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We study the revenue performance of sequential posted-price mechanisms and some natural extensions for a

setting where the valuations of the buyers are drawn from a correlated distribution. Sequential posted-price

mechanisms are conceptually simple mechanisms that work by proposing a “take-it-or-leave-it” offer to each

buyer. We apply sequential posted-price mechanisms to single-parameter multiunit settings in which each

buyer demands only one item and the mechanism can assign the service to at most k of the buyers.

For standard sequential posted-price mechanisms, we prove that with the valuation distribution having

finite support, no sequential posted-price mechanism can extract a constant fraction of the optimal expected

revenue, even with unlimited supply. We extend this result to the case of a continuous valuation distribution

when various standard assumptions hold simultaneously (i.e., everywhere-supported, continuous, symmetric,

and normalized (conditional) distributions that satisfy regularity, the MHR condition, and affiliation). In fact,

it turns out that the best fraction of the optimal revenue that is extractable by a sequential posted-price

mechanism is proportional to the ratio of the highest and lowest possible valuation.

We prove that a simple generalization of these mechanisms achieves a better revenue performance; namely,

if the sequential posted-price mechanism has for each buyer the option of either proposing an offer or asking

the buyer for its valuation, then a Ω(1/max{1,d }) fraction of the optimal revenue can be extracted, where d
denotes the degree of dependence of the valuations, ranging from complete independence (d = 0) to arbitrary

dependence (d = n − 1).
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1 INTRODUCTION

A large body of literature in the field of mechanism design focuses on the design of auctions that
are optimal with respect to some given objective function, such as maximizing the social wel-
fare or the auctioneer’s revenue. This literature mainly considers direct-revelation mechanisms,
in which each buyer submits a bid that represents his or her valuation for getting the service, and
the mechanism determines the winners and how much they are forced to pay. The reason for this
is the revelation principle (see, e.g., Börgers (2015)), which implies that one may resort to studying
only direct-revelation mechanisms for many purposes, such as maximizing the social welfare or
the auctioneer’s revenue. Some of the most celebrated mechanisms follow this approach, such as
the Vickrey-Clark-Groves mechanism (Vickrey 1961; Clarke 1971; Groves 1973) and the Myerson
mechanism (Myerson 1981).

A natural assumption behind these mechanisms is that buyers will submit truthfully whenever
the utility they take with the truthful bid is at least as high as the utility they may take with a dif-
ferent bid. However, it has often been acknowledged that such an assumption may be too strong in
a real-world setting. In particular, Sandholm and Gilpin (2004) highlight that this assumption fre-
quently fails because of (1) a buyer’s unwillingness to fully specify his or her values; (2) a buyer’s
unwillingness to participate in ill-understood, complex, unintuitive auction mechanisms; and
(3) irrationality of a buyer, which leads him or her to underbid even when it is known that there
is nothing to be gained from this behavior. The failure of direct-revelation mechanisms is also
confirmed by experimental studies (see, e.g., Kagel et al. (1987)).

This has recently motivated research about auction mechanisms that are conceptually simple.
Among these, the class of sequential posted price mechanisms (Chawla et al. 2010) is particularly at-
tractive. First studied by Sandholm and Gilpin (2004) (and called “take-it-or-leave-it mechanisms”),
these mechanisms work by iteratively selecting a buyer that has not been selected previously and
offering him or her a price. The buyer may then accept or reject that price. When the buyer ac-
cepts, he or she is allocated the service. Otherwise, the mechanism does not allocate the service to
the buyer. In the sequential posted-price mechanism, we allow both the choice of buyer and the
price offered to that buyer to depend on the decisions of the previously selected buyers (and the
prior knowledge about the buyers’ valuations). Also, randomization in the choice of the buyer and
in the charged price is allowed. Sequential posted price mechanisms are thus conceptually simple
and buyers do not have to reveal their valuations for the service. Moreover, they are individually
rational; that is, informally, participation in such an auction is never harmful to the buyer. Finally,
they possess a trivial dominant strategy: indeed, it is always best for a buyer to respond sincerely
to any offer that the mechanism makes him or her. Equivalently, following the definition of Li
(2015), we can say that these mechanisms are obviously strategy proof.

Sequential posted price mechanisms have been mainly studied for the setting where the valu-
ations of the buyers are each drawn independently from publicly known buyer-specific distribu-
tions, called the independent private values setting. In this article, we study a much more general
setting and assume that the entire vector of valuations is drawn from one publicly known distri-
bution, which allows for arbitrarily complex dependencies among the valuations of the buyers.
This setting is commonly known as the correlated private values setting. Our goal is to investigate
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questions related to the existence of sequential posted-price mechanisms that achieve a high rev-
enue. That is, we quantify the quality of a mechanism by comparing its expected revenue to that
of the optimal mechanism, defined as the mechanism that achieves the highest expected revenue
among all dominant strategy-incentive-compatible and ex-post individually rational mechanisms.
(In Section 2, we explain and motivate this optimality notion further.)

We assume a standard Bayesian, transferable, quasi-linear utility model and we study a unit

demand, single-parameter, multiunit setting: there is one service (or type of item) being provided
by the auctioneer, any buyer is interested in receiving the service (or item) once, and the valuation

of each buyer consists of a single number that reflects to what extent a buyer would profit from
receiving the service provided by the auctioneer. The auctioneer can charge a price to a bidder,
so that the utility of a bidder is his or her valuation (in case he or she gets the service), minus
the charged price. We focus in this article on the k-limited supply setting, where service can be
provided to at most k of the buyers. This is an important setting because it is a natural constraint
in many realistic scenarios, and it contains two basic special cases: the unit supply setting (where
k = 1) and the unlimited supply setting (where k = n).

Related work. There has been recent substantial work on the subject of revenue performance for
simple mechanisms (Babaioff et al. 2014; Devanur et al. 2015; Hart and Nisan 2012; Hartline and
Roughgarden 2009; Rubinstein and Weinberg 2015). In particular, Babaioff et al. (2014) highlight the
importance of understanding what is the relative strength of simple versus complex mechanisms
with regard to revenue maximization.

As described above, sequential posted-price mechanisms are an example of a simple class of
mechanisms. Sandholm and Gilpin (2004) initiated the study of sequential posted-price mecha-
nisms. They provided experimental results for the case in which values are independently drawn
from the uniform distribution in [0, 1]. Moreover, they consider the case where multiple offers can
be made to a bidder and study the equilibria that arise from this. Blumrosen and Holenstein (2008)
compare fixed-price (called symmetric auctions), sequential posted-price (called discriminatory
auctions), and the optimal mechanism for valuations drawn from a wide class of i.i.d. distribu-
tions. Babaioff et al. (2012) consider prior-independent posted-price mechanisms with k-limited
supply for the setting where the only information known about the valuation distribution is that
all valuations are independently drawn from the same distribution with support [0, 1]. Posted-
price mechanisms have also been previously studied in Kleinberg and Leighton (2003), Blum and
Hartline (2005), and Blum et al. (2004), albeit for a non-Bayesian, online setting. In recent work,
Feldman et al. (2015) study “online” posted-price mechanisms for combinatorial auctions when
valuations are independently drawn.

The works of Chawla et al. (2010) and Gupta and Nagarajan (2013) are closest in spirit to our
present work, although they only consider sequential posted-price mechanisms in the indepen-
dent values setting. In particular, Chawla et al. (2010) prove that such mechanisms can extract a
constant factor of the optimal revenue for single- and multiple-parameter settings under various
constraints on the allocations. They also consider order-oblivious (i.e., “online”) sequential posted-
price mechanisms in which the order of the buyers is fixed and adversarially determined. They
use order-oblivious mechanisms in order to establish some results for the more general multipa-
rameter case. Yan (2011) builds on this work and strengthens some of the results of Chawla et al.
(2010). Moreover, Kleinberg and Weinberg (2012) and Feldman et al. (2016) prove results that imply
a strengthening of some of the results of Chawla et al. (2010).

Gupta and Nagarajan (2013) introduce a more abstract stochastic probing problem that includes
Bayesian sequential posted-price mechanisms as well as the stochastic matching problem intro-
duced by Chen et al. (2009). Their approximation bounds were later improved by Adamczyk et al.
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(2014), who in particular matched the approximation of Chawla et al. (2010) for the case where
there is a single matroid feasibility constraint.

In this work, we focus on the correlated setting. There is now a substantial literature that stud-
ies computational complexity and develops mechanisms with good approximation guarantees for
revenue maximization in the correlated setting. Many of these mechanisms build on the lookahead
mechanism of Ronen (2001) and, as we shall explain, differ from the mechanisms proposed in this
work. We will now briefly discuss this body of literature.

The lookahead mechanism of Ronen (2001) and its extension to matroid constraints in Chawla
et al. (2014) are fundamental references for the correlated setting and resemble our blind-offer
mechanism but are different in substantial ways, as we will discuss below. In Chawla et al. (2014),
the GVCG mechanism with lazy reserve prices is proposed (along with some variations thereof),
which is shown to 2-approximate the optimal revenue under the right choice of reserve prices
for settings more general than the one we study here. More precisely: the approximation factor
is achieved for interdependent values satisfying a single crossing property, where items may be
allocated according to a matroid constraint. This mechanism is a generalization of the VCG mech-

anisms with lazy reserves, which was shown by Li (2016) to attain a 1/e-approximation to the
optimal revenue in case the distributions are continuous and have a monotone hazard rate.

Cremer and McLean (1988) made a fundamental contribution to auction theory in the correlated
value setting by characterizing exactly for which valuation distributions it is possible to extract the
full optimal social welfare as revenue. They do this for the ex-post IC, interim IR mechanisms and
for the dominant strategy IC, interim IR mechanisms. Related to this is the work of McAfee et al.
(1989), which studies a simple mechanism for the extreme case of correlation where all valuations
are equal. Moreover, McAfee and Reny (1992) builds on Cremer and McLean (1988) and obtains
similar results for more general settings.

The work of Dobzinski et al. (2011) also studies revenue in (predominantly single-item) mech-
anism design for the setting with correlated values. In particular, they study the performance gap
of randomized versus deterministic mechanisms and propose various approximation mechanisms
for different models of access to the valuation distribution. Among these mechanisms is an ex-
tension of the lookahead mechanism of Ronen (2001), which achieves improved approximation
factors. Moreover, it introduces a linear programming representation for expressing the optimal
mechanism, which is an idea that we also use in the present article. In Segal (2003), a characteri-
zation is given of optimal ex-post incentive compatible and ex-post individually rational optimal
mechanisms. Moreover, Roughgarden and Talgam-Cohen (2013) study optimal mechanism design
in the more general interdependent setting, and show how to extend the Myerson mechanism to
this setting for various assumptions on the valuation distribution. Social welfare maximization for
the interdependent setting is studied by Maskin and Dasgupta (2000) and Ausubel (1999), where
extensions of the VCG mechanism are presented. Babaioff et al. (2012), Abraham et al. (2013), and
Syrgkanis et al. (2015) study various other mechanism design and auction settings with correlated
and interdependent valuations.

Lastly, there exists some results regarding the computational complexity of mechanism design
with correlated valuations: Ronen and Saberi (2002) prove a polynomial-time inapproximability
theorem for ascending auctions, and Papadimitriou and Pierrakos (2011) show that it is NP-hard
to compute the optimal deterministic mechanism that is ex-post IC and ex-post IR for three or
more buyers. On the positive side, they show that it can be done in polynomial time for the case
of two buyers.

Contributions and outline. We define some preliminaries and notation in Section 2. In Section 3,
we first present a simple sequence of instances. It shows that for unrestricted correlated
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distributions, the expected revenue of the best sequential posted-price mechanism does not
approximate to within any constant factor the expected revenue of the optimal dominant strategy
incentive compatible and ex-post individually rational mechanism. This holds for any value of
k (i.e., the size of the supply). We extend this impossibility result by proving that a constant
approximation is impossible to achieve even when we assume that the valuation distribution is
continuous and satisfies all of the following conditions simultaneously: the valuation distribution
is supported everywhere, is entirely symmetric, satisfies regularity, satisfies the monotone

hazard rate condition, and satisfies affiliation; all the induced marginal distributions have finite
expectation; and all the conditional marginal distributions are nonzero everywhere.

The approximation ratio that a sequential posted-price mechanism can generate on our exam-
ples is shown to be characterized by the logarithm of the ratio between the highest and lowest
valuations in the support of the distribution. It follows from a result by Lavi and Nisan (2004) that
this approximation ratio is essentially tight.

Given these negative results, we consider a generalization of sequential posted-price mecha-
nisms that are more suitable for settings with limited dependence among the buyers’ valuations:
enhanced sequential posted-price mechanisms. An enhanced sequential posted-price mechanism
works by iteratively selecting a buyer that has not been selected previously. The auctioneer can
either offer the selected buyer a price or ask him or her to report his or her valuation. As in se-
quential posted-price mechanisms, if the buyer is offered a price, then he may accept or reject that
price. When the buyer accepts, he is allocated the service. Otherwise, the mechanism does not al-
locate the service to the buyer. If instead the buyer is asked to report his or her valuation, then the
mechanism does not allocate him or her the service. Our use of enhanced sequential posted-price
mechanisms requires that some fraction of buyers reveal their valuation truthfully. Thus, the orig-
inal property that the bidders not have to reveal their preferences is partially sacrificed, in return
for a more powerful class of mechanisms and (as we will see) a better revenue performance. For
practical implementation, such mechanisms can be slightly adjusted by providing a bidder with a
small monetary reward in case he or she is asked to reveal his or her valuation.1

For the enhanced sequential posted-price mechanisms, we prove that again there are instances
in which the revenue is not within a constant fraction of the optimal revenue. However, we show
that this class of mechanisms can extract a fraction Θ(1/n) of the optimal revenue, i.e., a fraction
that is independent of the valuation distribution.

We highlight that our positive results do not make any assumptions on the marginal valuation
distributions of the buyers or the type of correlation among the buyers. An exception is Section 4,
where we consider the case in which the degree of dependence among the buyers is limited.
In particular, we introduce the notion of d-dimensionally dependent distributions. This notion
informally requires that for each buyer i , there is a set Si of d other buyers such that the
distribution of i’s valuation when conditioning on the vector of other buyers’ valuations can
likewise be obtained by only conditioning on the valuations of Si . Thus, this notion induces a
hierarchy of n classes of valuation distributions with increasing degrees of dependence among
the buyers: for d = 0, the buyers have independent valuations, while the other extreme d = n − 1
implies that the valuations are drawn from an arbitrary (correlated) distribution. Note that
d-dimensional dependence does not require that the marginal valuation distributions of the
buyers themselves satisfy any particular property, and neither does it require anything from the

1We also note that in some realistic scenarios (e.g., online internet shopping), the valuation of some buyers may be known

a priori to the auctioneer (through, e.g., the repetition of auctions or accounting and profiling operations). In such settings,

where it is not necessary to query such a buyer for his or her valuation, our results for enhanced sequential posted-price

mechanisms are also relevant.
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type of correlation or dependence that may exist among the buyers. This stands in contrast with
common assumptions such as symmetry, affiliation, the monotone-hazard rate assumption, and
regularity, which are often encountered in the auction theory and mechanism design literature.

Our main positive result for enhanced sequential posted-price mechanisms then states that
when the valuation distribution isd-dimensionally dependent, there exists an enhanced sequential
posted-price mechanism that extracts an Ω(1/d ) fraction of the optimal revenue.

In order to prove this result, we consider blind-offer mechanisms: these mechanisms inherit a
critical limitation of oblivious (i.e., online) posted-price mechanisms where buyers are considered
sequentially and are offered threshold prices. In contrast to sequential posted-price mechanisms,
blind-offer mechanisms are direct-revelation mechanisms where now each buyer i bids for obtain-
ing service and gets the service only if the bid is at least the offered threshold price. This threshold
price for buyer i is restricted to be a function of the marginal valuation distribution of i , which is
in turn a function of the vector of bids submitted by all buyers other than i . This generalization
sacrifices entirely the property that buyers’ valuations do not need to be revealed, and blind-offer
mechanisms are thus necessarily direct-revelation mechanisms. Hence, these mechanisms are not
simple and suffer the same issue as to practicality, say, as articulated in Sandholm and Gilpin (2004).
Still, they serve the purpose of proving an approximation ratio for enhanced sequential posted-
price mechanisms with d-dimensionally dependent distributions. The proof of this result consists
of three key ingredients:

• An upper bound on the optimal ex-post IC, ex-post IR revenue in terms of the solution of
a linear program. This upper bound has the form of a relatively simple expression that is
important for the definition and analysis of a blind offer mechanism that we define sub-
sequently. This part of the proof generalizes a linear programming characterization intro-
duced by Gupta and Nagarajan (2013) for the independent distribution setting.

