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Abstract

Distributed network optimization has been studied for well over a decade. However, we still do not have a good

idea of how to design schemes that can simultaneously provide good performance across the dimensions of utility

optimality, convergence speed, and delay. To address these challenges, in this paper, we propose a new algorithmic

framework with all these metrics approaching optimality. The salient features of our new algorithm are three-fold:

(i) fast convergence: it converges with only O(log(1/ε)) iterations that is the fastest speed among all the existing

algorithms; (ii) low delay: it guarantees optimal utility with finite queue length; (iii) simple implementation: the

control variables of this algorithm are based on virtual queues that do not require maintaining per-flow information.

The new technique builds on a kind of inexact Uzawa method in the Alternating Directional Method of Multiplier,

and provides a new theoretical path to prove global and linear convergence rate of such a method without requiring

the full rank assumption of the constraint matrix.

I. INTRODUCTION

Consider a fixed data network shared by F end-to-end flows. Each flow f is described by its source-destination

node pair and associated utility function, without a priori established routes. The nodes within the network cooperate

by forwarding each others’ packets toward their destinations. The network optimization problem is how does one

jointly choose the end-to-end data rate xf of each flow f , the schedule for each link and the link rate for each

flow to maximize the network utilities defined as

max

F∑
f=1

Uf (xf ) s.t. [xf ] ∈ Λ, (1)

where Λ is the capacity region of data network, dependent on the limited power resources and interference among

concurrent transmissions. The optimization problems of the above form plays a key role in resource control and

optimization for both wireline and wireless networks.

In distributed network optimization, each iteration of the algorithm corresponds to one communication among

different nodes, which could require a very large amount of information exchange overhead. Therefore, one important

metric to measure the performance of algorithm is the convergence speed, i.e., how many iterations are required

to obtain an ε−accurate solution. In addition, other important metrics are utility and the physical queue length in

steady state, which measures the throughput and transmission delay that is achieved by the algorithm.

A. Existing Algorithms

The large body of work (see, e.g., [1]–[11], and [12] for a survey) in this area has given rise to several efficient

and distributed control algorithmic frameworks. We first review the state-of-the-art of all the existing algorithms.

July 19, 2017 DRAFT

ar
X

iv
:1

70
7.

05
39

8v
1 

 [
cs

.N
I]

  1
7 

Ju
l 2

01
7



First-order dual decomposition method: This kind of algorithm applies the subgradient descent method to the

dual function of problem (1) and lead to a beautiful queue-length-based control algorithmic (QCA) framework,

based on which the components of congestion control, routing and scheduling are naturally coupled by queuing

states [3], [5]. However, the classical QCA method achieves an O(1/K) utility optimality gap at an expense

of O(K) steady-state queue-length, where K > 0 is a system parameter. Hence, a small utility gap will yield

a large queuing delay. Significant efforts have been made to improve this tradeoff including the development of

virtual queue techniques [13], [14], the threshold-based packeting-dropping scheme [15] and the [O(1/K), O(
√
K)]

tradeoff produced by recent momentum-based methods [7], [8]. Due to the nonsmoothness of dual function and

the subgradient nature, all the above methods suffer from a slow convergence that requires O(1/ε2) iterations to

obtain an ε−accurate solution.

Second-order Newton method: To improve the convergence speed, there have been many attempts in obtaining

new algorithms by applying the second-order method [9]–[11]. Compared with the first-order method, this kind of

algorithm has a faster convergence rate, i.e., O(log2(1/ε)) iterations (three-level convergence structure with interior

point, Newton and matrix splitting method). However, it has several limitations: (i) the complexity of computing

the Hessian inverse in the second-order method is quite high and does not scale well with the network size; (ii)

a worse utility-delay tradeoff [O(1/K), O(K2)] in [11]; (iii) it cannot efficiently handle the wireless interference

channel. For example, in the algorithm [10], even the number of variables (time sharing parameters) in the control

plane is exponentially large.

Proximal method: The proximal method was first introduced in the work [6] to tackle the oscillation problem in

a network optimization problem with given routing paths. Unlike the QCA method, it adds a quadratic regularizer

in the routing component to stabilize the solution, and is proven to be the first algorithm to break the existing

utility-delay tradeoff that offers both the zero utility optimality gap and finite queue length. Recently, the work [16]

generalizes this idea to the scenario of dynamic routing and designs a new backpressure routing algorithm for

wireline network. They prove that the proximal method not only exhibits the feature of low-latency, it also offers

an improved convergence speed of O∗(1/ε)1.

It can be observed that all the existing algorithms sacrifice the performance of one or more metrics to improve the

others. In particular, the slow convergence of all these algorithms will result in large information exchange overhead.

The key question that we aim to answer in this paper is that: is it possible to develop a joint congestion control,

routing and scheduling algorithm with the fast convergence speed, routing complexity as low as the first-order

method and delay as low as the proximal method?

B. Our Results

In this paper, we positively answer this open question and propose a new algorithmic framework. The comparison

of our algorithm and the existing schemes in a L−links and F−flows network are listed in TABLE I. One can

see that our algorithm offers the fastest convergence speed, optimal utility, finite queue length, and low routing

1Here the O∗(1/ε) means that the convergence rate is in the ergodic sense. A sequence {an} converges with ergodic rate O∗(1/ε) if
1
N

∑N
n=1 an = O(1/N), with rate O(1/ε) if an = O(1/N).
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TABLE I: Comparison of Existing Algorithms in Network Optimization

Optimality gap Queue-length Convergence speed Routing complexity Scheduling complexity1

Dual decomposition method O(1/K) O(K) O(1/ε2) O(F ) poly(L,F )
Proximal method optimal O(1) O∗(1/ε) O(F log(F )) unknown

Second-order method O(1/K) O(K2) O(log2(1/ε)) O(F 2 + L2) exp(L,F )

Momentum method O(1/K) O(
√
K) O(1/ε2) O(F ) poly(L,F )

Our new method optimal O(1) O(log(1/ε)) O(F log(F )) poly(L,F )
1 The scheduling complexity derives from the traditional node-exclusive interference model.
2 Momentum method refers to heavy-ball method and Nesterov’s accelerated method.

and scheduling complexity compared with all the existing methods. The rationale behind our algorithm design is

to utilize the Alternating Directional Method of Multiplier (ADMM), first appeared in [17]. Our key idea is to

reformulate the joint scheduling-routing-congestion control problem as a 2−block separable optimization problem,

and apply the ADMM to the Augmented Lagrangian function of problem (1), which then allows us to obtain an

optimization framework with a layered structure and only a limited degree of cross-layer coupling.

However, due to a number of technical challenges, developing an ADMM-based method is highly non-trivial.

First, the ADMM’s focus is on minimizing the Augmented Lagrangian function that is the summation of original

utility function and a quadratic penalty function of the constraints. It will produce a routing-scheduling problem

with a non-separable objective function regarding the rate vector among different links. Therefore, it is difficult to

be solved in a low-complexity and distributed manner. Second, the structure of this method is substantially different

from both the dual decomposition method and the proximal method. For example, the form of congestion control,

routing component, and the coupling among the different layers are different. Hence, the analytical techniques used

in existing methods for utility optimality and queue stability are not applicable. Third, in a wireless network with

interference constraints, unlike the clear relationship between the linear program-based scheduling problem in the

dual decomposition method and the combinatorial optimization problem, i.e., maximum weighted matching [3],

[18], it is unclear how to solve the new scheduling problem derived from the ADMM-based decomposition.

The main contribution of this paper is that we develop a new algorithmic framework that addresses the afore-

mentioned challenges. The detailed results and technical contributions of this paper are as follows:

• We utilize a kind of inexact Uzawa method of Alternating Directional Method of Multiplier [19], [20] to

approximately solve a local second-order approximation of the Augmented Lagrangian function with respect

to the link rates. This technique will yield a routing and scheduling problem with a separable quadratic objective

function and a constraint set defined by a convex hull of feasible link rate vectors.

• We establish the utility optimality and finite queue length of our proposed framework. In particular, we show

that, as the algorithm keeps running, the network utility gap will vanish, while the queue lengths in each node are

bounded throughout by a finite constant. This result is much stronger than the best tradeoff [O(1/K), O(
√
K)]

of the traditional QCA framework. Moreover, we prove that our new algorithmic framework converges at a

global and linear rate that obtains an ε−accurate solution with only O(log(1/ε)) number of iterations, which

is faster than the existing second-order methods.

• We provide several algorithms to implement the new routing and scheduling problem in our proposed frame-

work. More precisely, for the wireline network, we show that the new routing problem can be solved in

a distributed manner and in O(F log(F )) time within each link, which is much lower than O(F 2 + L2)
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complexity of the second-order method in [11]. For the wireless networks with interference constraints, we

show that the complexity of solving our new scheduling problem is equivalent to the classical MaxWeight

scheduling. This result not only implies a deep connection between these two problems, but also paves a path

to use the existing algorithms [18], [21] of MaxWeight scheduling to solve this new problem.

One technical contribution independent of interest is the global and linear convergence rate of our proposed

algorithm. As mentioned earlier, this algorithm is indeed applying an inexact Uzawa method of ADMM to the

optimization problem of the form min f(x)+g(y), s.t. Ax+By = b. All the existing global and linear convergence

results [22]–[24] of this generalized ADMM requires an assumption that one of the constraint matrices is of full

rank. However, in our problem, both matrices A and B do not satisfy this condition. We provide a new technical

path to overcome this challenge. The critical technical step is to estimate the distance from the primal and dual

iterates of ADMM to the optimal solution set by the distance to an inscribed polyhedron of the optimal set. This

enables us to utilize the isolated calmness of polyhedral mapping to upper bound such distance by certain amount

of constraint violation.

The remainder of this paper is organized as follows. In Section 2, we introduce the network model and problem

formulation. Section 3 presents our proposed algorithmic framework and the main results. In Section 4, we provide

the detailed theoretical analysis of convergence speed and queuing stability. Section 5 develops the algorithms for the

principal components of our framework. Section 6 presents numerical results. Section 7 provides some discussions

and Section 8 concludes this paper. Due to the space limit, all the proofs are listed in Appendix.

II. PROBLEM STATEMENT

A. Network Model

We consider a slotted communication network system with time slot units being indexed by t = 1, 2, . . .. As

shown in Fig. 1, we represent the network by a directed graph G = {N ,L}, where N is the set of nodes and L is

the set of edges. Let |N | = N and |L| = L. For each node n, denote the sets of its incoming links and outgoing

links as I(n) and O(n), respectively. Let deg(n) be the number of adjacent links of node n. We define Tx(l)

and Rx(l) as the transmitting and receiving node for each edge l. There are F end-to-end sessions in the network,

indexed by f ∈ F , {1, 2, . . . , F}. Each session f has a source node sf and a destination node df in the node

set N . To avoid triviality, suppose that different sources are located at different nodes.

B. Congestion Control

Let scalar xf be the injection rate of session f with which data is sent from sf to df , possibly via multiple hops

and multiple paths. We assume that injection rate xf is bounded in [mf ,Mf ]. Associated with each flow f is a

utility function Uf (xf ), which reflects the “utility” to session f when it can transmit at rate xf . We assume that

the utility function Uf (·) satisfy the following conditions.

