
Memory-constrained Vectorization and Scheduling of
Dataflow Graphs for Hybrid CPU-GPU Platforms

SHUOXIN LIN, University of Maryland, USA
JIAHAO WU, University of Maryland, USA
SHUVRA S. BHATTACHARYYA, University of Maryland, USA and Tampere University of Technology,
Finland

The increasing use of heterogeneous embedded systems with multi-core CPUs and Graphics Processing
Units (GPUs) presents important challenges in effectively exploiting pipeline, task and data-level parallelism
to meet throughput requirements of digital signal processing (DSP) applications. Moreover, in the presence
of system-level memory constraints, hand optimization of code to satisfy these requirements is inefficient
and error-prone, and can therefore, greatly slow down development time or result in highly underutilized
processing resources. In this paper, we present vectorization and scheduling methods to effectively exploit
multiple forms of parallelism for throughput optimization on hybrid CPU-GPU platforms, while conforming to
system-level memory constraints. The methods operate on synchronous dataflow representations, which are
widely used in the design of embedded systems for signal and information processing. We show that our novel
methods can significantly improve system throughput compared to previous vectorization and scheduling
approaches under the same memory constraints. In addition, we present a practical case-study of applying our
methods to significantly improve the throughput of an orthogonal frequency division multiplexing (OFDM)
receiver system for wireless communications.

Additional Key Words and Phrases: Dataflow models, design optimization, heterogeneous computing, signal
processing systems, software synthesis

1 INTRODUCTION
Heterogeneous multiprocessor platforms are of increasing relevance in the design and implementa-
tion of many kinds of embedded systems. Among these platforms, heterogeneous CPU-GPU platforms
(HCGPs), which integrate multicore central processing units (CPUs) and graphics processing units
(GPUs), have been shown to significantly boost throughput for many applications. System-level
performance optimization requires efficient utilization of both CPU cores and GPUs on HCGPs. In
embedded system designs, multiple system constraints must be met including memory, latency or
cost requirements. Manual performance tuning on a case-by-case suffers from inefficiency and can
lead to highly sub-optimal solutions. When system constraints or the target platforms are changed,
the designer often needs to repeat the same process, which further reduces development productiv-
ity, and increases the chance of introducing implementation errors. Therefore, methods for HCGPs
that are based on high-level models, and systematically explore parallelization opportunities are
highly desirable.
Dataflow models provide high-level abstractions for specifying, analyzing and implementing a

wide range of embedded system applications (e.g., see [2]). A dataflow graph is a directed graph
G = (V ,E) with a set of vertices (actors) V and a set of edges E. An actor v ∈ V represents a
computational task of arbitrary complexity. An edge e = (u,v) ∈ E represents a first-in, first-out
(FIFO) buffer that stores data values as they are produced by u and consumed by v . These data

Authors’ addresses: Shuoxin Lin, University of Maryland, College Park, MD, 20742, USA, slin07@umd.edu; Jiahao Wu,
University of Maryland, College Park, MD, 20742, USA, jiahao@umd.edu; Shuvra S. Bhattacharyya, University of Maryland,
College Park, MD, 20742, USA, Tampere University of Technology, Tampere, Finland, ssb@umd.edu.

To appear in the ACM Transactions on Embedded Computing Systems.

ar
X

iv
:1

71
1.

11
15

4v
1

 [
ee

ss
.S

P]
 2

9
N

ov
 2

01
7

2 S. Lin et al.

(a) (b) (c)

Fig. 1. An illustration of parallelism expressed using SDF graphs: (a) task parallelism, (b) pipeline parallelism,
(c) data parallelism based on vectorization.

values are called tokens, and represent the basic unit of data that is processed by actors. When
an actor fires, it consumes tokens from its input edges, executes its associated task, and produces
tokens on its output edges.
Synchronous dataflow (SDF) is a specialized form of dataflow in which the numbers of tokens

produced and consumed on each edge are constant across all firings of its source and sink actors [15].
These two numbers are called the production rate and consumption rate of an edge. Generally, the
production rate and consumption rate of an SDF edge can take on any positive integer value.
SDF graphs are powerful tools for analyzing and optimizing important system-level metrics,
including memory requirements, latency, and throughput. Additionally, SDF graphs naturally
expose pipeline, task and data parallelism across distinct actors and distinct firings of the same
actor, as illustrated in Figure 1. Pipeline and task parallelism can be exploited by assigning actors
on different cores or processors (Figure 1(a) and 1(b), while exploitation of data parallelism can be
enhanced by vectorization of actors such that different sets of tokens are processed by the same
actor concurrently on data-parallel hardware (Figure 1(c)).

GPUs in HCGPs accelerate computational tasks by supporting large-scale data parallelism with
hundreds or thousands of SIMD (single instruction multiple data) processors. GPUs can achieve
high throughput gain over CPUs when parallel data is abundant. However, when parallel data is
insufficient, GPU performance can be worse compared to CPU cores. For an SDF graph, a sufficient
amount of parallel data may not be present to effectively utilize a GPU. In this case, vectorization can
be of great utility in improving the degree of exposed data parallelism, and the effective utilization
of GPU resources. However, previous research on scheduling and software synthesis from SDF
graphs has focused largely on task and pipeline parallelism, therefore providing inadequate support
of GPU-targeted design flows. The developments in this paper are intended to address this gap.
In general, the average time required for an actor firing scales differently in terms of the vec-

torization factor between a CPU and GPU. Additionally, overheads involving interprocessor com-
munication and synchronization can limit or even negate performance gains achieved through
vectorization. Thus, effective throughput optimization for HCGPs requires rigorous joint consider-
ation of vectorization and scheduling.

In this paper, we develop integrated vectorization and scheduling (IVS) techniques for software
synthesis targeted to HCGPs. These techniques jointly consider vectorization and scheduling for
thorough optimization of SDF graphs. We refer to this problem of joint vectorization and scheduling
as the SDF vectorization-scheduling throughput optimization (VSTO) problem, or simply as “VSTO”.
Our contribution is summarized as follows. First, we formally present the VSTO problem for HCGPs.
Second, we develop a set of novel vectorization and scheduling techniques for VSTO under memory
constraints. Third, we propose a new scheduling strategy called Σ-scheduling that is effective for
mapping dataflow actors on heterogeneous computing platforms. Finally, we demonstrate our
approaches to VSTO by applying them to a large collection of synthetic, randomly-generated
dataflow graphs and an Orthogonal Frequency Division Multiplexing (OFDM) receiver.

3

2 RELATEDWORK
SDF throughput analysis under resource constraints using explicit state space exploration has been
studied in [9]. In [19], the authors present a scheduling algorithm for SDF graphs that applies
static topological analysis and vectorization to improve SDF throughput and memory usage on
shared-memory, multicore platforms. In [4], a buffer optimization technique for pipelined, multicore
schedules is discussed.

Earlier work on SDF vectorization has focused on throughput optimization for single-processor
implementation on programmable digital signal processors, and more recently, on multicore imple-
mentation. SDF vectorization techniques to maximize throughput for single-processor implementa-
tion were first developed in [20]. In [14], the authors presented methods to construct vectorized,
single-processor schedules that optimize throughput under memory constraints. In [13], the au-
thors presented techniques for maximizing throughput when simulating SDF graphs on multicore
platforms. These techniques simultaneously optimize vectorization, inter-thread communication,
and buffer memory management. In these works, SIMD architectures are not involved, and vector-
ization is applied to reduce synchronization overhead and context switching rather than to exploit
data-parallelism.

Various studies have targeted automated exploitation of parallelism to map dataflow models onto
heterogeneous computing platforms. Design tools that exploit various forms of parallelism using
CUDA or OpenCL have been developed in [5, 17, 21]. These tools assume that vectorization has been
specified by the designer, andmap an actor onto a GPUwhenever a GPU-accelerated implementation
of the actor is available. For such actors, these tools do not take into account the possibility that
CPU-targeted execution may be more efficient. In [29], SDF graphs are automatically vectorized,
transformed to single-rate SDF graphs, and then scheduled using Mixed-Integer Programming
techniques. However, this approach does not take memory constraints into account. Intuitively, a
single-rate SDF graph is one in which all actors are fired at the same average rate. This concept is
discussed in more detail in Section 3.
When SDF graphs are converted to single-rate graphs, they can be scheduled in the same way

that task graphs are scheduled in programming environments such as StarPU [1], FastFlow [10],
and OmpSS [8]. These environments support run-time task graph scheduling and parallelization
on hybrid CPU-GPU platforms. StarPU, for example, uses the Heterogeneous Earliest Finish Time
(HEFT) heuristic to schedule tasks on HCGPs. However, these programming models cannot directly
be applied to multirate SDF graphs; a designer must manually vectorize the graph and convert it to
a single-rate SDF graph before working with it in such environments. In addition to requiring such
manual transformation, this process limits the flexibility in vectorization and scheduling for SDF
execution, which can lead to inefficient memory usage and execution time performance.

Dataflow models can be used at arbitrary levels of abstraction in computing systems, and hence
compilation optimization of dataflow programs is also investigated at various levels of abstraction.
For example, the works in [12, 28] focus on improving the throughput of GPU kernels that are
represented by dataflow graphs. The aim of those works is to generate high-performance GPU
kernel code through better utilization of on-device resources. In contrast, the methods introduced
in this paper focus on optimizing the mapping of coarse-grain, system-level dataflow models onto
CPU-GPU platforms, where each actor can encompass a computational task of arbitrary complexity,
and can encapsulate one or multiple kernels.
In this work, we go beyond the previous works by jointly considering SDF vectorization and

scheduling for HCGPs under memory constraints. To our knowledge, our work is the first to
take memory constraints into account in the context of SDF vectorization and scheduling for
heterogeneous computing platforms. Our methods are not restricted to single-rate SDF graphs, and

4 S. Lin et al.

are capable of deriving efficient, memory-constrained vectorization configurations. The techniques
in this paper are developed in the DIF-GPU Framework, which was presented in [16]. DIF-GPU
incorporates techniques for minimizing runtime overhead through compile-time scheduling and
incorporation of carefully-designed protocols for interprocessor communication.