• A proof for the fact that blind-offer mechanisms are powerful enough to extract a constant
fraction of the optimal revenue of any instance. This makes crucial use of the linear program
mentioned above.

• A conversion lemma showing that blind-offer mechanisms can be turned into enhanced se-
quential posted-price mechanisms while maintaining a fraction Ω(1/d ) of the revenue of
the blind-offer mechanism.2

We note that the constant approximation ratio achievable by blind-offer mechanisms is mainly
a means to an end, i.e., that of establishing an approximation for enhanced sequential posted-
price mechanisms. Still, it may be of some interest to observe that this mechanism is an incentive-
compatible mechanism that allocates items to buyers online (i.e., regardless of the order in which
buyers are served) by means of threshold bids that are restricted to depend only on a buyer’s con-
ditional marginal distribution as defined in Section 2. Especially the latter property is important,
as it does not allow for the type of pricing schemes used for approximations established in pre-
vious mechanisms (e.g., Ronen (2001), Dobzinski et al. (2011), and Chawla et al. (2014)), where
the threshold prices rely in a stronger sense on the submitted bids. On the other hand, the Ronen
(2001), Dobzinski et al. (2011), and Chawla et al. (2014) lookahead mechanisms achieve a much
better approximation and apply to any matroid constraint.

While our focus is on proving the (non)existence of simple mechanisms that perform well in
terms of revenue, we note the following about the computational complexity of our mechanisms:

2The sequential posted-price mechanism constructed in this lemma depends on a parameter q that can be adjusted to trade

off the amount of valuation elicitation against the hidden constant in the Ω(1/d ) expression.
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all the mechanisms that we use in our positive results run in polynomial time when the valuation
distribution is given as a description of the valuation vectors together with their probability mass.3

Additionally, we note that all of our negative results hold for randomized mechanisms. On the
other hand, our positive results only require randomization in a limited way. For our positive re-
sults for classical sequential posted-price mechanisms, only the offered prices need to be randomly
chosen, while the order in which the buyers are picked is arbitrary. This makes these positive re-
sults hold for the order-oblivious (i.e., online) setting in which the mechanism has no control over
the agent that is picked in each iteration. Our positive result for blind-offer mechanisms only
requires randomized pricing in case k < n and works for any ordering in which the buyers are
picked, as long as the mechanism knows the ordering in advance. For k = n, randomized pricing
is not needed. Our positive result for enhanced sequential posted-price mechanisms requires ran-
domized pricing and the assumption that the mechanism can pick a uniformly random ordering
of the buyers (i.e., it holds in the random order model (ROM) of arrivals).

Some definitions and proofs have been omitted in the main body of the article and can be found
in the appendices.

2 PRELIMINARIES AND NOTATION

For a ∈ N, we write [a] to denote the set {1, . . . ,a}. We write 1[X ] to denote the indicator function
for property X (i.e., it evaluates to 1 if X holds, and to 0 otherwise). When �v is a vector and a is an
arbitrary element, we denote by (a, �v−i ) the vector obtained by replacing vi with a.

We face a setting where an auctioneer provides a service to n buyers and is able to serve at
most k of the buyers. As mentioned in the introduction, the buyers have valuations for the service
offered, which are drawn from a valuation distribution, defined as follows.

Definition 2.1 (Valuation Distribution). A valuation distribution π for n buyers is a probability
distribution on Rn

≥0.

We will assume throughout this article that π is discrete, except for in Theorem 3.2, where we
assume that various standard assumptions about continuous valuation distributions hold, such as
regularity, the monotone hazard rate (MHR) condition, and affiliation. We refer the interested reader
to Appendix A for definitions and a brief discussion of these properties.

We will use the following notation for conditional and marginal probability distributions. For
an arbitrary probability distribution π , denote by supp(π ) the support of π . Let π be a discrete
finite probability distribution on Rn , and let i ∈ [n], S ⊂ [n], and �v ∈ Rn . We denote by �vS the
vector obtained by removing from �v the coordinates in [n] \ S . We denote by πS the probability
distribution induced by drawing a vector from π and removing the coordinates corresponding
to index set [n] \ S . If S = {i} is a singleton, we write πi instead of π {i } , and if S consists of all
but one buyer i , we write π−i instead of π[n]\{i } . We denote by π�vS

the probability distribution of
π conditioned on the event that �vS is the vector of values on the coordinates corresponding to
index set S . We denote by πi,�vS

the conditional marginal distribution of the coordinate of π�vS
that

corresponds to buyer i . Again, in these cases, in the subscript we will also write i instead of {i} and
−i instead of [n] \ {i}. In particular, the conditional marginal distribution π

i,�b−i
(i.e., the conditional

marginal distribution for buyer i when the other buyers bid �b−i ) will be central to our definition
of blind-offer mechanisms.

3When the valuation distribution is not accessible in such a form and can instead only be sampled from, then standard

sampling techniques can be used in order to obtain an estimate of the distribution. When this estimate is reasonably accurate

(which should be the case when the distribution in question does not have extreme outliers), then the mechanisms in our

article can still be used with only a small additional loss in revenue.
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Each of the buyers is interested in receiving the service at most once. The auctioneer runs a
mechanism with which the buyers interact. In general, a mechanism consists of a specification of
(1) the strategies available to the buyers and (2) a function that maps each vector of strategies
chosen by the buyers to an outcome. The mechanism, when provided with a strategy profile of the
buyers, outputs an outcome that consists of a vector �x = (x1, . . . ,xn ) and a vector �p = (p1, . . . ,pn ):
vector �x is the allocation vector, i.e., the (0, 1)-vector that indicates to which of the buyers the
auctioneer allocates the service, and �p = (p1, . . . ,pn ) is the vector of prices that the auctioneer
asks from the buyers. For outcome (�x , �p), the utility of a buyer i ∈ [n] is xivi − pi . The auctioneer
is interested in maximizing the revenue

∑
i ∈[n] pi and is assumed to have full knowledge of the

valuation distribution, but not of the actual valuations of the buyers.
We formalize the above as follows.

Definition 2.2. An instance is a triple (n,π ,k ), where n is the number of participating buyers,
π is the valuation distribution, and k ∈ N≥1 is the number of services that the auctioneer may
allocate to the buyers. A deterministic mechanism f is a function from ×i ∈[n]Σi to {0, 1}n × Rn

≥0, for
any choice of strategy sets Σi , i ∈ [n]. When Σi = supp(πi ) for all i ∈ [n], mechanism f is called a
deterministic direct-revelation mechanism. A randomized mechanism M is a probability distribution
over deterministic mechanisms. For i ∈ [n] and �s ∈ ×j ∈[n]Σj , we will denote i’s expected allocation

Ef ∼M [f (�s )i ] by xi (�s ) and i’s expected payment Ef ∼M [f (�s )n+i ] by pi (�s ). (Whenever we use this
notation, the mechanism M will always be clear from context.)

Definition 2.3. Let (n,π ,k ) be an instance and M be a randomized direct-revelation mechanism
for (n,π ,k ). Mechanism M is dominant strategy incentive compatible (dominant strategy IC) if and
only if for all i ∈ [n] and �s ∈ ×j ∈[n]supp(πj ) and �vi ∈ supp(πi ),

xi (vi ,�s−i )vi − pi (vi ,�s−i ) ≥ xi (�s )vi − pi (�s ).

Mechanism M is ex-post individually rational (ex-post IR) if and only if for all i ∈ [n] and �s ∈
supp(π ),

xi (s )vi − pi (s ) ≥ 0.

For convenience, we usually will not treat a mechanism explicitly as a probability distribution
over deterministic mechanisms, but rather as the result of a randomized procedure that interacts in
some way with the buyers. In this case, we say that a mechanism is implemented by that procedure.
Sequential posted-price mechanisms are the mechanisms that are implemented by a particular such
procedure, defined as follows.

Definition 2.4. A sequential posted-price mechanism for an instance (n,π ,k ) is any mechanism
that is implementable by iteratively selecting a buyer i ∈ [n] that has not been selected in a pre-
vious iteration and proposing a price pi for the service, which the buyer may accept or reject. If i
accepts, he or she gets the service and pays pi , resulting in a utility of vi − pi for i . If i rejects, he
or she pays nothing and does not get the service, resulting in a utility of 0 for i . Once the number
of buyers that have accepted an offer equals k , the process terminates. Randomization is allowed
in the ordering of the buyers and for the prices offered.

We will initially only be concerned with sequential posted-price mechanisms. Later in the ar-
ticle we define and study the two generalizations of sequential posted-price mechanisms that we
mentioned in the introduction.

Note that each buyer in a sequential posted-price mechanism has an obvious dominant strategy:
he or she will accept whenever the price offered to him or her does not exceed his or her valuation,
and will reject otherwise. Also, a buyer always ends up with a nonnegative utility when partici-
pating in a sequential posted-price mechanism. Thus, by the revelation principle (see, e.g., Börgers
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(2015)), a sequential posted-price mechanism can be straightforwardly converted into a dominant
strategy IC and ex-post IR direct-revelation mechanism that achieves the same expected revenue.

Our interest lies in analyzing the revenue performance of a sequential posted-price mechanisms.
We do this by comparing the expected revenue of such mechanisms to the maximum expected
revenue that can be obtained by a mechanism that satisfies dominant strategy IC and ex-post IR.
Thus, for a given instance, let OPT be the maximum expected revenue that can be attained by a
dominant strategy IC, ex-post IR mechanism and let REV (C) be the maximum expected revenue
achievable by some class of mechanisms C. Our goal throughout this article is to derive (when
possible) instance-independent lower and upper bounds on the ratio REV (C)/OPT , when C is the
class of sequential posted-price mechanisms or one of the generalizations mentioned.

A more general class of mechanisms is formed by the ex-post incentive compatible, ex-post indi-
vidually rational mechanisms.

Definition 2.5. Let (n,π ,k ) be an instance and M be a randomized direct-revelation mechanism
for (n,π ,k ). Mechanism M is ex-post incentive compatible (ex-post IC) if and only if for all i ∈ [n],
si ∈ supp(πi ), and �v ∈ supp(π ),

xi (�v )vi − pi (�v ) ≥ xi (si , �v−i )vi − pi (si , �v−i ).

In other words, a mechanism is ex-post IC if it is always (i.e., for any valuation vector) a pure
equilibrium for the buyers to report their valuation. The difference between the ex-post IC notion
and the dominant strategy IC notion is that dominant strategy IC requires that bidding one’s true
valuation is the best strategy to adopt, even when other buyers do not do so, while ex-post IC only
requires that bidding one’s true valuation is the best strategy if other buyers do so as well.4

In this work, we sometimes compare the expected revenue of our (dominant strategy IC and
ex-post IR) mechanisms to the maximum expected revenue of the more general class of ex-post
IC, ex-post IR mechanisms. This strengthens our positive results. We refer the interested reader
to Roughgarden and Talgam-Cohen (2013) for a further discussion of and comparison between
various notions of incentive compatibility and individual rationality.

3 SEQUENTIAL POSTED-PRICE MECHANISMS

We are interested in designing a posted-price mechanism that, for any given n and valuation dis-
tribution π , achieves an expected revenue that lies only a constant factor away from the optimal
expected revenue that can be achieved by a dominant strategy IC, ex-post IR mechanism. In this
section, we show that this is unfortunately impossible. In fact, we will show that the nonconstant
approximation ratios established for the examples in this section are asymptotically optimal.

We next prove the following theorem.

Theorem 3.1. For alln ∈ N≥2 and allq ∈ [0, 1], there exists a valuation distribution π such that for

all k ∈ [n], there does not exist a sequential posted-price mechanism for instance (n,π ,k ) that extracts

a q fraction of the expected revenue of the optimal dominant strategy IC, ex-post IR mechanism.

Proof. We first consider the unit supply setting, i.e., instances of the form (n,π , 1). As a first
step, we show that a posted-price mechanism cannot achieve a constant-factor approximation of
the expected optimal social welfare, defined as

OSW = E�v∼π [max{vi : i ∈ [n]}].

4Note that some literature claims that in settings similar to the one we study, the notions of ex-post IC and dominant

strategy IC coincide. This holds only if the support of all conditional marginal distributions of a buyer are all equal, i.e., if

for all i ∈ [n] and for all �v, �v ′ ∈ supp(π ), it holds that supp(πi,v−i ) = supp(πi,v ′−i
). We do not make the latter assumption

in the present article, and therefore ex-post IC and dominant strategy IC are two distinct concepts in our setting.
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Let OR be the optimal revenue that a dominant strategy IC and ex-post IR mechanism can
achieve on (n,π ,k ). (OR depends on the valuation distribution π , but we assume that the valu-
ation distribution is given, and implicit from context.) It is clear that OSW is an upper bound to
OR regardless of π , since a dominant strategy IC and ex-post IR mechanism will not charge (in
expectation) any buyer a higher price than its expected valuation.

Fix m ∈ N≥1 arbitrarily, and consider the case where n = 1 and the valuation v1 of the single
buyer is taken from {1/a : a ∈ [m]} distributed such that π1 (1/a) = 1/m for all a ∈ [m]. In this
setting, a posted-price mechanism will offer the buyer a price p, which the buyer subsequently
accepts if and only if v1 ≥ p. After that, the mechanism terminates.

Note that OSW = (1/m)
∑m

a=1 (1/a). The expected revenue of the mechanism is

RM = pPrv1∼π1 [v1 ≥ p] = p
|{a : 1/a ≥ p}|

m
=
|{a : 1/a ≥ 1/p−1}|

mp−1
=

p−1

mp−1
=

1

m
. (1)

Therefore:

lim
m→∞

RM

OSW
= lim

m→∞

1∑
a∈[m] 1/a

= lim
m→∞

1

H (m)
= 0,

where H (m) denotes the mth harmonic number. So, no posted-price mechanism can secure in
expectation a revenue that lies a constant factor away from the expected optimal social welfare.
(Because our analysis is for an instance with only one buyer, this inapproximability result also
holds for instances with independent valuations.)

We extend the above example in a simple way to a setting where the expected revenue of the op-
timal dominant strategy IC, ex-post IR mechanism is equal to the expected optimal social welfare.

Fixm ∈ N≥1 and consider a setting with two buyers, where the type vector (v1,v2) takes values
in {(1/a, 1/a) : a ∈ [m]} according to the probability distribution where π ((1/a, 1/a)) = 1/m for all
a ∈ [m]. A mechanism that always gives buyer 1 the service and charges buyer 1 the bid of buyer
2 is clearly dominant strategy IC and also clearly achieves a revenue equal to the optimal social
welfare.

In this two-buyer setting, the value OSW is again (1/m)
∑m

a=1 (1/a). By symmetry, we may as-
sume without loss of generality that a posted-price mechanism works by first proposing a price p1

to buyer 1, and then proposing a price p2 to buyer 2 if buyer 1 rejected the offer. Using arguments
similar to Equation (1), we derive that the revenue of this mechanism is

RM = p1Pr(v1,v2 )∼π [v1 ≥ p1] + p2Pr(v1,v2 )∼π [v1 < p1 ∩v2 ≥ p2]

=
1

m
+ p2Pr(v1,v2 )∼π [v1 < p1 ∩v2 ≥ p2] ≤ 1

m
+ p2Pr(v1,v2 )∼π [v2 ≥ p2] =

2

m
.

Therefore:

lim
m→∞

RM

OR
= lim

m→∞

RM

OSW
≤ lim

m→∞

2∑
a∈[m] 1/a

= 0.

