
On space efficiency of algorithms working
on structural decompositions of graphs ∗

Michał Pilipczuk† Marcin Wrochna†

Dynamic programming on path and tree decompositions of graphs is a technique that
is ubiquitous in the field of parameterized and exponential-time algorithms. However,
one of its drawbacks is that the space usage is exponential in the decomposition’s width.
Following the work of Allender et al. [Theory of Computing, ’14], we investigate whether
this space complexity explosion is unavoidable. Using the idea of reparameterization of
Cai and Juedes [J. Comput. Syst. Sci., ’03], we prove that the question is closely related
to a conjecture that the Longest Common Subsequence problem parameterized
by the number of input strings does not admit an algorithm that simultaneously uses
XP time and FPT space. Moreover, we complete the complexity landscape sketched
for pathwidth and treewidth by Allender et al. by considering the parameter tree-depth.
We prove that computations on tree-depth decompositions correspond to a model of
non-deterministic machines that work in polynomial time and logarithmic space, with
access to an auxiliary stack of maximum height equal to the decomposition’s depth.
Together with the results of Allender et al., this describes a hierarchy of complexity
classes for polynomial-time non-deterministic machines with different restrictions on
the access to working space, which mirrors the classic relations between treewidth,
pathwidth, and tree-depth.

∗A preliminary version of this paper appeared in the Proceedings of the 33rd Symposium on Theoretical Aspects
of Computer Science (STACS’16).
The research of both authors is supported by Polish National Science Centre grant DEC-2013/11/D/ST6/03073.
During the work on these results, Michał Pilipczuk held a post-doc position at Warsaw Center of Mathematics and
Computer Science, and was supported by the Foundation for Polish Science via the START stipend programme.

†Institute of Informatics, University of Warsaw, Poland, {michal.pilipczuk,m.wrochna}@mimuw.edu.pl.

1

ar
X

iv
:1

50
9.

05
89

6v
2

 [
cs

.C
C

]
 1

2
M

ay
 2

01
6

1. Introduction

Treewidth is a graph parameter that measures how much a graph resembles a tree. Intuitively, a
graph has treewidth s if it can be decomposed into parts (called bags) of size at most s+ 1 so that
this decomposition, called a tree decomposition, has the shape of a tree. While initially introduced
by Robertson and Seymour in their Graph Minors project [47], treewidth has found numerous
applications in the field of algorithms. This is mostly due to the fact that many problems that are
intractable on general graphs, become efficiently solvable on graphs of small treewidth using the
principle of dynamic programming. Theorems of Courcelle [17] and of Arnborg et al. [5] explain that
every decision or optimization problem expressible in Monadic Second Order logic can be solved in
time f(s)·n on graphs of treewidth s and size n, for some function f . While f can be non-elementary,
for many classic problems, like Vertex Cover, 3Coloring, or Dominating Set, the natural
dynamic programming approach yields an algorithm with running time O(cs ·n) for some typically
small constant c. This is important from the point of view of applications, because dynamic program-
ming procedures working on tree decompositions often serve as critical subroutines in more complex
algorithms, such as subexponential algorithms derived using the technique of bidimensionality [19],
or approximation schemes that use Baker’s approach [7]. Algorithms working on tree decompositions
are usually analyzed in the paradigm of parameterized complexity, where the width of the decomposi-
tion is the considered parameter. Nowadays, the study of problems parameterized by structural mea-
sures of the input, such as treewidth, is a classic topic of study in this field. We refer to textbooks [18,
20, 26] for a broad introduction, and to a recent survey of Langer et al. [35] for more specific results.

A certain limitation of dynamic programming on a tree decomposition is that it uses space expo-
nential in its width. In practical applications this is often a prohibitive factor, because the machine
is likely to simply run out of space much before the elapsed time exceeds tolerable limits. Therefore,
recently there is much focus on reducing the space complexity of exponential-time algorithms to
polynomial, even at the cost of slightly worsening the time complexity [6, 9, 27, 28, 39, 42]. Here,
the usage of algebraic tools proved to be an extremely useful approach. Unfortunately, algorithms
working on tree decompositions of graphs remain a family where virtually no progress has been
achieved in this matter. Therefore, a natural question arises: Can we reduce the space complexity of
algorithms working on tree decompositions while keeping (or moderately worsening) their time com-
plexity? The first explicit statement of this question known to us is due to Lokshtanov et al. [38], who
sketched how using a simple tradeoff one can obtain polynomial space complexity while increasing
the time complexity to 2O(s2) +O(n2). Later, the same question was asked by Langer et al. [35].

Following early completeness results of Monien and Sudborough [41] on bandwidth-constrained
problems and of Gottlob et al. [31] on conjunctive queries of bounded treewidth, Allender et
al. [4] recently initiated the systematic study of satisfaction complexity in small, but non-constant
path- and treewidth. Essentially, they observe that CSP-like problems—say, 3Coloring for
concreteness1—when limited to instances of small treewidth or pathwidth, are complete for certain
complexity classes under logspace reductions. More precisely, when the input graph is equipped
with a path decomposition of width at most s(n) ≥ log n, for some fixed constructible function s
of the input size, then 3Coloring (denoted in this case as pw-3Coloring[s]) is complete for the
class N[poly

time
, s(poly)

space
]: problems that admit non-deterministic algorithms working simultaneously

in polynomial time and space O(s(poly(n)). Similarly tw-3Coloring[s], where s(n) bounds the
width of a given tree decomposition, is complete for the class NAuxPDA[poly

time
, s(poly)

space
]; the

difference with N[poly
time

, s(poly)
space

] is that the algorithm can use an auxiliary push-down of unlimited

1Allender et al. use SAT parameterized by treewidth/pathwidth of its primal graph as an exemplary problem,
but SAT and 3Coloring can be easily seen to be equivalent under logspace reductions; see Lemma 12. In
this paper, we prefer to use 3Coloring as an exemplary hard CSP-like problem.

2

size, to which read/write access is only from the top. We remark that Allender et al. focus on a
different characterization by semi-unbounded fan-in (SAC) circuits; this characterization will not
be relevant to our work, and hence we omit it. While they state their results only for s(n) = logk n,
the proof works in the more general setting given below.

Theorem 1 ([4]). Let s(n) ≥ log n be a nice function2.
Then pw-3Coloring[s] is complete for N[poly

time
, s(poly)

space
] under logspace reductions, whereas tw-

3Coloring[s] is complete for NAuxPDA[poly
time

, s(poly)
space

] under logspace reductions.

Thus, the feasibility of various space-time tradeoffs for algorithms working on tree/path decom-
positions is equivalent to inclusions of corresponding complexity classes. For instance (assuming for
conciseness s(nc) = O(s(n)) for each constant c, e.g., s(n) = logk n for some k), pw-3Coloring[s]
is solvable in:

• time 2o(s(n) logn) and space 2o(s(n)) if and only if N[poly
time

, s
space

] ⊆ D[2o(s·log)

time
, 2o(s)
space

];

• time 2O(s(n)) and space poly(n) if and only if N[poly
time

, s
space

] ⊆ D[2O(s)

time
,poly
space

].

Similar statements can be inferred for treewidth. In contrast, the best known determinization
results come from a brute-force approach or from Savitch’s theorem3 [50], yielding respectively
(for constructible t(n) ≥ n and s(n) ≥ log t(n)):

N[t
time

, s
space

] ⊆ D[2O(s)

time
] = D[2O(s)

time
, 2O(s)

space
];

N[t
time

, s
space

] ⊆ D[s · log t
space

] = D[2O(s·log t)

time
, s · log t

space
].

In this manner, Allender et al. conclude that, intuitively speaking, achieving better time-space
tradeoffs for algorithms working on path and tree decompositions of small width would require
developing a general technique of improving upon the tradeoff of Savitch. As Lipton [36] phrased
it, “one of the biggest embarrassments of complexity theory is the fact that Savitch’s theorem has
not been improved [. . .]. Nor has anyone proved that it is tight”.
Allender et al. argue that such an improvement would contradict certain rescaled variants of

known conjectures about the containment of time- and space-constrained classes, in particular
the assumption that NL * SC; more precisely that the rescaled hierarchies built on top of these
two classes are somehow orthogonal—we refer to [4] for details. We consider the study of Allender
et al. not as a definite answer in the topic, but rather as an invitation to a further investigation
of links between the introduced conjectures and more well-established complexity assumptions.

Our Contribution. In the Longest Common Subsequence problem (LCS), we are given an
alphabet Σ and k strings s1, s2, . . . , sk over Σ, and the task is to compute the longest sequence
of symbols of Σ that appears as a subsequence in each si. The applicability of the LCS problem in,
e.g., computational biology, motivated many to search for faster or more space-efficient algorithms,
as the classical dynamic programming solution, running in time and space O(nk) (where n is the
length of each string and k the number of strings) is often far from practical. From the point of view
of parameterized complexity, LCS parameterized by k is W[t]-hard for every level t [12], remains
W[1]-hard even for a fixed-sized alphabet [45], and is W[1]-complete when parameterized jointly by

2By a nice function we mean a function s that is constructible and such that s(n)/ lgn is non-decreasing.
3There is also a simple simulation approach that tries each possible sequence of non-deterministic choices, proving

N[t
time

, s
space

] ⊆ D[t
space

], but in our context it is always worse than Savitch’s theorem.

3

k and `, the target length of the subsequence [32]. In a recent breakthrough, Abboud et al. [1] proved
that the existence of an algorithm with running time O(nk−ε), for any ε > 0, would contradict the
Strong Exponential Time Hypothesis. As far as the space complexity is concerned, only modest
progress has been achieved: The best known result is an algorithm of Barsky et al. [8], which
improves the space complexity to O(nk−1). This motivates us to formulate the following conjecture.

Conjecture 1. There is no algorithm for LCS that works in time nf(k) and space f(k)poly(n)
for a computable function f , where k is the number of input strings and n the total input length.

Quite surprisingly, we show that Conjecture 1 is closely related to the question about time-space
tradeoffs for algorithms working on path decompositions of bounded width.

Theorem 2. The following statements hold:

• Conjecture 1 implies the following: There is no algorithm for pw-3Coloring working in
time 2O(s)poly(n) and space 2oeff(s)poly(n) (for all values of width s).

• Conjecture 1 is implied by the following: There is an unbounded, computable function g, for
which pw-3Coloring cannot be solved in time 2s·g(s)poly(n) and space 2oeff(s)poly(n) (for
all values of width s).

Thus, Conjecture 1 is sandwiched between a weaker statement that it is impossible to achieve
subexponential space complexity while keeping single exponential time complexity, and a stronger
statement that this holds even if we allow the time complexity exponent to increase by some
(arbitrarily slowly growing) computable function of the width.

To prove Theorem 2, we use the results of Elberfeld et al. [25] who showed a completeness result
for LCS. Viewed from this perspective, Conjecture 1 is equivalent to a statement in parameterized
complexity about the impossibility of determinization results improving upon Savitch’s theorem
(we defer the definitions and discussion to Section 3). Using the ideas of Cai and Juedes [13] that
connected subexponential complexity to fixed-parameter tractability, we consider a reparame-
terized version of pw-3Coloring. This allows us to compare questions concerning time-space
tradeoffs for pw-3Coloring and determinization of N[t

time
, s
space

] classes to those concerning

parameterized classes and the complexity of LCS. In particular, we show that Conjecture 1 implies
NL 6⊆ D[poly

time
,poly log

space
] (the latter class being usually called SC) and is implied by a rescaled

version of the following stronger variant: NL 6⊆ D[2o(log2 n)

time
, no(1)

space
].

In the second part of this work, we complement the findings of Allender et al. [4] by considering
the graph parameter tree-depth. For a graph G, its tree-depth is equal to the minimum height
of a rooted forest T whose ancestor-descendant closure contains G as a subgraph; the forest
T is then called a tree-depth decomposition of G. Tree-depth of a graph is lower bounded by
its pathwidth and upper bounded by its treewidth times lg n. Our motivation for considering
this parameter is two-fold. First, recent advances have uncovered a wide range of topics where
tree-depth appears naturally. For instance, tree-depth plays an important role in the theory of
sparse graphs developed by Nešetřil and Ossona de Mendez [43], is the key factor in classification of
homomorphism problems that can be solved in logspace [15], and corresponds to classes of graphs
where the expressive power of First-Order logic and Monadic Second-Order logic coincides [22].
It was also rediscovered several times in different contexts and under different names: minimum
elimination tree height [46], ordered chromatic number [33], vertex ranking [11], or the maximum
number of introduce nodes on a root-to-leaf path in a tree decomposition of a graph [28].

Second, algorithms working on tree-depth decompositions of small height model generic exponential-
time Divide&Conquer algorithms. In this approach, after finding a small, usually balanced separator

4

S in the graph, the algorithm tries all possible ways a solution can interact with S, and solves
connected components of G − S recursively. A run of such an algorithm naturally gives rise to
a tree-depth decomposition of the graph, where S is placed on top of the decomposition, and
decompositions of the components of G− S are attached below it as subtrees. The maximum total
number of separator vertices handled at any moment in the recursion corresponds to the height
of the decomposition. Thus, many classic Divide&Conquer algorithms, including the ones derived
for planar graphs using the Lipton-Tarjan separator theorem [37], can be reinterpreted as first
building a tree-depth decomposition of the graph using a separator theorem, and then running
the algorithm on this decomposition.
Most importantly for us, when implemented using recursion, the algorithms working on tree-

depth decompositions run in polynomial space. For instance, such an algorithm for 3Coloring
on a tree-depth decomposition of depth s runs in time 3s · poly(n) and space O(s + log n) (see
Lemma 26), which places td-3Coloring[s] in D[2O(s)poly

time
, s+ log

space
] = D[s+ log n

space
]. This is imme-

diate for CSP-like problems like 3Coloring, but recently Fürer and Yu [28] showed that algebraic
transforms can be used to reduce the space usage to polynomial in n also for other problems, like
counting perfect matchings or dominating sets. In Section 5, we describe how this approach gives an
3s · poly(n)-time poly(n)-space algorithm for Dominating Set in more detail, and then improve
the space usage to O(s · log n) using Fourier transforms and the Chinese remainder theorem. This
means that the reduction of space complexity that is conjectured to be impossible for treewidth
and pathwidth, actually is possible for tree-depth. Therefore, we believe that it is useful to study
the model of computations standing behind low tree-depth decompositions, in order to understand
how it differs from the models for treewidth and pathwidth.