3 BACKGROUND
The HCGPs that we target in this paper consist of one multi-core CPU and one GPU each. This class
of multicore architectures is widely used in embedded systems. In our targeted class of HCGPs, we
refer to the CPU as the host, as it controls overall execution flow and manages the associated GPU,
and we refer to the GPU as the device. The device receives instructions and data from the host.
Additionally, in the target architecture, there exists a context transfer overhead when an appli-

cation’s execution path switches between CPU cores and a GPU. This overhead can include the
time for interprocessor communication and synchronization, context switching, and transferring
data from one memory address to another. Although most existing embedded HCGPs provide
shared physical memory, this context transfer overhead can still be significant, and in general varies
from one architecture / application to another [11]. We refer to such context transfer overhead as
host-to-device (H2D) or device-to-host (D2H) context transfer, depending on the direction.

Given an SDF graphG = (V ,E) and an actor v ∈ V , we denote the sets of input and output edges
of v as in(v) and out(v), respectively. Given an edge e ∈ E, we denote the source and sink actors of
e by src(e) and snk(e), respectively. We denote as prd(e) the number of tokens produced onto e by
each firing of src(e), and similarly, we denote as cns(e) the number of tokens consumed from e by
each firing of snk(e).

Signal processing systems represented as SDF graphs are often required to be executed indefinitely
— that is, iterated through a number of iterations for which no useful bound is known in advance. To
support such indefinite execution, the concepts of consistency and periodic schedules in SDF graphs
are important [15]. An SDF graph is consistent if it has a periodic schedule, which is a sequence of
actor executions that does not deadlock, fires each actor at least once, and produces no net change
in the number of tokens on each edge. Consistent SDF graphs can be executed indefinitely with
finite buffer memory requirements. Furthermore, for each actor v ∈ V in a consistent SDF graph
G = (V ,E), there is a unique repetition count q(v), which gives the minimum number of firings of v
in a periodic schedule. We call a set of actor firings in which each actor v fires exactly q(v) times
an iteration of G. Figure 2(a) shows an SDF graph example, where each repetition count is denoted
as < q(v) > above the corresponding actor v . In this example, prd(eAB) = 1, cns(eAB) = 2, q(A) = 2,
and q(C) = 7.

If q(v) = 1 for every actor v ∈ V , thenG is called a single-rate SDF graph, as shown in Figure 2(c).
Because each actor needs to fire only once to complete an iteration of G, single rate SDF graphs
can be scheduled the same way as task graphs (e.g., see [29]). In a task graph, nodes represent
computational tasks, and edges represent dependencies associated with pairs of nodes without any
specific data structure implied for inter-actor communication. A wide variety of algorithms have
been developed for scheduling task graphs onto multiprocessor systems (e.g., see [24]).

For implementation of G, we assume a static buffer allocation model, where we allocate a FIFO
buffer of fixed, finite size (“buffer bound”) buf (e) for each edge e ∈ E. When an actor v fires, it
must satisfy (1) for each edge ei ∈ in(v), ei contains at least cns(ei) tokens, and (2) for each edge
eo ∈ out(v), eo contains no more than (buf (eo) − prd(eo)) tokens. When this condition is met, the
actor is said to be bounded-buffer fireable, and SDF graph execution following this rule is called
bounded-buffer execution.

The minimum buffer requirement for an SDF graph G, mbr(G), is the minimum over all periodic
schedules of the amount of memory (in units of tokens) required to implement the dataflow edges in

5

(a) (b)

(c) (d)

Fig. 2. An example of vectorization and minimum buffer requirements. (a) Original graph. (b) Actor-level
Vectorization of A by 2. (c) Graph-level Vectorization with β = 2. (d) Actor-level Vectorization of B by 2.

a given graph (see [25]). A lower bound mbr(e) on the minimum buffer requirement for a delayless
SDF edge e can be determined by

mbr(e) = prd(e) + cns(e) − gcd(prd(e), cns(e)), (1)
where gcd represents the greatest common divisor operator [3]. The lower bound of mbr(G) is the
sum of mbr(e) over all edges: mbr(G) = ∑

v ∈V mbr(e). Although this lower bound is not always
achievable, it is achievable for the dataflow graphs in Figure 2.

We represent the individual processors in the targetmultiprocessor platform as P = {p1,p2, . . . ,pN },
where p1,p2, . . . ,pN−1 represent the available CPU cores, and pN represents the GPU. When sched-
uling G onto the platform, actor firings are assigned to processors to be executed. In this context,
we say that an actor v ∈ V is mapped onto processor p ∈ P if all firings of v are assigned to execute
on p.

As mentioned in Section 2, we assume in this paper that the input SDF graphs for vectorization
and software synthesis are acyclic. Cycles in synchronous dataflow models may impose complex
constraints on what vectorization degrees are valid for actors [20]. Furthermore, cycles introduce
complex trade-offs between code size and buffer memory minimization in SDF graphs, which
are also relevant to memory-constrained vectorization problems (e.g. see [3]). Third, acyclic SDF
graphs encompass a broad class of important signal processing applications, so techniques for this
class have significant practical relevance [3]. Currently in our framework, we assume that actor
vectorizations are constrained only by memory, and not by cycles in the input graph. Investigating
vectorization with topological constraints caused by cycles is an interesting direction for future
work.

4 PROBLEM FORMULATION
In this section, we formally define the VSTO problem for HCGPs. We begin by defining the concept
of actor-level vectorization. Given a consistent SDF graph G = (V ,E), and an actor v ∈ V , the
vectorization of v by a vectorization degree (VCD) b is defined as a transformation ofG that involves
the following set of operations: (1) replacing v by vb , where firing vb is equivalent to b consecutive
firings of v; (2) replacing each edge ei ∈ in(v) by an edge e ′i such that cns(e ′i) = b × cns(ei) and
prd(e ′i) = prd(ei); and (3) replacing each edge eo ∈ out(v) by an edge e ′o such that prd(e ′o) =

6 S. Lin et al.

b × prd(eo) and cns(e ′i) = cns(ei). We refer to the actor vb as the b-vectorized actor of v , and the
transformed graph that results from the vectorization operation as vect(G,v,b). For example, in
Figure 2, Gb = vect(Ga ,A, 2). The definition of vectorization that we adopt here corresponds to a
dataflow graph transformation that is consistent with the vectorization concept introduced by Ritz
et al. [20], as opposed to the aggregation of basic operations that corresponds to vectorization in
compilers for procedural programming languages.
If G is a consistent, acyclic SDF graph, then vect(G,v,b) is also consistent for any v ∈ V , and

any positive integer b. However, in this work, we restrict the set of allowable vectorization degrees
to the set alwb(G,v), which is defined as

alwb(G,v) = {n ∈ {1, 2, . . .} | (n is a factor of q(v)) or (n is a multiple of q(v))}. (2)
Equation 2 refers specifically to positive integer factors and multiples. For example, if q(v) = 8, then
alwb(G,v) = {1, 2, 4, 8, 16, 24, . . .}. Vectorization of an actorv that is restricted to alwb(G,v) enables
fast derivation of repetition counts for G ′ = vect(G,v,b), which in turn facilitates incremental
vectorization techniques, where actors are selected for vectorization one at a time according to
specific greedy criteria. In particular, if b is a factor of q(v), then q(G ′,v) = q(G,v)/b , while
the repetition counts of all other actors are unchanged. Similarly, if b is a multiple of q(v), then
q(G ′,v) = 1, while for any other actor u , v , q(G ′u) = bq(G,u)/q(G,v). In Section 5, we discuss
specific techniques for incremental vectorization that apply these forms of repetition count updates.
On HCGPs, vectorized actors can exploit SIMD processors such as GPUs to execute multiple

firings of the same actor in parallel. Note that although parallel processing of tokens cannot in
general be applied easily to stateful actors, vectorization may still benefit dataflow execution by
reducing overheads associated with inter-processor communication, synchronization and context
switching. In the presence of memory constraints, there are limits to the amount of vectorization
that can be applied. For example, as we can see in Figure 2, vectorizing A (Fig. 2(a)) and vectorizing
B (Fig. 2(d)) by 2 results in different increases to the minimum buffer requirement.

To represent SDF graphs with vectorized actors and their relationships with the original graphs,
we define vectorized SDF graphs (VSDFs) as follows.