The above example establishes the nonexistence of a good sequential posted-price mechanism
in the case where the service has to be provided to a single buyer. Suppose now that the service
can be provided to two buyers (i.e., k = 2), and each buyer gets the service at most once. Consider
again two buyers whose values are drawn from the probability distribution π as defined above.
As above, by symmetry, we may assume that our posted-price mechanism first proposes price p1

to buyer 1, and then proposes either price p2 or p ′2 to buyer 2: p2 is proposed in case the offer was
rejected by buyer 1, and p ′2 is proposed otherwise. The difference with the previous analysis for the
unit supply case is that the mechanism proposes a price to buyer 2 regardless of whether buyer 1
accepted the offer or not.
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We derive

RM = p1Pr(v1,v2 )∼π [v1 ≥ p1 ∩v2 < p ′2] + p2Pr(v1,v2 )∼π [v1 < p1 ∩v2 ≥ p2]

+ (p1 + p
′
2)Pr(v1,v2 )∼π [v1 ≥ p1 ∩v2 ≥ p ′2]

≤ 2

m
+ (p1 + p

′
2)Pr(v1,v2 )∼π [v1 ≥ p1 ∩v2 ≥ p ′2]

≤ 2

m
+ 2 max{p1,p

′
2}Pr(v1,v2 )∼π [v1 ≥ max{p1,p

′
2}] ≤

4

m
.

The optimal-incentive-compatible mechanism works by giving the service to both buyers while
charging the bid of buyer 1 to buyer 2, and charging the bid of buyer 2 to buyer 1. The resulting
expected revenue is exactly the expected optimal social welfare: OR = OSW = (1/m)

∑m
a=1 (2/a).

We therefore obtain

lim
m→∞

RM

OR
= lim

m→∞

RM

OSW
≤ lim

m→∞

4∑
a∈[m] 2/a

= 0.

The above yields an impossibility result for 2-limited supply. By adding to this instance dummy
buyers that always have valuation 0, we obtain an impossibility result for k-limited supply, where
k ∈ N. �

We prove that the above impossibility result holds also in the continuous case even if we assume
that all of the following conditions simultaneously hold: the valuation distribution is supported
everywhere, is entirely symmetric, satisfies regularity, satisfies the monotone hazard rate condi-
tion, and satisfies affiliation; all the induced marginal distributions have finite expectation; and
all the conditional marginal distributions are nonzero everywhere. We remark that Roughgarden
and Talgam-Cohen (2013) showed that when all these assumptions are simultaneously satisfied,
the optimal ex-post IC and ex-post IR mechanism is the Myerson mechanism, which is the same
mechanism that is optimal in the independent value setting. Thus, these conditions make the cor-
related setting very similar to the independent one with respect to revenue maximization. Yet, our
following result shows that, whereas posted-price mechanisms can achieve a constant approxima-
tion revenue in the independent setting, this result does not extend to the correlated setting.

Theorem 3.2. For all q ∈ [0, 1], there exists a valuation distribution π with the properties that

(1) π has support [0, 1]2;

(2) the expectation E�v∼π [vi ] is finite for any i ∈ {1, 2};
(3) π is symmetric in all its arguments;

(4) π is continuous and nowhere zero on [0, 1]2;

(5) the conditional marginal densities πi |�v−i
are nowhere zero for any �v−i ∈ [0, 1]n−1 and any

i ∈ {1, 2};
(6) π has a monotone hazard rate and is regular; and

(7) π satisfies affiliation,

such that there does not exist a sequential posted-price mechanism on instance (2,π ,k ), for k ∈ {1, 2}
that extracts a q fraction of the expected revenue of the optimal dominant strategy IC, ex-post IR

mechanism.

Proof. Consider c > 1 and m ≥ (c − log c )/2 and set M = 1 + 1/m. Let V be a random variable
whose value is drawn over the support [1/m, 1] according to the probability density function

fV (x ) =
1

(m − 1)x2
.
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Let N1 and N2 be two random variables whose values are independently drawn over the support
[0,M −v] according to the conditional density function

fN |V (z | V = v ) =
c−z ln(c )

Z (v )
,

with c > 1 and Z (v ) = 1 − c−(M−v ) . Finally, let π be the probability density function of the pair
(X ,Y ) = (V + N1 − 1/m,V + N2 − 1/m).

Before proving that this value distribution satisfies Properties 1 through 7, we show that there
is a c∗ such that no sequential posted-price mechanism extracts constant revenue on this in-
stance when c = c∗. To this aim, let us fix ϵ > 0. Observe that limc→∞ fN |V (0 | V = v ) = 1 and
limc→∞ fN |V (z | V = v ) = 0 for any z > 0. Hence, limc→∞ |X − Y | = limc→∞ |(V − 1/m) − (V −
1/m) | = 0. Thus, there must be c∗ = c (ϵ ) large enough such that |X − Y | < ϵ .

Let us consider first the case that the service can be offered to only one buyer. In this setting, the
following is a dominant strategy IC and ex-post IR mechanism: it offers to buyer 1 the service at a
price equivalent to the valuation of buyer 2 minus ϵ . If c = c∗, then in expectation, this mechanism
extracts as revenue all but at most 2ϵ of the social welfare. The expected optimal social welfare
(and thus the optimal expected revenue) is

OR = OSW ≈ Ev∼fV
[v − 1/m] =

∫ 1

1/m

v − 1/m

(m − 1)v2
dv =

ln(m)

m − 1
− 1

m
≥ ln(m − 1)

m − 1
,

where we use the “≈” notation to suppress the ϵ term. A posted-price mechanism will offer buyer 1
a price p1 ≥ 0, which the buyer subsequently accepts if and only if X ≥ p1. After that, if buyer 1
rejects, the mechanism offers a price p2 to buyer 2. Thus, if p1 ∈ [0, 1 − 1/m], then

p1Prv∼fV
[X ≥ p1] ≈ p1Prv∼fV

[v ≥ p1 + 1/m]

= p1

∫ 1

p1+1/m

1

(m − 1)v2
dv =

p1

m − 1

(
1

p1 + 1/m
− 1

)
≤ 1 − p1

m − 1
≤ 1

m − 1
.

Moreover, if p1 ≥ 1 − 1/m, then p1Prv∼fV
[X ≥ p1] = 0. Hence,

RM = p1Prv∼fV
[X ≥ p1] + p2Prv∼fV

[X < p1 ∩ Y ≥ p2] ≤ 1

m − 1
+ p2Prv∼fV

[Y ≥ p2] ≤ 2

m − 1
.

Therefore:

lim
m→∞

RM

OR
= lim

m→∞

RM

OSW
≤ lim

m→∞

2

ln(m − 1)
= 0.

The case in which the service can be offered to both buyers is similar and omitted.
Let us now prove that, for every c , the distribution π satisfies the desired properties. Properties 1,

2, and 3 are trivial and can be immediately checked.
Forv ∈ [0, 1], let fX |V (·|V = v ) and fY |V (·|V = v ) be, respectively, the probability density func-

tions of X and Y conditioned on the event that V = v . In order to establish the remaining prop-
erties, observe that fX |V (x | V = v ) = fN |V (x −v + 1/m | V = v ) if x + 1/m ≥ v and 0 otherwise.
Equivalently, fY |V (y | V = v ) = fN |V (y −v + 1/m | V = v ) if y + 1/m ≥ v and 0 otherwise. Con-
sider now the triple (X ,Y ,V ). The joint density function of this triple is

fX ,Y ,V (x ,y,v ) = fX |Y ,V (x | Y = y,V = v ) · fY |V (y | V = v ) · fV (v ).

Note that fX |Y ,V (x | Y = y,V = v ) = fX |V (x | V = v ) if min{x ,y} + 1/m ≥ v and 0 otherwise.
Then

fX ,Y ,V (x ,y,v ) = fN |V (x −v + 1/m | V = v ) · fN |V (y −v + 1/m | V = v ) · fV (v )
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if min{x ,y} + 1/m ≥ v and 0 otherwise. Hence, we can compute π as follows:

π (x ,y) =

∫ 1

1/m

fX ,Y ,V (x ,y,v )dv =
ln2 (c )

m − 1
· c−(x+y ) ·

∫ α+1/m

1/m

c2v

v2Z (v )2
dv,

where α = min
{
1 − 1/m,x ,y

}
. Note that the integrated function is continuous and positive in the

interval in which it is integrated. Hence, the integral turns out to be nonzero. From this, we observe
that π (x ,y) is continuous and nowhere zero on [0, 1]2, satisfying Property 4.

Let us now derive the conditional probability density functions. By symmetry, it will be sufficient
to focus only on fX |Y :

fX |Y (x | Y = y) =

∫ 1

1/m

fX |Y ,V (x | Y = y,V = v ) · fV (v )dv =
ln(c )

m − 1
· c−x ·

∫ α+1/m

1/m

cv

v2Z (v )
dv

=
m2cM ln(c )

m − 1
· c−x ·

∫ α

0

1

(mz + 1)2 (c1−z − 1)
dz,

where the last equality is obtained by setting z = v − 1
m

. It is now obvious that the conditional
probability density functions are continuous and nowhere zero, as desired by Property 5.

Let γ (z) = 1/((mz + 1)2 (c1−z − 1)), д(a) =
∫ a

0
γ (z)dz with a ∈ [0, 1], and let α ′ = min{y, 1 −

1/m}. Then

fX |Y (x | Y = y) =
m2cM ln(c )

m − 1
· c−x ·

⎧⎪⎨⎪⎩
д(x ), if x < α ′;

д(α ′), otherwise.

Moreover, we have that

1 − FX |Y (x | Y = y) =

∫ 1

x

fX |Y (z | Y = y)dz

=
m2cM ln(c )

m − 1
·
⎧⎪⎨⎪⎩
∫ α ′

x
c−zд(z)dz + д(α ′)

∫ 1

α ′
c−zdz, if x < α ′;

д(α ′)
∫ 1

x
c−zdz =

д (α ′)(c−x−c−1 )
ln(c ) , otherwise.

Hence, the inverse hazard rate is

I (x ) =
1 − FX |Y (x | Y = y)

fX |Y (x | Y = y)
=

⎧⎪⎪⎨⎪⎪⎩
∫ α ′

x
c−zд (z )dz+д (α ′)

∫ 1

α ′ c−z dz

c−x д (x ) , if x < α ′;
1−cx−1

ln(c ) , otherwise.

We prove that I (x ) is nonincreasing in x in the interval [0, 1] and thus π has the monotone hazard
rate and is, as a consequence, regular, as required by Property 6.

Clearly, I (x ) is nonincreasing in x in the interval [α ′, 1] since in this case I (x ) = (1 − cx−1)/ ln(c ).
Moreover, I (x ) does not have discontinuities for x = α ′. So, it is sufficient to show that I (x ) is
nonincreasing also in the interval [0,α ′]. To this aim, observe that for x < α ′,

dI (x )

dx
=

d

dx

∫ α ′

x
c−zд(z)dz + д(α ′)

∫ 1

α ′
c−zdz

c−xд(x )

= �
�c
−xд(x )

d

dx

∫ α ′

x

c−zд(z)dz −
∫ α ′

x

c−zд(z)dz
d

dx
c−xд(x )

+ c−xд(x )д(α ′)
d

dx

∫ 1

α ′
c−zdz − д(α ′)

∫ 1

α ′
c−zdz

d

dx
c−xд(x )

)
/(c−xд(x ))2.
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Observe that, according to the second fundamental theorem of calculus,

d

dx

∫ α ′

x

c−zд(z)dz = −c−xд(x ),

whereas
d

dx
c−xд(x ) = c−xγ (x ) − c−xд(x ) ln(c ),

and d
dx

∫ 1

α ′
c−zdz = 0. Then,

dI (x )

dx
= −1 +

(
ln(c ) − γ (x )

д(x )

) ∫ α ′

x
c−zд(z)dz + д(α ′)

∫ 1

α ′
c−zdz

c−xд(x )
= −1 +

(
ln(c ) − γ (x )

д(x )

)
I (x ).

The result then follows by showing that γ (x )/д(x ) ≥ ln(c ).
To this aim, let us consider the function γ ′(z) = cz (c1−z − 1) (mz + 1)2 for z ∈ [0,x]. Note that

dγ ′(z)

dz
= 2mc (mz + 1)

(
1 − 2m +mz log c + log c

c1−z

)
≤ 2mc (mz + 1)

(
1 − 2m + log c

c

)
≤ 0,

where we used the fact thatm ≥ (c − log c )/2. Thus, γ ′(z) is nonincreasing in its argument and, in
particular,

γ ′(z) ≥ γ ′(x ) ≥ (cx − 1) (c1−x − 1) (mx + 1)2.

By simple algebraic manipulation, it then follows that γ (z) ≤ γ (x )cz/(cx − 1). Then

γ (x )

д(x )
=

γ (x )∫ x

0
γ (z)dz

≥ γ (x )∫ x

0
cz

cx−1γ (x )dz
=

cx − 1∫ x

0
czdz

= ln(c ),

as desired.
Set now C = ln2 (c )/(m − 1) and let

h(a) =

∫ min{1−1/m,a }+1/m

1/m

c2v

v2Z (v )2
dv

witha ∈ [0, 1]. Note that the integrated function is positive for anyv ∈ [1/m, 1]. Hence, the integral
increases as the size of the interval in which it is defined increases. In other words, the function
h(a) is nondecreasing in a.

Consider now two pairs (x ,y) and (x ′,y ′). Moreover, let x̂ = max{x ,x ′} and x̌ = min{x ,x ′} and,
similarly, define ŷ and y̌. We show that π (x ,y)π (x ′,y ′) ≤ π (x̂ , ŷ)π (x̌ , y̌), satisfying in this way also
Property 7.

Indeed,

π (x ,y)π (x ′,y ′) = C2c−(x+y+x ′+y′)h(min{x ,y})h(min{x ′,y ′}).
If x ≥ x ′ andy ≥ y ′ (x < x ′ andy < y ′, respectively), then (x̂ , ŷ) = (x ,y) ((x ′,y ′), respectively) and
(x̌ , y̌) = (x ′,y ′) ((x ,y), respectively), and the desired result immediately follows. Suppose instead
that (x̂ , ŷ) = (x ,y ′) and (x̌ , y̌) = (x ′,y). Then

π (x̂ , ŷ)π (x̌ , y̌) = C2c−(x+y+x ′+y′)h(min{x ,y ′})h(min{x ′,y}).

We will prove that in this case, h(min{x ,y})h(min{x ′,y ′}) ≤ h(min{x ,y ′})h(min{x ′,y}). First, ob-
serve that on both sides one of the two factors must beh(min{x ,y,x ′,y ′}) = h(min{x ′,y}). Suppose
without loss of generality that min{x ′,y} = y. Then it is sufficient to prove that h(min{x ′,y ′}) ≤
h(min{x ,y ′}), or, sinceh is nondecreasing, that min{x ′,y ′} ≤ min{x ,y ′}. If x ≤ y ′, then x ′ ≤ x ≤ y ′

by hypothesis and the claim follows. If y ′ < x , then it immediately follows that min{x ′,y ′} ≤ y ′.
The case that (x̂ , ŷ) = (x ′,y) and (x̌ , y̌) = (x ,y ′) is similar and hence omitted. �
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We note that the above theorem can be easily extended to an arbitrary number of buyers, by
adding dummy buyers whose valuation is independently drawn over the support [0, 1] according
to the probability density function

π (x ) =
c−x ln c

1 − c−1
.

Note that, with this extension, the resulting distribution π does not satisfy the symmetry condition
anymore, but on the other hand, the symmetry property is not necessary for the optimality of the
Myerson mechanism to hold (see Roughgarden and Talgam-Cohen (2013)).

In the above theorems, we have demonstrated that it is impossible to have a sequential posted-
price mechanism extract a constant fraction of the optimal revenue. More precisely, in our example
instances, it was the case that the expected revenue extracted by every posted-price mechanism
was a Θ(1/ log(r )) fraction of the optimal expected revenue, where r is the ratio between the
highest valuation and the lowest valuation in the support of the valuation distribution. A natural
question that arises is whether this is the worst possible instance in terms of revenue extracted,
as a function of r . Lavi and Nisan (2004) show that this is indeed the case. Indeed, they show an
online randomized mechanism (and thus a sequential posted-price one) that achieves at least a
Θ(1/ log(r )) fraction of the optimal revenue (see also the related paper of El-Yaniv et al. (2001)).
Hence, we have the following proposition.