Consequently, mirroring Theorem 1, we prove that computations on tree-depth decompositions
exactly correspond to the class NAuxSA[poly

time
, log
space

, s
height

]: problems which can decided by a

non-deterministic Turing Machine that uses polynomial time and logarithmic working space, but
also has access to an auxiliary stack of maximum height s. The stack can be freely read by the
machine, just like the input tape, but the write access to it is only via push and pop operations.

Theorem 3. Let s(n) ≥ log2 n be a nice function. Then td-3Coloring[s] is complete for
NAuxSA[poly

time
, log
space

, s(poly)
height

] under logspace reductions.

Thus, computations on tree-depth and path decompositions differ by the access restrictions
to O(s) space used by the machine. While for pathwidth this space can be accessed freely, for
tree-depth all of the space apart from an O(log n) working buffer has to be organized in a stack.
The proof of Theorem 3 largely follows the approach of Akatov and Gottlob [3], who proved a

different completeness result for the class NAuxSA[poly
time

, log
space

, log2

height
], which they call DC1. The

main idea is to regularize the run of the machine so that the push-pop tree has the rigid shape of
a full binary tree. Then we can use this concrete structure to “wrap around” gadgets encoding an
accepting run of a regularized NAuxSA machine. However, the motivation in the work of Akatov
and Gottlob was answering conjunctive queries in a hypergraph by exploiting a kind of balanced
decomposition, and hence the problem proven to be complete for DC1 is a quite general and
expressive problem originating in database motivations; see [2, 3] for details. In our setting, in
order to get a reduction to 3Coloring, we need to work more to encode an accepting run. In
particular, to encode each part of the computation where no push or pop is performed, instead
of producing a single atom in a conjunctive query, we use computation gadgets that originate
in Cook’s proof of the NP-completeness of SAT. The assumption that the computation has a
polynomial number of steps is essential here for bounding the tree-depth of each such gadget. This
way, Theorem 3 presents a more natural complete problem for DC1.

5

Another difference is that Theorem 3 works for any well-behaved function s(n) ≥ log2 n, as
opposed to the bound s(n) = log2 n inherent to the problem considered by Akatov and Gottlob.
For this, the crucial new idea is to increase the working space of the machine to s(n)/ log n in
order to be able to perform regularization – a move that looks dangerous at first glance, but turns
out not to increase the expressive power of the computation model. This proves the following
interesting by-product of our work.

Theorem 4. Let s(n) ≥ log2 n be a nice function. Then

NAuxSA[poly
time

, log
space

, s(poly)
height

] = NAuxSA[poly
time

, s(poly)/ log
space

, s(poly)
height

].

The following determinization result for NAuxSA machines follows from the observation that
td-3Coloring[s] can be solved in D[2O(s)poly

time
, s+ log

space
] = D[s+ log n

space
].

Theorem 5. Let s(n) ≥ log2(n) be a nice function. Then

NAuxSA[poly
time

, log
space

, s(poly)
height

] ⊆ D[s(poly)
space

].

Theorem 5 for s(n) = log2 n also follows from the work of Akatov and Gottlob [3]. Observe that
now the justification for the assumption s(n) ≥ log2 n becomes apparent: for, say, s(n) = log n,
the theorem would state that L = NL, a highly unexpected outcome.

We find Theorem 5 interesting, because a naive simulation of the whole configuration space for
NAuxSA would require space exponential in s. It appears, however, that the exponential blow-up
of the space complexity can be avoided. We do not see any significantly simpler way to prove
this result other than going through the td-3Coloring[s] problem, and hence it seems that the
tree-depth view gives a valuable insight into the computation model of NAuxSA.
The classic relations between treewidth, pathwidth and tree-depth are, through completeness

results, mirrored in a hierarchy between NAuxPDA, N, and NAuxSA classes, as detailed in the
concluding section. In particular, this answers a question of Akatov and Gottlob [2, 3] about the
relation of NAuxSA[poly

time
, log
space

,poly log
height

] to other classes in NP.

Finally, using Theorem 3 we also give an alternative view on NAuxSA computations using
alternating Turing machines in Theorem 27, answering another question of Akatov and Gottlob.
From this point of view, Theorem 5 is immediate.

Outline. In Section 2 we give preliminaries, in Section 3 we prove Theorem 2 and related results,
and in Section 4 we prove Theorem 3 and derive corollaries from it (Theorems 4 and 5). Section 5
describes the algorithm for Dominating Set in graphs of low tree-depth. We finish by concluding
remarks in Section 6. The discussion of how standard NP-hardness reductions preserve parameters
linearly is deferred to Appendix A.

2. Preliminaries

2.1. Reductions and complexity classes

For two languages P,Q, we write P ≤L Q when P is logspace reducible to Q. Most of the
complexity classes we consider are closed under logspace reductions.
Because we handle various measures of complexity and compare a wide array of classes that

bound two measures simultaneously, we introduce the following notation. A complexity class is first
described by the machine model: D, N, A denote deterministic, non-deterministic, and alternating

6

(see [49]) Turing machines, respectively. Then, in square brackets, bounds on complexity measures
are described (up to constant factors) as a list of functions with the name of the measure it bounds
underneath. All functions except the symbol f (which we reserve for classes in parameterized
complexity) are functions of the input size n. For example, for t, s : N→ N, D[s

space
] denotes the

class of languages recognizable by deterministic Turing machines using at most O(s(n)) space,
usually known as DSpace(s(n)); similarly N[t

time
, s
space

] is often denoted NTiSp(t(n), s(n)). We

write lg for the logarithm with base 2, log(n) when the base is irrelevant and poly(n) for nO(1). As
customary for the O-notation, a complexity class stated with a bound that is a family of functions
(instead of a single function) is defined as the sum of classes over all functions in the family. For
example, D[poly

time
] =

⋃
k∈ND[nk

time
] = P and N[log

space
] = NL.

An auxiliary push-down or stack is denoted as AuxPDA or AuxSA, respectively: the difference
is that a push-down can only be read at the top, while a stack can be read just as a tape (both
can be written to only by pushing and popping symbols at the top), see e.g. [51]. The measure
named height is the maximum height of the push-down or stack.

We say a function s : N→ N is constructible if there is a Turing machine which given a number n
in unary outputs s(n) in unary using logarithmic space; in particular, this implies s(n) ≤ poly(n).
A function s is nice if it is constructible and s(n)

lgn is non-decreasing; note that this implies that
s(n) itself is also non-decreasing. For simplicity, we will assume all functions s : N→ N describing
complexity bounds to be nice.
Note that logspace reductions can blow-up instance sizes polynomially, hence the closure of

N[poly
time

, s
space

] under such reductions is N[poly
time

, s(poly)
space

], for example. These are equal for functions

s(n) such that s(poly(n)) ≤ O(s(n)) (that is, if for every c > 0 there is a d > 0 such that
s(nc) ≤ ds(n)). This includes lgk(n) for any k ≥ 1 and lg n lg lgn, for example; however, one can
construct artificial examples that are polylogarithmically bounded but fail to have this property.

2.2. Structural parameters

We recall the definitions of treewidth, pathwidth and tree-depth. For conciseness, we will refer
to the certifying structures defined below as decompositions for all three parameters.

Definition 6 (treewidth). A tree decomposition of an undirected graph G is a tree T together
with a collection of sets of vertices of G (called bags) Xt indexed by nodes t ∈ T , such that:

• every vertex of G is in at least one bag;

• for every edge uv of G, there is a bag containing both u and v; and

• for every vertex v of G, the set {t ∈ T | v ∈ Xt} induces a connected subtree of T .

The width of a tree decomposition is defined as maxt∈T |Xt|−1. The treewidth of G is the minimum
width over all possible tree decompositions of G.

Definition 7 (pathwidth). A path decomposition of an undirected graph G is a tree decomposition
(T , (Xt)t∈T) in which T is a path. The pathwidth of G is the minimum width over all possible
path decompositions of G.

Definition 8 (tree-depth). A tree-depth decomposition of an undirected graph G is a rooted forest
T (a disjoint union of rooted trees) together with a bijective mapping µ from the vertices of G to
the nodes of T , such that for every edge uv of G, µ(u) is an ancestor of µ(v) or µ(v) is an ancestor of
µ(u) in T . The depth of a rooted forest is the largest number of nodes on a path between a root and
a leaf. The tree-depth of G is the minimum depth over all possible tree-depth decompositions of G.

7

For technical reasons, we assume that in all given tree and path decompositions, |T | ≤ 2|V (G)|2;
standard methods allow to prune any decomposition to this size in logspace, see [34, Lemma 13.1.2].

For a graph problem, such as 3Coloring, a structural parameter π ∈ {td, pw, tw}, and a nice
function s : N→ N, we define π-3Coloring[s] to be the decision problem where given an instance
G of 3Coloring and a π-decomposition of G, we ask whether the decomposition has width at
most s(|V (G)|) and G is a yes-instance of 3Coloring. The assumption that a decomposition
is given on input is to factor away the complexity of finding it, which is a problem not directly
relevant to our work. Note that the validity and width/depth of a decomposition given in any
natural encoding can easily be checked in logarithmic space.

Observe also that for any c > 0, π-3Coloring[s(n)] is equivalent to π-3Coloring[s(nc)] under
logspace reductions. Namely, a reduction from π-3Coloring[s(n)] to π-3Coloring[s(nc)] is
trivial, while the reverse reduction follows easily by padding: adding isolated vertices up to size
nc that do not change the answer nor the value of π. Since we assume s to be nice, we have
s(n)
lgn ≤

s(nc)
lgnc , hence c · s(n) ≤ s(nc) for any c ≥ 1. This implies that π-3Coloring[c · s(n)] is

equivalent to π-3Coloring[s(n)].

A hierarchy between these classes immediately follows from well-known inequalities between the
parameters td, pw, tw, shown in the next lemma and corollary. Every tree-depth decomposition
can be turned into a path decomposition by taking bags to be the vertex sets of all the root-to-leaf
paths, and ordering them as in a left-to-right scan of the tree. Every path decomposition is trivially
a tree decomposition. Every tree decomposition allows to find small separators, which can be used
to recursively build a tree-depth decomposition, yielding the last inequality—details can be found
e.g. in [44, Corollary 2.5], we show how to execute them effectively below for completeness.

Lemma 9. There is a constant c ∈ N such that for any graph G, td(G) ≥ pw(G) ≥ tw(G) ≥
td(G)/(c · log |V (G)|). Furthermore, each inequality is certified by an algorithm that transforms
the respective graph decompositions in logspace.

Corollary 10. Let s : N→ N be a nice function. Then

td-3Coloring[s] ≤L pw-3Coloring[s] ≤L tw-3Coloring[s] ≤L td-3Coloring[s · log].

Proof of Lemma 9. The algorithms for the first two inequalities are trivial. For the third inequality,
a straightforward implementation would be problematic because of recursion and the need to
remember a subset of vertices. We now show how to circumvent these issues.

Let (T , (Xt)t∈T) be a given tree decomposition of a graph G of width k. Elberfeld et al. [23, Theo-
rem 14] showed that there is a constant c ∈ N and a logspace algorithm that given a tree T , outputs
a width-3 tree decomposition (S, (Ys)s∈S) of T such that S is a full binary tree of depth c·log |V (T)|
(their implementation in fact uses a circuit model even more restrictive than logspace). Let Zs =⋃
t∈Ys Xt; then it is easy to check that (S, (Zs)s∈S) is a tree decomposition of G of width at most 4k+

3, also computable in logspace. Note that S is rooted, so we can consider the ancestor relation on it.
Since S has logarithmic depth, we can construct the following tree-depth decomposition of G.

For s ∈ V (S), let Z̃s be the set of those vertices of Zs, for which s is the top-most node of S
to whose bag s belongs. Observe that {Z̃s : s ∈ V (S)} is a partition of V (G). Let S ′ be the tree
obtained by replacing every node s of S by a path Ps of |Z̃s| nodes, respecting the ancestor relation
(so that the last vertex of Ps becomes the parent of the first vertex of Ps′ for every child s′ of s).
Consider any mapping µ : V (G)→ V (S ′) which bijectively assigns vertices in each Z̃s to nodes
of Ps in an arbitrary order. We claim that (S, µ) defines a tree-depth decomposition. To see this,
consider any edge uv of G. The vertices u, v must be contained in some common bag Xt and hence
in some bag Zs, s ∈ V (S). Let Zs(u), Zs(v) be the topmost bags containing u, v respectively, then
u ∈ Z̃s(u), v ∈ Z̃s(v). Both s(u) and s(v) must be ancestors of s in S, and hence they are themselves

8

related by the ancestor relation. Since the ancestor relation was preserved by the construction,
µ(u) is related to µ(v). This shows correctness.

Membership in Z̃s, as well as |Z̃s| can be calculated on the fly in logspace, hence it is straightfor-
ward to perform the whole construction in logspace. The depth of S ′ is at most 3k · c · log |T |. Since
we assumed that in all given decompositions |T | ≤ 2|V (G)|2, the depth is O(k · log |V (G)|).

2.3. Equivalence of problems

We say that a reduction between two graph problems preserves structural parameters (linearly) if for
each parameter π ∈ {tw, pw, td} there is an integer c ∈ N such that for any instance with graph G,
the graphH produced by the reduction satisfies π(H) ≤ c·π(G), and moreover a decomposition of G
of width/depth at most s can be transformed in logspace into a decomposition of H of width/depth
at most c ·s. Many known NP-hardness reductions can be shown to have this property, in particular
those that replace each vertex or edge with a gadget of bounded size (see the descriptions of ‘local
replacement’ and ‘component design’ methods in the classical work of Garey and Johnson [29]). For
example, 3Coloring and variants of SAT are equivalent in all our theorems, while Vertex Cover
or Dominating Set (defined in [29]) are at least as hard. The proofs are deferred to the appendix.

Definition 11. Let φ be a CNF formula. The primal (Gaifman) graph of φ is the graph with a
vertex for each variable of φ and an edge between every pair of variables that appear together
in some clause. The incidence graph of φ is the bipartite graph with a vertex for each clause and
each variable of φ and an edge between each clause and every variable contained in that clause.