Definition 4.1. Suppose that G = (V ,E) is a consistent SDF graph, bv ∈ alwb(v,G) is a VCD for
each v , and B = {(v,bv) | v ∈ V }. Then the B-vectorized SDF graph ofG is defined asGB = (VB ,EB),
where (1) each vB ∈ VB is the bv -vectorized actor of v , (2) each edge eB = (xB ,yB) in GB is derived
from the corresponding edge (x ,y) ∈ E, and (3) for each eB = (uB ,vB) ∈ EB , prd(eB) = bu × prd(e),
and cns(eB) = bv × cns(e), where e = (u,v).
The vectorized graph GB is an SDF graph. We define a restricted form of vectorization, called

graph-level vectorization (GLV), in which a common “repetitions vector multiplier” β ∈ {1, 2, . . .}
is used for all actors in the input graph. That is, bv = β × q(G,v) for all v ∈ V . In this context,
we refer to β as the graph vectorization degree (GVD). Under GLV , GB is a single-rate SDF graph.
However, vectorization does not need to be confined to GLV. We refer to this more general form
of vectorization, as actor-level vectorization (ALV). For example, Figure 2(c) shows the vectorized
graph that corresponds to Figure 2(a) with GLV and β = 2. Figure 2(d) shows the vectorized graph
that results from applying ALV to Figure 2(a) with bB = 2.
As discussed in Section 2, the conventional approach to solving VSTO involves 3 steps: (1) the

designer or design tool sets the GVD based on memory constraints, (2) converts the SDF graph
into a single-rate SDF graph using GLV, and (3) generates a schedule using task graph scheduling
methods. Compared to ALV, GLV can require significantly larger buffers (see Figure 2(c)). The
vectorization methods that we present in this paper go beyond these conventional approaches by
considering general ALV solutions instead of being restricted only to GLV solutions.

7

For multiprocessor scheduling of ALV solutions, we introduce in this work a general scheduling
strategy, which is suitable for HCGPs, and can loosely be viewed as a variant of the list scheduling
strategy. This variant is adapted for memory-constrained, multiprocessor mapping of transformed
graphs that result from ALV. This strategy is a static scheduling strategy that operates using
compile-time estimates of actor execution times. The general strategy is defined as follows.

Definition 4.2. Given a consistent SDF graphG = (V ,E), and a multiprocessor target architecture
with a set of processors P , the Σ-scheduling strategy (1) statically assigns each actor v ∈ V to
a processor p ∈ P , (2) statically determines a buffer bound buf (e) for each edge e ∈ E, and (3)
iteratively selects a bounded-buffer firable actor to fire on its assigned processor p as soon as p has
completed all executions. An algorithm that conforms to this scheduling strategy completes when
all actors in G have been scheduled using the iterative process of Step (3).

The Σ-scheduling strategy is closely related to the Ω-scheduling strategy, which was introduced
in [13]. Both the Σ and Ω strategies satisfy Parts (1) and (2) of Definition 4.2; the main difference is
that with respect to Part (3), Σ-scheduling maps actors onto a finite number of processors, while
Ω-scheduling assumes an unlimited number of processors. Additionally, in our application of Σ-
scheduling, we perform ALV to construct the input graph to the strategy. In contrast, Ω-scheduling
in [13] is applied to the original (unvectorized) SDF graph.
To determine the buffer bounds {buf (e)} in Σ-scheduling, we apply the Ω-buffering technique

defined in [13]. This technique derives the buffer bounds by applyingΩ-scheduling, and determining
the buffer bounds to be equal to the corresponding buffer sizes {buf (e)} that result from Ω-
scheduling. We refer to the buffer bound buf (e) for each edge e that is computed in this way
as the Ω buffer bound for e . It is shown that Ω-buffering sustains maximum throughput for SDF
graphs under Ω scheduling [13] so that imposing these bounds imposes no theoretical limitation
on throughput. Given an SDF graphG = (V ,E), we denote by Ωbuf (G) the total buffer memory cost
for G as determined by Ω-scheduling: Ωbuf (G) = sume ∈E (buf (e)).

Definition 4.3. Suppose that G = (V ,E) is a consistent SDF graph, bv ∈ alwb(v,G) is a VCD
for each v , B = {(v,bv) | v ∈ V }, SB is a periodic schedule for the B-vectorized graph GB ,
and T (SB) is an estimate of the time required to execute a single iteration of SB . Then from the
fundamental properties of periodic SDF schedules [15], we can derive a unique positive integer
J (SB ,G), which we call the blocking factor of SB relative to G, such that SB executes each v ∈ V
exactly (J (SB ,G) × q(G,v)) times. In this context, we define the relative throughput of SB or the
throughput of SB relative toG by the quotient J (SB ,G)/T (SB). This metric gives the average number
of iterations of the original (unvectorized) SDF graph that is executed per unit time by the schedule
SB .

As an example, in Figure 2, executing one iteration of Gb , Gc or Gd is equivalent to executing
two iterations of Ga . Thus, J (SB ,Gb) = J (SB ,Gc) = J (SB ,Gd) = 2.
Intuitively, vectorization improves relative throughput when T (SB) < J (SB) ×T (S), where S is

the best available minimal-periodic (unvectorized) schedule for S . Such efficiency in the vectorized
execution time T (SB) can be achieved due to improved utilization of processing resources under
carefully-optimized GLV and ALV configurations.
A limitation of the vectorization techniques developed in this paper is that they may increase

latency, and thus, they may not be suitable for implementations in which latency is a critical
performance metric. However, it is envisioned that the methods developed in this paper provide a
useful foundation that can be built upon for latency-aware vectorization. Investigating adaptations
of these methods to take latency constraints into account is an interesting direction for future work.

Based on the definitions introduced in this section, we formulate the VSTO problem as follows.

8 S. Lin et al.

Definition 4.4. Let G = (V ,E) be a consistent SDF graph, and P = {p1,p2, . . . ,pN } be the set of
processors in an HCGP, where p1,p2, . . . ,pN−1 represent the CPU cores, and pN represents the
GPU. Given a total memory budgetM (a positive integer), the vectorization-scheduling throughput
optimization problem, or VSTO problem associated withG and P is the problem of finding a set B of
vectorization degrees, and a schedule SB for GB = (VB ,EB) such that the throughput of SB relative
to G is maximized subject to Ωbuf (GB) ≤ M .

We refer to a set of ordered pairs C = {(v, cv) | (v ∈ V) and (cv ∈ alwb(G,v))} as an ALV
configuration forG . Note that if an actor is not represented within a given ALV configuration (i.e., it
does not appear as the first element of any ordered pair in the set), then the actor is assumed to be
unvectorized (equivalent to a vectorization degree of 1). Thus, the VSTO problem can be thought of
as the problem of jointly determining an ALV configuration B together with a schedule forGB such
that the resulting schedule optimizes throughput subject to a given buffer memory constraintM .
The vectorization formulation and techniques developed in this paper assume that each SDF

edge (FIFO buffer) is implemented in a separate block of memory. Various techniques have been
developed in recent years to share memory efficiently among edges in multirate SDF graphs (e.g.,
see [6, 27]). Extending the techniques in this paper to incorporate such memory sharing techniques
is a useful direction for future work.

5 VECTORIZATION AND SCHEDULINGWITH MEMORY CONSTRAINTS
In this section, we develop three main heuristics, called Incremental Actor Vectorization (IAV), N -
candidates IAV, and Mapping-Based Devectorization, for the VSTO problem. These three heuristics
can be viewed as “peers” in the sense that any one of them may be the preferable choice for a
given application. Thus, the designer or a design tool can apply all three of these complementary
methods and select the best result for a given application. This is how we have integrated the three
heuristics in our DIF-GPU software framework. More details on the integration with software
synthesis and associated experimental results are discussed in Section 6 and Section 7.

5.1 Incremental Actor Vectorization
In this section, we define a general approach for searching the space of ALV configurations that
is based on selecting and vectorizing actors one at a time using some specific greedy criteria.
We refer to this general approach as Incremental Actor Vectorization (IAV). Each iteration of IAV,
called an IAV iteration, involves the selection and vectorization of a single actor. This results in a
sequence of intermediate vectorized graphs, I1, I2, . . . , IN , where Ii is the transformed graph that
results from IAV iteration i , and N is the total number of iterations before IAV terminates. The
approach is incremental in both the dimensions of actors and vectorization degrees — that is, each
IAV iteration selects a single actor v , and increases its vectorization degree to the next highest
element of alwb(G,v). Given an actor v that has an associated vectorization degree bv , we refer to
this process of replacing bv with the next highest element min(x ∈ alwb(v) | x > bv) as stepping
up the vectorization of v or just “stepping up v”.

In IAV, we define a “score” function to guide the vectorization process. At each algorithm iteration,
IAV selects an actor that has the highest score among all actors whose stepping up would not result
in a violation of the given memory budgetM . Analogous to how different priority functions can
be used to select tasks in multiprocessor list scheduling (e.g., see [24]), different score functions
can be used to apply different ALV criteria in IAV. This contributes to a novel design space for
development of integrated vectorization and scheduling techniques.
The specific score functions that we experiment with in this work first apply Σ-scheduling to

generate a schedule µ(i) of the current Ii (intermediate vectorized graph) onto the target HCGP

9

P , and then use a specific metric to estimate the potential “gain” of each candidate stepping up
operation relative to the processor assignment associated with µ(i). Given a schedule S returned by
Σ-scheduling, we define the associated processor assignment associated with S and dataflow graph
G = (V ,E) as the function mpS : V → P such that for each v ∈ V , mpS (v) gives the processor to
which actorv is mapped according to S . The initial schedule µ(0) is derived by applying Σ-scheduling
to the input (unvectorized) graph for IAV.
Algorithm 1 shows a pseudocode description of the IAV approach that employs this mapping-

based method of score function formulation. In the remainder of this paper, we refer to the mapping-
based form of IAV shown in Algorithm 1 as “Σ-IAV”.