Proposition 3.3. Letn ∈ N≥1, and let π be a probability distribution onRn . For everyk ∈ [n] there

exists a sequential posted-price mechanism that, when run on instance (n,π ,k ), extracts in expectation

at least an Ω(1/ log(rπ )) fraction of the expected revenue of the optimal dominant strategy IC and

ex-post IR auction, where rπ is the ratio between the highest and lowest valuation in the support of π .

We note that in many realistic scenarios, we do not expect the extremal valuations of the buyers
to lie too far from each other, because often the valuation of a buyer is strongly impacted by prior
objective knowledge of the value of the service to be auctioned. In Appendix B, we prove that the
Ω(1/ log(rπ )) bound can often be improved by adopting similar online mechanisms.

4 ENHANCED SEQUENTIAL POSTED-PRICE MECHANISMS

Our negative results on sequential posted-price mechanisms suggest that it is necessary for a
mechanism to have means to retrieve the valuations of some of the buyers in order to improve the
revenue performance. We accordingly propose a generalization of sequential posted-price mech-
anisms that possess this ability.

Definition 4.1. An enhanced sequential posted-price mechanism for an instance (n,π ,k ) is a mech-
anism that can be implemented by iteratively selecting a buyer i ∈ [n] that has not been selected
in a previous iteration and performing exactly one of the following actions for buyer i:

• Offer the service at price pi to buyer i , which the buyer may accept or reject. If i accepts,
he or she gets the service and pays pi , resulting in a utility of vi − pi for i . If i rejects, he or
she pays nothing and does not get the service, resulting in a utility of 0 for i .

• Ask i for his or her valuation (in which case the buyer pays nothing and does not get the
service).

Randomization is allowed.

This generalization is still dominant strategy IC and ex-post IR (i.e., the revelation principle
allows us to convert them to dominant strategy IC, ex-post IR direct-revelation mechanisms).
Actually, one can see that this mechanism still enjoys the stronger property of being obviously
strategy-proof (Li 2015). Indeed, for enhanced sequential posted-price mechanisms, when a buyer
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gets asked his or her valuation, he or she has no incentive to lie, because in this case he or she
does not get the service and pays nothing.5

Next, we analyze the revenue performance of enhanced sequential posted-price mechanisms.
For this class of mechanisms, we prove that it is unfortunately still the case that no constant
fraction of the optimal revenue can be extracted: the next section establishes an O (1/n) bound
for enhanced sequential posted-price mechanisms. Enhanced sequential posted-price mechanisms
nonetheless turn out to be more powerful than standard sequential posted-price mechanisms. Con-
trary to what we had for the former ones, enhanced mechanisms can be shown to extract a frac-
tion of the optimal revenue that is independent of the valuation distribution. The O (1/n) bound
turns out to be asymptotically tight. Our main positive result for enhanced sequential posted-price
mechanisms is that when dependence of the valuation among the buyers is limited, then a constant
fraction of the optimal revenue can be extracted. Specifically, in Section 4.2, we define the concept
of d-dimensional dependence and prove that for an instance (n,π ,k ) where π is d-dimensionally
dependent, there exists an enhanced sequential posted-price mechanism that extracts an Ω(1/d )
fraction of the optimal revenue. (This implies the claimed Ω(1/n) bound by taking d = (n − 1).)

4.1 Limitations of Enhanced Sequential Posted-Price Mechanisms

Here we show that enhanced sequential posted-price mechanisms cannot extract a constant frac-
tion of the expected revenue of the optimal dominant strategy IC, ex-post IR mechanisms. This is
done by constructing a family of instances on which no enhanced sequential posted-price mech-
anism can perform well.

Theorem 4.2. For all n ∈ N≥2, there exists a valuation distribution π such that for all k ∈ [n],
there does not exist an enhanced sequential posted-price mechanism for instance (n,π ,k ) that extracts

more than a O (1/n) fraction of the expected revenue of the optimal dominant strategy IC, ex-post IR

mechanism.

Proof. We prove this for the case of k = n. The proof is easy to adapt for different k .
Let n ∈ N andm = 2n . We prove this claim by specifying an instance In with n buyers and prov-

ing that RM(In )/OR(In ) ∈ O (1/n), where RM(In ) denotes the largest expected revenue achievable
by any enhanced sequential posted-price mechanism on In , and OR(In ) denotes the largest ex-
pected revenue achievable by a dominant strategy IC, ex-post IR mechanism.
In is defined as follows. Let ϵ ∈ R>0 be a number smaller than 1/nm2. The valuation distribution

π is the one induced by the following process: (1) draw a buyer i∗ from the set [n] uniformly at
random; (2) draw numbers {c j : j ∈ [n] \ {i∗}} independently from [m] uniformly at random; (3)
for all j ∈ [n] \ {i∗}, set vj = c jϵ ; and (4) set

vi∗ =
1(∑

j ∈[n]\{i∗ } c j

)
mod m

+ 1
. (2)

Observe that for this distribution, it holds that for all i ∈ [n], the valuation vi is uniquely de-
termined by the valuations (vj )j ∈[n]\{i } . The optimal (direct-revelation) mechanism can therefore
extract the total optimal social welfare as its revenue, as follows: it provides service to every buyer
and sets the prices as follows. Let bi be the bid, i.e., the reported valuation of buyer i . Then,

5A problematic aspect from a practical point of view is that while there is no incentive for a buyer to lie, there is also no

incentive to cooperate or to tell the truth. This problem is addressed in Appendix C.
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• if bj < 1/m for all j ∈ [n] \ {i}, charge i a price of

1(∑
j ∈[n]\{i } bj/ϵ

)
mod m

+ 1
;

• otherwise, if there is a buyer j ∈ [n] \ {i} and a number ci ∈ [m] such that

bj =
1(

ci +
∑

�∈[n]\{i, j } b�/ϵ
)

mod m
+ 1
,

then charge i the price ciϵ ;
• otherwise, the mechanism charges i an arbitrary price.

This mechanism is dominant strategy IC because the mechanism’s decision to provide service to
a buyer does not depend on his or her bid, and the price that a buyer is charged is not dependent
on his or her own bid. This mechanism is ex-post IR because bidding truthfully always gives the
buyer a utility of 0. This mechanism achieves a revenue equal to the optimal social welfare because
(by definition of the pricing rule) the price that a buyer is charged is equal to the valuation of that
buyer, if all buyers bid truthfully. Also, note that the situation corresponding to the third point
in the above specification of the mechanism will not occur when the buyers bid truthfully, and is
only included for the sake of completely specifying the mechanism.

We argue that

OR(In ) = E�v∼π

⎡⎢⎢⎢⎢⎢⎣
∑

i ∈[n]

vi

⎤⎥⎥⎥⎥⎥⎦
=

∑
i ∈[n]

E�v∼π [vi ] =
(n − 1)mϵ

2
+
Hm

m
,

where the last equality follows because the expected valuation of each of the buyers is ((n −
1)/n) (mϵ/2) + (1/n) (Hm/m). This in turn holds because a buyer is elected as buyer i∗ with prob-
ability 1/n, and buyer i∗’s marginal distribution is the distribution π ′ induced by drawing a value
from the set {1/a : a ∈ [m]} uniformly at random. The latter distribution has already been encoun-
tered in the beginning of Section 3, where we concluded that its expected value is Hm/m.

We now proceed to prove an upper bound on RM(In ). Let M be an arbitrary enhanced posted-
price mechanism. Because M is randomized, running M on In can be viewed as a probability dis-
tribution on a sample space of deterministic enhanced posted-price mechanisms that are run on
In . We analyze the revenue of the mechanism conditioned on three disjoint events that form a
partition of this sample space. Consider first the event E1 that buyer i∗ gets asked for his or her
valuation (when running M on In ). Conditioned on this event, the mechanism does not attain a
revenue of more than (n − 1)mϵ because the revenue of each buyer in [n] \ {i∗} is at mostmϵ .

Consider next the event E2 where buyer i∗ does not get asked for his or her valuation and buyer
i∗ is not the last buyer that is selected. Then a price pi∗ is proposed to i∗. Without loss of generality,
M draws pi∗ from a probability distribution Pi∗ with finite support, and the choice of distribution
Pi∗ depends on the sequence S of buyers queried prior to i∗ together with the responses of the
buyers in S . These responses take the form of a reported valuation in case a buyer in S is asked to
report his or her valuation, and the form of an accept/reject decision otherwise. Because i∗ is not
the last buyer selected, [n] \ (S ∪ {i∗}) is nonempty, and there exists a buyer j ∈ [n] \ (S ∪ {i∗})
such that the choice of Pi∗ does not depend on c j . By the fact that c j is drawn independently
and uniformly at random from [m] for all j ∈ [n] \ (S ∪ {i∗}) and by Equation (2), the marginal
probability distribution of the valuation of buyer i∗ conditioned on E2 is π ′ (which we defined
above). Therefore,

Epi∗∼Pi∗ ,�v∼π [pi∗Pr[vi∗ ≤ pi∗]] = Epi∗∼Pi∗ ,�v∼π ′[pi∗Pr[vi∗ ≤ pi∗]] =
1

m
,
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where the last equality follows from Equation (1). Thus, the expected revenue of M conditioned
on E2 is at most 1/m + (n − 1)mϵ .

In the event E3, the mechanism selects i∗ last. The expected revenue of M conditioned on this
event is at most the expected maximum social welfare: (n − 1)mϵ/2 + Hm/m. The probability of
event E3 occurring is 1/n, because of the following. For � ∈ [n], let E�

3 be the event that i∗ is not

the �th buyer selected by M , and let E<�
3 be the event that i∗ is not among the first � − 1 buyers

selected by M . Note that this means that Pr[E<1
3 ] = 1. Then,

Pr[E3] = Pr

[
E<n

3

]
= Pr

[
En−1

3 | E<n−1
3

]
Pr

[
E<n−1

3

]
=

∏
�∈[n−1]

Pr

[
E�

3 | E<�
3

]
.

For every � ∈ [n − 1], and every set S of � − 1 buyers, it holds that if i∗ � S and M selects S as the
first � − 1 buyers, the probability of selecting buyer i∗ as the �th buyer is 1/(n − (� − 1)), by the
definition of π (particularly because buyer i∗ is a buyer picked uniformly at random). Therefore,

Pr[E3] = Pr

[
E<n

3

]
=

∏
�∈[n−1]

(
1 − 1

n − (� − 1)

)
=

∏
�∈[n−1]

n − �
n − � + 1

=
1

n
.

Thus, we obtain the following upper bound on RM(In ):

RM(In ) ≤ Pr[E1](n − 1)mϵ + Pr[E2]
(

1

m
+ (n − 1)mϵ

)
+

1

n

(
(n − 1)mϵ

2
+
Hm

m

)

≤ 1

m
+ 2(n − 1)mϵ +

mϵ

2
+
Hm

mn
≤ 3(n − 1)mϵ +

Hm

mn
+

1

m
.

This leads us to conclude that

RM(In )

OR(In )
≤ 3nmϵ + Hm/mn + 1/m

Hm/m
=

3nm2ϵ + Hm/n + 1

Hm
≤ Hm/n + 4

Hm
=

1

n
+

4

H2n
∈ O

(
1

n

)
.

�

4.2 Revenue Guarantees for Enhanced Sequential Posted-Price Mechanisms

In this section, we evaluate the revenue guarantees of the enhanced sequential posted-price mech-
anisms in the presence of a form of limited dependence that we will call d-dimensional dependence,
for d ∈ N. These are probability distributions for which it holds that the valuation distribution of
a buyer conditioned on the valuations of the rest of the buyers can be retrieved by only looking at
the valuations of a certain subset of d buyers. Formally, we have the following definition.

Definition 4.3. A probability distribution π on Rn is d-dimensionally dependent if and only if for
all i ∈ [n], there is a subset Si ⊆ [n] \ {i}, |Si | = d such that for all �v−i ∈ supp(π−i ), it holds that
πi,�vSi

= πi,�v−i
.

Note that if d = 0, then π is a product of n independent probability distributions on R. On the
other hand, the set of (n − 1)-dimensionally dependent probability distributions on Rn equals
the set of all probability distributions on Rn . This notion is useful in practice for settings where
it is expected that a buyer’s valuation distribution has a reasonably close relationship with the
valuation of a few other buyers. As an example of one of these practical settings, consider the case
where there is a “true” valuation v for the item, an expert buyer that keeps this valuation, and re-
maining buyers who roughly follow the opinion of the expert buyer, so that their valuation is that
of the expert buyer, influenced by independent noise. It is then sufficient to know the valuation of
a single buyer, namely, the expert one, in order to retrieve the exact conditional distribution of
any other buyer. Our definition of 1-dimensional dependence applies if such an expert buyer
exists, even if the auctioneer does not know which buyer is the expert. Moreover, our definition
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of d-dimensional dependence is much more flexible than that: in the example just described, even
if each bidder picks another bidder as his or her own “personal” expert and adds noise to the
valuation of his or her expert, the distribution would remain 1-dimensionally dependent.

In general, d-dimensional dependence is relevant to many practical settings in which it is not
necessary to have complete information about the valuations of all the other buyers in order to
say something useful about the valuation of a particular buyer. This notion can be used to rule
out the extreme kind of dependence used to prove Theorem 4.2: There, the distributions are not
(n − 2)-dimensionally dependent, because for each buyer i it holds that the valuations of all buyers
[n] \ {i} are necessary in order to extract the valuation distribution of i conditioned on the others’
valuations.

It is important to note that the class of d-dimensional dependent distributions is a strict superset
of the class of Markov random fields of degree d . A Markov random field of degree d is a popular
model to capture the notion of limited dependence, and for that model a more straightforward
procedure than the one in the proof below exists for obtaining the same revenue guarantee, as
we demonstrate in Appendix E. However, the notion of d-dimensional dependence is both more
natural (for our setting) and much more general. In fact, we show in Appendix D that there exist
distributions on Rn that are 1-dimensionally dependent, but are not a Markov random field of
degree less than n/2. In a sense, our definition of d-dimensional dependence resembles the limited
dependence condition under which the Lovasz Local Lemma holds.

The main result that we will prove in this section is the following.

Theorem 4.4. For every instance (n,π ,k ) where π is d-dimensionally dependent, there exists

an enhanced sequential posted-price mechanism of which the expected revenue is at least a (2 −√
e )/(16d ) ≥ 1/(46d ) ∈ Ω(1/d ) fraction of the maximum expected revenue that can be extracted by

an ex-post IC, ex-post IR mechanism. Moreover, if k = n, then there exists an enhanced posted-price

mechanism of which the expected revenue is at least a 1/(4d ) fraction of the maximum expected

revenue that can be extracted by an ex-post IC, ex-post IR mechanism.

The proof of this theorem works by defining an appropriate enhanced sequential posted-price
mechanism of which we prove that it satisfies the claimed revenue bound. We remark that this
enhanced sequential posted-price mechanism requires a random order of arrival of buyers.

A corollary of this theorem is that the bound of Theorem 4.2 is asymptotically tight.

Corollary 4.5. For every instance (n,π ,k ), there exists an enhanced sequential posted-price mech-

anism of which the expected revenue is at least a Ω(1/n) fraction of the maximum expected revenue

that can be extracted by an ex-post IC, ex-post IR mechanism.

4.2.1 Blind-Offer Mechanisms. For proving our main result on enhanced sequential posted-
price mechanisms (i.e., Theorem 4.4), we first introduce a more powerful class of mechanisms,
which we call blind-offer mechanisms, and we prove that these can achieve a constant approxi-
mation of the optimal revenue. We finally show how we can convert blind-offer mechanisms into
enhanced sequential posted-price mechanisms while losing only a factor of 1/4d of the revenue,
if the valuation distribution is d-dimensionally dependent.

In blind-offer mechanisms, all bidders submit a bid to the mechanism a priori, making them
direct-revelation mechanisms. However, blind-offer mechanisms are still constrained to work by
allocating the items through a sequence of threshold offers. The additional power of this class of
mechanisms comes from the fact that the offer made to a buyer i may now be determined to some
extent by the submitted bids of all other buyers [n] \ {i}.