Assumption 1. (Utility function) For each session f , the utility function Uf (·) is a nondecreasing and concave

function in the interval [mf ,Mf ].
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Fig. 1: Illustrative example of model.

The use of such utility functions is common in the congestion control literature to model fairness. For example,

these conditions hold for the following two typically used utility functions: (i) weighted proportionally fair utilities

Uf (xf ) = wf log(xf ), where wf , f = 1, . . . , F are the weights; (ii) general weighted proportionally fair utilities,

Uf (xf ) = wf
x1−γ

1− γ
, γ > 0. (2)

Note that these two examples are also strictly concave functions.

C. Routing and Scheduling

For each edge l in the set L, suppose that l = (m,n) and the data is transmitted from node m to node n. Let

rdl represent the amount of capacity on link l that is allocated for data towards destination d. In the sequel, we call

it the link rate for simplicity. The set of destination nodes are defined as D = {df , f ∈ F}, and let |D| = D. Then

we can describe the capacity region of the data network.

Definition 1. (Capacity Region [1], [2]) The capacity region Λ of the network is the largest set of injection rate

vector [xf ]f∈F for which there exists a link rate vector [rdl ]d∈Dl∈L that satisfies the following constraints.

1) Flow conservation: for each destination d in D, each node n in N\{d},∑
f∈F

xf1{sf=n,df=d} +
∑
l∈I(n)

rdl =
∑

l∈O(n)

rdl , (3)

where 1{·} is an indicator function that takes the value 1 if sf = n, df = d and 0 otherwise.

2) Capacity constraint: for each link l ∈ L and d ∈ D,[∑
d∈D

rdl

]
∈ C , Conv(Γ), rdl ≥ 0, (4)

where Γ = {r(1), r(2), . . . , r(I)} is the set of feasible link rate vectors, and Conv(·) represents the convex hull

operation.
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D. Queue Stability

We use Qdn[t] to denote the length of the physical queue that are destined for node d, waiting for service at node

n in time slot t. For each d ∈ D and n ∈ N\d, the evolution of physical queue length is given by

Qdn[t] =

Qdn[t− 1]−
∑

l∈O(n)

rdl [t]


+

+
∑
l∈I(n)

r̂dl [t] +
∑
f∈F

xf [t]1{sf=n,df=d}, (5)

where [·]+ , max{·, 0}. The rate rdl [t] is the capacity provided to d-destined packets over link l in time slot t and

the rate r̂dl [t] is the actual used capacity over link l for d-destined packets in time slot t. We have r̂dl [t] ≤ rdl [t]

since node n may have less than rdl [t] amount of data to transmit for destination d. Note that the definition of Qdn[t]

is only used to measure the delay performance of our algorithm. The actual operation of our algorithm does not

require this information (details in Section III-A).

Definition 2. (Network Stability) Under a congestion control, routing and scheduling scheme, we say that the

network is stable if the sum of queue lengths in steady state remains finite.

lim sup
t→∞

∑
d∈D

∑
n∈N\d

Qdn[t] < +∞. (6)

E. Problem Formulation

Our objective is to develop a joint congestion control, routing and scheduling algorithm to maximize the total

utility
∑
f∈F Uf (xf ), subject to the network capacity constraints. Putting together the models presented earlier

leads to the following general multi-commodity network flow formulation.

JCRS:

max
xf ,rdl

∑
f∈F

Uf (xf ) (7)

s.t.
∑
f∈F

xf1{sf=n,df=d} +
∑

l∈I(n)

rdl =
∑

l∈O(n)

rdl ,∀d, n ∈ N\d,[ ∑
d∈D

rdl

]
∈ C, rdl ≥ 0,∀d ∈ D, l ∈ L,

mf ≤ xf ≤Mf ,∀f ∈ F .

Problem (7) is a convex program with affine constraints. We make the following standard assumption that is used

in all the existing works.

Assumption 2. (Existence of optimal solutions) There exists an optimal injection rate vector [x∗f ]f∈F , link rate

vector [rdl
∗
]d∈Dl∈L and the Lagrangian multiplier vector [λdn

∗
]d∈Dn∈N\d in the problem (7).

Note that the existence of optimal primal and dual solutions can be be guaranteed if a certain constraint

qualification such as the Slater condition holds [25]. In what follows, we will investigate a new distributed joint

congestion control, routing and scheduling algorithm.
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III. JOINT CONGESTION CONTROL, ROUTING AND SCHEDULING FRAMEWORK

In Section III-A, we first introduce our new algorithmic framework. Then, in Section III-B, we present the main

results on the utility optimality, queue stability and the convergence speed of the proposed algorithm.

A. Algorithmic Framework

The main procedure of our new joint congestion control, routing and scheduling method is described in Algo-

rithm 1.

Algorithm 1 New Joint Congestion Control, Routing and Scheduling Framework

Initialization:

Choose parameters ρ > 0, τ ∈ [1,
√

5+1
2 ) and βm,n > deg(m) + deg(n),∀(m,n) ∈ L. Set t = 0. Let both

physical and virtual queues be empty at the initial state Qdn[0] = λdn[0] = λdn[−1] = 0,∀d ∈ D and n ∈ N\{d}.

Let injection rates xf [0] = 0,∀f ∈ F and service rates rdl [0] = 0,∀d ∈ D, l ∈ L.

Iteration: In each time slot t ≥ 1, repeat the following three steps.

1: Routing and Scheduling: For each destination d ∈ D and node n ∈ N\{d}, calculate the new weight

zdn[t] = (1 + 1/τ)λdn[t−1]−λdn[t−2]/τ . Let zdd [t] = 0,∀d ∈ D. Then choose the link rate [rdl [t], l ∈ L, d ∈ D]

as the solution to the following quadratic program.

max
rdm,n

∑
(m,n)∈L

∑
d∈D

(zdm[t]− zdn[t])rdm,n −
ρβm,n

2
(rdm,n − rdm,n[t− 1])2

s.t.
[∑

d r
d
m,n

]
∈ C, rdm,n ≥ 0,∀(m,n) ∈ L, d ∈ D. (8)

2: Congestion Control: For each node sf , calculate the injection rate xf [t] as the solution to the following

optimization problem.

max
xf∈[mf ,Mf ]

Uf (xf )− (z
df
sf [t] + ρ∆rf [t])xf −

ρ

2
(xf − xf [t− 1])2. (9)

where the quantity ∆rf [t] is given by

∆rf [t] =
∑

l∈I(sf )

(
r
df
l [t]− rdfl [t− 1]

)
−

∑
l∈O(sf )

(
r
df
l [t]− rdfl [t− 1]

)
. (10)

3: Virtual Queue Update: For each destination d ∈ D and node n ∈ N\{d}, update the virtual queue length by

λdn[t] =λdn[t− 1]− ρτ
∑

l∈O(n)

rdl [t] + ρτ
∑
l∈I(n)

rdl [t] + ρτ
∑
f∈F

xf [t]1{sf=n,df=d}. (11)

Some important remarks on Algorithm 1 are in order:

Relation to QCA: In the QCA method [3], [5], the congestion control component has the form of

max
xf∈[mf ,Mf ]

Uf (xf )−Qdfsf [t]xf , (12)
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and the routing and scheduling component is given by

max
rdm,n

∑
(m,n)∈L

∑
d∈D

(Qdm[t]−Qdn[t])rdm,n

s.t.
[∑

d r
d
m,n

]
∈ C, rdm,n ≥ 0,∀(m,n) ∈ L, d ∈ D. (13)

Each component in this method is “loosely” connected by the physical queue length Qdn[t]. Similarly, our new

algorithm also exhibits a layered structure, however, each component is “densely” connected by several quantities

including the virtual queue length λdn[t], the injection rate xf [t] and the link rate rdl [t]. For example, the congestion

control in the source node is dependent on both the virtual queue length and the change of link rate ∆rf [t] in the

adjacent links.

Quadratic congestion control and routing: Unlike the QCA method, Algorithm 1 contains a separable quadratic

function in each component. In [6], it has been observed that such a l2-regularization in the routing component can

resolve the oscillation problem that occurs in traditional backpressure routing (13). Technically, we will see later

that this technique also leads to significant delay reduction and convergence speed up, moreover, it can be derived

from a kind of inexact Uzawa method in Alternating Directional Method of Multiplier [19], [20].

Virtual queue-based control: Existing methods such as the dual decomposition and the momentum-based

methods require each node to maintain a separate physical queue for each flow, which is usually difficult to

implement, especially in large networks. However, one can see that all the operations of congestion control, routing

and scheduling in Algorithm 1 are based on the virtual queue length λdn[t]. In practice, each node will maintain

a separate virtual queue (i.e., a counter) for each flow going through it and a FIFO queue for storing packets of

all the flows going through the corresponding link. This technique can significantly decrease the complexity of the

queuing data structures at each node. Detailed implementation can be seen in [26].

B. Main Results

For notational convenience, we use vectors x[t], r[t],λ[t] to group all the injection rates, link rates and virtual

queue lengths in time slot t, respectively. The first result in this paper is on the utility optimality and queue stability

of Algorithm 1.

Theorem 1. (Utility optimality and queue stability) Under the Assumptions 1 and 2, the network utility and physical

queue length produced by Algorithm 1 satisfies

lim sup
t→∞

∣∣∣∣∣∣
∑
f∈F

Uf (xf [t])−
∑
f∈F

Uf (x∗f )

∣∣∣∣∣∣ = 0, (14)

lim sup
t→∞

∑
d∈D

∑
n∈N\d

Qdn[t] < +∞, (15)

where [x∗f , f ∈ F ] is the optimal injection rate vector.

Theorem 1 says that our proposed algorithm achieves optimal utility while guaranteeing that the physical queue

length at each node is a finite constant. This result improves the utility-delay tradeoffs of prior works including
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[O(1/K), O(K2)] in [11], [O(1/K), O(K)] in [3] and [O(1/K), O(
√
K)] in [7], [8]. All these methods will

produce an unbounded queue length to obtain a vanishing utility optimality gap.

Theorem 2. (Global and linear convergence rate) Under Assumptions 1 and 2 and the assumption that utility

function is strictly concave, the Algorithm 1 converges at a global and linear rate. More specifically, there exists

one of the optimal injection rate vector x∗, link rate vector r∗ and dual variable λ∗ of the problem (7) such that

‖x[t] − x∗‖ ≤ O(ct), ‖r[t] − r∗‖ ≤ O(ct), ‖λ[t] − λ∗‖ ≤ O(ct) for all t ≥ 1, where c is a constant satisfying

0 < c < 1.

As can be seen in Theorem 2, to obtain an ε−accurate solution, our new algorithm only requires O(log(1/ε))

iterations, or equivalently, solving number of O(log(1/ε)) congestion control and routing components. This iteration

complexity is much less than the traditional first-order method including dual decomposition method with O(1/ε2)

or the proximal method with O(1/ε). Moreover, it is even faster than the three-layered second-order Newton

method [10].

Currently, several natural questions arise are: (i) how to design this new joint scheduling-routing-congestion

control algorithm? (ii) how to prove the linear convergence rate, optimal utility and finite queue length of this new

algorithm? (iii) how to efficiently solve the quadratic congestion control, routing and scheduling component in our

new algorithm? In the sequel, we focus on answering these questions.

IV. THEORETICAL ANALYSIS

In this section, we first provide some necessary notations and basics in the variational analysis. Then, we will show

how to apply the inexact Uzawa method in the Alternating Directional Method of Multiplier to obtain Algorithm 1.

