles the network load of each tx/rx queue, leading to
better load balance and scalability in our experience.

5 HORIZONTAL SCALING AND RELIABILITY
In the following two subsections, we describe how MigratoryData
operates over multiple servers in order to achieve horizontal scala-
bility and reliability despite faults.
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5.1 Horizontal Scaling
MigratoryData targets deployments in a single data center. The
primary goal of horizontal scaling is to use additional servers to
support increasing numbers of connected subscribers, together
with the associated processing load and notification traffic. Migra-
toryData adopts a subscribers partitioning approach by splitting
the subscribers between all servers, irrespective of their topic sub-
scription. An incoming publication is broadcast to all servers, who
can independently send notifications to their subscribers for the
publication topic.

Publishers and subscribers may connect to any server. Load bal-
ancing is implemented by default at the client side. A publisher
or subscriber selects randomly its connection point from a list of
servers URLs that is encoded with the application.1 The main ra-
tionale for using a hard-coded list of servers at the client side is
simplicity. MigratoryData is used in the majority of cases for real-
time web applications, and users have to download the access logic
prior to connecting. This relieves from the need to update a list
of servers in a stand-alone application pre-installed at the client.
Furthermore, in the vast majority of cases, the set of servers used to
support a MigratoryData installation is fixed and the failure of one
server is temporary: either the server recovers, or a new server that
uses the same IP address is installed. To avoid a load peak, the rate
of re-subscription can be limited by restricting the number of new
socket connections per second at the operating system or at the
network router level. We finally note that in addition to this simple
mechanism using client-side servers list, some customers success-
fully use server-side load balancing solutions such as NetScaler or
F5’s BIG-IP to balance incoming connection requests to the servers
of a MigratoryData cluster. This setup is however out of the scope
of this paper.

5.2 Reliability
MigratoryData provides delivery guarantees (total order and com-
pleteness, possibly with duplicates) under at most one server fault.
A fault is defined as either a crash fault, or the network partition
of one server from other servers (but not necessarily from its con-
nected clients). We do not consider byzantine faults. The rationale
for designing MigratoryData with this single-fault model is that
it allows reducing the cost of replication to a minimum. This de-
cision is motivated by our experience that concurrent failures of
servers lying in different racks in a data center is extremely un-
common [18]. Similarly, the probability of multiple co-occuring
network partitions for these different racks is very low thanks to
the use of redundant networking. The MigratoryData replication
mechanisms would be relatively easy to extend to support more
concurrent faults, in particular by increasing the degree of replica-
tion before acknowledging clients, but our focus in this paper is on
the MigratoryData version currently used in production.

To guarantee that a publication for a topic will be delivered re-
specting a total order to all its subscribers, the following conditions
must be met:

1In order to allow for heterogeneous deployments, this list may be accompanied by a
weight for each server, allowing to bias the selection.

• There must be a single authoritative ordering of messages
for one topic, and all subscribers must be able to determine
whether they missed messages for this topic;

• Once a publication is acknowledged to its publisher, it is
guaranteed to be broadcast to all correct nodes;

• Subscribers connected to a server that fails must be able
to recover with another server and catch up in-order with
potentially missed messages.

We discuss how we handle these three aspects in the following.

5.2.1 Publication ordering. We first consider the problem of
guaranteeing total publication ordering for any topic t . Publish-
ers may connect to any server in the MigratoryData cluster. The
solution is to appoint a coordinator for each topic, who acts as a
sequencer. Incoming publications must pass through this coordi-
nator, who assigns a sequence number and initiates the broadcast.
This requires that each server be able to locate or appoint the co-
ordinator of a topic, and that at any point in time there is at most
one coordinator for any existing topic.

A first observation is that the number of topics is unbounded and
may potentially grow large in some business scenarios. Maintaining
a full map of topics and coordinators would be wasteful in space,
and the coordination traffic for maintaining this list up to date
would impair scalability. This observation is similar to the one made
in the previous section for the maintenance of the cache at each
MigratoryData server. The solution is also in this case to use the
notion of topic groups for the mapping of topics and coordinators.
A topic is mapped to one group by hashing its identifier. A typical
MigratoryData installation uses 100 topic groups.