The following definition makes the notion of a blind-offer mechanism precise.
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Definition 4.6. Let (n,π ,k ) be an instance and let M be a direct-revelation mechanism for
(n,π ,k ). Mechanism M is a blind-offer mechanism for π if and only if it can be implemented as

follows. Let �b be the submitted bid vector and �(v ) the vector of valuations drawn from the distri-
bution:

(1) Terminate if �b � supp(π ).
(2) Either terminate or select a buyer i from the set of buyers that have not yet been selected,

such that the choice of i does not depend on �b.
(3) Offer buyer i service at price pi , where pi is drawn from a probability distribution that

depends only on π
i,�b−i

(hence, the distribution from which pi is drawn is determined by

�b−i and it does not depend on bi ). Buyer i accepts the offer and pays pi if and only if
vi ≤ pi .

(4) Go to Step 2 if there is supply left, i.e., if the number of buyers who have accepted offers
is less than k .

Randomization is allowed.

In the above definition, “offering a price” pi to buyer i in the context of a direct-revelation
mechanism means that we allocate the service to i if bi ≥ pi and charge him or her a payment of
pi , and otherwise we do not allocate the service to i and charge him or her nothing.

We would like to emphasize some important aspects of the definition of blind-offer mechanisms

• The offers made by a blind-offer mechanism are restricted in a subtle but crucial way: In
point 3 of the above definition, the (possibly randomized) offer made to a buyer is deter-
mined entirely by the conditional marginal distribution π

i,�b−i
. The question whether or not

a given direct-revelation mechanism is a blind-offer mechanism therefore depends (among
other things) on the distribution π . To clarify this further, suppose that there exists a buyer i

and two distinct bid vectors �b−i , �b
′
−i of the other buyers such that π

i,�b−i
= π

i,�b′−i

. In this case,

the randomized offer made to buyer i under bid vector �b−i is drawn from the same distribu-

tion as the randomized offer made to buyer i under bid vector �b ′−i . We will use the notion
of blind-offer mechanisms in order to obtain an enhanced sequential posted-price mecha-
nism with an Ω(1/d ) approximation factor, and the latter restriction is crucial in order to do
so. We are not aware of any mechanism proposed in the previous literature that achieves
a constant revenue approximation guarantee for arbitrarily correlated valuations and can
be implemented as a blind-offer mechanism. However, without this approximation guaran-
tee, it is easy to see that practically all dominant strategy IC, ex-post IR direct-revelation
mechanisms with nonnegative payments are blind-offer mechanisms. This follows from
well-known characterization results that state that each dominant strategy IC, ex-post IR
mechanisms must work by means of threshold prices that are independent of a buyer’s own
bid.6 To illustrate the restrictiveness of blind-offer mechanisms further, in Appendix F, we
give a simple example with independent valuations showing that a well-known mechanism
called the GVCG-L mechanism (Chawla et al. 2014) is not a blind-offer mechanism.7

6This relates to what some readers may know as the taxation principle.
7In fact, instances with independently drawn valuations are an extreme case, since in such instances the marginal con-

ditional distributions of the buyers are invariant. This implies that the prices offered by the mechanism are completely

independent of the submitted bids for such instances, so that even the standard second price auction is not a blind-offer

mechanism.
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• It is straightforward to see that (enhanced) sequential posted-price mechanisms are blind-
offer mechanisms, when regarded as direct-revelation mechanisms.

• Despite that blind-offer mechanisms inherit from sequential posted-price mechanisms the
property of making sequential threshold offers, they lose a lot of the conceptually attrac-
tive properties that sequential posted-price mechanisms possess. Mainly this is because
blind-offer mechanisms are direct-revelation mechanisms. We emphasize that our motiva-
tion to define blind-offer mechanisms is merely to serve as a tool for obtaining an Ω(1/d )-
approximate enhanced sequential posted-price mechanism. We do not consider blind-offer
mechanisms to be attractive practical mechanisms in their own right.

We finally note that, for a quite subtle reason, blind-offer mechanisms are not inherently ex-post
IC, and the constant-approximate blind-offer mechanism that we propose below is not incentive
compatible either. However, as said above, our main aim is not to design an ex-post IC blind-offer
mechanism. Rather, we aim to use blind-offer mechanisms to devise Ω(1/d )-approximate enhanced
sequential posted-price mechanisms (which are ex-post IC by definition). In order to do so, we will
see that it suffices to have merely a non-ex-post IC blind-offer mechanism that extracts a constant
fraction of the optimal revenue. In Appendix G, we elaborate further on the reason why blind-offer
mechanisms are not ex-post IC in general, and we show furthermore how we can nonetheless turn
any blind-offer mechanism into a dominant strategy IC blind-offer mechanism. The latter implies
that blind-offer mechanisms are actually able to approximate the optimal revenue within a constant
factor. This could be of some theoretical interest, since a blind-offer mechanism sets threshold
prices as a function of only the marginal conditional distributions of the buyers. As already noted,
to the best of our knowledge, all revenue approximation mechanisms proposed in other literature
use instead threshold prices that require a more refined dependence on the submitted bid vector
(see Appendix F for an illustration of this fact for the case of the GVCG-L mechanism).

We will prove in Section 4.2.3 that blind-offer mechanisms can always extract a constant fraction
of the optimal revenue, without making any assumptions on the valuation distribution. Specifi-
cally, we will prove the following theorem.

Theorem 4.7. For every instance (n,π ,k ), there is blind-offer mechanism for which the expected

revenue is at least a (2 −
√
e )/4 ≈ 0.088 fraction of the maximum expected revenue that can be ex-

tracted by an ex-post IC, ex-post IR mechanism. Moreover, if k = n, then there is a blind-offer mecha-

nism for which the expected revenue equals the maximum expected revenue that can be extracted by

an ex-post IC, ex-post IR mechanism.

4.2.2 The Conversion Lemma. Before proving Theorem 4.7, we show how to use blind-offer
mechanisms in order to prove Theorem 4.4. This proof works by means of a conversion lemma
that turns a blind-offer mechanism into an enhanced sequential posted-price mechanism. This
conversion lemma works by preselecting a set of buyers whose valuations are extracted, so that
the conditional marginal distribution of the other buyers is known with high (at least constant)
probability. The prices offered to the other buyers are then made according to the pricing function
of the blind-offer mechanism. Observe that, for this conversion lemma, it is vital that the pricing of
blind-offer mechanisms is a function of only the conditional marginal distributions of the players.
This also implies that no previously known mechanism, such as GVCG-L, can be used in place of
the blind-offer mechanism.

Let us now explain how this conversion works. Let M be any blind-offer mechanism and let
q ∈ [0, 1]. We construct from M the following enhanced sequential posted-price mechanism Mq .

Let pM
i (�v ) be the expected payment by buyer i ∈ [n] under mechanism M when �v are the reported

valuations. The expectation is with respect to the distribution π as well as with respect to any
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randomization in the mechanism. Note that with payment, we intend the amount of money paid
ex-post by a buyer, rather than the price offered by the mechanism to a buyer. For a buyer i , let Si ⊆
[n] \ {i} be a set of d buyers such that πi,�vSi

= πi,�v−i
for all �v ∈ Rn . Mechanism Mq first partitions

[n] into two setsA and B = [n] \A. It does so by placing each buyer independently with probability
q in set A, and placing him or her in set B otherwise. Then, the mechanism retrieves the vector �vA

by asking the buyers in A for their valuations. The existence of M implies the existence of a blind-

offer mechanism MB that only makes offers to buyers in B such that the expected price pMB

i (�v )

that MB offers to a buyer in B is at least pM
i (�v ): This can be achieved by doing the same as M ,

but refraining from offering to buyers in A.8 Mechanism Mq offers each buyer i ∈ B a price that
is determined by simulating MB as follows: offer the same prices as MB would to only the buyers
i ∈ B such that Si ⊆ A, and skip all other buyers in B. (Note, then, that a buyer i in B is skipped if
and only if there exists �v−i ∈ supp (π−i ) agreeing with �vA such that πi,�v−i

� πi,�vA
.) The probability

that any buyer is offered the price of MB is thus exactly (1 − q)qd , i.e., the probability that i ∈ B
and that Si ⊆ A. The desired revenue guarantee of Mq follows straightforwardly from this fact,
and we formalize this in the following lemma.

Lemma 4.8. Let α ∈ [0, 1] and let (n,π ,k ) be an instance where π is d-dimensionally dependent. If

there exists a blind-offer mechanism M for (n,π ,k ) that extracts in expectation at least an α fraction

of the expected revenue of the optimal dominant strategy IC, ex-post IR mechanism, then Mq is an

enhanced sequential posted-price mechanism that extracts in expectation at least an α/max{4d, 1}
fraction of the expected revenue of the optimal ex-post IC, ex-post IR mechanism, where q = 1 if d = 1
and q = 1 − 1/d if d > 1.

Proof. Let P be the distribution (induced by mechanism Mq ) on the set of partitions of [n]
into two sets. For i ∈ [n], let Si ⊆ [n] \ {i} be the set of d buyers such that πi,�vSi

= πi,�v−i
for all

�v ∈ Rn . For T ⊆ [n], let pi (T , �v ) be the expected payment by buyer i ∈ T under Mq , conditioned

on the event that B = T and Si ⊆ A. Note that pi (T , �v ) ≥ pMB

i (�v ) ≥ pM
i (�v ). Therefore, the expected

revenue of Mq is∑
�v ∈supp(π )

π (�v )
∑

i ∈[n]

Pr{A,B }∼P [i ∈ B ∩ Si ⊆ A]pi (B, �v ) =
∑

�v ∈supp(π )

π (�v )
∑

i ∈[n]

(1 − q)qdpi (B, �v )

≥ (1 − q)qd
∑

�v ∈supp(π )

π (�v )
∑

i ∈[n]

pM
i (�v ).

The last (double) summation is at least α times the expected revenue of the optimal dominant strat-
egy IC, ex-post IR mechanism, by definition of M . Therefore, this mechanism extracts at least a
(1 − q)qdα fraction of the optimal revenue. For d = 0, it is optimal to set q = 0, which results in an
enhanced sequential posted-price mechanism of which the revenue is α-approximately optimal.
For d = 1, it is optimal to set q = 1/2, which results in an (α/4)-approximately optimal enhanced
sequential posted-price mechanism. For d ≥ 2, setting q = 1 − 1/d will achieve the desired approx-
imation ratio, since limd→∞ (1 − 1/d )d = 1/e . Moreover, (1 − 1/d )d is increasing in d , and equals
1/4 for d = 2. �

Theorem 4.4 now follows directly by combining Theorem 4.7 and Lemma 4.8 above. We note
that in the above proof, it is easy to see that we can decrease the fraction q of buyers being probed
for their valuation at the cost of worsening the approximation guarantee. For example, whend ≥ 3,
if we set q = 1 − 2/d , then limd→∞ (1 − 2/d )d = (1/e )2.

8The fact that buyers in A are not made an offer might cause the supply to run out less quickly, and could increase the

expected payment of a buyer in B .
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4.2.3 Revenue Guarantees for Blind-Offer Mechanisms. Let us now formally prove Theorem 4.7.
We need to establish some intermediate results in order to build up to a proof for the above the-

orem. First, we derive an upper bound on the revenue of the optimal ex-post IC, ex-post IR mecha-
nism. For a given instance (n,π ,k ), consider the linear program with variables (yi (�v ))i ∈[n],�v ∈supp(π )

where the objective is

max
∑

i ∈[n]

∑
�v−i ∈supp(π−i )

π−i (�v−i )
∑

vi ∈supp(πi, �v−i
)

Prv ′i∼πi, �v−i
[v ′i ≥ vi ]viyi (vi , �v−i ) (3)

subject to the constraints

∀i ∈ [n], �v−i ∈ supp(π−i ) :
∑

vi ∈supp(πi, �v−i
)

yi (�v ) ≤ 1, (4)

∀�v ∈ supp(π ) :
∑

i ∈[n]

∑
v ′i ∈supp(πi, �v−i

):v ′i ≤vi

yi (v ′i , �v−i ) ≤ k, (5)

∀i ∈ [n], �v ∈ supp(π ) : yi (�v ) ≥ 0. (6)

The next lemma states that the solution to this linear program forms an upper bound on the rev-
enue of the optimal mechanism, and that the solution to the above linear program is integral in
case k = n.

Lemma 4.9. For any instance (n,π ,k ), the linear program (Equations (3) to (6)) upper bounds the

maximum expected revenue achievable by an ex-post IC, ex-post IR mechanism. Moreover, whenk = n,

the optimal solution to (Equations (3) to (6)) is to set yi (vi , �v−i ) to 1 for the value vi that maximizes

vi Prv ′i∼πi, �v−i
[v ′i ≥ vi ] (for all i ∈ [n], �v ∈ supp(π )).

Intuitively, it is clear that this lemma is true: in the linear program, the value yi (vi ,v−i ) can
be interpreted as the probability of setting a threshold price equal to vi to buyer i , given that
the valuations of the other buyers are v−i . The linear program is therefore expressing that in
the optimal ex-post IC, ex-post IR mechanism, some optimal random threshold price is offered to
each of bidder i , which only depends on the valuations v−i . Lastly, the constraint in Equation (5)
expresses that if we make such offers independently to each buyer, then the supply should not
be exhausted in expectation, which is clearly a prerequisite for any mechanism to be feasible.
Characterizations of this flavor, i.e., in terms of threshold offers, are well known in mechanism
and auction design, and similar linear-programming-based techniques have been used before as
well (Dobzinski et al. 2011; Gupta and Nagarajan 2013). However, such results are not known for
this exact setting with limited supply and arbitrary discrete valuation distributions. Due to the
similarity to results that appeared previously, we defer the proof of Lemma 4.9 to Appendix H, but
nonetheless we note that our proof differs in various subtle but important ways from those results
published previously.

Using Lemma 4.9, we now prove our main result about blind-offer mechanisms. We first handle
the case of unlimited supply, for which we use the following blind-offer mechanism, which is in
fact equivalent to the GVCG-Lmechanism of Chawla et al. (2014).

Definition 4.10. Consider an instance (n,π ,n). For i ∈ [n] and �v−i ∈ supp(π−i ), fix p̂i,�v−i
to be

any value in the set argp max{pPrvi∼πi, �v−i
[p ≤ vi ] : p ∈ R}. Define Mn

π to be the following blind-

offer mechanism for allocating service to n buyers when the valuations of these buyers are drawn
from π .

Let �b be the submitted vector of bids. For i ∈ [n], if �b−i ∈ supp(π−i ) and bi ≥ p̂
i,�b−i

, then Mn
π

gives service to i and charges i the price p̂
i,�b−i

. If bi < p̂
i,�b−i

, then the price charged to i is 0, and
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i is not given service. Otherwise, if �b−i � supp(π−i ), the price charged to i is 0 and i is not given
service.

Lemma 4.11. For instance (n,π ,n), mechanismMn
π extracts the maximum revenue among the class

of ex-post IC, ex-post IR mechanisms.

Proof. Denote by pi (�v ) the price charged to buyer i ∈ [n] when the buyers have valuation
vector �v ∈ supp(π ). We can write the expected revenue of Mn

π as follows:

E�v∼π

⎡⎢⎢⎢⎢⎢⎣
∑

i ∈[n]

pi (�v )

⎤⎥⎥⎥⎥⎥⎦
=

∑
i ∈[n]

E�v∼π [pi (�v )] =
∑

i ∈[n]

∑
�v ∈supp(π )

π (�v )pi (�v )

=
∑

i ∈[n]

∑
�v−i ∈supp(π−i )

π−i (�v−i )Prvi∼πi, �v−i
[vi ≥ p̂i,�v−i

]p̂i,�v−i
.

Lastly, by Lemma 4.9 and the objective function in Equation (3) of the linear program, we conclude
that the latter expression is equal to the solution of the linear program, which is an upper bound
on the optimal revenue among all ex-post IC, ex-post IR mechanisms by Theorem 4.9. �

For the case of k-limited supply where k < n, things are somewhat more complicated. Indeed,
there does not seem to exist a blind-offer mechanism as simple and as elegant as Mn

π . However,
we are still able to define a blind-offer mechanism that extracts at least a constant fraction of the
optimal revenue.