Finally, we will prove the technical results stated in Theorems 1 and 2.

A. Notations and Preliminaries

We use the bold letter x to represent the vector, and capital and bold letter A to denote the matrix. The element

of a vector x is denoted by a scalar xi, and the element of a matrix A is denoted by a scalar Aij . We use 0 to

represent a vector with each elements equal to zero. Let xT and AT to denote the transpose of a vector and a matrix,

respectively. Let 〈·, ·〉 represent the standard inner product, and let ‖ · ‖ denote the l2 norm (the Euclidean norm of

a vector or the spectral norm of a matrix). Let matrix norm ‖x‖M = xTMx, where M is a positive semidefinite

matrix. We use λmin(A) and λmax(A) to represent the smallest and largest eigenvalues of a symmetric matrix

A. The spectral norm of a matrix A is then given by ‖A‖ = λmax(ATA)
1
2 . One basic inequality regarding the

spectral norm is ‖Ax‖ ≤ ‖A‖‖x‖.

Definition 3. (subdifferential) The subdifferential ∂f(x) of a convex function f : Rn → R at x is the set of all

subgradients.

∂f(x) = {g ∈ Rn|gT (y − x) ≤ f(y)− f(x),∀y ∈ dom(f)}.

The definition of subgradients is a generalization of the basic inequality from differentiable convex function

to the non-differentiable function. For example, the indicator function over a convex set IC(x) = 0,x ∈ C and
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IC(x) =∞,x /∈ C, is a convex and non-differentiable function. The subdifferential ∂IC(x) is the classical normal

cone NC(x) = {g|gT (y − x) ≤ 0,∀y ∈ C}.

Definition 4. (Convex function) A function f : Rn → R is called convex with modulus v ≥ 0 if for all x,y ∈ dom(f)

and g ∈ ∂f(x), it satisfies

f(y) ≥ f(x) + gT (y − x) +
v

2
‖y − x‖2.

As a consequence of the above definition, we have the following inequality, which will be used in our theoretical

development. For arbitrary x,y ∈ dom(f),

〈gx − gy,x− y〉 ≥ v‖x− y‖2,gx ∈ ∂f(x),gy ∈ ∂f(y). (16)

Note that the strictly convex function refers to that modulus v > 0.

Definition 5. (Moreau-Yosida proximal mapping) The proximal mapping of a closed and convex function f : Rn →

R is defined as

Prf (y) = arg min
x
f(x) +

1

2
‖x− y‖2.

If the function f is the indicator function over a closed and convex set C, then Prf (·) = ΠC(·) is the metric

projection operator over C. For simplicity, we use [·]+ to denote ΠC(·) when C is the positive orthant [0,+∞)n.

One important property of Moreau-Yosida proximal mapping is non-expansiveness, which can be interpreted as the

globally Lipschitz continuous with modulus one.

‖Prf (x)− Prf (y)‖ ≤ ‖x− y‖,∀x,y.

B. Rationale behind the Algorithm Design

Algorithm 1 is inspired by an inexact Uzawa method in Alternating Directional Method of Multiplier (ADMM).

For the sake of brevity, we will use the following vector notation in the rest of the paper. The node-arc incidence

matrix Ad ∈ R(N−1)×L is defined as

Ad
nl =


1, if n = Tx(l)

−1, if n = Rx(l)

0, otherwise

,∀n ∈ N\{d}, l ∈ L.

The matrix Bd ∈ R(N−1)×F is defined as

Bd
nf =

 −1, if n = sf , d = df

0, otherwise
,∀n ∈ N\{d}, f ∈ F .
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Define matrix A ∈ RD(N−1)×DL and B ∈ RD(N−1)×F as

A = diag{A1,A2, . . . ,AD} =


A1 · · · 0

...
. . .

...

0 · · · AD

 ,B =


B1

...

BD

 .
We denote the objective function f(x) = U(x) + h(x), where the function U(x) = −

∑
f∈F Uf (xf ) and the

indicator function h(x) is defined as

h(x) =

 0, if mf ≤ xf ≤Mf ,∀f ∈ F

+∞, otherwise
.

Let the indicator function g(r) represent the capacity constraints of link rate vector.

g(r) =

 0, if
[∑

d r
d
l

]
∈ C, rdl ≥ 0,∀l, d

+∞, otherwise
.

Based on the above notation, we can reformulate the JCRS problem (7) as the following equivalent form.

min
x,r

f(x) + g(r) (17)

s.t. Bx + Ar = 0.

Note that optimization of this form contains a separable objective function and a separable constraint between

injection rate vector x and the link rate vector r. Therefore, it inspires us to adopt the Alternating Directional

Method of Multiplier (ADMM) to split the decision variables x and r, which results in a nice layered structure

during the operation of the algorithm. Formally, the Augmented Lagrangian function of problem (17) is defined as

L(x, r,λ) = f(x) + g(r) +
ρ

2
‖Bx + Ar− λ/ρ‖2, (18)

where ρ is a pre-defined penalty parameter, λ is the Lagrangian multiplier. Then the ADMM optimizes the

Augmented Lagrangian function L(x, r,λ) in a Gauss-Seidel fashion. In each time slot t, go through the following

three steps.

1) Primal update: r[t] = argmin
r

L(x[t− 1], r,λ[t− 1]).

2) Primal update: x[t] = argmin
x

L(x, r[t],λ[t− 1]).

3) Dual update: λ[t] = λ[t− 1]− τρ(Bx[t] + Ar[t]).

Based on the definition of the matrix A and B, it is clear that the third step is the virtual queue update (11) in the

Algorithm 1. We then show that the second step is indeed the congestion control component in Algorithm 1. We

first omit the constant term g(r[t]) and write it as

x[t] = argmin
x

f(x) +
ρ

2
‖Bx + Ar[t]− λ[t− 1]/ρ‖2.
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Transforming the indicator function h(x) in f(x) into the box constraints, we have

x[t] = argmax
m≤x≤M

∑
f∈F

Uf (xf )− ρ

2
‖Bx + Ar[t]− λ[t− 1]/ρ‖2.

Based on the separability of both objective function and box constraints with respect to the variable xf , we can

decompose the original problem into F one-dimensional optimization problems.

xf [t] = argmax
xf∈[mf ,Mf ]

Uf (xf )− ρ

2

xf +
∑

l∈I(sf )

r
df
l [t]−

∑
l∈O(sf )

r
df
l [t] + λ

df
sf [t− 1]/ρ

2

.

Rearranging the terms by utilizing the virtual queue length update in the time slot t−1, we can obtain the congestion

control component in Algorithm 1.

The next step is to derive the routing component in Algorithm 1. As discussed before, the challenge in the first

primal update step of ADMM is that the quadratic term ‖Bx[t− 1] + Ar−λ[t− 1]/ρ‖2 in the objective function

is non-separable with respect to the decision variable r due to the non-diagonal structure of the matrix A. The

basic idea to overcome this difficulty is to inexactly solve the r−subproblem, which is based on minimizing a

second-order local approximation of the function ‖Bx[t− 1] +Ar−λ[t− 1]/ρ‖2 instead of the original one. The

approximation of the above function at the point r[t− 1] is given by the Taylor expansion.

‖Ar + Bx[t− 1]− λ[t− 1]/ρ‖2

≈ constant + 〈g[t− 1], r− r[t− 1]〉+ ‖r− r[t− 1]‖2M,

where the gradient g[t − 1] = 2AT (Ar[t − 1] + Bx[t − 1] − λ[t − 1]/ρ) and the matrix M is diagonal with

M = diag{. . . , βdl , . . .}. Then, substituting this local approximation into the first step, we can write it as the

following form.

r[t] = argmin
r

g(r) + ρ〈AT (Ar[t− 1] + Bx[t− 1]− λ[t− 1]/ρ), r− r[t− 1]〉+
ρ

2
‖r− r[t− 1]‖2M. (19)

Transforming the indicator function g(r) into constraints, we are ready to obtain the routing component in the

Algorithm 1.

The idea of approximately solving the subproblem in the ADMM has been widely applied in the existing

literatures [20], [27]. The method is called the inexact Uzawa method and can be actually recovered by the following

equivalent form.

r[t] = arg min
r
L(x[t− 1], r,λ[t− 1]) +

1

2
‖r− r[t− 1]‖2Q, (20)

with matrix Q = ρ(M−ATA). In the sequel, we will use this simplified form to prove all the theoretical results

of Algorithm 1.
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C. Convergence Analysis

In this subsection, we establish the global convergence of Algorithm 1. We first exploit the structure of matrix

B and write the standard ADMM model (17) as the following form.

min
x,r

f(x) + g(r) (21)

s.t. Asr = x, Arr = 0,

where As is a F×DL dimensional matrix formed by extracting the rows of matrix A whose index node is a source

for one flow. The matrix Ar is formed by the rest of rows of the matrix A. Therefore, the first equation Asr = x

in (21) denotes the flow conservation law in those source nodes and the second equation Arr = 0 describes the

flow conservation law in those intermediate nodes. Let the associated Lagrangian multiplier of constraints Asr = x,

Arr = 0 be λs, λr, respectively and let λ = [λs;λr]. In the sequel, we write the Assumption 2 as the following

equivalent form.

Assumption 3. (Existence of optimal solution) There exists a saddle point (x∗, r∗,λ∗) of the problem (17), i.e.,

optimal primal variables x∗, r∗ and dual variables λ∗, satisfying the KKT conditions:

− λ∗r ∈ ∂f(x∗), (22)

AT
s λ
∗
s + AT

r λ
∗
r ∈ ∂g(r∗), (23)

Asr
∗ = x∗,Arr

∗ = 0. (24)

As discussed before, this assumption is a mild condition and can be guaranteed by various conditions. When this

assumption fails to hold, Algorithm 1 has either unsolvable or unbounded subproblems or a diverging sequence of

λ[t].

Lemma 1. (Sufficient descent of primal and dual variables) Assume Assumption 1 and 2. If τ ∈ [1, (
√

5 + 1)/2),

there exists an α, η > 0 such that

V (x[t− 1], r[t− 1],λ[t− 1])− V (x[t], r[t],λ[t]) ≥α


∥∥∥∥∥∥
λ[t− 1]− λ[t]

x[t− 1]− x[t]

∥∥∥∥∥∥
2

+ ‖r[t− 1]− r[t]‖2Q

+

2v‖x[t]− x∗‖2 + 2v‖x[t]− x[t− 1]‖2. (25)

The function V (x[t], r[t],λ[t]) is defined as

V (x[t], r[t],λ[t]) =
1

ρτ
‖λ[t]− λ∗‖2 + ρ‖x[t]− x∗‖2 + ‖r[t]− r∗‖2Q +

ρ

η
‖Asr[t]− x[t]‖2. (26)

where matrix Q = ρ(M−ATA), v is the convexity modulus of function f(x) and (x∗, r∗,λ∗) is one of the saddle

points of the problem (17).