Lemma 12 (♠). The following problems are equivalent under logspace reductions that preserve
structural parameters: 3Coloring, CNF-SAT (using a decomposition of the primal graph), k-SAT
(using a decomposition of either the primal or incidence graph) for each k ≥ 3.

Furthermore, the following problems admit logspace reductions that preserve structural parameters
from the above problems: Vertex Cover, Independent Set, Dominating Set.

We will often consider problems like π-3-SAT or π-CNF-SAT, for π ∈ {tw, pw, td}, in which case
we always mean the width/depth of a given decomposition of the primal graph of the formula.

2.4. Cook’s theorem with bounded space

In our reductions we will need to describe Turing machine computations using CNF formulas,
just as in Cook’s theorem on the NP-completeness of CNF-SAT. It has already been observed
by Monien and Sudborough [41] that Cook’s reduction applied to machines with bounded space
yields formulas of bounded width. The only difference is that in this setting a machine’s worktape
space bound can be significantly shorter than the input word—the read-only tape on which the
input is placed must be treated differently. One standard solution would be to modify the machine
to make it oblivious, i.e., simulate tape operations so that head movements are independent of
the input; the reduction can then encode appropriate input symbols exactly where they would be
read. We employ a different approach by encoding the reading process directly into the formula,
providing the input to each computation step with a copy of the following simple random access
gadget. This has the advantage of making our reductions slightly more explicit and adaptable.

Lemma 13 (Random access gadget). For every n ∈ N, there is a 3-CNF formula including
named variables: x0, . . . , xn−1 (‘input’), y0, . . . , ydlgne−1 (‘index’), and z (‘output’), such that:
every assignment of the named variables can be extended to a satisfying assignment if and only if
it satisfies z = xȳ. Here ȳ is the number encoded in binary by the index variables (we require z = 0
if ȳ ≥ n). The formula has O(n) variables in total, tree-depth O(log n) (of the primal graph), and
can be constructed using O(log n) space, given n.

9

Proof. Construct a full binary tree of variables, of depth dlg ne. Let the root be z and name the
leaves x0, x1, . . . , x2dlgne−1. Add clauses of size 1 requiring xi = 0 for i ≥ n. Introduce new variables
y0, . . . , ydlgne−1. For each internal variable v at level j of the tree, with children v0, v1, enforce that
v = v0 if yj is false and v = v1 otherwise (using four clauses of size 3 on the variables {v, v0, v1, yj}).
This enforces that any assignment to the input and index variables can be extended to a satisfying
assignment in exactly one way, in which furthermore z = xȳ. A tree-depth decomposition of
logarithmic depth is obtained from the full binary tree simply by mapping the index variables
to a path of length dlg ne attached above the root of the tree.

The following lemma shows more precisely (for our needs) how a Turing machine computation
can be encoded in a formula (a computation gadget) – the crucial part of Cook’s theorem. In
reductions involving stack machines it will also describe fragments of computation without any
push/pop operation. The contents of the stack will be considered as a separate read-only input tape,
which we treat differently because, while smaller in size, the content is not given to the reduction.

Note that Lemmas 14 and 12, applied for h = 0, immediately give the first part of Theorem 1: for
nice s(n) ≥ log n, pw-3Coloring[s] is complete for N[poly

time
, s(poly)

space
] under logspace reductions.

Lemma 14 (Computation gadget). Let M be a non-deterministic Turing machine over alphabet
Σ with two read-only input tapes and one work tape. Given an input word α over Σ of length n
and integers s, t, h such that lg n+ lg h ≤ O(s), one can using O(log(n+ s+ t+ h)) space output
a CNF formula such that:

• The formula has O(t · (s+h+n)) variables, including named variables u1, . . . , us′ , v1, . . . , vs′ ,
w1, . . . , wh′, where s′ ∈ Θ(s) and h′ = h · dlg |Σ|e. These variables respectively describe two
configurations u, v of M (up to s symbols of the working tape, heads’ positions encoded in
binary, and the state), and a word w̄ over Σ of length h.

• Any assignment to the named variables can be extended to a satisfying assignment iff the
computation of M on inputs α and w̄ can lead (by some sequence of non-deterministic
choices) from the configuration u to the configuration v, using at most t steps and s space.

• The formula’s primal graph has pathwidth O(s+h) and tree-depth O(s · log(n+s+ t+h)+h).
Moreover, appropriate decompositions can be output within the same space bound.

Proof. For simplicity of presentation, we assume input tapes use the binary alphabet. A larger
alphabet can be reduced by encoding each symbol using a block of dlg |Σ|e bits, and applying
straightforward modifications to the machine M .
As in Cook’s original proof, we create t blocks of s′ ∈ Θ(s) variables each, describing the

configuration at each step. The first and last blocks contain variables (ui)1≤i≤s′ and (vi)1≤i≤s′ ,
respectively, to encode configurations u and v. Additionally, variables (wi)1≤i≤h are created.
We may assume that machine M always keeps track of the indices on which the heads of the

input tapes are placed. These indices are encoded in binary in pre-defined buffers on the working
tape (index buffers), and each time the head on an input tape is moved, the machine updates
the index. To encode reading access to the input tapes in the formula, for each step and each
input tape, we create a copy of the random access gadget of Lemma 13. For the first input tape,
the gadget has its input variables fixed with the bits of the word α (given to the reduction). For
the second input tape, the gadget has its input variables identified with w1, . . . , wh. The index
variables are identified with the variables of the block that encode the contents of respective index
buffers. The machine behavior is then encoded with clauses binding variables of two consecutive
blocks, including the output bit z of each random-access gadget, exactly as in Cook’s proof: the
clauses verify the correctness of the transition. In doing this, we allow at each step a transition
that does not change the configuration in any way. Transitions that would move the working tape’s

10

head outside the first s symbols are not allowed. This construction makes the formula satisfiable
exactly with assignments in which the t-th block describes a configuration reachable in at most
t steps and s space (from the configuration described by u variables).
It remains to bound the pathwidth and the tree-depth of the constructed formula’s primal

graph. To construct a path decomposition, create t − 1 bags A1, A2, . . . , At−1, where each Ai
contains a pair of consecutive configuration blocks i and i+ 1 (that is, variables describing the
configuration just before and after a single computation step) and all the variables (wi)1≤i≤h.
Consider one of the two random-access gadgets created for step i, and let B1, . . . , Bb be the
bags of the provided path decomposition of this gadget (|Bj | = O(log n + log h) ≤ O(s) for
each 1 ≤ j ≤ b). Similarly, let B′1, . . . , B′b′ be the bags of the provided path decomposition
of the second gadget (|B′j | ≤ O(s)). Then the final decomposition is obtained by adding bags
Ai ∪B1, . . . , Ai ∪Bb, Ai ∪B′1, . . . , Ai ∪B′b′ immediately after Ai. From the construction it follows
that each bag contains at most O(s′ + h+ s) = O(s+ h) variables and each clause binds a set of
variables contained in one of the bags. For the tree-depth bound, consider the above decomposition
with the variables w1, . . . , wh removed. Its width is O(s) and hence using Lemma 9, we can obtain
a tree-depth decomposition of the formula’s primal graph of depth O(s · log(n+ s+ t+ h)) if we
removed the w variables. The variables can then be reintroduced by placing them atop all others
in the decomposition, in any order, which increases the tree-depth by at most h.

3. Connections with tradeoffs for LCS

There is no algorithm for pw-3Coloring working in
time 2oeff(s2)nO(logn) and space 2oeff(s)poly(n)

⇓ (trivial)
For some computable unbounded function g

there is no algorithm for pw-3Coloring working in
time 2s·g(s)poly(n) and space 2oeff(s)poly(n)

⇓ (Lemma 20)

There is no algorithm for pw-3Coloring working in
time nf(s/ lgn) and space f(s/ lg n)poly(n) for a computable f

⇓ (Lemma 18)

There is no algorithm for pw-3Coloring working in
time 2O(s)poly(n) and space 2oeff(s)poly(n)

⇓ (trivial)

There is no algorithm for pw-3Coloring working in
time 2O(s)poly(n) and space poly(s, log n)

N[fpoly, f log] 6⊆ D[nf+log, fpoly] ⇐⇒
(Lemma 21)

NL 6⊆ D[2oeff(log2 n)

time
, noeff(1)

space
]

res
cal

ing

Conjecture 1
(Thm 15) m

N[fpoly, f log] 6⊆ D[nf , fpoly]

⇐⇒
(Thm 17)

NL 6⊆ SC ⇐⇒
(Lemma 19)

Figure 1: A summary of the relationships between various statements related to Conjecture 1.

In this section we relate Conjecture 1 to statements of varying strength concerning complexity
class containments, or time-space tradeoffs for pathwidth-constrained problems. The results are sum-
marized in Figure 1. Here, we consider algorithms that work uniformly for all values of pathwidth,
with complexity depending on both the input size n and the pathwidth s of a given decomposition.

We use the notion of pl-reduction between parameterized problems: it is an algorithm that

11

transforms an instance of one problem with parameter k into an equivalent instance of another
problem with parameter k′ ≤ f(k), working in space f(k) +O(log n), for some computable func-
tion f . Following Elberfeld et al. [25] we define4 N[fpoly, f log] as the class of parameterized
problems that can be solved in non-deterministic time f(k)poly(n) and space f(k) log(n) for
some computable function f , where k is the parameter. Similarly, D[nf , fpoly] is the class of
parameterized problems that can be solved in deterministic time nf(k) and space f(k)poly(n)
for some computable function f . Further classes D[t, s] will be defined analogously for different
expressions t, s. All those mentioned in the article are closed under pl-reductions. The reason we
do not use the better known fpt-reductions is that N[fpoly, f log] is not expected to be closed
under such reductions; its closure under fpt-reductions has been called WNL by Guillemot [32],
but Elberfeld et al. [25] argue that a different parameterized class should have this name.
We use the notation oeff(h(n)) as an effective variant of o(h(n)); formally, for f, h : N→ N we

write f = oeff(h) if there is a non-decreasing, unbounded, computable function g(n) such that
f = O(hg). The inverse of a function f is the function f−1(n) := max{i | f(i) ≤ n}; observe that
f(f−1(n)) ≤ n ≤ f−1(f(n)). Cai et al. [14, Lemmas 3.2, 3.4] showed how computable bounds f
and their inverses can be assumed to be computable in appropriately bounded space (logarithmic
in f(n)) without loss of generality. We use this implicitly when computing tradeoffs in this section,
and refer to [14] for further details.

3.1. Completeness results and statements equivalent to Conjecture 1

Conjecture 1 refers to the following parameterized problem.

LCS Parameter: k
Input: A finite alphabet Σ, k strings s1, s2, . . . , sk over Σ, and an integer `.
Question: Is there a common subsequence of s1, s2, . . . , sk of length at least `?

We would like to stress that in this variant, the alphabet Σ is not of fixed size, but is given on the
input and can be arbitrarily large. Under standard fpt-reductions, LCS is known to be W[t]-hard
for every level t [12]. Moreover, there is some fixed alphabet size for which the problem remains
W[1]-hard [45], and the problem is also W[1]-complete when parameterized jointly by k and ` [32].
This makes it very hard from the parameterized perspective. From the point of view of pl-reductions,
Elberfeld et al. [25], drawing on the work of Guillemot [32], pinpointed the exact complexity of LCS.

Theorem 15 ([25]). LCS is complete for N[fpoly, f log] under pl-reductions.

Thus Conjecture 1 is in fact a general statement about parameterized complexity classes.

Corollary 16. Conjecture 1 holds if and only if N[fpoly, f log] 6⊆ D[nf , fpoly].

Similarly as described in the introduction, the best known determinization results (a brute-force
approach and Savitch’s theorem) imply only that N[fpoly, f log] is contained in classes D[nf , nf]
(commonly known as XP) and D[nf(k)·logn, f(k) · log2 n].

To relate parameterized tractability bounds to subexponential bounds, we use the following
tool from Cai and Juedes [13]. For a parameterized problem Π, its reparametrization (or extended
version) Πlogn is defined as the same problem parameterized by s/ lg n, where s was the old
parameter. In particular, pw-3Coloringlogn is the following parameterized problem:

pw-3Coloringlogn Parameter: k
Input: A graph G with a path decomposition of width k · lg n
Question: Is G 3-colorable?

4Throughout this section, in classes N[·, ·] and D[·, ·] we always use time and space as the first and the second
argument, respectively, hence we drop the subscripts for readability.

12

Similarly as in Theorem 1, pathwidth-constrained problems turn out to be complete for non-
deterministic computation with simultaneous time and space bounds.

Theorem 17. pw-3Coloringlogn is complete for N[fpoly,f log] under pl-reductions.

Proof. To show containment, we give a non-deterministic algorithm solving pw-3Coloring in
time poly(n) ans space O(s+ log n), where s is the pathwidth of the graph decomposition given
on the input. The algorithm proceeds on consecutive bags of the pathwidth decomposition by
guessing the color of every vertex when it is introduced for the first time and comparing it with
previously guessed colors of adjacent vertices in the bag. At any moment, only the colors of all
vertices in the current bag and the position in the decomposition need to be remembered, hence
O(s+ log n) space suffices. Correctness follows from the fact that every color is guessed exactly
once and every edge is checked, because every pair of adjacent vertices is contained in some bag.
Since k = s

lgn is the parameter of the rescaled problem, the same algorithm works in time poly(n)
and space O(k log n+ log n), and hence in time f(k)poly(n) and space O(f(k) log n) for f(k) = k.
To show hardness, consider any non-deterministic Turing machine M solving a problem with

input size n and parameter k in time t(n, k) = f(k)poly(n) and space s(n, k) = O(f(k) log n), for
some computable function f . Given an instance α of this problem with size n and parameter k,
the reduction of Lemma 14, with h = 0, t = t(n, k), s = s(n, k), will output a CNF-SAT instance
ϕ, using O(log(n+ s+ t))) = O(log f(k) + log n) space. We can easily add clauses on the named
variables to enforce the correct shape of the initial configuration and that the final configuration is
accepting. Hence, the formula can be modified so that ϕ is satisfiable if and only ifM accepts α. The
lemma further provides a path decomposition of ϕ’s primal graph of width O(s) = O(f(k) log n);
it is easy to verify that the additional clauses do not spoil this bound. Using Lemma 12 we can
then reduce this instance to an instance of pw-3Coloring with a path decomposition of width
O(f(k) log n), that is, to pw-3Coloringlogn with parameter k′ = O(f(k)).