Definition 4.12. Let (n,π ,k ) be an arbitrary instance. Let (y∗i (�v ))i ∈[n] be the optimal solution to
the linear program (Equations (3) to (6)) corresponding to this instance.

Let Mk
π be the blind-offer mechanism that does the following: let �v be the vector of submit-

ted valuations. Iterate over the set of buyers such that in iteration i , buyer i is picked. In itera-
tion i , select one of the following options: offer service to buyer i at a price p for which it holds

that y∗i (p, �b−i ) > 0, or skip buyer i . The probabilities with which these options are chosen are as

follows: price p is offered with probability y∗i (p, �b−i )/2, and buyer i is skipped with probability

1 −∑
p′ ∈supp(π

i,�b−i
) y
∗
i (p, �b−i )/2. The mechanism terminates once k buyers have accepted an offer,

or when iteration n + 1 is reached.

Lemma 4.13. On instance (n,π ,k ), the expected revenue of blind-offer mechanism Mk
π is at least a

(2 −
√
e )/4 ≈ 0.088 fraction of the expected revenue of the optimal ex-post IC, ex-post IR mechanism.

Proof. We will show that the expected revenue of Mk
π is at least

2 −
√
e

4

∑
i ∈[n]

∑
�v−i ∈supp(π−i )

π−i (�v−i )
∑

vi ∈supp(πi, �v−i
)

Prv ′i∼πi, �v−i
[v ′i ≥ vi ]viy

∗
i (vi , �v−i ),

which is by Theorem 4.9 and the objective function (Equation (3)) a (2 −
√
e )/4 fraction of the

expected revenue of the optimal ex-post IC, ex-post IR mechanism.
For a vector of valuations �v ∈ supp(π ) and a buyer i ∈ [n], denote by Di,�v−i

the probability

distribution from which mechanismMk
π (�v ) draws a price that is offered to buyer i , in case iteration
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i ∈ [n] is reached (as described in Definition 4.12). We letV be a number that exceeds max{vi : i ∈
[n], �v ∈ supp(π )} and represent by V the option where Mk

π (�v ) chooses the “do nothing”-option
during iteration i , so that Di,�v−i

is a probability distribution on the set {V } ∪ {vi : y∗i (vi , �v−i ) > 0}.
Let us formulate an initial lower bound on the expected revenue of Mk

π :

E�v∼π [revenue of Mk
π (�v )]

= E �v ∼ π ,
p1 ∼ D1, �v−1

,

.

.

.
pn ∼ Dn, �v−n

⎡⎢⎢⎢⎢⎢⎣
∑

i ∈[n]

pi 1[pi ≤ vi ]1[|{j ∈ [i − 1] : pj ≤ vj }| < k]

⎤⎥⎥⎥⎥⎥⎦

=
∑

i ∈[n]

E �v ∼ π ,
p1 ∼ D1, �v−1

,

.

.

.
pn ∼ Dn, �v−n

[
pi 1[pi ≤ vi ]1[|{j ∈ [i − 1] : pj ≤ vj }| < k]

]

=
∑

i ∈[n]

∑
�v ∈supp(π )

π (�v )
∑

p1 ∈ supp(D1, �v−1
)

.

.

.
pi ∈ supp(Di, �v−i

)

pi 1[pi ≤ vi ]1[|{j ∈ [i − 1] : pj ≤ vj }| < k]
∏
j ∈[i]

D j,�v−j
(pj )

=
∑

i ∈[n]

∑
�v ∈supp(π )

π (�v )
∑

pi ∈ supp(Di, �v−i
)

: pi ≤ vi

piDi,�v−i
(pi )

∑
p1 ∈ supp(D1, �v−1

)

.

.

.
pi−1 ∈ supp(Di−1, �v−(i−1)

)

: | {j ∈ [i − 1] |pj ≤ vj } | < k

∏
j ∈[i−1]

D j,�v−j
(pj )

=
∑

i ∈[n]

∑
�v ∈supp(π )

π (�v )
∑

pi ∈ supp(Di, �v−i
)

: pi ≤ vi

piy
∗
i (pi , �v−i )

2
Pr p1 ∼ D1, �v−1

.

.

.
pi−1 ∼ Di−1, �v−(i−1)

[|{j ∈ [i − 1] : pj ≤ vj }| < k]

≥
∑

i ∈[n]

∑
�v ∈supp(π )

π (�v )
∑

pi ∈ supp(Di, �v−i
)

: pi ≤ vi

piy
∗
i (pi , �v−i )

2
Pr p1 ∼ D1, �v−1

.

.

.
pn−1 ∼ Dn−1, �v−(n−1)

[|{j ∈ [n − 1] : pj ≤ vj }| < k].

(7)

For the second equality, we applied linearity of expectation; the third equality follows from
the definition of expected value; to obtain the fourth equality, we eliminate the indicator func-
tions by removing the appropriate terms from the summation; in the fifth equality, we substi-
tute Di,�v−i

(pi , �v−i ) and D j,�v−j
(p ′j , �v−j ) by concrete probabilities. For the last inequality, we lower

bounded the last probability in the expression by replacing i by n.

For �v ∈ supp(π ) and i ∈ [n − 1], let us denote by z�vi the probability that a price drawn from
Di,�v−i

does not exceed vi , i.e.,

z�vi =
∑

pi ∈supp(Di, �v−i
):pi ≤vi

Di,�v−i
(pi ) =

∑
v ′i ∈supp(πi, �v−i

):v ′i ≤vi

y∗i (v ′i , �v−i )

2
,
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and let X �v
i denote the random variable that takes the value 1 with probability z�vi and the value 0

with probability 1 − z�vi . Then the final probability in the derivation above; i.e.,

Pr p1 ∼ D1, �v−1

.

.

.
pn−1 ∼ Di−1, �v−(n−1)

[|{j ∈ [n − 1] : pj ≤ vj }| < k]

can be written as

1 − Pr

⎡⎢⎢⎢⎢⎢⎣
∑

i ∈[n−1]

X �v
i ≥ k

⎤⎥⎥⎥⎥⎥⎦
.

Let μ = E[
∑

i ∈[n−1] X
�v
i ]. Next, we use a Chernoff bound:

Theorem 4.14 (Chernoff Bound (as in Motwani and Raghavan (1995))). Let X1, . . . ,Xn be

independent random (0, 1)-variables such that, for i ∈ [n], Pr[Xi = 1] = pi , where pi ∈ [0, 1]. Then,

for X =
∑

i ∈[n] Xi , μ = E[X ] =
∑

i ∈[n] pi , and any δ > 0,

Pr[X ≥ (1 + δ )μ] ≤
(

eδ

(1 + δ )1+δ

) μ

.

This implies that the expression above is bounded as follows:

1 − Pr

⎡⎢⎢⎢⎢⎢⎣
∑

i ∈[n−1]

X �v
i ≥

(
1 +

(
k

μ
− 1

))
μ

⎤⎥⎥⎥⎥⎥⎦
≥ 1 −

(
ek/μ−1

(k/μ )k/μ

) μ

.

By the definition of z�vi and the constraint in Equation (5) of the linear program, it holds that

μ =
∑

i ∈[n−1] z
�v
i ≤ k/2. We can lower bound the expression above by replacing μ by k/2. To see

this, we first rewrite it as follows:

1 −
(
ek/μ−1

(k/μ )k/μ

) μ

= 1 − ek−μ+k ln(μ )

kk
.

The derivative of the exponent of e (with respect to μ) is positive for μ ∈ [0,k], which means
that the exponent of e is increasing in μ on [0,k]. Thus, replacing μ by its upper boundk/2 increases
the exponent and therefore decreases the expression above. Therefore:

1 − Pr

⎡⎢⎢⎢⎢⎢⎣
∑

i ∈[n−1]

X �v
i ≥ k

⎤⎥⎥⎥⎥⎥⎦
≥ 1 −

(e
4

)k/2

≥ 1 −
(e

4

)1/2

=
2 −
√
e

2
. (8)

Continuing from Equation (7), we obtain
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E�v∼π [revenue of Mk
π (�v )] ≥

∑
i ∈[n]

∑
�v ∈supp(π )

π (�v )
∑

pi ∈supp(Di, �v−i
):pi ≤vi

pi

y∗i (pi , �v−i )

2

2 −
√
e

2

=
2 −
√
e

4

∑
i ∈[n]

∑
�v ∈supp(π )

π (�v )
∑

pi ∈supp(Di, �v−i
):pi ≤vi

piy
∗
i (pi , �v−i )

=
2 −
√
e

4

∑
i ∈[n]

∑
�v−i ∈supp(π−i )

π−i (�v−i )
∑

vi ,pi ∈supp(πi, �v−i
):pi ≤vi

πi,�v−i
(vi )piy

∗
i (pi , �v−i )

=
2 −
√
e

4

∑
i ∈[n]

∑
�v−i ∈supp(π−i )

π−i (�v−i )
∑

pi ∈supp(πi, �v−i
):pi ≤vi

Pr�v−i∼πi, �v−i
[vi ≥ pi ]piy

∗
i (pi , �v−i ),

which proves the claim. �

Theorem 4.7 now follows by combining Lemmas 4.11 and 4.13. We note that the approximation
factor of the theorem is certainly not tight and can possibly be improved with additional work. For
example, it is possible to show that for k = 1, the revenue of Mk

π is in fact at least 1/4 of the optimal

revenue. Moreover, recall that mechanism Mk
π works by scaling the probabilities yi (�v ) down by

1/2. By making this scaling factor dependent on k and choosing it appropriately, we can improve
the approximation factor further. We emphasize that the focus and purpose of the above result
is merely to show that a constant factor of the optimal revenue (independent of the supply k) is
achievable.

5 OPEN PROBLEMS

Besides improving any of the approximation bounds that we established in the present article,
there are many other interesting further research directions. For example, it would be interesting
to investigate the revenue guarantees under the additional constraint that the sequential posted-
price mechanism be order oblivious: i.e., the mechanism has no control over which buyers to pick
and should perform well for any possible ordering of the buyers. We are also interested in resolv-
ing some questions regarding the use of randomization in our enhanced posted-price mechanism
that extractsO (1/d ) of the optimal revenue: in the current proof, is it necessary to pick buyers uni-
formly at random, or does there exist a deterministic enhanced sequential posted-price mechanism
that extracts a constant factor of the optimal revenue?

An obvious and interesting research direction is to investigate more general auction problems. In
particular, to what extent can extended SPP mechanisms be applied to auctions having nonidentical
items? Additionally, can such mechanisms be applied to more complex allocation constraints or
specific valuation functions for the buyers? The buyers may have, for example, a demand of more
than one item, or there may be a matroid feasibility constraint on the set of buyers or on the set
of items that may be allocated.

APPENDIX

A CONTINUOUS DISTRIBUTION PROPERTIES

Let π be a valuation distribution on [0,ai ]
n , with ai ∈ R≥0 for i ∈ [n], with density f that is con-

tinuous and nowhere zero. Distribution π is said to satisfy affiliation if and only if for every
two valuation vectors �v, �w ∈ supp(π ) it holds that f (�v ∧ �w ) f (�v ∨ �w ) ≥ f (�v ) f (�w ), where �v ∧ �w
is the component-wise minimum and �v ∨ �w is the component-wise maximum. For i ∈ [n] and
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�v−i ∈ supp(π−i ), the conditional marginal density function fi (·|�v−i ) is defined as

fi (vi | �v−i ) =
f (vi , �v−i )∫ a

0
f (t , �v−i )dt

,

the conditional revenue curve Bi (· | �v−i ) is defined as

Bi (vi | �v−i ) = vi

∫ a

vi

fi (t | �v−i )dt ,

and the conditional virtual value ϕi (· | �v−i ) is defined as

ϕi (vi | �v−i ) = −
d

dvi
Bi (vi | �v−i )

fi (vi | �v−i )
.

Denote by Fi (· | �v−i ) the cumulative distribution function corresponding to fi (· | �v−i ). Distribu-
tion π satisfies regularity if ϕi (· | �v−i ) is nondecreasing for all i ∈ [n] and �v−i ∈ supp(π−i ), and it
satisfies the monotone hazard rate condition if (1 − Fi (vi | �v−i ))/( fi (vi | �v−i )) is nonincreasing in
vi for all i ∈ [n] and �v−i ∈ supp(π−i ).

A discussion and justification for the above notions is outside of the scope of this article, and
we refer the interested reader to Roughgarden and Talgam-Cohen (2013).

Note that Roughgarden and Talgam-Cohen (2013) proved that for any distribution π that satis-
fies regularity and affiliation, the Myerson mechanism is ex-post IC, ex-post IR and optimal among
all ex-post IC and ex-post IR mechanisms.

B MORE REFINED ONLINE POSTED-PRICE MECHANISMS

The revenue bound stated in Preposition 3.3 can be improved in a number of different settings. We
start with the unit supply case.

Definition B.1. For a valuation distribution π on Rn , let vmax
π and vmin

π be max{vi : v ∈
supp(π ), i ∈ [n]} and min{max{vi : i ∈ [n]} : v ∈ supp(π )}, respectively. Let r ∗π = v

max
π /vmin

π be the
ratio between the highest and lowest coordinate-wise maximum valuation in the support of π .

Note that r ∗π can be much smaller than rπ , since the lowest coordinate-wise maximum valuation
in the support of π may be larger than the minimum valuation in the support.

Proposition B.2. Let n ∈ N≥1, and let π be a probability distribution on Rn . For the unit supply

case, there exists a sequential posted-price mechanism that, when run on instance (n,π , 1), extracts in

expectation at least an Ω(1/ log(r ∗π )) fraction of the optimal social welfare (and therefore also of the

expected revenue of the optimal dominant strategy IC and ex-post IR auction).

Proof. The proof uses a standard bucketing trick (see, e.g., Babaioff et al. (2007)). Let M be
the sequential posted-price mechanism that draws a value p uniformly at random from the set
S = {vmin

π 2k : k ∈ [�log(r ∗π ) − 1�] ∪ {0}}. M offers price p to all the bidders in an arbitrary order,
until a bidder accepts.

Let πmax be the probability distribution of the coordinate-wise maximum of π . Note that |S | does
not exceed log(r ∗πmax

). Therefore, the probability that p is the highest possible value (among the
values in S) that does not exceed the value drawn from πmax is equal to 1/ log(r ∗π ). More formally,
let πS be the probability distribution from which p is drawn; then

Prvmax∼πmax,p∼πS
[p ≤ vmax ∩ (�p ′ ∈ S : p ′ > p ∧ p ′ ≤ vmax)] ≤ 1

log(r ∗π )
.

Thus, with probability 1/ log(r ∗π ), the mechanism generates a revenue of exactlyvmin
π 2k , where k is

the number such that the value drawn from πmax lies in betweenvmin
π 2k andvmin

π 2k+1. This implies
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that with probability 1/ log(r ∗π ), the mechanism generates a revenue that lies a factor of at most
1/2 away from the optimal social welfare OPT (�v ) (i.e., the coordinate-wise maximum valuation):

E�v∼π [revenue of M (�v )] ≥ 1

log(r ∗π )

1

2
E�v∼π [OPT (�v )] ≥ 1

2 log(r ∗π )
E�v∼π [OPT (�v )].

�

The above result does not always guarantee a good revenue, for example, in the extreme case
where vmin

π = 0. However, it is straightforward to generalize the above theorem such that it be-
comes useful for a much bigger family of probability distributions: let v̂ and v̌ be any two values
in the support of πmax, and let c (v̂, v̌ ) = Prvmax∼πmax [v̌ ≤ vmax ≤ v̂]. Then, by replacing the values
vmax

π and vmin
π in the above proof by, respectively, v̂ and v̌ , we obtain a sequential posted-price

mechanism that extracts in expectation a c (v̂, v̌ )/(2 log(v̂/v̌ )) fraction of the optimal social wel-
fare. By choosing v̂ and v̌ such that this ratio is maximized, we obtain a mechanism that extracts
a significant fraction of the optimal social welfare in any setting where the valuation distribution
of a buyer is concentrated in a relatively not-too-large interval.

A better result can be given for the unlimited supply case.