In Lemma 1, the function V (x[t], r[t],λ[t]) describes the distance between the current iterates and the optimal
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solution set. To guarantee that the function V (·) has sufficient descent, the matrix M should be chosen such that

matrix Q is positive definite with ‖r[t]− r∗‖2Q > 0. One simple choice is that each diagonal element of matrix M

satisfies

βdm,n > deg(m) + deg(n),∀(m,n) ∈ L,∀d ∈ D. (27)

Then one can see that Q is a diagonally dominant matrix, thus it is also positive definite by Gershgorin circle

theorem. Now we are ready to use the sufficient descent of the function V (·) to establish the global convergence

of Algorithm 1.

Theorem 3. (Global convergence of Algorithm 1) For any τ ∈ [1, (
√

5 + 1)/2) and any parameter βdm,n >

deg(m) + deg(n) for all (m,n) ∈ L, d ∈ D, the sequences (x[t], r[t],λ[t]) converges to a saddle point of (17),

namely,

lim sup
t→∞

‖x[t]− x∗‖ = 0,

lim sup
t→∞

‖r[t]− r∗‖ = 0, (28)

lim sup
t→∞

‖λ[t]− λ∗‖ = 0.

Note that the convergence of Algorithm 1 only requires the concavity of the utility function without the assumption

of smoothness and strictly concavity (v could be zero). The existing theoretical analysis of two-block ADMM [27]

has shown that the algorithm converges at a globally sub-linear rate, i.e., O(1/ε), when both function f and g are

proper closed convex. Clearly, our definition of function f and g satisfy this condition and Algorithm 1 converges

in O(1/ε) iterations. However, in the next subsection, we will present a surprising result that, when the utility

function is strictly concave (v is positive), the Algorithm 1 actually converges globally and linearly, which requires

only O(log(1/ε)) iterations to achieve an ε−accurate solution.

D. Linear Convergence Rate Analysis

Based on the result in Lemma 1, we have an inequality of the form, for arbitrary t ≥ 1,

V (x[t− 1], r[t− 1],λ[t− 1])− V (x[t], r[t],λ[t]) ≥ C.

To establish the global and linear convergence rate of Algorithm 1, it is sufficient to show that, there exists constant

γ > 0 such that

C ≥ γV (x[t], r[t],λ[t]),∀t ≥ 1. (29)

The function V (x[t], r[t],λ[t]) contains the terms including ‖r[t]− r∗‖2Q and ‖λ[t]−λ∗‖2, but the lower bound C

only contains the terms like ‖r[t]− r[t− 1]‖2Q. Therefore, the challenge is how to bound the terms ‖λ[t]− λ∗‖2

and ‖r[t]− r∗‖2Q using the existing terms in the lower bound C. In the existing works of theoretical ADMM [23],

they assume that the matrix B is of full row rank and matrix A is of full column rank, and utilize this assumption

to upper bound ‖λ[t] − λ∗‖2 and ‖r[t] − r∗‖2Q by existing terms in C. However, in our problem, both matrix B
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Dual
variable 𝝀

Link rate r

Injection
rate x

u[t]=(x[t],r[t],𝝀[t])

Optimal
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polyhedral Ω∗(𝒙∗)

x=x*

A

B

C

Hyperplane aTu=c

Fig. 2: The distance AB between current iterates and the optimal solution set Ω∗ (non-polyhedral set) is less than
the distance AC between current iterates and the set Ω∗(x∗) (polyhedral set). The upper bound AC is the distance
between a point A and a hyperplane aTu = c that can be implicitly given by |aTu[t]− b|/‖a‖ = O(|aTu[t]− b|)
(error bound in the simplest case).

and A do not satisfy this assumption (matrix B has several all-zero rows, i.e., those nodes do not contain sources;

the number of rows of matrix A is less than the number of columns). In the sequel, we provide a completely new

theoretical path to overcome this technical challenge. We first introduce some basics in the variational analysis.

Definition 6. (Calmness [28]) Define the multi-valued mapping F : Rn → Rm. We say that F is calm at x0 if

there exists a neighborhood U of x0 and a constant κ0 > 0 such that

F (x) ⊆ F (x0) + κ0‖x− x0‖By,∀x ∈ U. (30)

where unit ball By , {y ∈ Rm|‖y‖ ≤ 1}.

The calmness property can be regarded as a generalization of Lipschitz continuous property from single-valued

function to set-valued mapping. Recall that the set-valued mapping F is piecewise polyhedral if the graph of F is

the union of finitely many polyhedral sets. The following Lemma in [29] establishes the calmness of the piecewise

polyhedral mapping.

Lemma 2. (Calmness of piecewise polyhedral mapping) If the set-valued mapping F : Rn → Rm is piecewise

polyhedral, then F is calm at any x0 with modulus κ independent of choice of x0.

The key technical path to obtain the inequality (29) is to utilize the calmness of piecewise polyhedral mapping to

establish a global error bound. Then one can apply this error bound to estimate the distance to the optimal solution

set, i.e., the terms in the function V (x[t], r[t],λ[t]), by certain constraint violations, which can be further upper

bounded by the existing terms in C. Denote the solution set of KKT system (22)-(24) by Ω∗. The main difficulty is

that the set Ω∗ is non-polyhedron, and one cannot use existing error bound such as Hoffman bound [30] or calmness

to estimate the distance to the optimal solution set. However, one important observation is that, the intersection of

the optimal solution set Ω∗ and the hyperplane x = c, given by

Ω∗(c) = Ω∗ ∩ {(x, r,λ)|x = c}, (31)
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is actually the inverse image of a piecewise polyhedral mapping at origin. This result enables us to first upper

bound the distance between current iterates (x[t], r[t],λ[t]) and the optimal solution set Ω∗ by the distance to the

set Ω∗(c), then utilize the calmness property to further upper bound above distance by certain constraint violation.

Lemma 3. For arbitrary optimal injection rate vector x∗, define the set-valued mapping Rx∗(x, r,λ) as

Rx∗(x, r,λ) =


x− Prh(x− λs −∇U(x∗))

r− Prg(r + (AT
s λs + AT

r λr))

Ar + Bx

x− x∗

 , (32)

Then, for arbitrary (x, r,λ), we have (x, r,λ) ∈ Ω∗(x∗) if and only if Rx∗(x, r,λ) = 0.

Since functions h(·) and g(·) are the indicator functions of the closed and convex sets, the Moreau-Yosida

proximal mappings Prh(·) and Prg(·) are projection mappings onto a convex set and therefore piecewise polyhedral

by Proposition 12.30 in [31]. Considering the fact that mappings λs+∇U(x∗), AT
s λs+AT

r λr, Ar+Bx and x−x∗

are affine, the set-valued mapping Rx∗(·) is therefore piecewise polyhedral, and so is R−1
x∗ (·). Then, from the result

of Lemma 3, we can regard the subset Ω∗(x∗) as R−1
x∗ (0) and utilize the calmness result in Lemma 2 to upper

bound the distance between the current iterates and the set Ω∗(x∗) by the constraint violation ‖Rx∗(x[t], r[t],λ[t])‖.

Formally, we have the following global error bound.

Lemma 4. (Global error bound) Assume Assumptions 1 and 2. If τ ∈ [1, (
√

5 + 1)/2) and parameter βdm,n >

deg(m)+deg(n), then there exists a constant κ > 0 such that the sequence (x[t], r[t],λ[t]) generated by Algorithm 1

satisfies

dist2((x[t], r[t],λ[t]),Ω∗) ≤ κ‖Rx∗(x[t], r[t],λ[t])‖2, t ≥ 1, (33)

where x∗ is an arbitrary optimal injection rate vector and the distance function is defined as

dist2((x[t], r[t],λ[t]),Ω∗) , inf
(x,r,λ)∈Ω∗

∥∥∥∥∥∥∥∥∥


x

r

λ

−

x[t]

r[t]

λ[t]


∥∥∥∥∥∥∥∥∥

2

, (34)

We finally upper bound the residual ‖Rx∗(x[t], r[t],λ[t])‖ by the existing terms in lower bound C and combine

the results in Lemma 1 and Lemma 4 to establish the global and linear convergence rate in Theorem 2. The detailed

proof can be seen in Appendix ??. An example of the key proof idea and the global error bound are illustrated in

Fig 2.

E. Queue Stability Analysis

Based on the evolution of physical queue length (5), we have the following inequality for each queue.

Qdn[t] ≤

Qdn[t− 1]−
∑

l∈O(n)

rdl [t]


+

+
∑
l∈I(n)

rdl [t] +
∑
f∈F

xf [t]1{sf=n,df=d}. (35)
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In the proof of Theorem 2, we have shown that the quantity Bx[t] + Ar[t] ≤ O(ct), which implies that the

change of physical queue length vanishes exponentially. This observation provides a simple path to establish the

boundedness of physical queue length. However, it requires the assumption that utility function is strictly concave.

In the sequel, we provide a different path, which only assumes the weakly concavity of the utility function. The

following technical lemma connects the boundedness of the physical queue length Qdn[t] and the virtual queue

length λdn[t].

Lemma 5. For each destination d ∈ D and node n ∈ N\d, suppose that λdn[t] and Qdn[t] evolves by (11) and (35)

with initializations λdn[t] = Qdn[t] = 0. If there exists a constant M > 0 such that |λdn[t]| < M, ∀t, d ∈ D, n ∈ N\d,

then

Qdn[t] ≤ 2M

ρτ
+B, ∀t, d ∈ D, n ∈ N\d. (36)

where B is the constant dependent on the largest link capacity.

From Theorem 3, we know that the virtual queue length λ[t] converges to an optimal dual variable λ∗ and we

can obtain that

|λdn[t]| ≤ ‖λ[t]‖ = ‖λ[t]− λ∗ + λ∗‖ ≤ ‖λ[t]− λ∗‖+ ‖λ∗‖.

Based on the result in Lemma 1, the function V (x[t], r[t],λ[t]) is monotonically decreasing with respect to t. Then

we have

|λdn[t]| ≤ ρτV (x[t], r[t],λ[t]) + ‖λ∗‖

≤ ρτV (x[0], r[0],λ[0]) + ‖λ∗‖ ,M, ∀t ≥ 1.

which is a finite constant dependent on the initial distance to the optimal solution set Ω∗. Therefore, combining the

result in Lemma 5, one can conclude that the physical queue length for each node and destination is finite.

V. EFFICIENT SUBPROBLEM SOLVER

In this section, we develop several efficient algorithms to solve the congestion control, routing and scheduling

components in Algorithm 1.

A. Congestion Control

The congestion control component is an one-dimensional optimization problem, which can be efficiently solved

by Newton method or Fibonacci search. Moreover, if the utility function takes a specific form such as the weighted

proportional fair utilities, Uf (xf ) = wf log(xf ), xf > 0, the solution can be obtained in a close-form expression,

xf [t] =
xf [t− 1]

2
−
z
df
sf [t] + ∆rf [t]

2ρ
+

√
wf
ρ

+
(z
df
sf [t] + ∆rf [t]− ρxf [t− 1])2

4ρ2
. (37)
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B. New Backpressure Routing in Wireline Network

In the wireline network, there exist no interference among different links and the achievable rate region C is

given by the following form [11], [16].