Conjecture 1 is thus equivalent to the statement that pw-3Coloringlogn is not in D[nf , fpoly],
in other words, that pw-3Coloring cannot be solved deterministically in time nf(s/ lgn) and space
f(s/ lg n)poly(n) for any computable function f , where s is the width of the input path decomposi-
tion. To contrast pathwidth with tree-depth, one may easily observe (see Lemma 26) that an instance
of 3Coloring with a tree-depth decomposition of depth s can be solved deterministically using
O(s+ log n) space. This places td-3Coloringlogn in D[nf , f log], a class usually known as XL.

3.2. Statements weaker than Conjecture 1

Similarly as in the work of Cai and Juedes [13], we show that the parameterized complexity
of the reparameterized problem pw-3Coloringlogn is related to subexponential bounds in the
complexity of pw-3Coloring. Recall that we always assume that instances of pw-3Coloring
come with appropriate path decompositions of the graph.

Lemma 18. Assuming Conjecture 1, there is no algorithm for pw-3Coloring working in time
2O(s)poly(n) and space 2oeff(s)poly(n) (for all values of pathwidth s).

Proof. Suppose to the contrary that pw-3Coloring can be solved in time 2O(s)poly(n) and space
2oeff(s)poly(n). We show that N[fpoly, f log] ⊆ D[nf , fpoly], contradicting Conjecture 1.

The assumption implies that pw-3Coloringlogn can be solved in time 2O(k·lgn) = nO(k)

and space 2k·lgn/g(k·lgn) for some unbounded and non-decreasing computable function g(·). If
k ≤ g(k · lg n), then the bound on space is bounded by n. Otherwise, if k > g(k lg n) ≥ g(lg n),
then n ≤ 2g

−1(k). In this case the bound on space is bounded by a computable function of k,
namely 2k·g

−1(k). Hence in each case, the same algorithm solves pw-3Coloringlogn in time nO(k)

and space n+ 2k·g
−1(k). By Theorem 17, this implies N[fpoly, f log] ⊆ D[nf , fpoly].

13

An even weaker statement is equivalent to NL 6⊆ SC by the following padding argument.

Lemma 19. There is no algorithm for pw-3Coloring working in time 2O(s)poly(n) and space
poly(s, log n) (for all values of pathwidth s) if and only if NL 6⊆ SC.

Proof. If there was such an algorithm, then it would solve pw-3Coloring[log n] in polynomial
time and polylogarithmic space. However, from Theorem 1 it follows that pw-3Coloring[log n]
is complete for NL, so this would imply that NL ⊆ SC.
For the other direction, suppose NL ⊆ SC. Then, pw-3Coloring on instances with path

decompositions of width at most lg n can be solved in polynomial time and space O(logc n) for
some constant c. Thus, an instance of size n and a path decomposition of width s can be padded to
size n′ = max(n, 2s) (by adding isolated vertices — neither the answer nor the width changes) and
solved by this algorithm in time poly(n′) and space O(logc n′). This solves pw-3Coloring in time
at most max(poly(n),poly(2s)) ≤ 2O(s)poly(n) and space max(logc n, sc) ≤ poly(s, log(n)).

3.3. Statements stronger than Conjecture 1

Contrary to the results of Cai and Juedes [13], in our context we are unable to prove the converse
of Lemma 18. However, we can get arbitrarily close to it, in a sense.

Lemma 20. If Conjecture 1 fails, then for every arbitrarily slowly growing, unbounded, computable
function g, pw-3Coloring can be solved in time 2s·g(s)poly(n) and space 2oeff(s)poly(n) (for all
values of pathwidth s).

Proof. The assumption is equivalent to N[fpoly, f log] ⊆ D[nf , fpoly], which in turn implies that
pw-3Coloring can be solved in time nf(s/ lgn) and space f(s/ lg n) ·poly(n) for some computable,
increasing function f . Let g(s) be an arbitrarily slowly growing, unbounded, computable function.
Without loss of generality assume that g is non-decreasing and g(s) ≤ s. Let n′ = 2s/f

−1(g(s)).
Observe5 that f(s/ log n′) = f(f−1(g(s))) ≤ g(s) and f−1(g(s)) is an unbounded, computable
function of s.

Consider an instance of pw-3Coloring of size n with a path decomposition of width s. If s ≤ lg n,
then the assumed algorithm runs in time nf(s/ lgn) ≤ nf(1) = poly(n) and space f(1) · poly(n) =
poly(n). If lg n < s ≤ f−1(g(s)) · lg n, then f(s/ lg n) ≤ g(s) and hence the assumed algorithm runs
in time nf(s/ lgn) ≤ ng(s) = 2lgn·g(s) ≤ 2s·g(s) and space f(s/ lg n)·poly(n) ≤ g(s)·poly(n) = poly(n)
(the last equality follows from g(s) ≤ s and s ≤ n). Finally, if s > f−1(g(s))·lg n, then n′ > n, hence
we can pad the instance (by adding isolated vertices — neither the answer nor the width changes)
to size n′. Applying the assumed algorithm to the padded instance solves the problem in time

n′f(s/ lgn′) ≤ 2
s· g(s)

f−1(g(s)) ≤ 2s·g(s) and space f(s/ lg n′) · n′O(1) ≤ g(s) · 2O(s/f−1(g(s))) = 2oeff(s).

For a somewhat less natural, stronger variant of Conjecture 1, we can show a similar, but exact
correspondence (note the quasi-polynomial factor on both sides). The proof is very similar.

Lemma 21. There is no algorithm for pw-3Coloring working in time 2oeff(s2)nO(logn) and space
2oeff(s)poly(n) (for all values of pathwidth s) if and only if N[fpoly, f log] 6⊆ D[nf+log, fpoly].

Proof. Suppose first there is an algorithm for pw-3Coloring working in time 2s
2/g(s)nO(logn) and

space 2s/g(s)poly(n), for some unbounded, non-decreasing, computable function g. Consider an
instance of pw-3Coloringlogn of size n, parameter k, and hence equipped with a path decom-
position of the graph of width k · lg n. If k2 < g(lg n), then the algorithm solves the instance in

5A careful reader probably noticed that some floors/ceilings are formally necessary here. For the sake of readability,
in this and other proofs in this section we ignore such straightforward details, as their introduction would only
obfuscate the main ideas.

14

time at most 2
k2 lg2 n
g(k lgn)nO(logn) ≤ 2O(log2 n) and space 2

k lgn
g(k lgn) ≤ poly(n). Otherwise, if g(lg n) ≤ k2,

then n is bounded by a computable function of k, namely 2g
−1(k2). Hence the algorithm solves

the instance in time and space bounded by a computable function f of k. Therefore in any case,
the same algorithm solves pw-3Coloringlogn in time f(k) + 2O(log2 n) and space f(k) + poly(n),
which implies N[fpoly, f log] ⊆ D[nf+log, fpoly].

For the converse, suppose now that N[fpoly, f log] ⊆ D[nf+log, fpoly]. Then, there is an
algorithm for pw-3Coloring working in time nf(s/ lgn)+O(logn) and space f(s/ lg n)poly(n) on
instances of size n and with path decompositions of width s, for some computable, increas-
ing function f . Given such an instance of pw-3Coloring, let n′ = 2s/f

−1(lgn). If n′ < n,
then s

lgn < f−1(lg n), hence f(s/ lg n) < f(f−1(lg n)) ≤ lg n and the assumed algorithm
works in time nO(logn) and space poly(n). Otherwise, if n′ ≥ n, then we can pad the in-
stance to size n′ (by adding isolated vertices — neither the answer nor the width changes).
Then, since lg n′ = s/f−1(lg n) ≤ s/f−1(lg s) = oeff(s), the padded instance is solved in time
2lgn′·(lgn+O(lgn′)) = 2O(lg2 n′) = 2oeff(s2) and space lg n · poly(n′) = 2O(lgn′) = 2oeff(s).

3.4. A summary

Theorem 2 follows from Lemmas 18 and 20. We summarize the relationships around Conjecture 1
in Figure 1. The weakest statement there is NL 6⊆ SC, a widely explored hypothesis in complexity
theory. Since Directed (s, t)-Reachability (asking given a directed graph and two nodes s, t,
whether is t reachable from s) is an NL-complete problem, this is also equivalent to the question of
whether this problem can be decided in polynomial time and polylogarithmic space simultaneously.
However, even this weakest statement is not known to be implied by better known conjectures such
as the Exponential Time Hypothesis. It seems that the simultaneous requirement on bounding
two complexity measures—time and space—has a nature that is independent of the usual time
complexity considerations. Hence, new complexity assumptions may be needed to explore this
paradigm, and we hope that Conjecture 1 may serve as a transparent and robust example of such.
In a certain restricted computation model (allowing operations on graph nodes only, not on

individual bits), unconditional tight lower bounds have been proved by Edmonds et al. [21]:
it is impossible to decide Directed (s, t)-Reachability in time 2o(log2 n) and space O(n1−ε)
(for any ε > 0), even if randomization is allowed. Essentially all known techniques for solving
Directed (s, t)-Reachability are known to be implementable in this model [40] (including
Depth- and Breadth-First Search, as well as the well-known theorems of Savitch, of Immerman
and Szelepcsényi, and Reingold’s breakthrough), therefore this strongly suggests that no algorithm
running in time 2oeff(log2 n) and space noeff(1) is possible, that is, NL 6⊆ D[2oeff(log2 n)

time
, noeff(1)

space
].

By Theorem 1, this is equivalent to saying that pw-3Coloring[log] cannot be solved in these
time and space bounds. The strongest statement on Figure 1 is a rescaling of this, that is, it
implies NL 6⊆ D[2oeff(log2 n)

time
, noeff(1)

space
] by a trivial padding argument, but the reverse implication

is also probable in the sense that any proof of the latter would likely scale to prove the former.
However, it is still possible that an algorithm working in polynomial space refutes the stronger
statement even though NL 6⊆ D[2oeff(log2 n)

time
, noeff(1)

space
].

15

4. Treedepth

4.1. Characterization via NTMs with a small auxilliary stack

In this section we prove a completeness theorem for small tree-depth computations, i.e., Theorem 3.
Let s : N→ N be a nice function. Before we proceed, we discuss more precisely the model of machines
used to define the class NAuxSA[poly

time
, log
space

, s
height

]. The machine has three tapes: a read-only

input tape, a working tape of length O(log n), and a stack tape of length s(n). Each tape contains
symbols from some fixed, finite alphabet Σ. Initially both the working tape and the stack tape are
empty, i.e., filled with blank symbols. On each of the tapes there is a head, and the transitions of
the machine depend on its state and the triple of symbols under the heads. The access restraints to
each of the tapes are as follows: The input tape is a read-only tape. The working tape can be both
read and written on by the machine. The stack tape can be read but not freely written on; instead,
the transitions of the machine may contain instructions of the form pushσ or pop, where σ is some
non-blank symbol of Σ. In case of pushσ, the first blank symbol of the tape is replaced by σ. In case
of pop, the last non-blank symbol of the tape is replaced by a blank. Since s is nice, s(n) ≤ poly(n),
so within the working tape the machine can keep track of the current height of the stack and the
index on which the stack’s head is positioned. The machine accepts if it can reach an accepting
state through a sequence of transitions, and for a problem in NAuxSA[poly

time
, log
space

, s
height

], there

must always be an accepting run where the number of transitions is bounded by a polynomial in n.
In this section we show that, for any nice function s(n) ≥ log2 n, td-3Coloring[s] is com-

plete for NAuxSA[poly
time

, log
space

, s
height

] and NAuxSA[poly
time

, s/ log
space

, s
height

] under logspace reductions.

In particular, this implies that these two classes are equal. We start by showing containment,
exemplifying how the resources are used.

Lemma 22. For any nice function s(n), td-3Coloring[s] is in NAuxSA[poly
time

, log
space

, s
height

].

Proof. The input consists of a graph G and a mapping of its vertices into a rooted forest T ; we
assume any natural encoding for which validity of the decomposition can be checked in logarithmic
space. We now give a non-deterministic algorithm showing that td-3Coloring[s] belongs to
NAuxSA[poly

time
, log
space

, s
height

]. The algorithm considers the trees of T one by one, and for each

tree T of T it explores T by a depth-first search beginning from the root. Since the trees are
rooted and for each vertex we store its parent and the list of its children, it suffices to maintain
only the identifier of the current vertex during the search. When entering a node, the algorithm
non-deterministically guesses its color (encoded using a constant number of bits) and pushes it
onto the stack. When the depth-first search withdraws from a vertex to its parent, the algorithm
pops its color from the stack. Thus, the stack always contains the list of guessed colors of vertices
on the path from the current vertex to the root of its tree. To verify the correctness of the coloring,
after guessing the color of some vertex u, we check that all its ancestors in T that are adjacent
to it have different colors; this information can be retrieved from the stack. In this way, the color
of each vertex is guessed exactly once, and for each edge of the tree we verify that its endpoints
have different colors when considering the endpoint that is lower in T . Therefore, the machine
accepts if and only if the graph has a proper 3-coloring.

Clearly when s(n) ≥ log2 n, NAuxSA[poly
time

, log
space

, s
height

] ⊆ NAuxSA[poly
time

, s/ log
space

, s
height

]. The

next step is to show how the stack operations of the latter class’ machines can be regularized.
This idea originates in the approach of Akatov and Gottlob [3]. Following their ideas, we define
a regular stack machine in the following way. For any valid sequence S of push and pop operations
that starts and ends with an empty stack, define the corresponding push-pop tree τ(S) to be the

16

ordered tree (a tree with an order imposed on the children of each node) in which a depth-first
search would result in the sequence S; specifically,

• τ(ε) is a single root node,

• τ(push S pop) is a new root node with τ(S) attached as the only child subtree,

• τ(S1S2) is obtained from τ(S1) and τ(S2) by identifying their roots, and putting all the
children of the root of τ(S1) before all children of the root of τ(S2).