Definition B.3. For a valuation distribution π onRn and any i ∈ [n], letvmax
π ,i andvmin

π ,i be max{vi :

�v ∈ supp(π )} and min{vi : �v ∈ supp(π )}, respectively. Let rπ ,i = v
max
π ,i /v

min
π ,i be the ratio between

the highest and lowest valuation of buyer i in the support of π .

Proposition B.4. Let n ∈ N≥1, and let π be a probability distribution on Rn . There exists a se-

quential posted-price mechanism that, when run on instance (n,π ,n), extracts in expectation at least

an Ω(1/ log(max{rπ ,i : i ∈ [n]})) fraction of the expected revenue of the expected optimal social wel-

fare (and therefore also the expected revenue of the optimal dominant strategy IC and ex-post IR

mechanism).

Proof. The proof applies similar techniques as those in the proof of Proposition B.2.
LetM be the sequential posted-price mechanism that draws for each i ∈ [n] a valuepi uniformly

at random from the set Si = {vmin
π ,i 2k : k ∈ [�log(rπ ,i ) − 1�] ∪ {0}}. M proposes prices to the buyers

in an arbitrary order and offers price pi to buyer i .
For i ∈ [n], let πi be the probability distribution of the ith coordinate of π . Note that |Si | does

not exceed log(rπ ,i ). Therefore, the probability that pi is the highest possible value (among the
values in Si ) that does not exceed the value drawn from πi is at least 1/ log(rπ ,i ). More formally,
let πSi

be the uniform distribution on S ; then

Prvi∼πi ,pi∼πSi
[pi ≤ vi ∩ (�p ′i ∈ Si : p ′i > pi ∧ p ′i ≤ vi )] ≤ 1

log(rπ ,i )
.

Thus, with probability 1/ log(rπ ,i ), the mechanism extracts from buyer i a revenue of exactly

vi,min2k , where k is the number such that the value drawn from πi lies in between vi,min2i and
vi,min2i+1. This implies that with probability 1/ log(rπ ,i ), the mechanism extracts from buyer i a
revenue that lies a factor of at most 1/2 away from vi . This leads to the conclusion that

E�v∼π [revenue of M (�v )] ≥
∑

i ∈[n]

1

log(rπ ,i )

1

2
Evi∼πi

[vi ]

≥ 1

2 log(max{rπ ,i : i ∈ [n]})
∑

i ∈[n]

Evi∼πi
[vi ]

=
1

2 log(max{rπ ,i : i ∈ [n]}) E�v∼π [OPT (�v )],
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where OPT (�v ) =
∑

i ∈[n]vi denotes the optimal social welfare when the buyers have valuation
vector �v . �

Clearly, the stated bound of O (1/ log(max{rπ ,i : i ∈ [n]})) is very crude. For most practical set-
tings, we expect that it is possible to do a much sharper revenue analysis of the mechanisms in
the proofs of the above propositions, by taking the particular valuation distribution into account.
Moreover, as suggested above, also for the unlimited supply case it is possible to tweak the proof
in a straightforward way in order to achieve good revenue in cases where the ratios rπ ,i are very
large. Finally, note that the mechanisms in the proofs of these two propositions do not take into ac-
count any dependence and correlation among the valuations of the buyers. When provided with a
particular valuation distribution, a better revenue and sharper analysis may be obtained by taking
such dependence into account and adapting the mechanisms accordingly.

The techniques used for proving these results can be applied to improve the approximation
guarantees for the more general k-limited supply setting, for any k ∈ [n], under special conditions.
Next we give an example of such a result.

Definition B.5. For a valuation distribution π on Rn , let vmax(k )
π and vmin(k )

π be, respectively, the
maximum and the minimum kth largest valuation among the valuation vectors in supp(π ). That

is,vmax(k )
π = max{σ (�v )k : �v ∈ supp(π )} andvmin(k )

π = min{σ (�v )k : �v ∈ supp(π )}, where σ (�v ) is the

same as �v , except that valuations are in nonincreasing order. Let r (k )
π = vmax(k )

π /vmin(k )
π be the ratio

between these values.

Proposition B.6. Let n ∈ N≥1, and let π be a probability distribution on Rn . For any k ∈ [n],
there exists a sequential posted-price mechanism that, when run on instance (n,π ,k ), extracts in

expectation at least an Ω((1/ log(r (k )
π )) · (vmax(k )

π /vmax(1)
π )) fraction of the expected revenue of the

expected optimal social welfare (and therefore also of the expected revenue of the optimal dominant

strategy IC, ex-post IR mechanism).

Proof. Let M be the sequential posted-price mechanism that draws a value p uniformly at

random from the set S = {vmin(k )
π 2j : j ∈ [�log(r (k )

π ) − 1�] ∪ {0}}. M offers price p to all the buyers
in an arbitrary order, until k buyers accept.

Let πmax(k ) be the probability distribution of the kth highest value of π . Note that |S | does not

exceed log(r (k )
π ). Therefore, the probability that p is the highest possible value (among the values

in S) that does not exceed the value drawn from πmax(k ) is equal to 1/ log(r (k )
π ). More formally, let

πS be the probability distribution from which p is drawn; then

Prvmax(k )∼πmax(k ),p∼πS
[p ≤ vmax(k ) ∩ (�p ′ ∈ S : p ′ > p ∧ p ′ ≤ vmax(k ) )] ≤ 1

log(r (k )
π )
.

Thus, with probability 1/ log(r (k )
π ), the mechanism extracts from each winner a revenue of exactly

vmin(k )
π 2j , where j is the number such that the value drawn from πmax(k ) lies in between vmin(k )

π 2j

andvmin(k )
π 2j+1. This implies that with probability 1/ log(r (k )

π ), the mechanism extracts from buyer

i a revenue that lies a factor of O (vmax(k )
π /vmax(1)

π ) away from vmax(1)
π . This leads to the conclusion

that

E�v∼π [revenue of M (�v )] ≥ Ω �
�

1

log(r (k )
π )
· v

max(k )
π

vmax(1)
π

�
�

∑
i ∈WM

vmax(1)
π ,

where WM denotes the set of buyers for which mechanism M allocates the service. The theorem

then follows since
∑

i ∈WM
vmax(1)

π =
∑

i ∈WO PT
vmax(1)

π ≥ OPT =
∑

i ∈WO PT
vi , where WOPT denotes
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the set of buyers at which the optimal mechanism allocates the service, and OPT is the social
welfare achieved by the optimal mechanism. �

We say that an instance (n,π ,k ) is k-well-separated if for any �v ∈ supp(π ) the kth coordinate-

wise maximumvmax(k )
π is achieved only by a single buyer; i.e., the set {i : vi = v

max(k )
π , �v ∈ supp(π )}

is a singleton. Then we can prove the following proposition.

Proposition B.7. Let n ∈ N≥1, and let π be a discrete probability distribution on Rn . For any

k ∈ [n], if the instance (n,π ,k ) is k-well-separated, then there exists a sequential posted-price mech-

anism that, when run on instance (n,π ,k ), extracts in expectation at least an Ω((1/ log(r (k )
π )) ·

maxi ∈[n] log(vmax(k )
π /vmax

π ,i )) fraction of the expected optimal social welfare (and therefore also of the

expected revenue of the optimal dominant strategy IC and ex-post IR mechanism).

Proof. Since π is discrete, let δ be the smallest ratio larger than 1 between two valuations in
�v ∈ supp(π ), i.e., δ = mini, j {vi/vj > 1 : �v ∈ supp(π )}. Consider ϵ ≤ δ and let M be the sequential

posted-price mechanism that draws a value p uniformly at random from the set S = {vmin(k )
π ϵ j :

j ∈ [�logϵ (r (k )
π ) − 1�] ∪ {0}}. Moreover, M draws for each i ∈ [n] a value pi uniformly at random

from the set Si = {vmin
π ,i 2� : � ∈ [�log

p

vmin
π ,i

�, �log
p

vmin
π ,i

− 1�]}. M proposes prices to the buyers in an

arbitrary order and offers price pi to buyer i .
Let πmax(k ) be the probability distribution of the kth coordinate-wise maximum of π . Note that

|S | does not exceed logϵ (r (k )
π ). Therefore, the probability thatp is the highest possible value (among

the values in S) that does not exceed the value drawn from πmax(k ) is equal to 1/ logϵ (r (k )
π ). More

formally, let πS be the probability distribution from which p is drawn; then

Prvmax(k )∼πmax(k ),p∼πS
[p ≤ vmax(k ) ∩ (�p ′ ∈ S : p ′ > p ∧ p ′ ≤ vmax(k ) )] ≤ 1

logϵ (r (k )
π )
.

Thus, with probability 1/ logϵ (r (k )
π ), the mechanism selects p = vmin(k )

π ϵ j , where j is the number

such that the value drawn from πmax(k ) lies in between vmin(k )
π ϵ j and vmin(k )

π ϵ j+1. When this event
occurs, since the instance is k-well-separated and by our choice of ϵ , to the set WM of buyers
whose valuation is at least p has size exactly k and corresponds of the setWOPT of buyers with the

k highest valuation in �v ∈ supp(π ). Hence, with probability 1/ logϵ (r (k )
π ), mechanism M extracts

revenue only from buyers inWOPT .
Now, for any i ∈WOPT , let πi be the probability distribution of the ith coordinate of π . Note

that |Si | does not exceed logϵ

vmax
π ,i

v
max(k )
π

. Therefore, the probability that pi is the highest possible value

(among the values in Si ) that does not exceed the value drawn from πi is at least logϵ
v

max(k )
π

vmax
π ,i

. More

formally, let πSi
be the uniform distribution on S ; then

Prvi∼πi ,pi∼πSi
[pi ≤ vi ∩ (�p ′i ∈ Si : p ′i > pi ∧ p ′i ≤ vi )] ≤ logϵ

vmax(k )
π

vmax
π ,i

.
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Thus, with probability 1

logϵ (r
(k )
π )
· logϵ

v
max(k )
π

vmax
π ,i

, the mechanism extracts from buyer i ∈WOPT a rev-

enue of exactly vi,min2� , where � is the number such that the value drawn from πi lies in between

vi,min2� and vi,min2�+1. This implies that with probability 1

logϵ (r
(k )
π )
· logϵ

v
max(k )
π

vmax
π ,i

, the mechanism

extracts from buyer i ∈WOPT a revenue that lies a factor of at most 1/2 away from vi . This leads
to the conclusion that

E�v∼π [revenue of M (�v )] ≥
∑

i ∈WO PT

1

logϵ (r (k )
π )
· logϵ

vmax(k )
π

vmax
π ,i

1

2
Evi∼πi

[vi ]

= Ω �
�

1

log(r (k )
π )
·max

i ∈[n]
log

vmax(k )
π

vmax
π ,i

�
�

∑
i ∈[n]

Evi∼πi
[vi ]

= Ω �
�

1

log(r (k )
π )
·max

i ∈[n]
log

vmax(k )
π

vmax
π ,i

�
�E�v∼π [OPT (�v )],

where OPT (�v ) =
∑

i ∈WO PT
vi denotes the optimal social welfare when the buyers have valuation

vector v . �

C ADDRESSING SOME PRACTICAL PROBLEMS OF ENHANCED SEQUENTIAL

POSTED-PRICE MECHANISMS

A problematic aspect is that while there is no incentive for a buyer to lie, there is also no incentive
to tell the truth. Therefore, incentive compatibility is only achieved in weakly dominant strategies.
We note that in the literature, many (or perhaps most) truthful mechanisms are only incentive
compatible in the weak sense. Such mechanisms are of theoretical interest, and may possibly be
turned into more practically satisfactory mechanisms.

In the case of enhanced SPP mechanisms, the lack of a strong incentive to be truthful only
applies to those buyers who are asked for their values, knowing they will not be allocated the
item. Such a buyer may not cooperate at all, or may state a false value. The first problem can be
resolved by compensating the buyer with some fixed small amount of money that the auctioneer
obtains from the buyers who pay for the service. Having ensured some level of cooperation, how
do we incentivize these buyers to be truthful?

Here is an example of such an adaptation of our enhanced SPP mechanisms that creates the
proper strong incentive. Suppose now that we have provided an incentive for every buyer to re-
veal a valuation. At the start of the auction, using a cryptographic protocol (or just a normal sealed
envelope), we ask each of the buyers for a sealed commitment of his or her value. Furthermore,
for buyers being offered a price, with some (say small) probability, the buyer must reveal his or
her private valuation in order to be allowed the item. If the revealed value is larger than the of-
fered price, then the buyer is punished and the item is not allocated to him or her. Now this is
strongly incentive compatible if we assume buyers are risk averse so that they will not overbid
their valuation. There is clearly no monetary reason for a buyer to underbid.

D ON D-DIMENSIONAL DEPENDENCE VERSUS MARKOV RANDOM FIELDS

OF DEGREE D

This section is intended for readers who are interested in the relative generality ofd-dimensionally
dependence compared to Markov random fields of degree d . We assume that the reader is familiar
with the definition of Markov random fields. For convenience, we will state a weaker notion here.
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Definition D.1. Given a undirected graph G = ([n],E), a probability distribution π on Rn is a
local Markov random field with respect toG if the following property, named local Markov property,
holds: for all i ∈ [n], πi is independent of π[n]\( {i }∪Γ(i )) when conditioning on all coordinates in
Γ(i ). Here, Γ(i ) denotes the neighborhood of i inG. The degree of a Markov random field is defined
as the maximum degree of a vertex in its associated graph.

(In a true Markov random field, two additional technical conditions need to be satisfied, called
the pairwise Markov property and the global Markov property.) We will give an example of a
1-dimensionally dependent distribution that is not a local Markov random field with respect to
any graph G in which all vertices have a degree less than (n − 2)/2.

Consider a distribution π on {0, 1}n+2. A vector v drawn from π is formed according to the fol-
lowing random process: we are given 2n distinct probability distributions on {0, 1}. We name these
distributions π i,0 and π i,1, for i ∈ [n]. These distributions are such that both 0 and 1 occur with pos-
itive probability. Letv ′ be a value drawn from yet another distribution π ′ on {0, 1}where again both

0 and 1 have positive probability. The final generated vector is then (v1,v ′,v2,v ′, . . . ,vn,v ′,v ′,v ′),
where vi,v ′ is drawn from π i,v ′ .
π is clearly 1-dimensionally dependent, since for i ∈ [n] the conditional marginal distribution

πi,�v−i
is determined by only the value v ′, which is the value of the (n + 1)-th coordinate. Also,

the value of the (n + 1)-th coordinate is entirely determined by the (n + 2)-th coordinate, and vice
versa.

We can also easily see that π is not a Markov random field with respect to any graph in which
all vertices have a degree less than n/2. Let G be a graph such that π is a Markov random field.
Suppose for contradiction that there exists an i ∈ [n] for which it holds that Γ(i ) ⊆ [n]. Then the
local Markov property would be violated. Therefore, each vertex in [n] is connected to either vertex
n + 1 orn + 2. Hence, we conclude that either vertexn + 1 orn + 2 has at leastn/2 vertices attached
to it.

E AN ENHANCED SEQUENTIAL POSTED-PRICE MECHANISM THAT

O (1/D)-APPROXIMATES THE OPTIMUM REVENUE FOR MARKOV

RANDOM FIELDS OF DEGREE D

Consider the following procedure. Given Markov random fields of degree d (in which nodes rep-
resent buyers), at each round, mark a uniformly random node, then remove the node and all its
neighbors and repeat until no node is left. Note that each node is marked with probability at least
1/(d + 1). Consider now the following enhanced sequential posted-price mechanism: ask the un-
marked buyers to reveal their valuations, and run an optimal sequential posted-price mechanism
on the marked buyers, conditioned on the revealed valuations. Conditioned on the valuations of
the marked buyers, the marked buyers’ valuations are mutually independent. Then, one can use
the results of Chawla et al. (2014) and Yan (2011) to extract a fraction of 1 − 1/e of the optimal rev-
enue extractable from the set of marked buyers, conditioned on the valuations of the unmarked
buyers.9

F AN EXAMPLE ILLUSTRATING THAT GVCG-L IS NOT A BLIND-OFFER

MECHANISM

The Generalized VCG mechanism with monopoly reserve prices (GVCG-L) is a dominant strategy
IC, ex-post IR direct-revelation mechanism proposed in Chawla et al. (2014) (as a generalization
of a mechanism of Li (2016) and the lookahead mechanism of Ronen (2001)), which was proved to

9We acknowledge an anonymous reviewer for pointing out this simple algorithm.
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extract in expectation at least half of the revenue of the maximum revenue among all ex-post IC,
ex-post IR mechanisms. We show in this appendix that this mechanism is not a blind-offer mech-
anism. The purpose of this example is to illustrate that the restriction under which a blind-offer
mechanism must make its offers (i.e., as a function of only the marginal conditional distribution of
the buyer who is made the offer) is a nontrivial one, such that known approximation mechanisms
cannot directly be used.