C =

{
[rdl ]

∣∣∣∣ D∑
d=1

rdl ≤ Cl,∀l

}
, (38)

where Cl is the capacity of link l. Then both the objective function and the constraints of problem (8) are separable

among the rate vectors in different links. Therefore, the link rate rdl [t] can be determined in a distributed fashion:

for each link l = (m,n), solving the following quadratic program to obtain [rdm,n[t], d ∈ D].

max
rdm,n

∑
d∈D

(zdm[t]− zdn[t])rdm,n −
ρβm,n

2
(rdm,n − rdm,n[t− 1])2

s.t.
∑
d r

d
m,n ≤ Cm,n, rdm,n ≥ 0,∀d. (39)

We define this problem as the new backpressure routing problem. After rearrangement of the terms, it can be

formulated as a problem that projects the point (rdm,n[t − 1] + (zdm[t] − zdn[t])/ρβm,n) onto a simplex defined in

(39), which has already been investigated in [32].

Lemma 6. (solution of routing component) For each link l = (m,n) ∈ L, the solution of new backpressure routing

has the form of rdm,n[t] = [rdm,n[t−1]+(zdm[t]−zdn[t])/ρβm,n−θ∗]+, where θ∗ can be determined in O(F log(F ))

time.

The main procedure to solve problem (39) are listed in Algorithm 2. Note that the step 1-4 and step 6-8 have O(F )

complexity and hence the overall complexity of Algorithm 2 is dominated by the sorting step 5 with complexity

O(F log(F )).

Algorithm 2 New backpressure routing algorithm

1: Let xd = [rdm,n[t− 1] + (zdm[t]− zdn[t])/ρβm,n]+,∀d ∈ D.
2: if

∑D
d=1 xd ≤ Cm,n then

3: Let θ∗ = 0 and rdm,n[t] = xd,∀d ∈ D and terminate algorithm.
4: end if
5: Sort {xd, d ∈ D} in an decreasing order π such that xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(D).

6: Find p = max

{
k ∈ [D]

∣∣xπ(k) − 1
k

(
k∑
d=1

xπ(d) − Cm,n
)
> 0

}
.

7: Let θ∗ = 1
p

(
p∑
d=1

xπ(d) − Cm,n
)

.

8: Output rdm,n[t] = [rdm,n[t− 1] + (zdm[t]− zdn[t])/ρβm,n − θ∗]+,∀d ∈ D.

C. New Scheduling in Wireless Network

In the wireless network, different links cannot be simultaneously activated due to the existence of interference.

Therefore, in addition to the rate assignment at each link, we need to schedule the link itself. The basic challenge

to solve the scheduling component is that the the number of feasible link rate vectors |Γ| is possibly exponentially
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large. For example, in the one-hop node-exclusive model [3], all the feasible link rate vectors correspond to all the

matchings in the graph G, which could be O(2L) even in the bipartite graph. In the QCA method, the scheduling

component is the classical MaxWeight scheduling, and the objective function is linear and such a problem can be

reduced to some classical combinatorial problems such as maximum weighted matching. Instead, in our scheduling

component (8), the objective function is quadratic, and the optimal solution may not belong to the vertex set Γ

of the convex hull C, which poses a significant challenge in solving this problem. However, utilizing the idea of

ellipsoid method, we will show a surprising result that the complexity of solving our new scheduling component

(8) is equivalent to the complexity of solving the traditional MaxWeight scheduling problem.

Before presenting our main result, we first briefly introduce several concepts and technical tools in geometric

algorithms [33] that will be used in the sequel.

Definition 7. (Separation oracle) Let H be a non-empty convex polyhedron in Rn. A separation oracle for H is

that, given any x ∈ Rn, it either outputs x ∈ H , and if not, find a hyperplane such that cTx > cTy,∀y ∈ H .

Lemma 7. (Separation and optimization) Let H be a non-empty convex polyhedron in Rn and f(·) be a convex

function in Rn. If the separation oracle for H can be solved in poly(n) time, then we can compute an x with

B(x, δ) ∈ H and maxy∈H f(y)− f(x) ≥ δ in poly(n, log(δ−1)) time.

In this lemma, B(x, δ) is the ball centering at x with radius δ, where the δ is the finite truncation error from

irrational number to rational number.

Theorem 4. Assume that the feasible link rate vector r(i) ∈ NL,∀r(i) ∈ Γ. There is a poly(L,F ) time algorithm

to compute the new scheduling component (8) if and only if there is a poly(L,F ) time algorithm to compute the

MaxWeight scheduling problem (13).

In practice, the link rate always refers to the number of transmitted packets, hence the integer assumption on

the feasible link rate vector is reasonable. Theorem 4 shows that our quadratic scheduling component is not much

“harder” than the traditional MaxWeight scheduling problem. Therefore, we can establish the hardness of our new

scheduling problem based on all existing complexity results of MaxWeight scheduling. For example, under the

node-exclusive interference model, the MaxWeight scheduling is actually a maximum weighted matching problem

that can be solved in polynomial time [3]. This result implies that problem (8) can also be solved in polynomial

time. Another example is the Maximum Weighted K-Valid Matching problem introduced in [18] to characterize the

multi-hop interference. They show that this problem is NP-hard when we have at least 2−hop interference, which

implies that the problem (8) is also NP-hard.

The rest of challenge is the implementation issue incurred by the non-integer solution of (8), because the optimal

point may not lie in the set of feasible link rate vectors. We next show that this problem can be tackled by connecting

the practical time sharing technique and the convex decomposition technique in the combinatorial optimization.

Lemma 8. If there is a poly(L,F ) time algorithm to compute the MaxWeight scheduling problem (13), then there is

a poly(L,F ) time algorithm that, given any optimal solution r∗ of (8), yields (L+ 1) feasible rate vectors r(i) ∈ Γ
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such that [
∑
d r

d
l

∗
] =

∑L+1
i=1 τir

(i) and
∑L+1
i=1 τi = 1, τi ≥ 0.

The proof of Lemma 8 is a straightforward application of Theorem 4 and the polynomial time reduction from

the convex decomposition of point within a polyhedron H to the separation oracle problem [34]. Based on this

result, we can first divide the time slots into mini slots and then operate the link rate vector r(i) in τi fraction of

time. For each link l, given the link rate vector r(i)
l , the specific rate assignment for each d−destined packets can

be determined by solving a problem same as (39) (only change Cl to r(i)
l ).

VI. NUMERICAL ANALYSIS

In this section, we conduct some numerical studies to verify the theoretical improvements of our proposed method

compared with the state-of-arts.

A. Simulation Setup

We adopt the well-known weighted proportional fair utilities Uf (xf ) = wf log(xf ), where the weight wf of

each flow f is randomly generated from a uniform distribution U(0, 1). The network typology G = (N ,L) is

generated by the classic Erdős-Rényi (ER) random graph model G(n, p), where n is the number of nodes and p is

the connected probability between two nodes (we only consider the connected graph). We compare our algorithm

with the following three benchmark algorithms.

Momentum method: Here the Momentum method refers to the Heavy-ball algorithm proposed in [7]. The

existing works [7], [8] have shown that this method produces significantly faster convergence speed and lower

queuing delay compared to the traditional QCA method2.

Second-order method: There exists several versions of second-order algorithms [9]–[11] in solving this problem.

We use the one with the fastest convergence speed proposed in [11]. This algorithm has a two-layered iteration

structure: (i) each outer iteration corresponds to one Newton step; (ii) a Sherman-Morrison-Woodbury (SMW) based

inner iteration to determine the Newton direction.

Proximal method: We use the one proposed in [16]. They have shown superior performance in the queue length

reduction and improvement of convergence speed than the QCA method in the wireline network.

We adopt the following two comparison metrics: (i) the relative error of injection rate: ‖x[t]−x∗‖/‖x∗‖, where the

x∗ is obtained approximately by running our method with a strict stopping condition; (ii) total physical queue length

of all nodes and all flows:
∑
d∈D

∑
n∈N\dQ

d
n[t]. In the simulation, each iteration refers to one communication per

node. For our method, momentum method and proximal method, each iteration refers to solving one congestion

control and routing component. For the second-order method, each iteration refers to one SMW-based iteration.

B. Wireline Network

We first compare our algorithm with above three algorithms in a wireline network with link capacity Cl randomly

generated from a uniform distribution U(0, 1). As shown in Figure 3, we plot the relative error of rate and the total

physical queue length versus the number of iterations under a small-scale network (10 nodes, 30 edges, 3 sessions)

2Hence, we don’t compare our algorithm with QCA.
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Fig. 3: Comparison of Algorithm 1 and existing methods in a small-scale and a medium-scale wireline networks.
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Fig. 4: The two left figures shows the impact of parameter τ on convergence and queue length. The two right
figures compare our algorithm and the momentum method for a wireless network with fading channel.

TABLE II: Comparison of Convergence Speed and Queue Length per Link

Problem size Momentum method Second-order method Proximal method Our method
# Iterations Queue len # Iterations Queue len # Iterations Queue len # Iterations Queue len

(50, 150, 10) 4658 22.5 9600 35.1 369 1.10 207 0.66
(100, 300, 20) 9594 82.6 38900 145.2 512 1.94 298 0.83

(500, 1500, 100) > 105 > 103 > 105 > 103 853 8.15 371 3.92
(1000, 3000, 200) > 105 > 104 > 105 > 104 1921 15.30 639 6.61

benchmark 1044 31.2 1510 29.5 102 1.08 82 0.58

and a medium-scale network (60 nodes, 180 edges, 18 sessions). For the momentum method and second-order

method, we choose parameter K and µ large enough to guarantee the utility optimality gap is less than 0.1%. For

proximal method, we choose parameter αn = (dn+1)/2. It can be observed that our proposed algorithm converges

at a global and linear rate with bounded physical queue length, which matches our theoretical results. Moreover, it

produces the fastest convergence speed and lowest physical queue length among all the existing methods. Although

the second-order method has only 40 − 80 outer iterations (newton step), it still converges quite slowly due to

the large number of inner iterations in computing the Newton direction. Another observation is that our method,

proximal method and second-order method gradually increases the injection rates to the optimal point, instead, the

momentum method first produces an extremely high injection rate, then gradually decrease it, which leads to a

large physical queue length.

We then investigate the impact of the network size and compare our algorithm with the existing methods in

number of iterations and physical queue lengths to obtain solution with a given accuracy. The stopping criterion is

that both the relative error of rate ‖x[t]− x∗‖/‖x∗‖ and the constraint violation ‖Bx[t] + Ar[t]‖ is less than 1%.

Similarly, we set parameters K and µ of momentum method and second-order method large enough to guarantee the

desired utility optimality gap. To avoid the random noises, we randomly generate 1000 instances in each problem

size and take the average. Besides, we also use a benchmark network in [16], whose optimal solution is known.

July 19, 2017 DRAFT



The results are listed in TABLE II. Note that the queue length is normalized by the number of links. It can be

observed that our proposed algorithm exhibits a 10 − 103 order of improvement of both convergence speed and

queue length compared with the momentum method and the second-order method. It also converges 2 − 3 times

faster and produces 40%− 60% less physical queue length than the proximal method. Moreover, our algorithm has

an effect of relieving the curse of dimensionality in the traditional algorithms. For example, when the problem size

increases 20 times (from the first instance to fourth instance), the number of iterations only increases 3 times.

C. Impact of Parameter

We next investigate the impact of parameter τ on the convergence speed and the queue length of our algorithm.