We say that a language is in reg-NAuxSA[poly
time

, s/ log
space

, s
height

] if it is recognized by an NTM with

s(n)/ log(n) working space and an auxiliary stack of height s(n) that has the following properties:

(a) The machine pushes and pops blocks of ds(n)/ lg(n)e symbols at a time. More precisely,
the machine uses a pre-specified block size b = ds(n)/ lg(n)e. The reader may imagine
that the push operation causes a simultaneous push of a block of b symbols stored on the
working tape; say, from the first b positions of the working tape. The pop operation causes
a simultaneous pop of a block of b symbols from the stack (i.e., replacing them with blank
symbols on the stack tape).

(b) Whenever the machine decides to push or pop, it can only change its state. That is, the
heads cannot move and the content of the working tape does not change. Moreover, the
decision about using a push or pop transition is done solely based on the machine’s state,
that is, such transitions are available if and only if the machine’s state belongs to some
subset of states, independently of the symbols under the machine’s heads.

(c) If the machine accepts an input α, then there is a run on α where the corresponding push-pop
tree (where each operation of pushing/popping a block is considered atomic) is the full
binary tree of depth exactly cdlg ne, for some fixed integer c. In particular, at the moment
of accepting the stack is empty.

Obviously, the block pushes and pops described in restriction ((a)) can be simulated by a standard
machine in O(b) steps, so their introduction does not give additional expressive power to the
computation model.

Restriction ((b)) is a technical adjustment that will be used to streamline future constructions.
Intuitively, restriction ((a)) is easy to achieve, because the machine has enough working space to
simulate the top ds(n)/ lg(n)e symbols from the stack on the working tape, and group pushes and
pops into blocks of size b. The most important restriction is ((c)): the push-pop tree has a fixed
shape of a full binary tree. This property will be essential when reducing an arbitrary problem
from NAuxSA[poly

time
, s/ log
space

, s
height

] to td-3Coloring[s], because the push-pop tree will form a

“skeleton” of the graph output from the reduction. In order to achieve this property, we use the
following technical result of Akatov and Gottlob [3, 2], which was also used independently by
Elberfeld et al. [24]. The traversal ordering of the nodes of an ordered tree is the linear ordering
which places a parent before its children and, for two children a, b of a node, a occurring before
b, places all descendants of a before all descendants of b. In other words, the traversal ordering
is the ordering in which the nodes are visited in a depth-first search started at the root.

Lemma 23 (Lemma 3.3 of [2]; Theorem 3.14 of [24]). Given an ordered tree T with n nodes and
depth at most lg n, one can in logarithmic space compute an embedding (an injection that preserves
the ancestor relation and traversal ordering) into a full binary tree of depth 4 lg n.

We are now ready to prove that every problem from NAuxSA[poly
time

, s/ log
space

, s
height

] can be

recognized by a regularized machine, in a similar way as was the case in [3].

17

Lemma 24. NAuxSA[poly
time

, s/ log
space

, s
height

] ⊆ reg-NAuxSA[poly
time

, s/ log
space

, s
height

].

Proof. Consider a machineM placing L in NAuxSA[poly
time

, s/ log
space

, s
height

]. We modifyM to comply

with restrictions ((a)), ((b)), and ((c)).
First, to achieve restriction ((a)), we designate the first b = ds(n)/ lg(n)e of the working tape

as a buffer for simulating the top of the stack. Whenever during the run M has p symbols on
the stack, then after modification the top-most p mod b symbols are stored in the buffer, while
the remaining symbols are stored in bp/bc blocks on the stack. The operations on the stack are
simulated in the buffer. Whenever the size of the buffer reaches full size b, the modified machine
invokes the block push operation and clears the buffer. WheneverM wants to pop a symbol but the
buffer is empty, the modified machine copies the top b symbols from the stack to the buffer, invokes
the block pop operation, and then simulates the pop of M in the buffer. It is straightforward to
simulate the read access to the stack tape with a polynomial-time overhead in the running time.
To achieve restriction ((b)), whenever the machine would like to push or pop, we split this

transition into three. In the first transition, the machine only verifies the symbols under the heads,
and enters a state “ready to push/pop” where it additionally remembers the target state and
additional operations (moving the heads) to be performed after the stack operation. Then, in the
second transition, it performs only the push or pop; note that this transition does not depend
on the symbols under the heads, and the heads also do not move. Finally, in the third transition
the machine performs the remembered head movements and reaches the target state.
Finally, we concentrate on restriction ((c)). Let us add a dummy symbol � to the alphabet.

Suppose that on some input α of length n the machine M (after the modifications above) has
an accepting run. By a simple modification, we may assume that M always empties the stack
before accepting. Since the maximum stack height is still O(s(n)) and stack operations are done
in blocks of b = ds(n)/ lg ne operations at a time, the corresponding push-pop tree T (where
blocks operations are considered as atomic) has depth at most c1 lg n and size at most nc2 for
some integers c1, c2. By Lemma 23, there exists an integer c for which T can be always embedded
into a tree T0 that is a full binary tree of depth exactly cdlg ne. We now modify M so that it has
also an accepting run whose push-pop tree is T0.

We modify machine M in the following manner. First, M will keep track of the current position
of the computation in the push-pop tree T0, encoded as binary string of length at most cdlg ne.
We add the possibility for M to guess non-deterministically, at any moment of the computation,
to push a block of b dummy symbols without changing the machine’s configuration, apart from
updating the current position in T0 (if the computation is in a leaf of T0, then this transition is
not allowed). Similarly, M can, at any moment, pop the top-most block of the stack provided it
consists only of dummy symbols, update the position in T0, without changing the configuration
otherwise. The read access to the stack tape is simulated by ignoring the dummy symbols, i.e., the
head always continues browsing the tape until a non-dummy symbol is found. Since the dummy
symbols are effectively ignored by the computation, it is easy to see that the modified machine
accepts if and only if the original one accepts.

Take now an accepting run of M on α and consider an embedding η of its push-pop tree T into
T0. Construct a run of modified M on α by adding non-deterministic pushes and pops of blocks
of dummy symbols � for all nodes of T0 that are not in the image of η. Thus, the push-pop tree
of the modified run is exactly T0.

Knowing that computations for NAuxSA can be conveniently regularized, we can describe the
existence of such a computation by a CNF formula “wrapped around” the rigid shape of the full
binary tree that encodes the push-pop tree of the run. This was also the idea of Akatov and
Gottlob [3], but our reduction needs to introduce many more elements, in particular copies of the
gadget of Lemma 14, due to a less expressive target language.

18

Lemma 25. Suppose L ∈ reg-NAuxSA[poly
time

, s/ log
space

, s
height

]. Then L ≤L td-CNF-SAT[s].

Proof. Let M be an appropriate machine recognizing L; by the assumption, M satisfies restric-
tions ((a)), ((b)), and ((c)). Consider an input word α; let n = |α|. Let T be the push-pop tree
of M on input α. By definition T is the full binary tree of depth exactly cdlg ne for some fixed
integer c that depends on L only. We assume that the machine works in time at most t(n) and
uses work tape of size at most s(n)/ log n.
Before we proceed to the formal description, let us elaborate on the intuition; see Figure 2 for

a visualization. An Euler tour of the nodes and edges of T corresponds to subsequent phases of
M ’s execution on α. We think of the computation as starting at the root node, moving down an
edge whenever a push is made and moving up an edge whenever a pop is made. Since T is fixed,
the idea is to construct a gadget for each node of T and to wire the gadgets so that they encode
the full computation of M . Each node gadget will contain three copies of the computation gadget
of Lemma 14. These copies respectively encode the parts of the computation before going into the
first subtree, between withdrawing from them first subtree and proceeding to the second subtree,
and after withdrawing from the second subtree. Each part of the computation depends on symbols
pushed onto the stack on the path to the root, but is independent of the guesses in different
branches. This, together with the bound of Lemma 14 on the tree-depth of the computation gadget,
will give rise to a natural tree-depth decomposition of depth O(s(n)) of the obtained graph.

We proceed to the formal description; the reader is advised to look at Figure 2 while reading. For
each edge e of tree T we create a block stack(e) of O(b) variables, describing the values pushed on
the stack when accessing the lower endpoint of e from the upper during the computation. Moreover,
we create four blocks of O(s(n)

logn) variables to describe the configurations immediately before and
after the corresponding push and pop operations concerning block stack(e): before-push(e),
after-push(e), before-pop(e) and after-pop(e), respectively. Each of these blocks contains the
information about (a) the full content of the working tape, (b) the positions of heads on all the three
tapes (encoded as indices in binary), and (c) the machine’s state. Similarly, we create also two blocks
of O(s(n)

logn) variables describing the initial and final configurations: init, final. We enforce them
to be the initial and accepting configurations, respectively. For init this only requires introduction
of a number of clauses of size 1 that precisely describe the initial configuration. For final, we only
need to verify that the final state is accepting. Since the description of the state uses a constant
number of variables, this can be easily done by imposing a constant number of CNF clauses on them.
We now wire these groups of variables in order to simulate the machine’s execution.
First, for each edge e of T , we connect before-push(e) with after-push(e) and before-pop(e)

with after-pop(e) by clauses that enforce that valid push/pop transitions are being used at
these points. By restriction ((b)), during these transitions only the machine’s state can change.
Hence, we can enforce that in blocks before-push(e) and after-push(e) all the information apart
from the machine’s state is exactly the same, and the same holds also for before-pop(e) and
after-pop(e); this can be easily done using clauses of size 2. Then, we need to verify that the
performed transition was indeed available. Since the availability of a push/pop transition depends
solely on the machine’s state (restriction ((b))), we can verify that the original and target state
can be connected by a push/pop transition using a constant-size family of CNF clauses on the
variables describing these states. Finally, we need to make sure that the values memorized in block
stack(e) are indeed the ones that the machine intended to push onto the stack. Therefore, in the
connection between before-push(e) and after-push(e) we also verify, again using clauses of size
2, that values stored in stack(e) are exactly the same as values on the b first positions of the
working tape. Observe that no such check is needed between before-pop(e) and after-pop(e).

Then, we connect (in a manner described later) pairs of configurations that correspond to
the beginning and end of a computation without stack operations. That is, for the root note q
with children l, r we connect: init with before-push(ql), after-pop(ql) with before-push(qr)

19

... ...

............
Figure 2: The construction of Lemma 25. Blocks stack(q) are depicted in light blue, blocks

before-push(e) are depicted in yellow, blocks after-push(e) are depicted in violet,
blocks before-pop(e) are depicted in pink, blocks after-pop(e) are depicted in orange,
block init is depicted in light green, and block final is depicted in dark green. Copies
of the computation gadget are shown as red squares, while clauses validating push and
pop operations are depicted as yellow pentagons.

20

and after-pop(qr) with final. For every internal, non-root node q with parent p and children
l, r, we connect: after-push(pq) with before-push(ql), after-pop(ql) with before-push(qr)
and after-pop(qr) with before-pop(pq). For every leaf node q with parent p we connect
after-push(pq) with before-pop(pq).

Each connection between two blocks is made by creating a new copy of the computation gadget
of Lemma 14, where:

• t from the statement of Lemma 14 is simply t(n).

• s from the statement of Lemma 14 is s(n)
lgn .

• h is equal to the stack height at the corresponding moment. That is, this height is exactly b
times the number of edges on the path from the root to the current node q of the push-pop
tree T (note that h ≤ b · cdlg ne ≤ 4c · s(n)).

• The input word is α.

Variables u1, . . . , us′ and v1, . . . , vs′ of the gadget are identified with the two variable blocks we
connect. Variables w1, . . . , wh′ of the gadget are identified with consecutive variables from stack(e)
for all edges e on the path from root to the current node q. Note that in this manner, each
computation gadget has the input string α encoded within, so that the computation simulated
by the gadget has read access to α.
This concludes the construction of the formula. By Lemma 14 and restriction ((c)), it is clear

that the formula has a satisfying assignment iff there is an accepting run of M . It remains to
construct a tree-depth decomposition of the formula’s primal graph G that has depth O(s(n)).

Let R be the subset of variables consisting of all the variables contained in the named blocks (i.e.
init, stack(e), before-push(e), etc.). First, we create a mapping η that maps variables of R to
the nodes of T . We begin by mapping the variables of init and final blocks to the root of T . For
every non-root node q of T with parent p, we map the variables of stack(pq) to q. Additionally,
if q has a parent p or children l, r, we map the variables of after-push(pq), before-push(ql),
after-pop(ql), before-push(qr), after-pop(qr) and before-pop(pq) to q. To this point, η maps
O(s(n)

logn) variables to each node of T . Create a tree-depth decomposition of G[R] as follows: start
with T , end replace each node q of T with a path consisting of variables η−1(q), ordered arbitrarily.
These paths are organized in a tree in the same way as the original nodes: the last vertex of a path
corresponding to a node q becomes the parent of the first node of each path corresponding to a
child of q. Observe that whenever two variables of R appear in the same clause, then the nodes to
which their blocks are mapped by η are either equal, or they are in the ancestor-descendant relation.
Therefore, it is easy to see that indeed we have constructed a valid tree-depth decomposition of
G[R]. Since T has depth O(log n) and the pre-image of each node of T under η has size O(s(n)

logn),
the depth of the decomposition is O(s(n)).

It remains to consider the variables and clauses created in computation gadgets for each node q. By
Lemma 14, every such gadget has a tree-depth decomposition of depth O(s(n)

logn ·log n+h) = O(s(n)),
where h is the current stack depth. Observe that, among the variables of R, the clauses of each
gadget connect only variables from blocks mapped to q by η, and variables from the stack blocks
corresponding to the edges on the path from q to the root of T . Hence, we can take the tree-depth
decomposition of the gadget of depth O(s(n)), remove from it all the variables contained in R,
and attach the resulting decomposition as a new subtree below the deepest vertex of η−1(q). By
performing this operation for each computation gadget, we obtain a tree-depth decomposition of
the whole prime graph G that has depth O(s(n) + s(n)) = O(s(n)). It is straightforward to verify,
using Lemma 14, that all the described constructions can be performed in logspace. Therefore
L ≤L td-CNF-SAT[c · s(n)] for some constant c depending on the machine M ; since we assume
s(n) to be a nice function, td-CNF-SAT[c · s] ≤L td-CNF-SAT[s].