ALGORITHM 1: Integrated vectorization and mapping using Σ-IAV.
Function incrementalVectorize(G, P ,M)

initialize configs = ∅, GB = G, B = {(v, 1)|v ∈ V } ;
while memSize(GB) ≤ M do

mp = generateMapping(GB , P);
v∗ = argmaxv ∈V score(B,mp,v);
B(v∗) = nextVCD(v∗,bv∗) ;
GB = vectorize(G,B) ;
if memSize(GB) ≤ M then

configs = configs ∪ {(B,mp)} ;
end

end
return argmaxc∈configs throughput(G, c)

In Algorithm 1, generateMapping is a placeholder for any Σ-scheduling technique that is applied
to map a given intermediate vectorized graph onto the targeted heterogeneous platform P . In our
implementation of Σ-IAV, we employ a specific Σ-scheduling technique called Incremental Actor
Re-assignment (IAR) as the generateMapping function. The IAR technique is discussed further in
Section 4. The function nextVCD(v,bv) gives smallest element of alwb(v) that exceeds bv .
The function throughput referenced in Algorithm 1 represents a placeholder for any function

that is used to estimate the throughput of a mapping that is generated by generateMapping for an
intermediate vectorized graph. In our implementation of Σ-IAV, we employ an efficient simulation-
based approach for this kind of throughput estimation. This simulation approach is discussed
further in Section 5.5. In general, heuristic-based mapping techniques, including our techniques,
do not guarantee an optimal scheduling. It is therefore possible for the throughput to get worse
during incremental vectorization. For this reason, we assess the throughput of each computed
configuration and then select a configuration that results in the best throughput.
We formulate and experiment with two specific score functions in this work. We refer to these

score functions as time-saving (TMSV) and time-saving-per-byte (TMSVPB). The TMSV score for
actor v during IAV iteration i is defined as largest adjusted execution time reduction achievable
(across all processors in P) when stepping up v . This “adjusted” time reduction is computed relative
to the execution of v on mpµ(i)(v), and is normalized by the vectorization degree. The units of this
adjusted time reduction are thus “seconds per unit of vectorization”. This score can be expressed as:

tmsv(v, i) = max
p∈P

(
t(v,b,mpµ(i)(v))

b
− t(v,b ′,p)

b ′
), (3)

10 S. Lin et al.

Fig. 3. A simple example to illustrate Σ-IAV using the TMSV score function.

where b is the current VCD of v (in IAV iteration i), and b ′ ∈ alwb(v) is the VCD that would result
from stepping up v . For a given actor v , vectorization degree b ∈ profiled(v), and processor p ∈ P ,
t(v,b,p) gives the profiling-derived estimate for the execution time of v on p with vectorization
degree b.

Here, we use “profiling” as a general term that encompasses any method for deriving a compile-
time estimate for the execution time of a vectorized actor execution. The specific approach to
profiling that we use in our experiments is discussed in Section 6.
Figure 3 shows a simple example of vectorization using the TMSV score function. The table in

this figure provides analytical models, in terms of the vectorization degreev , that are used to derive
the profiling function t . For example, the models estimate that actor A requires approximately
(0.5 ×v) units of time to execute.
The IAV process begins with an unvectorized graph and an initial mapping where all actors

are mapped to the CPU core. In the first IAV iteration (i = 0) shown in Figure 3, A has the largest
TMSV score, so it is selected, and a new mapping is generated based on the VCDs. In the second
iteration, B has the largest TMSV score, so B is vectorized (stepped up), and the mapping is updated
again. This process continues until no more vectorization operations can be carried out without
exceeding the memory budgetM .

Under memory constraints, we expect that it will be more useful to consider the increase in buffer
requirements when selecting actors for ALV. This motivates our formulation of the TMSVPB score
function. Here, “PB” stands for “per byte.” This memory-aware score function can be formulated as:

tmsvpb(v, i) = max
p∈P

(
t(v,b,mpµ(i)(v))/b − t(v,b ′,p)/b ′

Ωbuf (GB′) − Ωbuf (GB(i)) + ϵ
), (4)

where B(i) represents the current ALV configuration in ILV iteration i , and B′ = B(i) − {(v,b)} +
{(v,b ′)} represents the candidate configuration that results from stepping upv . ϵ is a small constant
to avoid division by 0 when Ωbuf (GB′) = Ωbuf (GB(i)) . Thus, the TMSVPB function favors actors
whose vectorization results in throughput improvement without excessive increase in buffer
requirements.

11

5.2 N -Candidates IAV
Our proposed Σ-IAV approach has two drawbacks — (1) it selects only one actor at each step, and (2)
with the TMSV and TMSVPB score functions, the selections are based primarily on actor execution
times, and do not take into account the SDF graph topology. We alleviate the first drawback by
storing multiple vectorized-graph candidates to consider in each IAV iteration following the very
first iteration. In particular, we store N candidate graphs that provide the highest throughput when
processed by Σ-scheduling. Here, N is a parameter that can be controlled by the designer or tool
developer.
The second drawback can be addressed by applying Σ-scheduling to optimize throughput over

each actor for every candidate graph. That is, for each candidate graph Y that is stored, and each
actor v , we apply Σ-scheduling to the transformed graph that results from stepping up v in Y .
We then take the best result from all of these Σ-scheduling-based evaluations to determine the
vectorization operation that is to be applied in the associated IAV iteration. This approach results
in some increase in complexity, but has the potential to perform significantly more thorough
optimization at a relatively high level of design abstraction.

We refer to this modified Σ-IAV approach asN -candidates IAV. Algorithm 2 provides a pseudocode
description of N -Candidates IAV. Here, the notation c .1 denotes the first element of the ordered
pair c , and configs[1 : N] denotes the list that consists of the first N elements of the list configs.
The function visited(B′) tests whether the vectorization configuration B′ has been examined before
during operation of the algorithm.

ALGORITHM 2: A pseudocode description of N -candidates IAV.
Function nCandidatesVectorize(G = (V ,E), P ,M,N)

initialize B = {(v, 1)|v ∈ V }, mp = generateMapping(G, P), configs = {(B,mp)}, flag = true while
flag = true do

flag = false ;
foreach c ∈ configs do

foreach v ∈ V do
B′ = c.1 − {(v,bv)} ∪ {(v, nextVCD(v,bv)};
if (visited(B′) = false)and(Ωbuf (GB′) ≤ M) then

mp = generateMapping(GB′ , P);
configs = configs ∪ {(B′,mp)} ;
flag = true, visited(B′) = true ;

end
end

end
sortByThroughput (configs);
configs = configs[1 : N]

end
return argmaxc∈configs throughput(G, c)

As with our implementation of Σ-IAV, we employ in our implementation of N -candidates IAV
the IAR technique (Section 4) as the generateMapping function. Similarly, our implementation
of N -candidates IAV incorporates the simulation-based throughput estimation technique that is
discussed in Section 5.5. This estimation technique corresponds to the function called throughput
in Algorithm 2.

Intuitively, N -candidates IAV is a greedy method that tries to avoid unsatisfactory search paths
by retaining multiple intermediate vectorized graphs during each IAV iteration. Larger values for

12 S. Lin et al.

Fig. 4. An example that illustrates the utility of devectorization. (a) The original graph. (b) The graph with
GVD = N applied. (c) The graph with devectorization applied to all CPU-mapped actors — C, F ,K , S .

the parameter N allow more extensive design space exploration at the cost of greater running
time. When N = 1, N -candidates IAV reduces to IAV with the score function being the estimated
throughput (“throughput”) of the transformed graph that results from the selected vectorization
operation. In our implementation of N -candidates IAV, we estimate throughput using simulation.
This simulation approach is discussed further in Section 5.5. In Algorithm 2, throughput(G, c)
represents the estimate of throughput that is derived in this way for a given intermediate vectorized
graph G that is based on ALV configuration c.

Other score functions can be used in N -candidates IAV other than throughput. However, in our
experiments, we found that among TMSV, TMSVPB, and throughput, the throughput score function
produces the best results. Investigation of other score functions in this context is an interesting
direction for future work. In our experiments, we use N = |V | as the number of candidates to be
stored. We select N = |V | so that NIAV keeps a number of candidates that scales with the number
of actors in the dataflow graph while keeping analysis time manageable.

IAR, IAV and NIAV are all greedy-algorithm motivated heuristics based on an evaluation metric
(score function) to select vectorization choices at each step. Investigation of other types of heuristics
to further improve vectorization is a useful direction for future work.

5.3 Mapping-Based Devectorization
N -candidates IAV is an incremental vectorization method that starts with an unvectorized graph,
and gradually increases the VCDs of selected actors. In some cases, it may be advantageous to also
consider decreasing VCDs during the optimization process. Such decreasing of VCDs can be useful
to reduce memory consumption associated with selected actors so that memory can be dedicated
to groups of other actors that provide greater throughput benefit through vectorization. A specific
form of decrease that we consider in this section is devectorization, where an actor with VCD b > 1
is transformed to have no vectorization (VCD of unity).
Figure 4(a) shows an example of this kind of scenario. Here, S (source), K (sink), F (fork), and

C (combine) are computationally simple actors without potential for GPU acceleration, and only
very limited potential for speedup through CPU-based vectorization. On the other hand, actors
A1,A2,A3,A4 have GPU-accelerated versions with significant throughput gain. In this case, however,
the overall throughput gain is limited by the slowest of the fourAi s so that incrementally vectorizing
individual Ai s does not directly impact throughput gain.

To provide memory efficient vectorization in which this kind of scenario is of dominant concern,
we propose another vectorization method called Mapping-Based Devectorization (MBD). In contrast
with ALV-based incremental vectorization, MBD applies GLV to first vectorize all vectorizable
actors, and then performs devectorization on the transformed graph derived from GLV. MBD

13

is useful in devectorizing actors that have relatively low CPU-based performance gain through
vectorization, and in jointly considering vectorization improvements produced by groups of actors.