Theorem 3 shows that the convergence of our algorithm is guaranteed when τ ∈ [1, (
√

5 + 1)/2). We test our

algorithm in a 20−nodes 60−links and 8−sessions network with τ = {1, 1.2, 1.6, 2.0} and plot the sum of injection

rate and queue length versus the number of iterations in Fig. 4. The basic observation is that when the parameter

τ increases, the convergence speed of our algorithm will slightly increase and the queue length will decrease at

an inversely proportional manner, which roughly matches the upper bound of physical queue length provided in

Lemma 5 that Qdn[t] ≤ 2M
ρτ +constant. For example, when τ increases from 1 to 2, the queue length is reduced

roughly 40%. However, from the simulation, we observe that when τ ≥ (
√

5 + 1)/2, the algorithm sometimes

diverges. Therefore, we suggest a safe value τ = 1.618 when using our algorithm.

D. Wireless Network

From the methods compared above, only the momentum method and our algorithm can be applied to the wireless

networks with interference constraints. We compare our algorithm with it in a 20−nodes 60−links and 2−sessions

wireless network with quasi-static block fading (channel states vary from one slot to the next but remain constant

in each slot). We plot the injection rate of each session and sum of queue length versus the number of iterations

in Fig. 4. It can be observed that our algorithm converges to the steady state in less than 50 iterations and the

momentum method requires at least 5000 iterations. Moreover, our algorithm produces only 1% queue length

compared to the momentum method.

VII. DISCUSSIONS

We now discuss the connection of our algorithm to the existing proximal method and list some follow-up works

as well as directions for future research.

A. Connection to Proximal Method

In the scenario of wireline networks, the existing proximal methods [6], [16] also contain a quadratic regularizer

in the congestion control and routing component. Interestingly, we find that this method can be recovered by a kind

of proximal linear ADMM with following Jacobi (parallel) updates.

1) x[t] = arg min
x
L(x, r[t− 1],λ[t− 1]).

2) r[t] = arg min
r
L(x[t− 1], r,λ[t− 1]) + 1

2‖r− r[t]‖2Q.

3) λ[t] = λ[t− 1]− ρ(Bx[t] + Ar[t])
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The function L(·) is the Augmented Lagrangian function defined in (18). The matrix Q = ρ(M−ATA) and matrix

M = diag{. . . , βdl , . . .}. Therefore, we can use the existing analysis in [35] to establish a stronger theoretical result

that the proximal algorithm in [16] actually converges in a non-ergodic sublinear rate o(1/ε).

B. ADMM with Acceleration Technique

There exists some acceleration techniques in the Alternating Directional Method of Multiplier. Similar to the

momentum method in the QCA framework, we can introduce some multi-step tricks in the virtual queue length

update (11).

λ[t] = λ[t− 1]− ρ(Bx[t] + Ar[t]) + α[t](λ[t− 1]− λ[t− 2]).

An open question is that whether this simple trick can provide theoretical improvements in the convergence speed

and further reduction of queue length compared with the Algorithm 1.

C. Stochastic Network Optimization

In the reality, the channel conditions will fluctuate due to the environmental changes (e.g., fading). To accom-

modate this situation, we assume that there exists a finite set J of states that channel conditions can be in. Let Γj

denote the set of feasible link rates in state j and πj be the stationary probability of jth channel state. We define

the following average capacity region.

C =
∑
j∈J

πjConv(Γj).

Then, the problem becomes an optimization problem over this new capacity region. Accordingly, the routing and

scheduling components in each time slot t can be modified to an optimization problem over instantaneous region

C[t]. Although the numerical results have already exhibited improved performance over existing algorithms, the

theoretical performance under this setting is unknown. One possible approach is to utilize some stochastic Alternating

Directional Method of Multipliers. However, the challenge is that all existing stochastic ADMMs can only be applied

to the smooth stochastic objective function, which is not the case in this problem.

VIII. CONCLUSION

In this paper, we have proposed a new joint congestion control, routing and scheduling algorithmic framework

for distributed network optimization based on an inexact Uzawa method of the Alternating Directional Method of

Multiplier. This algorithm offers zero utility optimality gap with finite queue length, the fastest convergence speed

to date, i.e., O(log(1/ε)) iterations, among all the existing algorithms. Moreover, the virtual queue-based control

provides an extremely low-complexity implementation of this algorithm. These results build a deep connection be-

tween the cross-layer decomposition of network optimization and the variable splitting in the multi-block Alternating

Directional Method of Multiplier. One important theoretical contribution is that we prove that the ADMM with

an inexact Uzawa method converges globally and linearly without requiring the full rank assumption of constraint

matrix.
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APPENDIX

A. Proof of Lemma 1

The first step of the Algorithm 1 is

r[t] = arg min
r
L(x[t− 1], r,λ[t− 1]) +

1

2
‖r− r[t− 1]‖2Q

(a)⇐⇒ r[t] = arg min
r
g(r) +

ρ

2

∥∥∥∥∥∥
Asr− x[t− 1]− λs[t− 1]/ρ

Arr− λr[t− 1]/ρ

∥∥∥∥∥∥
2

+
1

2
‖r− r[t− 1]‖2Q

(b)⇐⇒ AT
s [λs[t− 1]− ρ(Asr[t]− x[t− 1])] + AT

r (λr[t− 1]− ρArr[t]) + Q(r[t− 1]− r[t]) ∈ ∂g(r[t])

(c)⇐⇒ AT
s

[
λ̄s[t]− ρ(x[t]− x[t− 1])

]
+ AT

r λ̄r[t] + Q(r[t− 1]− r[t]) ∈ ∂g(r[t]). (40)

The above, step (a) utilizes definition of the Augmented Lagrangian function (18), step (b) is based on the first-order

optimality condition, step (c) is based on the following definition of variables λ̄s[t] and λ̄r[t].

λ̄s[t] = λs[t− 1]− ρ(Asr[t]− x[t]), (41)

λ̄r[t] = λr[t− 1]− ρArr[t]. (42)

Similarly, based on the the first-order optimality condition and the definition of the variable λ̄s[t] in (41), the second

step of the Algorithm 1 is

x[t] = arg min
x
f(x) +

ρ

2
‖Asr[t]− x− λs[t− 1]/ρ‖2
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⇐⇒ − λ̄s[t] ∈ ∂f(x[t]). (43)

Combining the KKT condition (23) that AT
r λ
∗
r +AT

s λ
∗
s ∈ ∂g(r∗), the optimality condition (40) in the second step

of ADMM, we have

〈r[t]− r∗,AT
s

[
λ̄s[t]− λ∗s − ρ(x[t]− x[t− 1])

]
+ AT

r (λ̄r[t]− λ∗r) + Q(r[t− 1]− r[t])〉
(a)

≥ 0. (44)

The above, (a) utilizes the fact that function h(x) is convex and the subdifferential of a convex function is a

monotone operator, i.e., the inequality (16) holds with v = 0.

Similarly, combining the result of KKT condition (22) that −λ∗r ∈ ∂f(x∗) and the optimality condition (43) in

the second step of ADMM, we have

〈x[t]− x∗, λ̄s[t]− λ∗s[t]〉
(a)

≤ −v‖x[t]− x∗‖2, v > 0. (45)

The above, step (a) utilizes the fact that function f(x) is convex with modulus v and inequality (16).

Then, change the direction of inequality (45) and sum it with inequality (44), we have

〈x[t]− x∗,λ∗s[t]− λ̄s[t]〉+ 〈r[t]− r∗,Q(r[t− 1]− r[t])〉+ 〈r[t]− r∗,AT
s

[
λ̄s[t]− λ∗s − ρ(x[t]− x[t− 1])

]
〉

+ 〈r[t]− r∗,AT
r (λ̄r[t]− λ∗r)〉 ≥ v‖x[t]− x∗‖2

(a)⇐⇒ 1

ρ
〈λs[t− 1]− λ̄s[t], λ̄s[t]− λ∗s〉+ ρ〈x∗ − x[t],x[t]− x[t− 1]〉+ 〈r[t]− r∗,Q(r[t− 1]− r[t])〉+

1

ρ
〈λr[t− 1]− λ̄r[t], λ̄r[t]− λ∗r [t]〉 ≥ v‖x[t]− x∗‖2 + 〈λs[t− 1]− λ̄s[t],x[t]− x[t− 1]〉

(b)⇐⇒ 1

ρ
〈λs[t− 1]− λ̄s[t],λs[t− 1]− λ∗s〉+ ρx[t− 1]− 〈x∗,x[t− 1]− x[t]〉+ 〈r[t− 1]− r∗,Q(r[t− 1]− r[t])〉+

1

ρ
〈λr[t− 1]− λ̄r[t],λr[t− 1]− λ∗r [t]〉 ≥

1

ρ

∥∥λ[t− 1]− λ̄[t]
∥∥2

+ ρ‖x[t− 1]− x[t]‖2 + ‖r[t− 1]− r[t]‖2Q+

v‖x[t]− x∗‖2 + 〈λs[t− 1]− λ̄s[t],x[t]− x[t− 1]〉
(c)⇐⇒ 1

ρτ

(
‖λ[t− 1]− λ∗‖2 − ‖λ[t]− λ∗‖2

)
+ ρ(‖x[t− 1]− x∗‖2 − ‖x[t]− x∗‖2) + ‖r[t− 1]− r∗‖2Q − ‖r[t]− r∗‖2Q

≥ 2− τ
ρ
‖λ[t− 1]− λ̄[t]‖2 + ρ‖x[t− 1]− x[t]‖2 + ‖r[t− 1]− r[t]‖2Q + 2v‖x[t]− x∗‖2+

2〈λs[t− 1]− λ̄s[t],x[t]− x[t− 1]〉. (46)

The above, step (a) rearranges the terms in the original inequality and utilizes the definition of the variable λ̄s[t], λ̄r[t]

in (41), (42) and the KKT condition (24). The step (b) rearranges terms by writing x∗−x[t] = x∗−x[t−1]+x[t−

1] − x[t] (similarly for variables r[t] and λ̄[t]). The step (c) applies the three-point equality of Euclidean norms

‖x− z‖2M −‖y− z‖2M = 2(x− z)TM(x− y)−‖x− y‖2M to the left hand side of the inequality, and utilizes the

equation λ[t− 1]− λ̄[t] = (λ[t− 1]− λ[t])/τ .

The rest is to show that the term 〈λs[t− 1]− λ̄s[t],x[t]− x[t− 1]〉 is lower bounded by certain form of other
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existing terms in (46) and the primal residual. Applying the equation (43) to the time slot t− 1, we have

− λs[t− 2] + ρ(Asr[t− 1]− x[t− 1]) ∈ ∂f(x[t− 1]).

Combing this result, equation (43) and inequality (16), we have

〈x[t− 1]− x[t],−λs[t− 2] + ρ(Asr[t− 1]− x[t− 1]) + λ̄s[t]〉 ≥ v‖x[t− 1]− x[t]‖2

(a)⇐⇒ 〈x[t]− x[t− 1],λs[t− 1]− λ̄s[t]〉 ≥ 〈x[t]− x[t− 1], (1− τ)ρ(Asr[t− 1]− x[t− 1])〉+ v‖x[t− 1]− x[t]‖2

(b)⇐⇒ 〈x[t]− x[t− 1],λs[t− 1]− λ̄s[t]〉 ≥ −
ρ

2η
‖Asr[t− 1]− x[t− 1]‖2 +

[
v − (1− τ)2ρη

2

]
‖x[t]− x[t− 1]‖2.