21

Lemmas 24 and 25 show that td-CNF-SAT[s] is hard for NAuxSA[poly
time

, s/ log
space

, s
height

] under

logspace reductions, and by Lemma 12, so is td-3Coloring[s]. Lemmas 22, 24 and the fact that
the closure of NAuxSA[poly, log, s] under logspace reductions is NAuxSA[poly, log, s(poly)],
give the following chain of containments ([A]L is the class of problems reducible to A in logspace):

[td-3Coloring[s]]L ⊆ NAuxSA[poly
time

, log
space

, s(poly)
height

] ⊆ NAuxSA[poly
time

, s(poly)/ log
space

, s(poly)
height

] ⊆

⊆ reg-NAuxSA[poly
time

, s(poly)/ log
space

, s(poly)
height

] ⊆ [td-3Coloring[s(poly)]]L ⊆ [td-3Coloring[s]]L

Therefore, all containments must be equalities, which concludes the proof of Theorems 3 and 4. Note
that for an unbounded (or polynomial) stack, Theorem 4 implies that space is unbounded too; in
other words, NL (that is, non-deterministic logspace) machines augmented with an unbounded aux-
iliary stack have the same power as NP, an observation already made by Vinay and Chandru [51].

By Theorem 3, to prove a determinization result for NAuxSA[poly, log, s(poly)] we only need
such a result for td-3Coloring[s].

Lemma 26. td-3Coloring[s] can be solved in time 3s · poly(n) and space O(s+ log n).

Proof. Let G be the input instance of td-3Coloring[s], and let (T , µ) be the given tree-depth
decomposition of G. By abuse of notation, we identify the vertices of G with their images under
µ. For every u ∈ V (G), let tail(u) be the set of vertices on the path from u to the root of its
tree in T , excluding u, and let tree[u] be the set of vertices contained in the subtree of T rooted
at u, including u. For every u ∈ V (G) and every proper coloring φ of G[tail(u)] into 3 colors,
let f(u, φ) be the Boolean value denoting whether φ can be extended to a proper 3-coloring of
G[tree[u] ∪ tail(u)]. Then clearly f(u, φ) is true if and only if it is possible to extend φ to φ′

by assigning u one of the three colors in such a manner that φ′ remains a proper 3-coloring of
G[tail(u) ∪ {u}], and f(v, φ′) is true for every child v of u. Whether G has a proper 3-coloring
is equivalent to the conjunction of values f(r, ∅) over the roots r of trees in T .
We give a recursive procedure for computing values f(u, φ); the whole problem then reduces

to computing f(r, ∅) for every root r of a tree in T . This recursive procedure simply browses
through all three possible extensions φ′ of φ to a proper 3-coloring of G[tail(u) ∪ {u}], and calls
itself recursively to compute f(v, φ′) for all children v of u; in particular, no memoization of
computed values is done. Note that the recursion tree stops in the leaves of T . The correctness
of the algorithm follows directly from the discussion of the previous paragraph. As far as the space
usage is concerned, at each point the algorithm maintains identifier of the current vertex u, of
logarithmic length, and a stack of O(s) calls to the procedure computing f(·, ·). The data stored for
each call requires constant space; note that there is no need to memorize the identifier of the vertex,
because it can be recomputed when returning from a subcall. Hence, the space complexity of the
algorithm is O(s+ log n). To analyze the running time, observe that for each pair (u, φ), where φ is
a proper 3-coloring of G[tail(u)], throughout the whole algorithm there will be at most one call to
f(u, φ); this is because whenever recursing, we are considering an extension of the current coloring.
Thus, the whole recursion tree will have at most n · 3s nodes. Since the computations at each node
are done in polynomial time, it follows that the running time of the algorithm is 3s · poly(n).

Therefore, for any nice s(n) ≥ log n, we have td-3Coloring[s] ∈ D[s
space

]. Theorem 3, Lemma 26,

and the observation that D[s(poly)
space

] is closed under logspace reductions, yield Theorem 5.

22

4.2. Characterization via alternating machines

An alternating Turing machine (ATM) is a Turing machine with a partition of states into existential
or universal states. For an ATM and an input word, an accepting tree is a finite tree T labeled with
machine configurations, such that: the root is labeled with the initial configuration, every node with
a configuration in an existential state in T has one child labeled with a next configuration (one reach-
able in one step according to the machine’s transition rules), every node with a configuration in a uni-
versal state in T has all possible next configurations as children, and all leaves are accepting configu-
rations. An ATM accepts an input word in time t, space s, and treesize z, if there is an accepting tree
with root-to-leaf distances at most t, configurations using at most s space, and at most z tree nodes.

Similarly as ATMs proved to be a useful computational model, giving a new, unified view on
various complexity issues, the notion of treesize introduced by Ruzzo [49] allowed to see various
classes under a common light and simplify a few containment proofs. In particular, Ruzzo showed
that NAuxPDA[poly

time
, s
space

] = A[s
space

, poly
treesize

]. We show that bounding the time (as opposed to

space) of a polynomial treesize ATM, leads to the classes corresponding to small tree-depth, as
opposed to small treewidth.

Theorem 27. Let s(n) ≥ log2(n) be a nice function. Then

NAuxSA[poly
time

, log
space

, s(poly)
height

] = A[s(poly)
time

, poly
treesize

].

Proof. For one containment (⊆) we show that td-3Coloring[s], which is hard for the former
class by Theorem 3, is contained in the latter. Indeed, a straightforward algorithm traverses a
given tree-depth decomposition of the input graph top-down by existentially guessing a color of
each encountered vertex, checking its compatibility with previous guesses, and universally guessing
which subtree to proceed into. The bounds on time and treesize of an alternating Turing machine
executing this algorithm follow directly from the bounds on the depth (s) and size (polynomial)
of the decomposition’s tree.

For the other containment, we simulate an alternating Turing machine with a NAuxSA machine.
This is done exactly as in Ruzzo’s simulation with NAuxPDA machines (Theorem 1 in [49]), except
that all the configurations on the current path are remembered on the stack by only writing the
difference (log of changes) from the previous configuration: the constant-size description consists
of the new state, the direction of movement for each head and the symbol written on the worktape.
Observe that in this manner, the machine can within logarithmic working space retrieve all the
information needed to verify availability of a transition:

• The current simulated state is on the top of the stack;

• The current head positions can be recalculating by browsing through the stack and applying
consecutive moves;

• The symbol under the worktape head can be recalculated by finding on the stack the latest
symbol written on its current position.

Consequently, deterministic steps of the machine can be simulated by verifying the applicability
of the transition, and pushing onto the stack the constant-size log of changes leading to the new
configuration. Similarly, existential guesses are simulated with the machine’s own non-determinism.
Universal guesses are simulated by choosing one possibility and then backtracking (popping the
stack) to choose the next possibility, as described by Ruzzo. Such backtracking corresponds exactly
to traversing an accepting tree of the ATM, hence the running time is polynomial. At most
s(poly(n)) steps are described on the stack at any time, each requiring a constant number of
symbols due to keeping only the log of changes.

23

5. Dominating Set on graphs of small treedepth

In this section we show how to solve Dominating Set, or even count the number of dominating
sets of any cardinality, in time 3s ·poly(n) and space O(s · log n), given a tree-depth decomposition
of depth s. Recall that for a graph G, a set S ⊆ V (G) is a dominating set if every vertex of G either
is in S, or is adjacent to some vertex of S. We first describe an algorithm working in space poly(n).

Lemma 28. There exists an algorithm that, given a graph G on n vertices and its tree-depth
decomposition of depth s, runs in time 3s · poly(n) and space poly(n), and outputs a sequence
(qi)0≤i≤n, where qi is the number of dominating sets of G of cardinality i.

Proof. We will work in the ring of polynomials Z[x], where x is a formal variable. The algorithm
will compute polynomial P (x) =

∑n
i=0 qix

i, whose coefficients constitute the output.
Let (T , µ) be the given tree-depth decomposition of G; recall that T is a rooted forest of depth

at most s. By abuse of notation, we identify the vertices of G with their images under µ. Let us
introduce some notation relating to T . For u ∈ V (G), by tail[u] we denote the set of vertices
on the path in T from u to the root of its tree in T . By tree[u] we denote the set of all the
vertices contained in the subtree of T rooted at u, including u. Define tail(u) = tail[u] \ {u}
and tree(u) = tree[u] \ {u}. By chld(u) we denote the set of children of u in T . For a function
h, an argument e outside the domain of h, and a value α, by h[e → α] we denote the function
h extended by adding e to the domain and mapping it to α.
Let Σ = {A,F,T}, where A, F, T are some symbols (the reader should think of them as

Allowed, Forbidden, and Taken, respectively). For any vertex u of G and function φ : tail(u)→ Σ,
define f(u, φ) ∈ Z[x] as

∑n
i=0 aix

i, where ai is the number of i-element subsets X ⊆ tree[u]
such that X ∪ φ−1(T) dominates tree[u] and no vertex of φ−1(F) in G. Similarly, for a function
ψ : tail[u]→ Σ, define g(u, ψ) ∈ Z[x] as

∑n
i=0 bix

i, where bi is the number of i-element subsets
X ⊆ tree(u) such that X ∪ ψ−1(T) dominates tree(u) and no vertex of φ−1(F) in G. Note that
if there are two adjacent vertices v, v′ ∈ tail(u) with φ(v) = T and φ(v′) = F, then no set X can
satisfy the requirements above and hence f(u, φ) = 0. Similarly for g and ψ.
We remark that values f and g are exactly what one would obtain by applying the Möbius

transform to the standard definition of states for dynamic programming for Dominating Set (that
is, we count sets that dominate any subset of φ−1({A,T}) in the tail, instead of exactly specifying
which vertices are to be dominated). This transform translates subset convolutions used in the
standard dynamic programming to pointwise products, which is the crucial idea behind the proof.
Since the algorithm is not complicated, we prefer to present it directly after applying the transform.
We now give recursive equations on the values of f(·, ·) and g(·, ·). First, observe that for each

v ∈ chld(u) we have tail(v) = tail[u]. Then, it is easy to verify that the following equation
holds for each u ∈ V (G) with chld(u) 6= ∅ and each ψ : tail[u]→ Σ:

g(u, ψ) =
∏

v∈chld(u)

f(v, ψ). (1)

Indeed, every set X ⊆ tree(u) that contributes to some coefficient of g(u, ψ) can be partitioned
into {X ∩tree[v] : v ∈ chld(u)}. Each set X ∩tree[v] contributes to the coefficient by x|X∩tree[v]|

of f(v, ψ), and hence when computing the product the formal variable x correctly keeps track of
the cardinality. When chld(u) = ∅, then tree(u) = ∅ and we can compute g(u, ψ) directly from
the definition:

g(u, ψ) =

{
1 if there is no edge between ψ−1(T) and ψ−1(F),
0 otherwise.

(2)

24

We now proceed to setting up the equation for f(·, ·). Take any u ∈ V (G) and φ : tail(u)→ Σ.
Then, it is easy to verify that the following equation holds:

f(u, φ) = g(u, φ[u→ A])− g(u, φ[u→ F]) + x · g(u, φ[u→ T]). (3)

The term x · g(u, φ[u → T]) counts the contribution from sets X that contain u. The term
g(u, φ[u → A]) counts the contribution from all sets X that do not contain u, regardless of
whether they dominate u or not, whereas by subtracting the term g(u, φ[u→ F]) we remove the
contribution from sets that do not contain or dominate u. Observe that if u has a neighbor in
φ−1(T), i.e., it is already dominated by φ−1(T), then the subtracted term g(u, φ[u→ F]) will be
a zero polynomial. This corresponds to the fact that in this case we do not need to care about
domination of u by X. Similarly, if u has a neighbor in φ−1(F), then g(u, φ[u→ T]) will be a zero
polynomial. This corresponds to the fact that in this case it is not allowed to take u to X.
Finally, observe that

P =
∏

u∈roots
f(u, ∅), (4)

where roots is the set of roots of the trees in forest T .
We now give the algorithm that computes P . The algorithm uses two mutually recursive func-

tions that compute the values of f(·, ·) and g(·, ·), respectively. The polynomial P is computed
using equation (4) by a sequence of calls to the procedure computing f(·, ·). The procedure com-
puting f(·, ·) applies equation (3) and calls g(·, ·) recursively. Similarly, the procedure computing
g(·, ·) applies equation (1) and calls f(·, ·) recursively, or uses the base case (2). In particular, no
memoization of computed values is performed.

The correctness of the algorithm follows from equations (1)–(4). Note that at each moment, the
space used by the algorithm is composed of a stack of at most 2s+ 1 recursive calls to f(·, ·), g(·, ·),
and the main procedure computing P , and for each of these calls we can store just the partial result
of computation being one polynomial from Z[x] (in case of equations (1) and (4), this will be the
product calculated for a prefix). These polynomials have degrees bounded by n and their coefficients
have values between 0 and 2n, hence the total space usage of the algorithm is O(sn2). Finally, to
estimate the running time observe that for every pair (u, φ), where u ∈ V (G) and φ : tail(u)→ Σ,
throughout the whole computation there will be at most one call to computing f(u, φ). This is
because when recursing, the new function φ is always an extension of the previous one. Similarly, for
every pair (u, ψ), where u ∈ V (G) and ψ : tail[u]→ Σ, throughout the whole computation there
will be at most one call to computing g(u, ψ). The total number of such pairs (u, φ) and (u, ψ) is at
most 2n·3s, which implies that the whole recursion tree has at most this many nodes. Since the work
done at each node is polynomial in n, we conclude that the algorithm runs in time 3s ·poly(n).

We now show how to improve the space usage of the above algorithm to O(s · log n). Given a
graph G on n vertices and its tree-depth decomposition of depth s, consider again the polynomial
P (x) =

∑n
i=0 qix

i over a single variable x, with integer coefficients qi equal to the number of
dominating sets of G of cardinality exactly i (in particular, 0 ≤ qi ≤ 2n). We use the fact that given
a prime number p ≤ 2n+2 and some element a of the Galois field Fp, the value of (P (a) mod p) can
be computed in time O(3s ·poly(n)) and space O(s · log n). Indeed, one can recursively compute all
O(3s · n) values of (f(·, ·)(a) mod p) and (g(·, ·)(a) mod p), as described in the proof of Lemma 28.
On each of the O(s) recursion levels, we need to maintain only one number in Fp (describing a
partial sum or product), and each value can be added or multiplied (to the partial sum or product
that requires it) in time O(poly(n)) and space O(log n).
With such a procedure in hand, the following theorem describes how to recover the exact

coefficients of P (x) using interpolation. This is done using the Chinese remainder theorem, and
applying a number-theoretic transform, that is, the discrete Fourier transform specialized to
the field of integers mod p, for prime p. Effectively, this technique boils down to evaluating the

25

polynomial in many points and computing a weighted sum of the results. We need the following
simple corollary of the prime number theorem. In fact, it can be proved for n0 = 21 using explicit
bounds given by [48, Theorem 4] and hand computation for small enough n.