We deploy an instance of the ZooKeeper [9] coordination ser-
vice alongside each MigratoryData server. ZooKeeper provides an
extended key/value store interface and offers strong consistency
guarantees for replicated data. We use ZooKeeper to store the au-
thoritative mapping between groups and coordinators. Whenever a
publication for a currently-unassigned group is received, the server
receiving this publication forwards it to another server selected
uniformly at random. This latter server will attempt to obtain the
coordinator role of this group and all topics that it belongs to.2
ZooKeeper also plays the role of a fault detector. Mappings between
servers and topic groups are written as ephemeral ZooKeeper en-
tries. This means that they do not survive the failure of their creator.
This can be combined with the capability to set watches over exist-
ing entries allowing to detect their automatic deletion. This warns
other servers watching over the entry that a coordinator for a topic
group has failed or became unreachable.

Writes to ZooKeeper are linearized and incur a significant delay;
but they must be used to ensure a correct and unique authoritative
mapping assignment. Reads are only sequentially consistent and
happen at the local instance, but our experience is that they still in-
cur an unacceptable performance penalty if they must be performed
for each incoming publication. We therefore implement caching of
the mapping information at the MigratoryData server level to avoid
this cost in the general case. Each server maintains the list of groups
it is currently coordinating, and a gossip map, a probabilistic map
between groups and servers that is maintained lazily. Whenever

2We use this indirection to avoid that a server used as a connection point by a publisher
creating many topics becomes overloaded with coordinator responsibilities.

https://www.citrix.com/products/netscaler-adc/
https://f5.com/products/big-ip
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a server obtains the coordination for a group (i.e., by successfully
writing a mapping entry in ZooKeeper), it updates its local list and
broadcasts the information to other servers in order to populate
their gossip maps. When receiving a publication, a server first looks
up into its local gossip map, and if the coordinator information is
stale or missing, a new coordinator election process starts. The
necessary write to ZooKeeper can succeed only for a single server,
which ensures that two coordinators cannot be appointed at the
same time.

Whenever a server fails, its coordinator assignments become
obsolete in ZooKeeper. Other servers that had set watches on these
assignments attempt to take over the responsibility upon this noti-
fication, with the guarantee that a single one will succeed. In order
to be able to order messages from different coordinators, the new
coordinator uses an epoch number incremented from the previous
coordinator’s epoch.

5.2.2 Publication acknowledgment and broadcast. In order to
guarantee the delivery of an incoming publication and acknowl-
edge the publisher, this publication must have been replicated to
at least two servers. This allows the broadcast to succeed even if
one of the two server fails, and requires a cluster of at least three
MigratoryData servers. We consider two cases. If the contact server
for the publisher is already the coordinator for the corresponding
group, it assigns a sequence number and broadcasts the publica-
tion to all servers. As soon as a single confirmation is received,
it can acknowledge the publisher. If the contact server is not the
coordinator, then it uses the gossip map to locate the coordinator.

If the information is missing, it initiates the coordinator election
process by sending the message to a random node as previously
described. If the designated node becomes the coordinator of the
group of the subject of the message, it will assign the sequence
number to that message and will broadcast it to the cluster. Upon
reception of the broadcast message by the contact server it adds
the message to its history. At this point, the contact server knows
that the message is recorded in at least two nodes, so it can ac-
knowledge the message publication to the publisher. Otherwise,
if the designated node is unable to become the coordinator of the
group of the subject, it updates the contact node about this and
the latter answers the publisher that the publication has failed.3
Then, the publisher will attempt to republish the message, which
will eventually succeed thanks to an updated gossip map.

Each cluster member publishes messages for a distinct subset
of topic groups. When the connection between the current cluster
member and a peer is broken, after connection recovery it is suf-
ficient for the current member to ask from the cache of the peer
the messages after the last sequence number it previously received
from that peer as a coordinator. If a cluster member experiences
a crash failure and restarts, it reconstructs its cache by asking all
members of the cluster in parallel. If a cluster member is partitioned
from the two or more other servers, it figures this out by experienc-
ing timeouts for its requests and the inability to write to its local
ZooKeeper instance (which favors consistency over availability).
When this happens, the disconnected cluster member preventively

3This situation may happen when another publication for the same topic was con-
currently received and another node has been chosen to run for coordinator, and
succeeded in creating the ZooKeeper entry first.

closes the connections to its local clients, and lets them reconnect
to the other cluster members. When the partition is restored, the
server can recover following the same procedure as for a crash
failure.