MBD performs GLV, generates a processor assignment A, and then evaluates for devectorization
each actor that is mapped to a CPU core in A. If a given devectorization operation does not reduce
the original throughput by a pre-defined threshold r , the actor is devectorized. In our experiments,
we set the threshold r empirically by experimenting with different values of r . We found in our
experiments that r = 0.95 achieves the maximum throughput gain for MBD (see Section 6) on
the same set of random graphs. The optimal choice of r may change for a different set of graphs.
Alternatively, r can be customized for a given graph by performing a search (such as a binary
search) to optimize this parameter.
Although the MBD algorithm begins by applying GLV, the algorithm produces solutions that

are in general ALV solutions. This is because of the application of devectorization later in the
algorithm, which in general results in heterogeneous vectorization degrees across the set of actors
in the input graph.

In principle, the processor assignment A can be generated using any multiprocessor task graph
scheduling technique. In our implementation of MBD, we employ the Heterogeneous Earliest Finish
Time (HEFT) heuristic (e.g., see [1, 26]) to generate a schedule for the transformed graph that
results from GLV, and then we extract the processor assignment from this generated schedule.
Devectorization saves memory from low-impact vectorization of actors that are mapped onto

CPU cores. When memory constraints are loose enough to allow GLV, the MBD technique, based
on the memory savings achieved through devectorization, may improve throughput by allowing
greater GVDs to be applied.
Figure 4(c) illustrates the application of MBD. In this example, since actors C , F , K , and S are

mapped onto CPU cores, they are devectorized. As a result of this devectorization, the buffer
requirements on edges (S, F) and (C,K) are reduced to 1 for each edge. Algorithm 3 provides a
pseudocode description for MBD.

ALGORITHM 3: Mapping-Based Devectorization (MBD).
Function mappingBasedDevectorize(G = (V ,E), P ,M)

initialize B = {(v, 1)|v ∈ V }, mp = generateMapping(G, P), configs = {(B,mp)}, GB = G, gvd = 1 ;
repeat

B′ = B, mp′ = mp ;
B = graphVectDegrees(G, gvd) ;
GB = vectorize(G,B) ;
mp = generateMapping(GB);
cpu_actors = {v ∈ V |v is mapped to a CPU core};
foreach v ∈ cpu_actors do

B′′ = B − {(v,b)} ∪ {(v, 1)} ;
if throughput(G, (B′′,mp)) ≥ r × throughput(G, (B,mp)) then

B = B′′ ;
end

end
gvd = gvd + 1 ;

until memSize(GB) ≤ M ;
return (B′,mp′)

14 S. Lin et al.

5.4 Mapping Actors onto HCGPs
The Σ-IAV andN -candidates IAVmethods presented in Section 5.1 and Section 5.2, respectively, both
employ Σ-scheduling throughout the optimization process to generate schedules for intermediate
vectorized graphs. The Σ-scheduling approach is useful in our iterative optimization context because
it provides moderate-complexity, bounded-buffer scheduling of multirate SDF graphs. As mentioned
in Section 5.1 and Section 5.2, we develop a specific Σ-scheduling technique called Incremental
Actor Re-assignment (IAR) for use in both Σ-IAV and N -candidates IAV. In this section, we elaborate
on the IAR technique.

In contrast to time-intensive scheduling methods such as Mixed Linear Programming and Genetic
Algorithms, IAR is designed with computational efficiency as a primary objective. This is because
IAR is invoked repeatedly during each IAV iteration — in particular, it is invoked for each candidate
ALV configuration.

Intuitively, IAR incrementally moves actors in Σ schedules from “busier” (more loaded) processors
to less busy ones. Algorithm 4 provides a pseudocode description of the IAR method. IAR initializes
the actor assignment by mapping all actors that have GPU-accelerated versions onto the GPU, and
all other actors onto a single CPU core. This results in an initial assignment that utilizes at most
two processors (the GPU and one CPU core).

ALGORITHM 4: Incremental Actor Re-assignment (IAR).
Function generateMapping(G, P)

for v ∈ V , initialize bestMp(v) = pN if t(v,pN) < ∞ and bestMp(v) = p1 otherwise ;
initialize bestTh = throughput(G, bestMp) ;
foreach v ∈ V do

mp = bestMp, th = bestTh, p∗ = bestMp(v) ;
Q = {q ∈ P |q , p∗} ;
foreach p ∈ Q do

mp′ = mp − {(v,mp(v))} ∪ {(v,p)} ;
th′ = throughput(G,mp′) ;
if th′ > th then mp = mp′, th = th′ ;

end
if th > bestTh then bestMp = mp,bestTh = th ;

end
return (bestMp, bestTh)

Then IAR iteratively computes the maximum throughput gain for all actor-processor pairs,
and selects the pair that gives the highest throughput at each iteration. In this context, selection
of an actor-processor pair (a,p) means that the current processor assignment of actor a will be
discarded, and actor a will be assigned (“moved”) to processor p. For this selection process, only
actors that have not yet been selected during previous iterations are considered. The throughput
gain is computed with the aid of the function denoted in Algorithm 4 as throughput. This function
invokes the simulation-based throughput estimator discussed in Section 5.5. Each actor is moved
only once during execution of IAR.

5.5 Throughput Estimation
For compile-time throughput estimation, we have developed a throughput simulator for SDF graphs
that follows bounded-buffer execution semantics (defined in Section 3) with a statically-determined
processor assignment, as derived by the Σ strategy introduced in Section 4. The inputs to the

15

Fig. 5. Layered structure of vectorization, scheduling, and performance estimation in the proposed design
optimization framework.

simulator are: (1) the transformed SDF graphGv that results from the candidate set of vectorization
operations that is under evaluation; (2) the Σ mapping for Gv that is generated by IAR; (3) the Ω
buffer bound for each edge inGv ; (4) an estimate of the execution time for each actor inGv ; and (5)
an estimate of the context transfer time between the main memory and the device memory on the
target platform.
To estimate the throughput of a vectorized SDF graph, we first map vectorized actors onto

processors, and follow the approach of Σ-scheduling defined in Definition 4.2 to compute the
schedule. Throughput is then estimated by simulating the execution of the derived schedule. In our
experiments, the execution time estimates under different vectorization degrees for each actor as
well as the context transfer time are derived by using measurements of actor and context transfer
execution on the target HCGP.

5.6 Summary
Figure 5 summarizes the developments of this section by illustrating relationships among the key
analysis and optimization techniques that have been introduced. Recall that IAV, HEFT, and MBD
stand, respectively, for incremental actor vectorization, heterogeneous earliest finish time, and
mapping-based devectorization. Each directed edge in Figure 5 represents usage of one technique
(at the sink of the edge) by another (at the source of the edge). For example, IAR is used by Σ-IAV.

6 EXPERIMENTS USING SYNTHETIC GRAPHS
In this section, we demonstrate the effectiveness of the models and methods developed in Section 5
through experiments that study throughput gain and running time. We compare our methods with
the approach of applying graph-level vectorization (GLV) followed by task-graph scheduling.

We use Heterogeneous Earliest Finish Time (HEFT) as the task-graph scheduling method in this
comparison. HEFT is a commonly used task-graph scheduling method for HCGPs (e.g., see [1]).
The integration of HEFT with GLV can be viewed as a natural way to integrate SDF vectorization
and scheduling using conventional techniques. We refer to the combination of GLV and HEFT
as the GLV-HEFT baseline or simply as GLV-HEFT. As implied by this terminology, GLV-HEFT
is employed in this experimental study as a baseline for evaluating our proposed methods. The
GLV-HEFT baseline applies both GPU acceleration and CPU-GPU multi-processor scheduling. We
demonstrate in this section that the ALV and IAR scheduling methods developed in this paper
provide significant throughput gain over this baseline approach under given memory constraints.

6.1 Experimental Setup
We have developed an integrated software synthesis framework called DIF-GPU to provide a
streamlined workflow that combines actor-level / graph-level vectorization, multi-rate / single-rate
SDF scheduling, code generation, and runtime support on heterogeneous computing platforms with
multi-core CPUs and GPUs. For details about the DIF-GPU framework, we refer readers to [16].

16 S. Lin et al.

In the experiments presented in this section, we employ an HCGP consisting of a quad-core Intel
i5-6400 CPU and an NVIDIA Geforce GTX750 GPU. Actor implementations that are developed for
multi-core CPU and GPU execution are compiled using GCC 4.6.3 and the NVIDIA CUDA compiler
(NVCC) 7.0, respectively.

6.2 Synthetic Graph Generation
We use Task Graphs For Free (TGFF) [7] to generate large sets of synthetic SDF graphs with varied
size and complexity. Key parameter settings that we use in TGFF are as follows: the maximum
in-degree and out-degree for graph nodes are both set to 3, and the average and multiplier for the
lower bound on the number of graph nodes are both set to 20.

From the graph topologies generated by TGFF, we randomly map each graph vertex to a specific
DSP actor type that has both a CPU-targeted and GPU-targeted implementation. We perform
this vertex-to-actor mapping for all actors in each randomly-generated graph. A broad set of DSP
actor types — including actors for cross-correlation, FIR filtering, FFT computation, and vector
algebra — are considered when performing this mapping. The GPU-accelerated implementations
of these actors provide speedups from 1X to 20X compared to the corresponding multicore CPU
implementations. This use of TGFF in conjunction with randomly generated actor mappings helps
us to evaluate the performance of our proposed methods on a large variety of graph topologies.