Fact 29. There is an n0 ∈ N such that for all n ≥ n0, the product of primes strictly between n
and 2n is larger than 2n.

Theorem 30. Let P (x) =
∑n

i=0 qix
i be a polynomial over one variable x, of degree at most n and

with integer coefficients satisfying 0 ≤ qi ≤ 2n, for i = 0, . . . , n. Suppose that given a prime number
p ≤ 2n+ 2 and a ∈ Fp, the value of (P (a) mod p) can be computed in T time and S space. Then
given k ∈ {0, . . . , n}, the value qk can be computed in O(T · poly(n)) time and O(S + log n) space.

Proof. We first show how to compute qk mod p, given k and a prime p with n+ 1 < p < 2n+ 2.
Let α be a primitive element of the field Fp, that is, a generator of the multiplicative group F∗p
(in other words, F∗p = {α0, α1, . . . , αp−2}). Such an element can be found in polynomial time by
trying all elements of F∗p and testing whether α1, . . . , αp−2 6= 1. Compute in Fp the value

q′k = −
p−2∑
i=0

P (αi) · α−ik.

This takes O(T · n) time and O(S + log n) space.
We claim q′k = qk mod p. To show this, first notice that for a ∈ Fp \ {0}, we have

(a− 1) ·
p−2∑
i=0

ai = ap−1 − 1 = 0 (mod p).

Hence, if a 6= 1 then
∑p−2

i=0 a
i = 0 (mod p), while for a = 1, we have

∑p−2
i=0 a

i = p − 1 = −1
(mod p). Thus, for any k ∈ Z we have the following:

p−2∑
i=0

(αk)i = [k ≡ 0 mod (p− 1)] · (−1) (mod p).

Here, [·] denotes Iverson’s notation: the value is 0 or 1 depending whether the predicate in the
brackets is false or true, respectively. Since n < p − 1, for integers j, k ∈ {0, . . . , n} we have
j − k ≡ 0 mod (p− 1) if and only if j = k. Therefore, as claimed, we conclude that

q′k = −
p−2∑
i=0

 n∑
j=0

qj · (αi)j
 · α−ik = −

n∑
j=0

qj

p−2∑
i=0

(αj−k)i =

= −
n∑
j=0

qj · [j = k] · (−1) = qk (mod p).

Therefore, for every integer p strictly between n + 1 and 2(n + 1), we can check whether it
is prime (by brute-force) and compute qk mod p in O(T · n) time and O(S + log n) space. From
Fact 29 and the Chinese remainder theorem, it follows that qk is non-zero if and only if (qk mod p)
turns out to be non-zero for at least one p (we assume n+ 1 ≥ n0, as otherwise qk can be computed
by brute-force). Moreover, given a list of pairs (p, qk mod p) for the primes p between n+ 1 and
2(n + 1), the exact value of qk can be recovered with a logspace (and hence polynomial time)
algorithm by Chiu et al. [16, Theorem 3.3], which is an effective version of the Chinese remainder
theorem. Note that we do not need to simultaneously store all values qk mod p for different p: we
use the compositionality of logspace algorithms instead, that is, values output by our algorithm
are recomputed on the fly as needed by the remaindering algorithm, multiplying the running times
and adding the space bounds of the two algorithms.

26

Corollary 31. There exists an algorithm that, given a graph G on n vertices and its tree-depth
decomposition of depth s, runs in time 3s · poly(n) and space O(s · log n), and outputs a sequence
(qi)0≤i≤n, where qi is the number of dominating sets of G of cardinality i.

6. Conclusions

In what follows we assume for conciseness that s(n) is a nice function satisfying s(nc) = O(s(n))
for each constant c (this includes s(n) = lgk n for k ≥ 1, in particular).

The hierarchy of graph parameters of Corollary 10 together with Theorems 1, 3, and 27 implies
the following hierarchy of complexity classes between NL and NP.

NAuxSA[poly
time

, log
space

, s
height

] = [td-3Coloring[s]]L = A[s
time

, poly
treesize

] ⊆ D[s
space

]

⊆

N[poly
time

, s
space

] = [pw-3Coloring[s]]L = N[poly
time

, s
space

]

⊆
NAuxPDA[poly

time
, s
space

] = [tw-3Coloring[s]]L = A[s
space

, poly
treesize

] ⊆ D[2O(s)

time
]

⊆

NAuxSA[poly
time

, log
space

, s · log
height

] = [td-3Coloring[s · log]]L = A[s · log
time

, poly
treesize

] ⊆ D[s · log
space

]

In particular, when considering functions s(n) = logk(n), the classes have sometimes been
considered under different names:

• NAuxSA[poly
time

, log
space

, logk

height
] was named DCk−1 (for divide and conquer) in [3, 2],

• N[poly
time

, logk
space

] are known as NSCk (the non-deterministic variant of Steve’s Class),

• NAuxPDA[poly
time

, logk
space

] is shown equal to a class named SACk
quasi in [4].

This yields the following hierarchy:

L ⊆
NL
‖

NSC1
⊆

SAC1

‖
SAC1

quasi

⊆ DC1 ⊆ · · · ⊆ DCk−1 ⊆ NSCk ⊆ SACk
quasi ⊆ DCk ⊆ · · · ⊆ NP

We conclude with an open question stemming from this work. In Section 4 we have shown
that 3Coloring is complete for NAuxSA[poly

time
, log
space

, s
height

] when a tree-depth decomposition of

depth s(n) is given on the input. By Lemma 12, the same holds for equivalent CSP-like problems,
like CNF-SAT (with primal or incidence graph), whereas Independent Set and Dominating
Set are hard for the same class.
It is not hard to see that Independent Set actually can be solved in the complexity class

NAuxSA[poly
time

, log
space

, s
height

], using an approach very similar to that of Lemma 26 as follows. The

algorithm traverses the treedepth decomposition in the prefix order, nondeterministically guessing
a maximum-size independent set X on the fly, and storing the following information: on the stack
we store the intersection of X with the path from the current vertex to a root of the decomposition,

27

whereas in the working memory we store the number of vertices from X found so far. By Theorem 5,
this means that Independent Set on a graph given with tree-depth decomposition of depth s
can be solved deterministically in space O(s+ log n).

As far as Dominating Set is concerned, in Section 5 we demonstrated how using the algebraic
approach of Lokshtanov and Nederlof [39], and of Fürer and Yu [28], one can obtain an algorithm
for Dominating Set with running time 3s · poly(n) and space complexity O(s · log n). Thus, it is
unclear to us whether the problem Dominating Set on graphs with treedepth decompositions of
width s(n) belongs to NAuxSA[poly

time
, log
space

, s
height

]. Observe that if this would be the case, then by

Theorem 5 it should be solvable in space O(s+ log n); however, already achieving space complexity
O(s · log n) was highly nontrivial.

Acknowledgements. The authors thank Yoichi Iwata for pointing out that Independent
Set on graphs given with a treedepth decomposition of width s(n) is actually in the class
NAuxSA[poly

time
, log
space

, s
height

].

References

[1] A. Abboud, A. Backurs, and V. V. Williams. “Tight Hardness Results for LCS and Other
Sequence Similarity Measures”. IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. IEEE Computer Society,
2015, pp. 59–78.

[2] D. Akatov. “Exploiting parallelism in decomposition methods for constraint satisfaction”.
PhD thesis. University of Oxford, 2010.

[3] D. Akatov and G. Gottlob. “Balanced Queries: Divide and Conquer”. Mathematical Founda-
tions of Computer Science 2010, 35th International Symposium, MFCS 2010, Brno, Czech
Republic, August 23-27, 2010. Proceedings. Vol. 6281. Lecture Notes in Computer Science.
Springer, 2010, pp. 42–54.

[4] E. Allender, S. Chen, T. Lou, P. A. Papakonstantinou, and B. Tang. “Width-Parametrized
SAT: Time–Space Tradeoffs”. Theory of Computing 10 (2014), pp. 297–339.

[5] S. Arnborg, J. Lagergren, and D. Seese. “Easy Problems for Tree-Decomposable Graphs”. J.
Algorithms 12.2 (1991), pp. 308–340.

[6] P. Austrin, P. Kaski, M. Koivisto, and J. Määttä. “Space-Time Tradeoffs for Subset Sum:
An Improved Worst Case Algorithm”. Automata, Languages, and Programming - 40th
International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I.
Vol. 7965. Lecture Notes in Computer Science. Springer, 2013, pp. 45–56.

[7] B. S. Baker. “Approximation Algorithms for NP-Complete Problems on Planar Graphs”. J.
ACM 41.1 (1994), pp. 153–180.

[8] M. Barsky, U. Stege, A. Thomo, and C. Upton. “Shortest Path Approaches for the Longest
Common Subsequence of a Set of Strings”. Proceedings of the 7th IEEE International
Conference on Bioinformatics and Bioengineering, BIBE 2007, October 14-17, 2007, Harvard
Medical School, Boston, MA, USA. IEEE Computer Society, 2007, pp. 327–333.

[9] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. “Narrow sieves for parameterized
paths and packings”. CoRR abs/1007.1161 (2010).

28

[10] H. L. Bodlaender. “Discovering Treewidth”. SOFSEM 2005: Theory and Practice of Computer
Science, 31st Conference on Current Trends in Theory and Practice of Computer Science,
Liptovský Ján, Slovakia, January 22-28, 2005, Proceedings. Vol. 3381. Lecture Notes in
Computer Science. Springer, 2005, pp. 1–16.

[11] H. L. Bodlaender, J. S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller, and Z. Tuza.
“Rankings of Graphs”. SIAM J. Discrete Math. 11.1 (1998), pp. 168–181.

[12] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and H. T. Wareham. “The Parameterized
Complexity of Sequence Alignment and Consensus”. Theor. Comput. Sci. 147.1&2 (1995),
pp. 31–54.

[13] L. Cai and D. W. Juedes. “On the existence of subexponential parameterized algorithms”. J.
Comput. Syst. Sci. 67.4 (2003), pp. 789–807.

[14] L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. “On the Structure of Parameterized
Problems in NP”. Inf. Comput. 123.1 (1995), pp. 38–49.

[15] H. Chen and M. Müller. “One hierarchy spawns another: graph deconstructions and the com-
plexity classification of conjunctive queries”. Joint Meeting of the Twenty-Third EACSL An-
nual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14
- 18, 2014. ACM, 2014, 32:1–32:10.

[16] A. Chiu, G. I. Davida, and B. E. Litow. “Division in logspace-uniform NC1”. Theoret.
Informatics and Appl. 35.3 (2001), pp. 259–275.

[17] B. Courcelle. “The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite
Graphs”. Inf. Comput. 85.1 (1990), pp. 12–75.

[18] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[19] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. “Subexponential
parameterized algorithms on bounded-genus graphs and H-minor-free graphs”. J. ACM 52.6
(2005), pp. 866–893.

[20] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, 2013.

[21] J. Edmonds, C. K. Poon, and D. Achlioptas. “Tight Lower Bounds for st-Connectivity on
the NNJAG Model”. SIAM J. Comput. 28.6 (1999), pp. 2257–2284.

[22] M. Elberfeld, M. Grohe, and T. Tantau. “Where First-Order and Monadic Second-Order
Logic Coincide”. Proceedings of the 27th Annual IEEE Symposium on Logic in Computer
Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. IEEE Computer Society, 2012,
pp. 265–274.

[23] M. Elberfeld, A. Jakoby, and T. Tantau. “Algorithmic Meta Theorems for Circuit Classes of
Constant and Logarithmic Depth”. 29th International Symposium on Theoretical Aspects of
Computer Science, STACS 2012, February 29th - March 3rd, 2012, Paris, France. Vol. 14.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012, pp. 66–77.

[24] M. Elberfeld, A. Jakoby, and T. Tantau. “Logspace Versions of the Theorems of Bodlaender
and Courcelle”. Electronic Colloquium on Computational Complexity (ECCC) 17 (2010).
Extended abstract included in the proceedings of FOCS 2010, p. 62.

[25] M. Elberfeld, C. Stockhusen, and T. Tantau. “On the Space and Circuit Complexity of
Parameterized Problems: Classes and Completeness”. Algorithmica 71.3 (2015), pp. 661–701.

29

[26] J. Flum and M. Grohe. Parameterized Complexity Theory. 1st ed. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

[27] F. V. Fomin, P. Kaski, D. Lokshtanov, F. Panolan, and S. Saurabh. “Parameterized Single-
Exponential Time Polynomial Space Algorithm for Steiner Tree”. Automata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part I. Vol. 9134. Lecture Notes in Computer Science. Springer, 2015,
pp. 494–505.

[28] M. Fürer and H. Yu. “Space Saving by Dynamic Algebraization”. Computer Science - Theory
and Applications - 9th International Computer Science Symposium in Russia, CSR 2014,
Moscow, Russia, June 7-11, 2014. Proceedings. Vol. 8476. Lecture Notes in Computer Science.
Springer, 2014, pp. 375–388.

[29] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[30] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. “Some Simplified NP-Complete Graph
Problems”. Theor. Comput. Sci. 1.3 (1976), pp. 237–267.

[31] G. Gottlob, N. Leone, and F. Scarcello. “The complexity of acyclic conjunctive queries”. J.
ACM 48.3 (2001), pp. 431–498.

[32] S. Guillemot. “Parameterized complexity and approximability of the Longest Compatible
Sequence problem”. Discrete Optimization 8.1 (2011), pp. 50–60.

[33] M. Katchalski, W. McCuaig, and S. M. Seager. “Ordered colourings”. Discrete Mathematics
142.1-3 (1995), pp. 141–154.