5.2.3 Subscribers recovery. When a subscriber detects the failure
of its connection to the current server, it adds this server to a
temporary black list and attempts to reconnect to another server
of its list. It communicates the epoch and sequence number of the
last received message and obtains missed notifications as part of
the connection. When a server fails, a potentially large number of
subscribers may initiate new connections to existing servers, which
may impair the quality of service. To avoid this herd effect, clients
can be configured to use a reconnect policy based on a random wait
between reconnection intervals or a truncated exponential back-off
strategy. Previously-failed servers are periodically removed from
the client blacklist in order to avoid unbalance in the reconnection
to stable servers.

6 EVALUATION
We use for our evaluation an infrastructure similar to the ones used
in production for the vast majority of MigratoryData customers:
A small number of commodity servers running an off-the-shelf
operating system. We use four servers, each equipped with 2 eight-
core Intel® Xeon® E5-2670 @ 2.60 GHz CPU, 64 GB of RAM, and
one Intel® X520-DA1 10 GbE network adapter. The servers run
CentOS 7.3 with an unmodified Linux kernel 3.10.0-514. We use
version 5.0.20 of MigratoryData running on Oracle® Java Virtual
Machine (JVM) version 1.8.

Inspired from the use case discussed in our introduction, we
perform an evaluation in terms of vertical scalability, horizontal
scalability, and fault tolerance using the following parameters:

• a total of up to 100 topics corresponding to various sports
and sports categories (e.g. scores, statistics, odds, etc);

• each client subscribes to one randomly-selected topic;
• a message with a payload of 140 random bytes is published
every second for each topic.

We run each benchmark test for 10 minutes after a warm-up of
3 minutes. We use two benchmark tools, Benchpub and Benchsub.
Benchpub generates messages of a configurable size and sends them
to the MigratoryData cluster at a configurable rate. Benchsub opens
a configurable number of concurrent WebSocket connections to
the MigratoryData cluster, subscribing to a configurable number
of subjects, and computing the end-to-end latency for the received
notifications. In order to avoid time synchronization errors between
machines, we record latency only for Benchpub/Benchsub couples
located on the same machine, and only after the warm-up period.
The experiments reported in this section do not use the conflation
and batching optimizations.

6.1 Vertical Scalability
We first demonstrate that a single instance of MigratoryData is
able to vertically scale with the number of subscribers and with
their associated notification traffic. We consider 10 runs, starting
with 100,000 susbcribers and scaling up to one million concurrent
subscribers. One machine hosts the MigratoryData server and the
other three machines host the benchmark tools.
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Subs. Median Mean StDev P90 P95 P99 CPU Gbps Topics
100K 17 16.78 7.78 25 27 30 9.94% 0.17 10
200K 15 14.17 7.71 21 23 28 16.04% 0.36 20
300K 11 11.10 9.31 15 17 46 20.50% 0.55 30
400K 11 11.31 10.65 15 16 71 23.61% 0.70 40
500K 13 14.73 14.80 23 26 82 32.53% 0.92 50
600K 14 19.92 34.04 25 35 209 40.50% 1.08 60
700K 15 19.05 22.54 26 35 138 45.99% 1.21 70
800K 18 24.50 35.17 32 49 201 51.70% 1.40 80
900K 20 47.64 88.96 118 236 475 60.39% 1.54 90
1000K 27 92.36 141.07 252 361 691 69.10% 1.72 100

Table 1: Latency median, mean, standard deviation, 90th, 95th and 99th percentiles (in ms), CPU usage, outgoing traffic and
topics.

Test Median Mean StDev P90 P95 P99 CPU per server
Before 11 10.7 6.04 15 16 21 9.24%
After 11 11.39 12.06 15 17 56 12.83%

Table 2: Latencies (inms) and CPU usage for horizontally scaling 300,000 clients receiving 300,000 messages per second across
a cluster of 3 servers, before and after the failure of one of the servers.
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Figure 3: Latency and CPU as subscribers count and their
traffic increase (increments of 100 K additional subscribers
and resulting 100 K additional notifications per second).