In our experiments, the source and sink actors are selected from a pool of different implementa-
tions of data sources and sinks. Because the input/output interfacing functionality in an embedded
HCGP is typically implemented on a CPU, we assume that source and sink actors can only be
mapped onto CPU cores.

We profile the actors by measuring the execution times of the actors’ firings on the target platform
under a series of vectorization degrees. This profiled data is then used as input to the evaluated
vectorization and scheduling techniques. The profiled data is also used to simulate the vectorization-
integrated schedules that are derived from the proposed and baseline techniques. This simulation
is based on the throughput simulator presented in Section 5.5. We use simulation here to enable
efficient, automated comparisons across a large variety of different graph structures. In Section 7, we
complement this simulation-based evaluation approach with our experimental evaluation of a case
study involving an orthogonal frequency-division multiplexing (OFDM) receiver. The evaluation in
Section 7 is performed by synthesizing software using DIF-GPU for the targeted HCGP platform,
executing the synthesized software on the target platform, and measuring the resulting execution
time performance.

6.3 Vectorization
In this section, we apply the different ALV methods introduced in Section 5 to a large collection
of synthetic SDF graphs, and evaluate the performance of the derived schedules by simulating
their bounded-buffer execution. Note that the baseline for speedup here is GLV-HEFT, where
extensive vectorization has been applied, and both the CPU and GPU are used to schedule dataflow
actors. This is a much “higher” baseline than single- / multi-core CPU implementation without
vectorization. Therefore, the speedup computed over this baseline is relatively small. The synthetic
graphs are generated using TGFF together with randomized vertex-to-actor mappings, as described
in Section 6.2. We evaluate the speedup over the GLV-HEFT baseline under different memory
constraints.

To compare speedups across SDF graphs that have different sizes (i.e., different numbers of actors
and edges) and different multirate properties (as defined by the production and consumption rates
on the actor ports), we introduce a concept of relative memory bounds as a normalized representation
for memory constraints. Given an algorithm A for performing GLV, the relative memory bound

17

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.1

1.2

1.3

1.4

1.5

1.6

Relative Memory Bound

S
p

e
e

d
u

p

tmsv
tmsvpb
niav
mbd

Fig. 6. Average speedups measured for four ALV techniques introduced in Section 5: TMSV Σ-IAV, TMSVPB
Σ-IAV, N -candidates IAV, and MBD.

M(G) for an SDF graph G is defined as M(G) = M0 × α , where M0 is the memory cost of the
GLV solution derived by Algorithm A when applied to G with GVD = 1, and α is a constant
that represents the “tightness/looseness” of the applied memory constraint. We experiment with
α ∈ {1.0, 1.5, . . . , 4.5, 5} to cover a series of memory constraints ranging, respectively, from tight
to loose.

Figure 6 shows the average simulated speedup that wemeasured from a set of randomly generated
SDF graphs for different techniques for ALV that were introduced in Section 5. As mentioned
previously, these speedups are in comparison to baseline solutions that are derived using the
GLV-HEFT baseline technique. These results are for a target platform configuration that consists of
1 CPU core and 1 GPU. Here, “TMSV Σ-IAV” and “TMSVPB Σ-IAV” represent the Σ-IAV algorithm
with the TMSV and TMSVPB score functions, respectively. The measured throughput gain ranges
from 0.8X to 2.4X, and also exhibits significant variation from one SDF graph to another.
We refer to ALV-IAR as the meta-algorithm that results from applying all four of the proposed

ALV techniques, and selecting the best result from among the four derived solutions. In Section 7,
we perform further experimental analysis of the ALV-IARmethod, which provides a way to leverage
complementary benefits of all of the key ALV techniques introduced in Section 5. ALV-IAR is
useful, in particular, for design scenarios that can tolerate the relatively large optimization time
that is required by N -candidates IAV, which dominates the time required by ALV-IAR. ALV-IAR
demonstrates average and maximum speedup values of 1.36X and 2.9X on the benchmark set.
We see that N -candidates IAV provides the largest average speedup by a significant margin,

and this algorithm also provides the largest maximum speedup. We anticipate that this is because
N -candidates IAV uses more vectorization candidate solutions throughout the search process. The
other three ALV techniques achieve similar average and maximum throughput gain.
We have also observed that the average speedup of ALV methods increases until M(G) = 2.5

and then gradually drops off. WhenM(G) is close to 1, there is little room for vectorization, so ALV
and GLV achieve similar throughput, and the average speedup is close to 1. AsM(G) increases to
2.5, more flexibility is provided for ALV to vectorize for better performance than GLV. WhenM(G)
increases beyond 2.5, the memory is sufficient to allow relatively large vectorizations for all actors,
so the throughput gain from enabling further vectorization is worn off.
Although the MBD method and the two Σ-IAV methods achieve smaller average speedup com-

pared to N -candidates IAV, they run significantly faster (see Section 6.4), and can be useful in cases
where quicker turnaround time is desired from the software synthesis process. In addition, there
are cases where they perform better than N -candidates IAV.

18 S. Lin et al.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Number of nodes

R
u

n
n

in
g

 t
im

e
 (

s
1

/4
)

tmsv

tmsvpb

niav

mbd

(a)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

Number of nodes

R
u

n
n

in
g

 t
im

e
 (

s
1

/4
)

tmsv

tmsvpb

niav

mbd

(b)

Fig. 7. Runtime of ALV methods under different memory constraints: (a)M = 2M0, and (b)M = 4M0.

6.4 Runtime
In this section, we compare the measured running times of the four proposed ALV techniques. We
tested the running times of the ALV techniques on the same set Sд of randomly generated SDF
graphs that we used in the experiments reported on in Section 6.3. The set Sд consists of 120 graphs,
where the of number of nodes in a given graph ranges from 3 to 30.

Figure 7 shows the measured running times for the four ALVmethods with respect to the number
of nodes in the input graph. For each of the four ALV methods, there are 120 points plotted in each
part of the figure — one point for each graph in Sд . Thus, Figure 7(a) and Figure 7(b) each depicts a
total of 4 × 120 = 480 plotted points.
Figure 7 presents running time results associated with two different memory constraints —

M = 2M0 in Figure 7(a), andM = 4M0 in Figure 7(b) (see the discussion on relative memory bounds
in Section 6.3). These two memory constraints are used to represent relatively tight and loose
memory budgets, respectively. The vertical axes in Figure 7 correspond to s1/4, where s is the
measured running time in seconds. Here, we apply an exponent of (1/4) to help improve clarity in
depicting the large number of displayed points.
The list of the ALV methods sorted from the fastest to the slowest are: MBD, Σ-IAV with the

TMSV score function, Σ-IAV with the TMSVPB score function, and NIAV. Note that the TMSVPB
score function runs more slowly compared to TMSV due to the computation cost of Ωbuf (GB′) in
the denominator of Equation 4. This cost involves recomputing the buffer requirements for all of
the edges in G. Table 1 shows the running times of the ALV methods on a specific graph with 22
nodes and 33 edges. This graph is selected randomly to provide further insight into variations in
running time among the four ALV methods.

In our experiments, we find that typically MBD finishes within 1 second, while the running times
of the two Σ-IAV methods usually range from several seconds up to a few minutes. We expect that
this kind of running time profile is acceptable in many coarse grain dataflow design scenarios in the
embedded signal processing domain, where actors typically perform higher level signal processing
operations, and therefore the number of nodes in the graphs is limited compared to other types of
dataflow graphs that are based on fine-grained actors.
The running time of N -candidates IAV is generally the longest among all four methods, and

grows rapidly with the number of nodes. In our experiments with an SDF graph having 30 nodes,
for example, N -candidates IAV takes 3 hours to finish its computation. Therefore, N -candidates

19

Table 1. The running times (in seconds) of the ALV methods on a specific SDF graph with 22 nodes and 33
edges.

TMSV Σ-IAV TMSVPB Σ-IAV NIAV MBD
M = 2M0 2.0 8.4 320 0.1
M = 4M0 13.0 35.9 3500 0.7

Fig. 8. SDF model of OFDM-RX application.

Table 2. Actors in the OFDM-RX application.

Actor Description
src Read samples of the input signal.
syn Perform time-domain synchronization.
cfo Remove carrier frequency offsets.
rcp Remove cyclic prefix.
fft Perform Fast-Fourier Transform on symbols.
dmp Map OFDM symbols into bit stream.
snk Write bit stream onto the output.

IAV is more suitable in situations when the SDF graph is relatively small, design turnaround time
is not critical, or solution quality is of utmost importance.

7 CASE STUDY: OFDM
In this section, we demonstrate the effectiveness of our new ALV-integrated software synthesis
framework through a case study involving an orthogonal frequency-division multiplexing (OFDM)
receiver (OFDM-RX). The OFDM-RX is an adapted version of the OFDM system described in [18].
Figure 8 shows an SDF model for the OFDM-RX application. The value above each actor in Figure 8
gives the repetition count of the actor. Table 2 lists the actors in this SDF model and describes their
corresponding functions. The system can operate with different parameter values, as shown in
Table 3.

7.1 System Implementation and Profiling
We have implemented the OFDM-RX actors using the Lightweight Dataflow Environment (LIDE),
which provides a programming methodology and associated application programming interfaces
(APIs) for implementing dataflow graph actors and edges in a wide variety of platform-oriented
languages, such as C, C++, CUDA, and Verilog [22, 23]. In our OFDM-RX system, GPU-accelerated
implementations are available for all actors other than the src and snk actors. The src and snk actors
are not mapped to the GPU in our implementation because of input/output operations that are
involved in these actors.