The above, step (a) is based on the virtual queue update λs[t − 1] = λs[t − 2] − ρτ(Asr[t − 1] − x[t − 1]), step

(b) utilizes the following inequality.

〈√ρη(1− τ)(x[t− 1]− x[t]),

√
ρ

η
(Asr[t− 1]− x[t− 1])〉 ≤

ρη(1− τ)2

2
‖x[t− 1]− x[t]‖2 +

ρ

2η
‖Asr[t− 1]− x[t− 1]‖2,

where η > 1 is an arbitrary constant. Substituting the above inequality into (46), we can finally obtain

V (x[t− 1], r[t− 1],λ[t− 1])− V (x[t], r[t],λ[t]) ≥ ρ
(

2− τ − 1

η

)
‖Asr[t]− x[t]‖2 +

2− τ
ρ
‖λr[t− 1]− λ̄r[t]‖2+

ρ
[
1− η(1− τ)2

]
‖x[t]− x[t− 1]‖2 + ‖r[t− 1]− r[t]‖2Q + 2v‖x[t]− x∗‖2 + 2v‖x[t]− x[t− 1]‖2.

The existence of α > 0 can be guaranteed by 2−τ− 1
η > 0 and 1−η(1−τ)2 > 0, or, equivalently, τ ∈ [1, (1+

√
5)/2).

Therefore, the lemma follows.

By Lemma 1, if the parameter τ satisfies τ ∈ [1, (
√

5 + 1)/2), the function V (x[t], r[t],λ[t]) is bounded. Then

we have that ‖λ[t] − λ∗‖, ‖x[t] − x∗‖ and ‖r[t] − r∗‖2Q are bounded, which implies that sequence λ[t] and x[t]

are bounded. Based on the choice of parameter βdm,n > deg(m) + deg(n), the matrix Q is positive definite, thus

the sequence r[t] is also bounded. Being bounded, these sequences have the converging subsequences such that

lim
i→∞

x[ti] = x̂, lim
i→∞

r[ti] = r̂, lim
i→∞

λ[ti] = λ̂.

The function V (x[t], r[t],λ[t]) is monotonically nonincreasing and thus converging. Due to the fact that α > 0, we

have lim sup ‖λ[t− 1]− λ[t]‖ = 0, and then we have

lim sup ‖Asr[t]− x[t]‖ = lim sup ‖Arr[t]‖ = 0. (47)

By passing the limit on (47) over subsequences, we have

Asr̂ = x̂,Ar r̂ = 0. (48)

Similarly, we have lim sup ‖x[t − 1] − x[t]‖ = lim sup ‖r[t − 1] − r[t]‖ = 0. Recall the optimality condition (40)

and (43) of first and second step of ADMM, taking limit over the subsequence and applying Theorem 24.4 of [36],
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we obtain

− λ̂s ∈ ∂f(x̂), and AT
s λ̂s + AT

r λ̂r ∈ ∂g(r̂). (49)

Together with (48), x̂, r̂, λ̂ satisfy the KKT conditions of problem (17). Therefore, the theorem follows.

Based on the fact that f(x∗) = U(x∗), we have

Rx∗(x, r,λ) = 0

⇐⇒



x− Prh(x− λs −∇U(x∗)) = 0

r− Prg(r + AT
s λs + AT

r λr) = 0

Asr− x = 0,Arr = 0

x = x∗

(a)⇐⇒



−λs ∈ ∂h(x) +∇U(x∗)

AT
s λs + AT

r λr ∈ ∂g(r)

Asr = x,Arr = 0

x = x∗

(b)⇐⇒



−λs ∈ ∂f(x)

AT
s λs + AT

r λr ∈ ∂g(r)

Asr = x,Arr = 0

x = x∗

⇐⇒ (x, r,λ) ∈ Ω∗(x∗). (50)

The above, step (a) utilizes the definition of proximal mapping and the first-order optimality condition that

x = arg min
u
h(u) +

1

2
‖u− [x− λs −∇U(x∗)]‖2

⇐⇒ 0 ∈ ∂h(x) + x− [x− λs −∇U(x∗)],

and

r = arg min
u
g(u) +

1

2
‖u− [r + (AT

s λs + AT
r λr)]‖2

⇐⇒ 0 ∈ ∂g(r) + r− [r + (AT
s λs + AT

r λr)].

The step (b) is based on the following fact.−λs ∈ ∂h(x) +∇U(x∗)

x = x∗
⇐⇒

−λs ∈ ∂f(x)

x = x∗
.

Therefore, the lemma follows.

For notational simplicity, let u[t] = (x[t], r[t],λ[t]). Based on the result of Lemma 2, there exists two constants
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κ0 and η0 such that, for all u[t] ∈ {u[t]|Rx∗(u[t]) ≤ η0},

dist2
(
u[t],R−1

x∗ (0)
)
≤ κ0‖Rx∗(u[t])‖2. (51)

From Theorem 3, we know that the sequence u[t] converges to a KKT point u∗ with ‖u[t] − u∗‖ ≤ B0 for all

t ≥ 1, where B0 is a finite constant. Then, for u[t] with ‖Rx∗(u[t])‖ > η0, it holds that

dist2
(
u[t],R−1

x∗ (0)
)
≤ ‖u[t]− u∗‖2

≤ B2
0

≤ B2
0

η2
0

‖Rx∗(u[t])‖2

Then, let κ = max{κ0, B
2
0/η

2
0}, we have

dist2
(
u[t],R−1

x∗ (0)
)
≤ κ‖Rx∗(u[t])‖2,∀t ≥ 1. (52)

Based on the result of Lemma 3, the set R−1
x∗ (0) is equivalent to the set Ω∗(x∗). Therefore, we have for all t ≥ 1,

dist2 (u[t],Ω∗) = inf
u∈Ω∗

‖u− u[t]‖2

(a)

≤ inf
u∈Ω∗(x∗)

‖u− u[t]‖2

= dist2
(
u[t],R−1

x∗ (0)
)

≤ κ‖Rx∗(u[t])‖2. (53)

The above, step (a) is based on the definition Ω∗(x∗) = Ω∗ ∩ {(x, r,λ)|x = x∗}. Therefore, the lemma follows.

For notational simplicity, let u[t] = (x[t], r[t],λ[t]). Based on the result of Lemma 4, we have

dist2 (u[t],Ω∗) ≤ κ‖Rx∗(u[t])‖2 = κ
(
‖x[t]− x∗‖2 + ‖x[t]−

Prh(x[t]− λs[t]−∇U(x∗))‖2 + ‖r[t]− Prg(r[t] + AT
s λs[t]+

AT
r λr[t])‖2 + ‖Ar[t] + Bx[t]‖2). (54)

Firstly, the term ‖Ar[t] + Bx[t]‖ = ‖λ[t− 1]− λ[t]‖/ρτ . Secondly, from the Proof of Lemma 1, we have shown

that the optimality condition of the first step in Algorithm 1 is equivalent to the condition (40), which can be further

written as

r[t] =Prg
(
r[t] + AT

s

[
λ̄s[t]− ρ(x[t]− x[t− 1])

]
+ AT

r λ̄r[t] + Q(r[t− 1]− r[t])
)
.

Then, we have

‖r[t]− Prg(r[t] + AT
s λs[t] + AT

r λr[t])‖

=
∥∥Prg(r[t] + AT

s

[
λ̄s[t]− ρ(x[t]− x[t− 1])

]
+ AT

r λ̄r[t] + Q(r[t− 1]− r[t]))− Prg(r[t] + AT
s λs[t] + AT

r λr[t])
∥∥
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(a)

≤‖AT
s (λ̄s[t]− λs[t]) + AT

r (λ̄r[t]− λr[t])− ρAT
s (x[t]− x[t− 1]) + Q(r[t− 1]− r[t])‖

(b)

≤‖AT
s ‖‖λ̄s[t]− λs[t]‖+ ‖AT

r ‖‖λ̄r[t]− λr[t]‖+ ρ‖AT
s ‖‖x[t]− x[t− 1]‖+ ‖Q‖‖r[t− 1]− r[t]‖

(c)

≤(1− 1

τ
)‖AT

s ‖‖λs[t− 1]− λs[t]‖+ ρ‖AT
s ‖‖x[t]− x[t− 1]‖+ (1− 1

τ
)‖AT

r ‖‖λr[t− 1]− λr[t]‖+

‖Q‖‖r[t− 1]− r[t]‖.

The above, step (a) is based on the non-expansiveness of the proximal mapping that ‖Prf (x)−Prf (y)‖ ≤ ‖x−y‖,

step (b) utilizes the triangle inequality and the matrix norm inequality that ‖Ax‖ ≤ ‖A‖‖x‖, step (c) is based on

the definition of λ̄[t] in (41) and (42) such that λ̄[t]−λ[t] = (τ −1)ρ(Ar[t] +Bx[t]) = (1−1/τ)(λ[t−1]−λ[t]).

Similarly, we have

x[t] = Prh(x[t]− λ̄s[t]−∇U(x[t])), (55)

and then

‖x[t]− Prh(x[t]− λs[t]−∇U(x∗))‖

=‖Prh(x[t]− λ̄s[t]−∇U(x[t]))− Prh(x[t]− λs[t]−∇U(x∗))‖

≤‖λ̄s[t]− λs[t]‖+ ‖∇U(x[t])−∇U(x∗)‖
(d)

≤ (1− 1

τ
)‖λs[t− 1]− λs[t]‖+ Lu‖x[t]− x∗‖. (56)

The above, step (d) is based on the assumption that utility function U(·) has Lipschitz continuous gradient with

constant Lu. Then, substitute the above inequalities into upper bound (54) and rearrange the terms, we have

dist2 (u[t],Ω∗) ≤ c1‖x∗ − x[t]‖2 + c2‖λ[t− 1]− λ[t]‖2 + c3‖x[t]− x[t− 1]‖2 + c4‖r[t]− r[t− 1]‖2, (57)

where the constant c1, c2, c3 and c4 are given by

c1 = κ(1 + 2L2
u),

c2 = (1− 1

τ
)2(4 max{‖AT

s ‖2, ‖AT
r ‖2}+ 2) +

1

ρ2τ2
,

c3 = 4ρ2‖AT
s ‖2,

c4 = 4‖Q‖2.

Note that the constants 2 and 4 in coefficients ci derive from the Cauchy-Schwartz inequality. For all t ≥ 1, define

(xt, rt,λt) = arg min
(x,r,λ)∈Ω∗

‖x− x[t]‖2 + ‖r− r[t]‖2 + ‖λ− λ[t]‖2.

Then we have

dist2 (u[t],Ω∗) = ‖x[t]− xt‖2 + ‖r[t]− rt‖2 + ‖λ[t]− λt‖2. (58)
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Further, define

x∗t = arg min
(x,r,λ)∈Ω∗

‖x− x[t]‖,

r∗t = arg min
(x,r,λ)∈Ω∗

‖r− r[t]‖,

λ∗t = arg min
(x,r,λ)∈Ω∗

‖λ− λ[t]‖.

Based on the fact that matrix Q is positive definite, we have λmin(Q) > 0 and ‖r[t]−r∗‖2Q ≥ λmin(Q)‖r[t]−r∗‖2.

Then, we can write the inequality (25) in Lemma 1 as the following form.