Figure 3 presents the CPU usage at the MigratoryData server
and the mean end-to-end latency, with Table 1 presenting more
detailed statistics for the latter. The CPU usage increases almost
linearly with the number of subscribers while the mean latency
remains under 100 milliseconds, a good value in the context of web
applications. The test demonstrates that MigratoryData is able to
solve the C1M problem by handling 1 million concurrent clients on
a single machine, while simultaneously achieving fast, high-volume
messaging of up to 1.72 Gbps of notifications.

In another experiment, which we present as online supplemen-
tary material [16], we show that MigratoryData is also able to solve
the C10M problem by handling 10 million concurrent clients on a
single machine, also in a high-volume messaging context. In brief,

while in the C1M experiments each client receives one message per
second for up to 10 different topics, in the C10M experiment each
client receives one message per minute, and is the only subscriber
to its own topic. The size of messages is also larger (512 bytes),
resulting in an outgoing notification traffic of almost 1 Gbps.

As MigratoryData is implemented in Java, it can be subject to
unpredictable latency spikes if a stop-the-world type of garbage
collection is used. In another online supplementarymaterial [17] we
show that we can alleviate this effect by replacing the standard JVM
with the Zing JVM. This JVM uses the C4 garbage collector [19],
suitable for latency-sensitive applications. In the C10M scenario,
the mean latency is reduced from 61 to 13.2 milliseconds and the
99th percentile is reduced from 585 to 24.4 milliseconds.

6.2 Horizontal Scalability and Fault Tolerance
We deploy a cluster of three MigratoryData servers. The fourth
machine is used to run a pair of Benchsub and Benchpub bench-
mark tools. As in the previous subsection, we use increments of
100,000 additional concurrent clients receiving an additional 100,000
messages per second when evaluating horizontal scalability.

The Benchsub tool opens 300,000 concurrent WebSocket con-
nections to the MigratoryData cluster. These connections are dis-
tributed fairly between the servers (respectively 100,327 and 99,918
and 99,755 connections). Each client subscribes to one randomly-
selected topic from a total of 30 topics. The Benchpub tool publishes
30 messages per second to the MigratoryData cluster such that each
topic is updated every second.

We run the benchmark for 13 minutes with the three servers.
We can see that the latency results observed in this setup are com-
parable with those of the corresponding 300 K case of the vertical
scalability test in Table 1. The cluster members being independent
in terms of subscribers, MigratoryData scales linearly with the
number of subscribers.

https://www.azul.com/products/zing
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At 13 minutes, we fail stop one of the servers, and continue the
test for 10 minutes. The clients of the failed server automatically
reconnected to the other two servers. The resulting new distribution
of clients to the two remaining servers is 150,357 and 149,643 clients,
respectively. All clients recover all messages published during the
failover time from the cache of the two remaining servers. Table 2
shows the latency results before and after the failure of the third
cluster member. As the two remaining servers handle about 50%
more load, themean latency and the 99th percentile latency increase,
but remain within acceptable values for a web context. The latency
increase in getting the missing updates at the clients connected
to the failing server depends on the frequency of monitoring of
the connection to the server, and remains in the range of at most
a few seconds. We did not observe a particular impact of the herd
effect due to a massive reconnection of subscribers to the remaining
servers, as this reconnections are naturally scattered in time.

7 CONCLUSION
We presented the MigratoryData notification service, a highly scal-
able and reliable topic-based pub/sub solution. Our tests show that
the MigratoryData server can solve the C1M problem, handling 1
million concurrent connections and high volumes of notifications
on a single machine. Moreover, our online supplementary material
shows the capacity of the system to target the C10M problem with
low and consistent latencies. Our fault tolerance tests show the reli-
ability of MigratoryData, as all messages published during a failure
are recovered, without any significant impact on the latencies after
recovery. The synthetic results we described in this paper were
confirmed in production at several large-scale customers, and our
evaluation use case has been modeled after one of them.
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