We have profiled the execution times for the OFDM-RX actors on both the CPU and GPU. Figure 9
summarizes the average execution times per SDF graph iteration for the actors. This average time
can be expressed as tT (v) = q(v)t(v), where q represents the repetitions vector of the enclosing

20 S. Lin et al.

Table 3. Parameters in the OFDM-RX application model, along with the settings or values we use in our
experiments.

Description Values

L
Number of subcarriers per
OFDM symbol [128, 256, 512, 1024]

N
Number of OFDM symbols
per frame 10

Lcp
Length of cyclic prefix for
each OFDM symbol (9/128)L

M Number of bits per sample 4

D
Length of data excluding
training symbols (N − 1)(L + Lcp)

F Length of a frame N (L + Lcp)
S Size of sample stream 2F

src
syn

cfo
rcp

fft
dmp

snk

0

5

10

15

20

0

5

10

15

20

25

Number of Frames

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

(a)

syn

cfo

rcp

fft

dmp

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Frames

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

(b)

Fig. 9. tT (v)s on (a) CPU and (b) GPU for OFDM-RX actors that are vectorized to process multiple frames in
each firing.

SDF graph, and t(v) represents the average execution time measured for a single firing of v . These
execution time estimates are measured on both the CPU and GPU when L = 256, and the actors
are vectorized to process different numbers of data frames per vectorized invocation. Observe
from Figure 9 that the distribution of the tT (v) in OFDM-RX are uneven, and that the syn and cfo
actors dominate the execution times both on the CPU and GPU. Also, observe that although actor
execution times are roughly proportional to the number of frames NF , they increase at different
rates in relation to NF — for example, tT (cfo) on the GPU grows very slowly with increases in NF ,
and tT (syn) grows much faster.

7.2 Software Synthesis with GLV-HEFT
We first measure the performance improvement achieved by GLV-HEFT when integrated in our DIF-
GPU software synthesis framework. Here, we measure the system throughput under 11 different
configurations without any memory constraints imposed. These measurements are performed

21

Fig. 10. Speedup of the OFDM-RX application over a single CPU implementation for different GVD values
and different values of the bandwidth parameter L.

on software implementations that are generated automatically using DIF-GPU integrated with
GLV-HEFT.

In contrast to the relative throughput metric (see Section 4) that is used as a general performance
metric in Section 6, we employ frames per second as the throughput metric more specific to the
OFDM-RX application.

We denote the results (throughput values) from these measurements by Th0,Th1, . . . ,Th10. Here,
Th0, denotes the throughput when the input graph is not vectorized and all actors are mapped onto
a single CPU core. On the other hand, for b ∈ {1, 2, . . . , 10},Thb represents the throughput obtained
when GLV is applied with GVD = b, and HEFT is used to schedule the resulting vectorized graph
(GLV-HEFT) [16].

Figure 10 shows the speedup in throughput of GLV over the single-CPU implementation, and
compares Th0 and Th10 in more detail for different values of L. The maximum measured speedups
achieved here are 10.1X, 18.1X, 31.9X, 41.1X for L = 128, 256, 512, 1024, respectively.

In our experiments, actors in the dataflow model are coarse-grained signal-processing modules.
Before vectorization, the actors already encapsulate multiple steps of processing on large signal
arrays, and extensively utilize GPU data-parallelism. For example, the unvectorized syn actor in
the OFDM receiver application consists of multiple steps of cross-correlation on 20 OFDM symbols.
Therefore, saturation at small GVD levels can be expected in Figure 10.

7.3 Software Synthesis with ALV-IAR
In this section, we perform measurements and comparisons that involve software implementations
that are generated automatically using DIF-GPU integrated with ALV-IAR. The experiments are
performed under different memory budgets and different levels of bandwidth L (an application-level
parameter). For comparison, we apply DIF-GPU integrated with GLV-HEFT to synthesize software
that incorporates vectorized schedules constructed using GLV-HEFT instead of ALV-IAR.
Table 4 shows an example of the vectorization degrees and processor assignments derived for

OFDM-RX under a specific memory constraint. This memory constraint is selected to represent
one that is neither very tight nor very loose. These vectorized scheduling results are derived by
ALV-IAR, and the throughput is measured by executing the resulting software implementation
that is synthesized by DIF-GPU. The vectorization and processor assignment (mapping) results are
shown in Table 4 as lists of values that correspond to the graph actors in their topological order
(src, syn, . . . , snk). The numbers 0 and 1 in the Mapping column represent the CPU-core and GPU,
respectively. The results in Table 4 show that ALV-IAR produces a 1.2X speedup compared to the
baseline technique for the selected memory constraint.

22 S. Lin et al.

2 4 6 8 10
0

5

10

15

20

Memory Budget (10
5
 bytes)

T
h

ro
u

g
h

p
u

t(
1

0
3
/s

)

GLV

ALV

(a)

5 10 15 20
0

2

4

6

8

10

12

Memory Budget (10
5
 bytes)

T
h

ro
u

g
h

p
u

t(
1

0
3
/s

)

GLV

ALV

(b)

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

Memory Budget (10
5
 bytes)

T
h

ro
u

g
h

p
u

t(
1

0
3
/s

)

GLV

ALV

(c)

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

Memory Budget (10
5
 bytes)

T
h

ro
u

g
h

p
u

t(
1

0
3
/s

)

GLV

ALV

(d)

Fig. 11. Memory-constrained throughput of OFDM-RX systems with different levels of memory budgetM
and bandwidth L using ALV-IAR compared to the GLV-HEFT baseline. These experiments are performed on
Intel i5-6400 CPU and NVIDIA Geforce GTX750 GPU architectures. (a) L = 128, (b) L = 256, (c) L = 512, (d)
L = 1024.

Table 4. Vectorization degrees and mapping results generated by ALV-IAR and GLV-HEFT under the memory
constraintM = 2.8 Mb, and L = 512.

Method Vectorization Mapping Th(103/s)
ALV-IAR [1,3,12,1,1,1,1] [0,1,1,0,0,0,0] 3.15
GLV-HEFT [4,4,4,36,36,36,144] [0,1,1,1,1,0,0] 2.60

The memory budgets are set to M = b log(L) × 105, where b = {1, 2, . . . , 10}. We compare the
throughput levels of implementations generated using the two methods — ALV-IAR and GLV-HEFT
— as shown in Figure 11. The results shown in Figure 11 show that using actor-level vectorization
and Σ scheduling, we are able to obtain system throughput that consistently exceeds that provided
by the baseline method under same memory constraint.
When memory constraints are relatively tight, GLV has difficulty in adequately exploiting

data parallelism in the OFDM-RX system. ALV-IAR alleviates this problem by focusing memory
resources to vectorize selected, performance-critical actors. Specifically, ALV-IAR successfully
identifies syn and cfo as the two actors that benefit the most from vectorized execution on the GPU.
Prioritizing the vectorization of these two actors helps to avoid wasting memory on vectorizations
that have relatively little or no impact on overall system performance. This is reflected by a large
throughput gain when b ≤ 4. When the memory constraint is relaxed, the gap in the throughput
gain between ALV-IAR and GLV is reduced, as data-parallelism in the system can exploited more
effectively by GLV under loose memory constraints.
When optimizing the OFDM-RX system, ALV-IAR maps only syn and cfo onto the GPU, and

assigns the other actors to the CPU to utilize pipeline parallelism in the system. Under this mapping,

23

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Memory Budget (10
5
 bytes)

T
h

ro
u

g
h

p
u

t(
1

0
3
/s

)

GLV

ALV

(a)

5 10 15 20
0

0.5

1

1.5

2

2.5

Memory Budget (10
5
 bytes)

T
h

ro
u

g
h

p
u

t(
1

0
3
/s

)

GLV

ALV

(b)

5 10 15 20 25 30 35 40
0

0.5

1

1.5

Memory Budget (10
5
 bytes)

T
h

ro
u

g
h

p
u

t(
1

0
3
/s

)

GLV

ALV

(c)

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

Memory Budget (10
5
 bytes)

T
h

ro
u

g
h

p
u

t(
1

0
3
/s

)

GLV

ALV

(d)

Fig. 12. Memory-constrained throughput of OFDM-RX systems with different levels of memory budgetM
and bandwidth L using ALV-IAR compared to the GLV-HEFT baseline on the NVIDIA Jetson TX1. (a) L = 128,
(b) L = 256, (c) L = 512, (d) L = 1024.

firings of syn and cfo from subsequent frames can be executed in parallel with firings of rcp, fft,
dmp and snk from earlier frames.

In these experiments, the maximum measured speedup values of ALV-IAR over GLV-HEFT are
2.66X, 2.45X, 1.94X and 1.71X for L = 128, 256, 512, 1024, respectively. The maximum speedup
values of ALV-IAR compared to a single-core, unvectorized CPU baseline implementation are 11.1X,
19.8X, 33.8X, and 47.6X, for L = 128, 256, 512, 1024, respectively.