The GVCG-L mechanism is originally defined for a more general mechanism design setting
than the one we study here. Restricted to our setting, the mechanism works as follows. First, let

(n,π ,k ) be the instance. When the buyers submit a bid vector �b to the GVCG-L mechanism, it
sets for each buyer a threshold price pi . It allocates the item to a buyer i if bi ≥ pi and charges
to i a payment of pi . Otherwise, it does not allocate the item and charges i a payment of 0. The
price pi is independent of bi and is determined as follows: Given b−i , determine the infimum price
ti such that ti would be the kth highest element of the vector (ti ,b−i ). Let pi be the price such
that pi Prvi∼πi,b−i

[vi ≥ pi | vi ≥ ti ] is maximized. Thus, pi is the threshold offer that extracts the

maximum expected revenue from i , conditioned on i being among the k buyers with the highest
valuations.

The following is a simple example with k = 1 and n = 2 and independent valuations, which
shows that GVCG-L is not a blind-offer mechanism.10 Let v1 be independently drawn from the
uniform distribution on {1, 10} and let v2 be independently drawn from the uniform distribution
on {9, 11}. Now, GVCG-L will set p2 := 9 in case b1 = v1 = 1, and will set p2 := 11 otherwise. More-
over, p2 := 10 if v1 = 9 and p2 := 11 otherwise. It is now straightforward to see that a blind-offer
mechanism cannot use this pricing scheme, since the price charged to any of the buyers may not
depend on any of the bids for instances where valuations are independently drawn (since the
conditional marginal distribution always equals the unconditional marginal distribution for both
buyers).

In fact, it can be seen that in case of independently drawn valuations, blind-offer mechanisms
are in a very strong sense equivalent to the usual sequential posted-price mechanisms.

G NONINCENTIVE COMPATIBILITY OF BLIND-OFFER MECHANISMS

Blind-offer mechanisms are not ex-post IC for a subtle reason. The price offered to a buyer i by a
blind-offer mechanism is entirely determined by the submitted valuations of the buyers other than
i , and is independent of what is reported by buyer i him- or herself. Also, the iteration in which a
buyer is picked cannot be influenced by his or her bid. Nonetheless, incentive compatibility does
not hold due to the fact that a bidder may be incentivized to misreport his or her bid in order to
increase the probability of supply not running out before he or she is picked.

The following is a simple example: consider a blind-offer mechanism for two buyers, with a sin-
gle unit of supply. Suppose that the mechanism always offers buyer 1 first, and then buyer 2 in case
there is supply left. There are two valuation vectors in the support of the valuation distribution:
(2, 2) and (2, 3). Then, in accordance with the definition of a blind-offer mechanism, the working of
this mechanism may be as follows: a price of 1 is offered to buyer 1 in case the reported bid of buyer
2 is 3; a price of 3 is offered to buyer 1 in case the reported bid of buyer 2 is 2; in case buyer 1 rejects, a
price of 1 is offered to buyer 2. It is clear that buyer 2 is now incentivized to always bid 2, even if his
or her valuation is 3. This demonstrates the nonincentive compatibility of blind-offer mechanisms.

However, blind-offer mechanisms can easily be made incentive compatible as follows: let M be

a non-IC blind-offer mechanism, let �b be a bid vector, and let zi (�b) be the probability that M picks

10Observe that in this instance, GVCG-L is exactly the same as the lookahead mechanism. Hence, our example also shows

that the lookahead mechanism is not a blind-offer mechanism.
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bidder i before supply has run out. When a bidder is picked, we adapt M by skipping that bidder

with a probability qi (�b) that is chosen in a way such that zi (�b) (1 − qi (�b) = min{zi (bi , �b−i ) : bi ∈
supp(πi )}. This is a blind-offer mechanism in which buyer i has no incentive to lie, because now
the probability that i is made an offer is independent of his or her bid. Doing this iteratively for all
buyers yields a dominant strategy IC mechanism M ′. Note that the act of skipping a bidder can be
implemented by offering a price that is so high that a bidder will never accept it, and thusM ′ is still
a blind-offer mechanism. Moreover, we note that if the probability that any bidder in M is made
an offer is less than a constant c , then in M ′ the probability that any bidder is offered a price is at
least c . This fact can be used to bound the loss in revenue by a factor of c . Indeed, we apply this
principle in the proof of Theorem 4.7 below, in order to obtain a dominant strategy IC blind-offer
mechanism with a constant-factor revenue performance.11

In the main blind-offer mechanisms that we propose in Section 4.2.3, it follows from the analysis
that every buyer is made an offer with a probability that is bounded from below by a constant.
Applying the trick just described will result in a blind-offer mechanism that achieves a constant
approximation to the optimal revenue.

Corollary G.1. There exists a dominant strategy IC blind-offer mechanism of which the expected

revenue on any instance is at least aO (1) fraction of the maximum expected revenue among all ex-post

IC, ex-post IR mechanisms.

This corollary might be of some independent theoretical interest, since we are not aware of any
other mechanisms that charge prices depending solely on the conditional marginal distributions
of the buyers, and approximate the optimal revenue within a constant factor.

H PROOF OF LEMMA 4.9

Proof. Integrality for k = n is the easiest to prove among these two claims, so we do that first.
Note that in case k = n, we can safely remove the constraints in Equation (5) from the linear
program, because when k = n, these constraints are implied by Equations (4) and (6). The linear
program that remains tells us how to optimize a sum of convex combinations of values. That
is, it effectively tells us to pick for each i ∈ [n] and �v−i ∈ supp(π−i ) a convex combination of
the values {vi Prv ′i∼πi, �v−i

[v ′i ≥ vi ]}v ′i ∈supp(πi, �v−i
) . The optimal solution is therefore to put weight

1 on the maximum values in these sets, i.e., to set yi (vi , �v−i ) to 1 for the value vi that maximizes
vi Prv ′i∼πi, �v−i

[v ′i ≥ vi ].

It remains to prove the first claim. To this aim, let us first introduce some specialized notation:
let σ now be a probability distribution on a finite subset ofR≥0 and x ∈ supp(σ ); we write precσ (x )
to denote max supp(σ ) ∩ [0,x ) if supp(σ ) ∩ [0,x ) is nonempty. Otherwise, if supp(σ ) ∩ [0,x ) = ∅,
we define precσ (x ) = 0. Similarly, we write succσ (x ) to denote min supp(σ ) ∩ (x ,∞]. (We leave
succσ (x ) undefined if supp(σ ) ∩ (x ,∞] is empty.)

Suppose now that A is an optimal ex-post IC, ex-post IR mechanism. For �v ∈ supp(π ), denote
by x (�v ) the expected allocation vector output by A when the buyers report valuation vector �v (so
that for i ∈ [n], the value xi (�v ) is the probability that i gets allocated service, when the buyers
report �v) and denote by p (�v ) the vector of expected prices charged by A when the buyers report
�v . Ex-post incentive compatibility states that

∀i ∈ [n], �v−i ∈ supp(π−i ), (vi ,v
′
i ) ∈ supp(πi )2 : vixi (vi , �v−i ) − pi (vi , �v−i ) ≥ vixi (v ′i , �v−i ) − pi (v ′i , �v−i ),

11More precisely, for the particular (nontruthful) blind-offer mechanism that we propose and analyze in Section 4.2.3, it

will turn out that applying the transformation described here does not result in any additional loss in revenue.
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and ex-post individual rationality states that

∀i ∈ [n], �v ∈ supp(π ) : vixi (vi , �v−i ) − pi (vi , �v−i ) ≥ 0.

The next lemma states that, in A, the allocation probability for a buyer is nondecreasing in his
or her reported valuation.

Lemma H.1. For all i ∈ [n], all �v−i ∈ π−i , and all vi ,v
′
i ∈ supp(πi,�v−i

), with vi < v
′
i , it holds that

xi (vi , �v−i ) ≤ xi (v ′i , �v−i ).

Proof. By way of contradiction, we assume that ϵ = xi (vi , �v−i ) − xi (v ′i , �v−i ) > 0. By ex-post
incentive compatibility, it holds that

vixi (vi , �v−i ) − pi (vi , �v−i ) ≥ vixi (v ′i , �v−i ) − pi (v ′i , �v−i ),

v ′ixi (v ′i , �v−i ) − pi (v ′i , �v−i ) ≥ v ′ixi (vi , �v−i ) − pi (vi , �v−i ).

We now rewrite these inequalities as

vixi (vi , �v−i ) −vixi (v ′i , �v−i ) ≥ pi (vi , �v−i ) − pi (v ′i , �v−i ),

v ′ixi (vi , �v−i ) −v ′ixi (v ′i , �v−i ) ≤ pi (vi , �v−i ) − pi (v ′i , �v−i ).

This results in the following pair of inequalities:

viϵ ≥ pi (vi , �v−i ) − pi (v ′i , �v−i ),

v ′iϵ ≤ pi (vi , �v−i ) − pi (v ′i , �v−i ).

The two inequalities contradict each other, because v ′i > vi and we assumed ϵ > 0. �

The next lemma upper bounds the prices charged by A.

Lemma H.2. For all i ∈ [n], all �v−i ∈ supp(�v−i ), and all vi ∈ supp(πi,�v−i
), it holds that

pi (vi , �v−i ) ≤ vixi (vi , �v−i ) −
∑

v ′i ∈supp(πi, �v−i
):v ′i <vi

(succπi, �v−i
(vi ) −vi )xi (v ′i , �v−i ). (9)

Proof. For v ′i ∈ supp(πi,�v−i
), the ex-post IC constraint for �v−i ,v

′
i , precπi, �v−i

(vi ) can be written
as

v ′i (xi (v ′i , �v−i ) − xi (v ′′i , �v−i )) ≥ pi (v ′i , �v−i ) − pi (v ′′i , �v−i ),

where v ′′i = precπi, �v−i
(vi ). Summing the above over all v ′i ∈ supp(πi,�v−i

),v ′i < vi yields Equa-

tion (9). �

The optimal revenue among all ex-post IC, ex-post IR mechanisms (and thus the expected rev-
enue ofA) can be written as the following linear program, where (x (�v ))�v ∈supp(π ) and (p (�v ))�v ∈supp(π )

are the variables:

max
⎧⎪⎨⎪⎩

∑
i ∈[n]

∑
�v ∈supp(π )

pi (�v )π (�v )
������ (10)

∀i ∈ [n], �v ∈ supp(π ) : vixi (�v ) − pi (�v ) ≥ 0 (11)

∀i ∈ [n], (vi ,v
′
i ) ∈ supp(πi )2, �v−i ∈ supp(π−i,vi

) :

vixi (vi , �v−i ) − pi (vi , �v−i ) ≥ vixi (v ′i , �v−i ) − pi (v ′i , �v−i ) (12)

∀�v ∈ supp(π ) :
∑

i

xi (�v ) ≤ k (13)

∀i ∈ [n], �v ∈ supp(π ) : 0 ≤ xi (�v ) ≤ 1
⎫⎪⎬⎪⎭. (14)
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In the above linear program, Equation (11) contains the ex-post IR constraints, Equation(12) con-
tains the ex-post IC constraints, and Equation (13) expresses that the service cannot be provided
to more than k buyers.

By Lemma H.1, it is possible to add to the above linear program the constraints xi (vi , �v−i ) ≥
xi (precπi, �v−i

(vi )) for i ∈ [n], �v−i ∈ supp(π−i ),vi ∈ supp(πi,�v−i
). Moreover, by Lemma H.2, we can

replace the objective function by

∑
i ∈[n]

∑
�v ∈supp(π )

π (�v )
���
�
vixi (vi , �v−i ) −

∑
v ′i ∈supp(πi, �v−i

):v ′i <vi

(succπi, �v−i
(vi ) −vi )xi (v ′i , �v−i )

���
�

and remove the constraints in Equations (11) and (12). This results in the following linear program
that upper bounds the optimal revenue among the ex-post IC, ex-post IR mechanisms:

max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

i ∈[n]

∑
�v ∈supp(π )

π (�v )
���
�
vixi (vi , �v−i ) −

∑
v ′i ∈supp(πi, �v−i

):v ′i <vi

(succπi, �v−i
(vi ) −vi )xi (v ′i , �v−i )

���
�

������ (15)

∀i ∈ [n], �v ∈ supp(π ) : xi (�v ) ≥ xi (precπi, �v−i
(vi ), �v−i ) (16)

∀�v ∈ supp(π ) :
∑

i

xi (�v ) ≤ k (17)

∀i ∈ [n], �v ∈ supp(π ) : 0 ≤ xi (�v ) ≤ 1
⎫⎪⎬⎪⎭. (18)

We will show that the linear program (Equations (3) to (6)) is equivalent to the above. Set
yi (�v ) = xi (�v ) − xi (precπi, �v−i

(vi ), �v−i ) for all i ∈ [n], �v ∈ supp(π ), and observe that the constraints

in Equations (16), (17), and (18) are then equivalent to Equations (4), (5), and (6), respectively.
Moreover, with this correspondence between y and x , we can rewrite the objective function as
follows:

∑
i ∈[n]

∑
�v ∈supp(π )

π (�v )
���
�
vixi (vi , �v−i ) −

∑
v ′i ∈supp(πi, �v−i

):v ′i <vi

(succπi, �v−i
(vi ) −vi )xi (v ′i , �v−i )

���
�

=
∑

i ∈[n]

∑
�v−i ∈supp(π−i )

π−i (�v−i )
∑

vi ∈supp(πi, �v−i
)

πi,�v−i
(vi )vixi (vi , �v−i )

−
∑

i ∈[n]

∑
�v−i ∈supp(π−i )

π−i (�v−i )
∑

vi ∈supp(πi, �v−i
)

πi,�v−i
(vi )·

∑
v ′i ∈supp(πi, �v−i

):v ′i <vi

(succπi, �v−i
(vi ) −vi )xi (v ′i , �v−i )

=
∑

i ∈[n]

∑
�v−i ∈supp(π−i )

π−i (�v−i )
∑

vi ∈supp(πi, �v−i
)

πi,�v−i
(vi )vixi (vi , �v−i )

−
∑

i ∈[n]

∑
�v−i ∈supp(π−i )

π−i (�v−i )
∑

vi ∈supp(πi, �v−i
)

xi (vi , �v−i ) (succπi, �v−i
(vi ) −vi )Prv ′i∼πi, �v−i

[v ′i > vi ]

=
∑

i ∈[n]

∑
�v−i ∈supp(π−i )

π−i (�v−i )
∑

vi ∈supp(πi, �v−i
)

xi (vi , �v−i )·
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(πi,�v−i
(vi )vi − (succπi, �v−i

(vi ) −vi )Prv ′i∼πi, �v−i
[v ′i > vi ])

=
∑

i ∈[n]

∑
�v−i ∈supp(π−i )

π−i (�v−i )
∑

vi ∈supp(πi, �v−i
)

xi (vi , �v−i )·

(Prv ′i∼πi, �v−i
[v ′i ≥ vi ]vi − (succπi, �v−i

(vi ))Prv ′i∼πi, �v−i
[v ′i > vi ])

=
∑

i ∈[n]

∑
�v−i ∈supp(π−i )

π−i (�v−i )
∑

vi ∈supp(πi, �v−i
)

(xi (vi , �v−i ) − xi (precπi, �v−i
(vi ), �v−i ))vi Prv ′i∼πi, �v−i

[v ′i ≥ vi ]

=
∑

i ∈[n]

∑
�v−i ∈supp(π−i )

π−i (�v−i )
∑

vi ∈supp(πi, �v−i
)

Prv ′i∼πi, �v−i
[v ′i ≥ vi ]viyi (vi , �v−i ).

This completes the proof. �
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