[34] T. Kloks. Treewidth, Computations and Approximations. Vol. 842. Lecture Notes in Computer
Science. Springer, 1994.

[35] A. Langer, F. Reidl, P. Rossmanith, and S. Sikdar. “Practical algorithms for MSO model-
checking on tree-decomposable graphs”. Computer Science Review 13-14 (2014), pp. 39–
74.

[36] R. J. Lipton. “Savitch’s Theorem”. The P=NP Question and Gödel’s Lost Letter. Springer,
2010, pp. 135–138.

[37] R. J. Lipton and R. E. Tarjan. “Applications of a Planar Separator Theorem”. SIAM J.
Comput. 9.3 (1980), pp. 615–627.

[38] D. Lokshtanov, M. Mnich, and S. Saurabh. “Planar k-Path in Subexponential Time and
Polynomial Space”. Graph-Theoretic Concepts in Computer Science - 37th International
Workshop, WG 2011, Teplá Monastery, Czech Republic, June 21-24, 2011. Revised Papers.
Vol. 6986. Lecture Notes in Computer Science. Springer, 2011, pp. 262–270.

[39] D. Lokshtanov and J. Nederlof. “Saving space by algebraization”. Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA,
5-8 June 2010. ACM, 2010, pp. 321–330.

[40] P. Lu, J. Zhang, C. K. Poon, and J. Cai. “Simulating Undirected st-Connectivity Algorithms
on Uniform JAGs and NNJAGs”. Algorithms and Computation, 16th International Sympo-
sium, ISAAC 2005, Sanya, Hainan, China, December 19-21, 2005, Proceedings. Vol. 3827.
Lecture Notes in Computer Science. Springer, 2005, pp. 767–776.

[41] B. Monien and I. H. Sudborough. “Bandwidth Constrained NP-Complete Problems”. Theor.
Comput. Sci. 41 (1985), pp. 141–167.

[42] J. Nederlof. “Fast Polynomial-Space Algorithms Using Inclusion-Exclusion”. Algorithmica
65.4 (2013), pp. 868–884.

30

[43] J. Nešetřil and P. Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms. Vol. 28.
Algorithms and Combinatorics. Springer, 2012.

[44] J. Nešetřil and P. Ossona de Mendez. “Tree-depth, subgraph coloring and homomorphism
bounds”. Eur. J. Comb. 27.6 (2006), pp. 1022–1041.

[45] K. Pietrzak. “On the parameterized complexity of the fixed alphabet Shortest Common
Supersequence and Longest Common Subsequence problems”. J. Comput. Syst. Sci. 67.4
(2003), pp. 757–771.

[46] A. Pothen. The complexity of optimal elimination trees. Technical Report CS 88-16, Pennsyl-
vania State University. 1988.

[47] N. Robertson and P. D. Seymour. “Graph Minors. II. Algorithmic Aspects of Tree-Width”.
J. Algorithms 7.3 (1986), pp. 309–322.

[48] J. B. Rosser and L. Schoenfeld. “Approximate formulas for some functions of prime numbers”.
Illinois J. Math. 6.1 (Mar. 1962), pp. 64–94.

[49] W. L. Ruzzo. “Tree-Size Bounded Alternation”. J. Comput. Syst. Sci. 21.2 (1980), pp. 218–
235.

[50] W. J. Savitch. “Relationships between nondeterministic and deterministic tape complexities”.
J. Comput. Syst. Sci. 4.2 (1970), pp. 177–192.

[51] V. Vinay and V. Chandru. “The Expressibility of Nondeterministic Auxiliary Stack Au-
tomata and its Relation to Treesize Bounded Alternating Auxiliary Pushdown Automata”.
Foundations of Software Technology and Theoretical Computer Science, Tenth Conference,
Bangalore, India, December 17-19, 1990, Proceedings. Vol. 472. Lecture Notes in Computer
Science. Springer, 1990, pp. 104–114.

A. Reductions preserving structural parameters

To capture the structural dependencies in reductions for a more uniform proof, we use the following
definition borrowed from Chen and Müller [15]. While very similar to a tree decomposition, it is
not limited to trees and allows an edge to be covered by two adjacent bags instead of one, which
turns out to give a generalization with better properties.

Definition 32. For graphs G,H, an H-deconstruction of G is a family (Bh)h∈V (H) of subsets
of V (G) (called bags) such that every vertex of G is in some bag, every edge of G has both
endpoints contained in one, or two adjacent (in H) bags, and for each vertex v ∈ V (G) the subset
{h ∈ V (H) | v ∈ Bh} is connected in H. The width of a deconstruction is the maximum size of
a bag or a union of two adjacent bags.

We observe that in many reductions, the output graph can be deconstructed into the input
graph (or e.g. the incidence graph of the input formula) with constant width. We first show that
this guarantees the reduction preserves structural parameters.

Lemma 33. Let π ∈ {td, pw, tw}. There is a logspace algorithm that given graphs G,H, an
H-deconstruction of G of width w, and a π-decomposition of H of width/depth wh, outputs a
π-decomposition of G of width/depth at most w · (wh + 1). In particular, π(G) ≤ w · π(H).

Proof. Let (Bh)h∈V (H) be an H-deconstruction of G of width w.
For treewidth and pathwidth, observe that if (T , (Ct)t∈T) is a tree (or path) decomposition of

H of width wh, then the same tree T with bags defined as C ′t =
⋃
h∈Ct

Bh is a valid decomposition
of G of width at most w · (wh + 1).

31

For tree-depth, let (T , µ) define a tree-depth decomposition of H of depth wh. Create sets Mt

for nodes t of T and place each vertex v of G in Mt where t is the lowest common ancestor of
{µ(h) | v ∈ Bh} in T .
Observe that by definition of a deconstruction, if v ∈ Bh and v ∈ Bh′ for some h, h′ ∈ V (H),

then there is a path connecting h and h′ in H containing only vertices h′′ such that v ∈ Bh′′ ; hence
there is an h′′ ∈ V (H) such that µ(h′′) is a common ancestor of µ(h) and µ(h′) in T and v ∈ Bh′′ .
Therefore, if h0 is the lowest common ancestor of {µ(h) | v ∈ Bh} in T , then also v ∈ Bh0 , and
hence every vertex v is put into a set Mt such that v ∈ Bµ−1(t). That is, Mt ⊆ Bµ−1(t), which
implies |Mt| ≤ w for all t ∈ V (T).
Let us then modify T by replacing every node t ∈ V (T) by a path of |Mt| nodes, and define a

bijection µ′ between vertices ofG and nodes of this tree that maps vertices inMt to nodes of the path
that replaced t (in any order). Let T ′ be the modified decomposition. Clearly T ′ has depth at most
w ·wh. To check that T ′ with µ′ defines a valid tree-depth decomposition, consider any edge uv of G.
By definition of a deconstruction there are adjacent or equal vertices h, h′ inH such that u ∈ Bh and
v ∈ Bh′ . Since µ(h) is an ancestor of µ(h′) or vice versa, u was assigned to a setMt such that t is an
ancestor of µ(h) and v was assigned to a setMt′ such that t′ is an ancestor of µ(h′), it must be that
t is an ancestor of t′ or vice versa. Hence µ′(u) ∈Mt is an ancestor of µ′(v) ∈Mt′ or vice versa.

Many reductions between NP-complete graph problems introduce components of bounded size re-
placing every edge of the original graph, or more generally, attach small components to cliques of the
original graph. We need the following lemma to show that such reductions also preserve structural
parameters. For a graph G and a vertex set S ⊆ V (G), the subgraph of G induced by S, denoted
G[S], is the graph with vertex set S and edge set E(G)∩ (S×S). We write G−S for G[V (G) \S].

Lemma 34. Let π ∈ {td, pw, tw}. Let G be an induced subgraph of G′ such that for each connected
component C of G′ − V (G) we have that C has at most c vertices and the neighborhood of C in
V (G) is a clique in G, for some constant c. Then

π(G′) ≤ π(G) + c.

Furthermore, given G,G′ and any π-decomposition of G, one can compute a π-decomposition of
G′ of width/depth larger by at most c in logspace.

Proof. For td, in any tree-depth decomposition, the vertices of a clique in G must be mapped to
nodes fully ordered by the ancestor relation. We may thus simply take each connected component
C of G′ − V (G), examine the placement of the clique N(C) ⊆ V (G) in the given tree-depth
decomposition of G, and attach the vertices of C as a path of length |C| below the lowest node
the clique N(C) maps to. In this manner we create a tree-depth decomposition of G′ of depth
larger than the input tree-depth decomposition of G by at most c.
For tw and pw, we use the fact that each clique in G must be fully contained in some bag of

a decomposition (e.g., [10, Lemma 1]). Hence, for each connected component C of G′ − V (G),
we find a bag that contains all the vertices of the clique N(C) ⊆ V (G), and create a copy of this
bag into which all the vertices of C are added. It is straightforward to arrange the new bags in
the decomposition. In this manner we construct a decomposition of G′ of width larger than the
original decomposition of G by at most c.
For all three parameters, it is trivial to implement the described procedure in logspace.

We are now ready to show how standard reductions for some example NP-complete problems
prove them to be equivalent to 3Coloring, or at least as hard, in our setting.

Lemma 12 (restated). The following problems are equivalent under logspace reductions that
preserve structural parameters: 3Coloring, CNF-SAT (using a decomposition of the primal
graph), k-SAT (using a decomposition of either the primal or incidence graph) for each k ≥ 3.

32

Furthermore, the following problems admit logspace reductions that preserve structural parameters
from the above problems: Vertex Cover, Independent Set, Dominating Set.

Proof. All the following reductions are standard, and hence we keep the description concise. Also,
it will be straightforward to verify that they can be implemented in logspace. The only non-trivial
check will be to verify, using Lemmas 34 and 33, that the structural parameters are preserved.

CNF-SAT (primal graph) ≤L k-SAT (primal graph) (for any k ≥ 3):
Replace every clause (l1∨ l2∨· · ·∨ l`) of length ` with clauses (l1∨ l2∨x2), (¬x2∨ l3∨x3), (¬x3∨ l4∨
x4) . . . (¬x`−2∨ l`−1∨ l`) using new variables x2, . . . , x`−2. Let G be the primal graph of the original
formula, G′′ be the primal graph of the new formula, and let G′ = G ∪G′′, i.e., a graph on the
vertex set V (G′′) where the edge set is the union of the edge sets of G and G′′. By the construction
it follows that G′[V (G)] = G and that each connected component of G′ − V (G) has size at most
c− 3, where c is the maximum clause size in the original formula. Moreover, the neighborhood
of such a connected component is a clique in G. Since each clause induces a clique in the primal
graph, it follows that c ≤ π(G) + 1 for each π ∈ {td, pw, tw}. Hence, from Lemma 34 we have
that π(G′) ≤ max(π(G), 2π(G)− 2), and an appropriate decomposition can be constructed from
a decomposition of G in logspace. Since G′′ is a subgraph of G, it is also a decomposition of G′′.

k-SAT (primal graph) (for any fixed k ∈ N) ≤L k-SAT (incidence graph):
Use the same formula, bounds follow immediately from Lemma 34 (the connected components
are single vertices).

k-SAT (incidence graph) (for any fixed k ∈ N) ≤L k-SAT (primal graph):
The primal graph has a natural width-k deconstruction into the incidence graph of the formula.
For every variable of the formula we create a bag containing only it. For every clause of the formula
we create a bag containing all the variables contained in this clause. It is easy to verify that this
is a deconstruction.

k-SAT (primal graph) (for any fixed k ∈ N) ≤L CNF-SAT (primal graph):
Trivial.

3-SAT (incidence graph) ≤L 3Coloring:
The reduction of Garey, Johnson, Stockmeyer [30] creates a pair of adjacent vertices for every
variable of the formula (a variable gadget), and a 6-vertex subgraph for every clause (clause gadget).
For each clause, three edges are added to connect it to gadgets for variables occurring in this
clause. Then a single triangle is created, whose one vertex is connected to all the vertices of all
the variable gadgets. The graph created can easily be seen to have a width-11 deconstruction into
the formula’s incidence graph. Namely, a variable’s (clause’s) bag contains the 2 (6) corresponding
vertices, and all bags contain the last triangle.

3Coloring ≤L 3-SAT (primal graph):
Create three variables x, y, z and four clauses (x ∨ y ∨ z), (¬x ∨ ¬y), (¬y ∨ ¬z), (¬z ∨ ¬x) for each
vertex of the input graph G, describing that exactly one of the variables corresponding to this
vertex is true. Then, for each edge of G add three clauses of size 2, describing that the true variable
corresponding to one endpoint has a different label than for the other endpoint. It is easy to see
that the formula’s primal graph has a width-6 deconstruction into the original graph. Namely, for
each original vertex of G create a bag that contains the corresponding 3 variables x, y, z.

3-SAT (incidence graph) ≤L Independent Set:
Create two adjacent vertices x,¬x for every variable x (variable gadget), and a triangle for every
clause (clause gadget). In every clause gadget label the vertices of the triangle by the literals
occurring in the clause, and connect these vertices to corresponding literals in clause gadgets. Then

33

the input formula is satisfiable if and only if there is an independent set in the output graph with
as many vertices as there are variables and clauses in total. The output graph has a trivial width-5
deconstruction into the incidence graph of the input formula, where for every variable/clause we
create a bag containing the corresponding gadget.

Independent Set ≤L Vertex Cover:
Given a graph G and a number k, output G and |V (G)| − k.

Vertex Cover ≤L Dominating Set:
Given a graph G and a number k, let G′ be obtained from G by subdividing every edge once; output
G′ and k. Bounds follow from Lemma 34 (the connected components are single vertices).

34

	1 Introduction
	2 Preliminaries
	2.1 Reductions and complexity classes
	2.2 Structural parameters
	2.3 Equivalence of problems
	2.4 Cook's theorem with bounded space

	3 Connections with tradeoffs for LCS
	3.1 Completeness results and statements equivalent to Conjecture ??
	3.2 Statements weaker than Conjecture ??
	3.3 Statements stronger than Conjecture ??
	3.4 A summary

	4 Treedepth
	4.1 Characterization via NTMs with a small auxilliary stack
	4.2 Characterization via alternating machines

	5 Dominating Set on graphs of small treedepth
	6 Conclusions
	A Reductions preserving structural parameters