Although the speedup gain of ALV-IAR over GLV-HEFT in this application is significantly higher
than the average speedup in Section 6.3, it still falls within the range of the maximum speedup
reported in Section 6.3. We expect that this is attributable to the relatively simple, chain-structured
topology of the application’s dataflow graph.
The measurements described above are carried out on a CPU-GPU architecture in a desktop

computer platform. To complement these experiments using an embedded platform, we investigate
the performance of ALV-IAR and GLV-HEFT by performing the same experiments on an NVIDIA
Jetson TX1 (TX1). The TX1 is a popular embedded platform that consists of a Quad-core ARM
A57 CPU and an NVIDIA Maxwell GPU with 256 CUDA cores. The results are summarized in
Figure 12. These results are found to be similar to those obtained using the desktop platform. More
specifically, the maximum speedup values of ALV-IAR over GLV-HEFT are 2.4X, 3.5X, 2.4X, 2.5X
for L = 128, 256, 512, 1024, respectively, as measured on the TX1. These results show that ALV-IAR
also consistently outperforms GLV-HEFT by a significant margin on the TX1.
In summary, the throughput improvement obtained by HCGP acceleration using the methods

developed in this work facilitates real-time, memory constrained processing of OFDM signals. Such
acceleration can benefit a variety of software-defined radio and cognitive radio applications.

24 S. Lin et al.

8 CONCLUSION
In this paper, we have investigated memory-constrained, throughput optimization for synchronous
dataflow (SDF) graphs on heterogeneous CPU-GPU platforms. We have developed novel methods
for Integrated Vectorization and Scheduling (IVS) that provide throughput- and memory-efficient
implementations on the targeted class of platforms. We have integrated these IVS methods into the
DIF-GPU Framework, which provides capabilities for automated synthesis of GPU software from
high-level dataflow graphs specified using the dataflow interchange format (DIF). Our development
of novel IVS methods and their integration into DIF-GPU provide a streamlined workflow for
automated exploitation of pipeline, data and task level parallelism from SDF graphs. We have
demonstrated our IVS methods through extensive experiments involving a large collection of
diverse, synthetic SDF graphs, as well as on a practical embedded signal processing case study
involving a wireless communications receiver that is based on orthogonal frequency division
multiplexing. The results of our experiments demonstrate that our proposed new methods for IVS
provide significant improvements in system throughput when mapping SDF graphs onto CPU-GPU
platforms. Our proposed methods provide a range of useful trade-offs between analysis time and
speedup improvement that designers can select among depending on their specific preferences and
constraints.

9 ACKNOWLEDGMENTS
This research was supported in part by the Laboratory for Telecommunication Sciences and the
National Science Foundation.

REFERENCES
[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. 2011. StarPU: a unified platform for task scheduling on

heterogeneous multicore architectures. Journal of Concurrency and Computation: Practice & Experience 23, 2 (February
2011), 187–198.

[2] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala (Eds.). 2013. Handbook of Signal Processing Systems
(second ed.). Springer. http://dx.doi.org/10.1007/978-1-4614-6859-2 ISBN: 978-1-4614-6858-5 (Print); 978-1-4614-6859-2
(Online).

[3] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. 1996. Software Synthesis from Dataflow Graphs. Kluwer Academic
Publishers.

[4] Y. Chen and H. Zhou. 2012. Buffer minimization in pipelined SDF scheduling on multi-core platforms. In Proceedings
of the Asia South Pacific Design Automation Conference. 127–132.

[5] F. Ciccozzi. 2013. Automatic Synthesis of Heterogeneous CPU-GPU Embedded Applications from a UML Profile. In
Proceedings of the International Workshop on Model Based Architecting and Construction of Embedded Systems.

[6] K. Desnos, M. Pelcat, J.-F. Nezan, and Slaheddine Aridhi. 2015. Buffer merging technique for minimizing memory
footprints of Synchronous Dataflow specifications. In Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing. 1111–1115.

[7] R. P. Dick, D. L. Rhodes, and W. Wolf. 1998. TGFF: Task Graphs for Free. In Proceedings of the International Workshop
on Hardware/Software Codesign. 97–101.

[8] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and J. Planas. 2011. Ompss: a proposal for
programming heterogeneous multi-core architectures. Parallel Processing Letters 21, 2 (2011).

[9] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, A. J. M. Moonen, M. J. G. Bekooij, B. D. Theelen, and M. R.
Mousavi. 2006. Throughput analysis of synchronous data flow graphs. In Proceedings of the International Conference on
Application of Concurrency to System Design.

[10] M. Goli, M. T. Garba, and H. González-Vélez. 2012. Streaming Dynamic Coarse-Grained CPU/GPU Workloads with
Heterogeneous Pipelines in FastFlow. In Proceedings of HPCC-ICESS. 445–452.

[11] C. Gregg and K. Hazelwood. 2011. Where is the data? Why you cannot debate CPU vs. GPU performance without the
answer. In Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software. 134–144.

[12] A. Hagiescu, H. P. Huynh, W.-F. Wong, and R. S. M. Goh. 2011. Automated Architecture-Aware Mapping of Streaming
Applications Onto GPUs. In Proceedings of the International Symposium on Parallel and Distributed Processing. 467–478.

http://dx.doi.org/10.1007/978-1-4614-6859-2

25

[13] C. Hsu, J. Pino, and S. S. Bhattacharyya. 2011. Multithreaded Simulation for Synchronous Dataflow Graphs. ACM
Transactions on Design Automation of Electronic Systems 16, 3 (June 2011), 25–1–25–23.

[14] M. Ko, C. Shen, and S. S. Bhattacharyya. 2008. Memory-constrained Block Processing for DSP Software Optimization.
Journal of Signal Processing Systems 50, 2 (February 2008), 163–177.

[15] E. A. Lee and D. G. Messerschmitt. 1987. Synchronous Dataflow. Proc. IEEE 75, 9 (September 1987), 1235–1245.
[16] S. Lin, Y. Liu, W. Plishker, and S. S. Bhattacharyya. 2016. A Design Framework for Mapping Vectorized Synchronous

Dataflow Graphs onto CPU–GPU Platforms. In Proceedings of the International Workshop on Software and Compilers for
Embedded Systems. Sankt Goar, Germany, 20–29. http://portal.acm.org/dl.cfm

[17] W. Lund, S. Kanur, J. Ersfolk, L. Tsiopoulos, J. Lilius, J. Haldin, and U. Falk. 2015. Execution of Dataflow Process
Networks on OpenCL Platforms. In Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing. 618–625.

[18] J. W. Massey, J. Starr, S. Lee, D. Lee, A. Gerstlauer, and R. W. Heath. 2012. Implementation of a real-time wireless
interference alignment network. In Proceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers.
104–108.

[19] J. Park and W. J. Dally. 2010. Buffer-space efficient and deadlock-free scheduling of stream applications on multi-core
architectures. (2010).

[20] S. Ritz, M. Pankert, and H. Meyr. 1993. Optimum Vectorization of Scalable Synchronous Dataflow Graphs. In Proceedings
of the International Conference on Application Specific Array Processors.

[21] L. Schor, A. Tretter, T. Scherer, and L. Thiele. 2013. Exploiting the parallelism of heterogeneous systems using dataflow
graphs on top of OpenCL. In Proceedings of the IEEE Workshop on Embedded Systems for Real-Time Multimedia. 41–50.

[22] C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya. 2010. A Lightweight Dataflow Approach for Design and
Implementation of SDR Systems. In Proceedings of the Wireless Innovation Conference and Product Exposition. 640–645.

[23] C. Shen, L. Wang, I. Cho, S. Kim, S. Won, W. Plishker, and S. S. Bhattacharyya. 2011. The DSPCAD Lightweight Dataflow
Environment: Introduction to LIDE Version 0.1. Technical Report UMIACS-TR-2011-17. Institute for Advanced Computer
Studies, University of Maryland at College Park. http://hdl.handle.net/1903/12147.

[24] S. Sriram and S. S. Bhattacharyya. 2009. Embedded Multiprocessors: Scheduling and Synchronization (second ed.). CRC
Press. ISBN:1420048015.

[25] S. Stuijk, M. Geilen, and T. Basten. 2006. Exploring Tradeoffs in Buffer Requirements and Throughput Constraints for
Synchronous Dataflow Graphs. In Proceedings of the Design Automation Conference.

[26] H. Topcuoglu, S. Hariri, and M.-Y. Wu. 2002. Performance-effective and low-complexity task scheduling for heteroge-
neous computing. IEEE Transactions on Parallel and Distributed Systems 13, 3 (2002), 260–274.

[27] S. Tripakis, D. Bui, M. Geilen, B. Rodiers, and E. A. Lee. 2013. Compositionality in synchronous data flow: Modular
code generation from hierarchical SDF graphs. ACM Transactions on Embedded Computing Systems 12, 3 (2013).

[28] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. 2009. Software Pipelined Execution of Stream Programs on
GPUs. In Proceedings of the International Symposium on Code Generation and Optimization. 200–209.

[29] G. Zaki, W. Plishker, S. S. Bhattacharyya, C. Clancy, and J. Kuykendall. 2013. Integration of Dataflow-based Heteroge-
neous Multiprocessor Scheduling Techniques in GNU Radio. Journal of Signal Processing Systems 70, 2 (February 2013),
177–191.

http://portal.acm.org/dl.cfm

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Problem Formulation
	5 Vectorization and Scheduling with Memory Constraints
	5.1 Incremental Actor Vectorization
	5.2 N-Candidates IAV
	5.3 Mapping-Based Devectorization
	5.4 Mapping Actors onto HCGPs
	5.5 Throughput Estimation
	5.6 Summary

	6 Experiments using Synthetic Graphs
	6.1 Experimental Setup
	6.2 Synthetic Graph Generation
	6.3 Vectorization
	6.4 Runtime

	7 Case Study: OFDM
	7.1 System Implementation and Profiling
	7.2 Software Synthesis with GLV-HEFT
	7.3 Software Synthesis with ALV-IAR

	8 Conclusion
	9 Acknowledgments
	References