V (x[t− 1], r[t− 1],λ[t− 1])− V (x[t], r[t],λ[t]) ≥c5‖λ[t− 1]− λ[t]‖+ c5‖x[t− 1]− x[t]‖2 + c6‖r[t]− r[t− 1]‖2

+c7‖x[t]− x∗‖2 + c7‖x[t]− x[t− 1]‖2, (59)

where the coefficients c5, c6 and c7 are positive constants. Combining the above inequality with the error bound

(57), we conclude that there exists a positive constant γ > 0 such that

V (x[t− 1], r[t− 1],λ[t− 1])− V (x[t], r[t],λ[t]) ≥ γ
(

1

ρτ
‖λ[t]− λt‖2 + ρ‖x[t]− xt‖2 + ‖r[t]− rt‖2Q

+
ρ

η
‖Asr[t]− x[t]‖2

)
.

Let x∗ = x∗t−1, r∗ = r∗t−1 and λ∗ = λ∗t−1 in the function V (·) of the above inequality, then we have

1

ρτ
‖λ[t− 1]− λ∗t−1‖2 + ρ‖x[t− 1]− x∗t−1‖2 +

ρ

η
‖Asr[t− 1]− x[t− 1]‖2 + ‖r[t− 1]− r∗t−1‖2Q ≥(

1

ρτ
‖λ[t]− λ∗t−1‖2 + ρ‖x[t]− x∗t−1‖2 + ‖r[t]− r∗t−1‖2Q +

ρ

η
‖Asr[t]− x[t]‖2

)
+ γ

(
1

ρτ
‖λ[t]− λt‖2+

ρ‖x[t]− x‖2 + ‖r[t]− rt‖2Q +
ρ

η
‖Asr[t]− x[t]‖2). (60)

Based on the definition of sequences (xt, rt,λt) and (x∗t , r
∗
t ,λ
∗
t ), we have

‖x[t]− x∗t−1‖ ≥ ‖x[t]− x∗t ‖, ‖x[t]− x‖ ≥ ‖x[t]− x∗t ‖,

‖r[t]− r∗t−1‖ ≥ ‖r[t]− r∗t ‖, ‖r[t]− x‖ ≥ ‖r[t]− r∗t ‖,

‖λ[t]− λ∗t−1‖ ≥ ‖λ[t]− λ∗t ‖, ‖λ[t]− λt‖ ≥ ‖λ[t]− λ∗t ‖. (61)

Combining inequality (60) and (61) together, we can get the following contraction.

G[t] ≤ 1

1 + γ
G[t− 1], t ≥ 1.

where G[t] is defined as

G[t] =
1

ρτ
‖λ[t]− λ∗t ‖2 + ρ‖x[t]− x∗t ‖2 + ‖r[t]− r∗t ‖2Q +

ρ

η
‖Asr[t]− x[t]‖2. (62)

July 19, 2017 DRAFT



Telescoping the above inequality for all iterations t, we arrive that

G[t] ≤
(

1

1 + γ

)t
D0, (63)

where D0 is the initial distance to the optimal solution set,

D0 =
1

ρτ
‖λ[0]− λ∗0‖2 + ρ‖x[0]− x∗0‖2 + ‖r[0]− r∗0‖2Q +

ρ

η
‖Asr[0]− x[0]‖2.

Therefore, the theorem follows.

Define an auxiliary queue λ̂dn[t] that evolves according to (11). Initializing the auxiliary queue with λ̂dn[0] =

M + ρτ
∑
l∈O(n) ηl, where ηl is the upper bound of the capacity of link l. Then we can prove by induction that

λ̂dn[t] = λdn[t] +M + ρτ
∑

l∈O(n)

ηl,∀t, d ∈ D, n ∈ N\d.

Since λdn[t] ≥ −M, ∀t, n, d by assumption, we have that

λ̂dn[t] ≥ ρτ
∑

l∈O(n)

ηl,∀t, d ∈ D, n ∈ N\d.

Then the auxiliary queue λ̂dn[t] satisfies

λ̂dn[t] =

λ̂dn[t− 1]− ρτ
∑

l∈O(n)

rdl [t]


+

+ ρτ
∑
l∈I(n)

rdl [t] + ρτ
∑
f∈F

xf [t]1{sf=n,df=d},∀t, d ∈ D, n ∈ N\d.

Based on the fact that ρτ > 0, we can rewrite the above updating formula as

λ̂dn[t]

ρτ
=

 λ̂dn[t− 1]

ρτ
−
∑

l∈O(n)

rdl [t]


+

+
∑
l∈I(n)

rdl [t] +
∑
f∈F

xf [t]1{sf=n,df=d}.

We next prove that Qdn[t] ≤ λ̂dn[t]/ρτ,∀t ≥ 1 by induction. For t = 0, we have Qdn[0] = 0 ≤ λ̂dn[0]/ρτ . Suppose

that it holds for k = t− 1, then for k = t, we have

Qdn[t] ≤

Qdn[t− 1]−
∑

l∈O(n)

rdl [t]


+

+
∑
l∈I(n)

r̂dl [t] +
∑
f∈F

xf [t]1{sf=n,df=d}

≤

 λ̂dn[t− 1]

ρτ
−
∑

l∈O(n)

rdl [t]


+

+
∑
l∈I(n)

r̂dl [t] +
∑
f∈F

xf [t]1{sf=n,df=d}

=
λ̂dn[t]

ρτ
. (64)

Finally, since λ̂dn[t] = λdn[t] +M + ρτ
∑
l∈O(n) ηl and λdn[t] ≤M , we have

Qdn[t] ≤ 2M

ρτ
+
∑

l∈O(n)

ηl.

Let constant B = maxn∈N
∑
l∈O(n) ηl. Therefore, the lemma follows.

July 19, 2017 DRAFT



Let P ∈ RL(D+1) be a convex polyhedron, defined as

P =

{
(y, r)

∣∣∣∣y ∈ C, yl =

D∑
d=1

rdl , and rdl ≥ 0,∀l ∈ L, d ∈ D

}
.

Formally, we define following two problems. The first one is the scheduling component in Algorithm 1.

Definition 8. (New scheduling problem) Given arbitrary weights a ∈ RDL, b ∈ RDL and c ∈ RL, output an

(r∗,y∗) such that, for arbitrary (r,y) ∈ P ,

L∑
l=1

D∑
d=1

adl r
d
l

∗ − cl(rdl
∗ − bdl )2 ≥ −δ +

L∑
i=1

D∑
j=1

adl r
d
l − ci(rdl − bdl )2, (65)

and B((r∗,y∗), δ) ∈ P .

Definition 9. (MaxWeight scheduling) Given arbitrary weights w ∈ ZD, output an r∗ ∈ C such that

wT r∗ ≥ wT r,∀r ∈ C and rl ≥ 0. (66)

We can observe that the above defined problem is actually equivalent to the original MaxWeight scheduling

problem (13) based on the fact that

max
rdl

L∑
l=1

∑
d∈D

(Qdm[t]−Qdn[t])rdl , s.t.

[∑
d

rdl

]
∈ C, rdl ≥ 0.

⇐⇒ max
r

L∑
l=1

(Qdlm[t]−Qdln [t])rdll , s.t. r ∈ C, rdll ≥ 0,

where dl is defined as dl = arg maxd∈D(Qdm[t]−Qdn[t]), and the fact that the physical queue length in the QCA

method is an integer (number of packets). According to the above definitions, to prove the Theorem 4, we need to

construct a poly(L,F ) time reduction between the above two problems.

We first prove the “if” direction.

Based on the result in Lemma 7, we know that solving the new scheduling problem in poly(L,F, log(δ−1))

time if the separation oracle problem for polyhedron P can be solved in poly(L,F ) time. Since the constraints

yl =
∑D
d=1 r

d
l and rdl ≥ 0 in P can be explicitly checked in O(LF ) time, then the separation oracle problem for

polyhedron P can be reduced to the separation oracle problem for polyhedron C by the following procedure: given

a separation hyperplane cTy ≥ cTy′,∀y′ ∈ C, construct the hyperplane cTy + c′
T
r with cdl

′
= cl,∀l, d. Then, we

have

cTy + c′
T
r = cTy +

L∑
l=1

cl

D∑
D=1

rdl = cTy + cTy

≥ cTy′ + cTy′

= cTy′ + c′
T
r′,∀(y′, r′) ∈ P,

which implies that cTy+c′
T
r is also a separating hyperplane of polyhedron P . A classic result in the combinatorial
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optimization due to Grötschel and Lovász [34] establishes the equivalence between the linear optimization problem

and the separation oracle problem for the same polyhedron. Therefore, the new scheduling problem (65) can be

reduced to the original MaxWeight scheduling problem (66) in poly(L,F ) time.

We next prove the “only if” direction.

For any input instance w ∈ ZD in the MaxWeight scheduling problem, construct the input instance a ∈ RDL,

b ∈ RDL and c ∈ RL as following.

adl = (LDB2 + 1)wl,∀l, d,

bdl = 0,∀l, d, cl = 1,∀l.

The above, constant B is the upper bound of the all the link rate rdl . Suppose that we solve the new schedul-

ing problem in poly(L, F, log(δ−1)) time under the above input instance. Then we have an (r∗,y∗) such that

B((r∗,y∗), δ) ∈ P and for arbitrary (r,y) ∈ P ,

(LDB2 + 1)

L∑
l=1

wly
∗
l −

L∑
l=1

D∑
d=1

rdl
∗2 ≥ −δ + (LDB2 + 1)

L∑
l=1

wlyl −
L∑
l=1

D∑
d=1

rdl
2
.

The quantity y∗l and yl derives from y∗l =
∑D
d=1 r

d
l

∗ and yl =
∑D
d=1 r

d
l . We prove the following argument by

contradiction.
L∑
l=1

wly
∗
l ≥

L∑
l=1

wlyl,∀y ∈ Γ and yl ≥ 0,∀l.

Assume that there exists y ∈ Γ and yl ≥ 0,∀l such that
L∑
l=1

wly
∗
l <

L∑
l=1

wlyl. Then, we have

(LDB2 + 1)

L∑
l=1

wly
∗
l < (LDB2 + 1)

L∑
l=1

wlyl

(a)⇒(LDB2 + 1)

[
1 +

L∑
l=1

wly
∗
l

]
≤ (LDB2 + 1)

L∑
l=1

wlyl − δ

(b)⇒(LDB2 + 1)

L∑
l=1

wly
∗
l <

L∑
l=1

D∑
d=1

rdl
∗2 −

L∑
l=1

D∑
d=1

rdl
2 − δ + (LDB2 + 1)

L∑
l=1

wlyl

⇒(LDB2 + 1)

L∑
l=1

wly
∗
l −

L∑
l=1

D∑
d=1

rdl
∗2
< −

L∑
l=1

D∑
d=1

rdl
2

+ (LDB2 + 1)

L∑
l=1

wlyl − δ,

which is a contradiction. The above, step (a) is based on the assumption that the weight wl, feasible link rate yl, y∗l

are the integers, and that δ is sufficiently small, step (b) utilizes the definition that rdl ≤ B, ∀l, d. Utilizing the fact

that the optimal point of linear optimization lies in the vertex set of the feasible region, the y∗l is also the optimal

solution of the following optimization problem.

max
r

wT r, s.t. r ∈ C, rl ≥ 0,∀l.

which is clearly the solution of the MaxWeight scheduling problem (66). Therefore, the theorem follows.
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