
18

Transactions in Relaxed Memory Architectures

BRIJESH DONGOL, Brunel University London, UK
RADHA JAGADEESAN, DePaul University, USA
JAMES RIELY, DePaul University, USA

The integration of transactions into hardware relaxed memory architectures is a topic of current research both
in industry and academia. In this paper, we provide a general architectural framework for the introduction of
transactions into models of relaxed memory in hardware, including the sc, tso, armv8 and ppc models. Our
framework incorporates flexible and expressive forms of transaction aborts and execution that have hitherto
been in the realm of software transactional memory. In contrast to software transactional memory, we account
for the characteristics of relaxed memory as a restricted form of distributed system, without a notion of global
time. We prove abstraction theorems to demonstrate that the programmer API matches the intuitions and
expectations about transactions.

CCS Concepts: • Theory of computation→ Parallel computing models; Abstraction;

Additional Key Words and Phrases: Relaxed Memory Models, Hardware Transactional Memory

ACM Reference Format:
Brijesh Dongol, Radha Jagadeesan, and James Riely. 2018. Transactions in Relaxed Memory Architectures.
Proc. ACM Program. Lang. 2, POPL, Article 18 (January 2018), 29 pages. https://doi.org/10.1145/3158106

1 INTRODUCTION
Locks are ubiquitous in programming because they provide mutual exclusion and ordering prop-
erties to concurrent threads. However, the use of locks is subtle as exemplified by the common
problems of priority-inversion (a lower-priority process holding a lock needed by a higher-priority
process cannot release the lock if its execution is preempted) and deadlocks (cyclic dependencies
on locks caused by processes contending dynamically for a collection of locks).

Such issues have motivated a transactional approach to thread synchronization, including hard-
ware transactional memory (HTM) [Herlihy and Moss 1993] and software transactional memory
(STM) [Shavit and Touitou 1995]. Larus and Kozyrakis [2008], Harris et al. [2010], Guerraoui and
Kapalka [2010] and Grossman et al. [2007] provide a broad introduction to the subject. HTM
exploits the power of extant cache-coherence protocols, which are already tuned for performance
in a concurrent context. This permits their performance to match hand-crafted software that uses
fine-grained locks and CAS instructions without losing the simplicity of coarse-grained locks [Yoo
et al. 2013]. On the other hand, the “bounded” and “best-effort” hardware transactional model
is limited by the capacity constraints of caches in terms of the number of locations that can be
included in a hardware transaction (e.g., see Nguyen [2015] for a recent experimental evaluation),
so a transaction can fail when its working set exceeds the capacity of the hardware. STM achieves

Authors’ addresses: Brijesh Dongol, Department of Computer Science, Brunel University London, UK, brijesh.dongol@
brunel.ac.uk; Radha Jagadeesan, School of Computing, DePaul University, USA, rjagadeesan@cs.depaul.edu; James Riely,
School of Computing, DePaul University, USA, jriely@cs.depaul.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
2475-1421/2018/1-ART18
https://doi.org/10.1145/3158106

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

https://doi.org/10.1145/3158106
https://doi.org/10.1145/3158106
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3158106&domain=pdf&date_stamp=2017-12-27

18:2 Brijesh Dongol, Radha Jagadeesan, and James Riely

transactional guarantees in software without any such limitations. Some STM systems also support
flexible and expressive ways of composing transactions [Haines et al. 1994; Harris et al. 2005].
Despite the impressive advances in the implementation of STMs, researchers have also considered
variations of hybrid transactional memory systems [Damron et al. 2006; Harris et al. 2010] that
seek to preserve the progress properties of STMs while building on the performance of HTM
implementations.
Inspired by database theory [Eswaran et al. 1976], the two key elements of correctness of

committed transactions enunciated by Herlihy and Moss [1993] are:

• Atomicity: transactions appear to execute sequentially, i.e., without interleaving.
• (Strict) serializability of committed transactions: There is a sequential order among committed
transactions that is consistent with their real-time order.

These conditions are intimately related to the notion of linearizability [Herlihy and Wing 1990]
because they ensure that every concurrent history (an interleaved sequence of invocation and
response events) can be mapped to a legal sequential history (where each invocation is immediately
followed by its matching response) such that the real-time order induced by the concurrent history
over transactions is preserved (see [Armstrong et al. 2017]).

The focus of this paper is the study of transactions under relaxed memory models.
Sequential consistency [Lamport 1979] enforces a total order on memory operations — reads and

writes to the memory — respecting the program order of each individual thread in the program.
Modern multicore architectures are relaxed and permit executions that are not sequentially consis-
tent. Adve and Gharachorloo [1996] and Adve and Boehm [2010] provide a tutorial introduction
with detailed bibliography on architectures and their impact on language design. This motivates
models of relaxed memory in hardware, such as TSO [Sewell et al. 2010], Power [Sarkar et al. 2011],
and runtime systems, such as Java [Manson et al. 2005; Sevcík 2008] and C++ [Batty et al. 2011;
Boehm and Adve 2008]. Alglave et al. [2014] provide a systematic and general framework that
illustrates the key ideas.
Our aim is to provide a general framework to integrate transactions into a hardware memory

model. The signature feature of relaxed memory models is the discarding of the global real-time
clock — these are distributed systems after all, albeit of a somewhat restricted kind. Thus, the key
issue that we have to address is the “semantics of transactions with respect to a memory model
weaker than sequential consistency” [Grossman et al. 2006]. In the hardware memory models of
interest, the global real-time order is replaced by ordering relations that determine when actions in
a thread can be seen by other threads. Following the vocabulary of Alglave et al. [2014], consider
two of the observable orders of interest:

• coherence order, which relates the writes to the same location into a total order, and
• causal order, which relates an action to those that causally precede it, as determined by
program order and synchronization.

The causal order always includes dependencies from a write of a variable to a read by another thread
that sees that write; this is referred to as a (external) reads-from order. The coherence order induces
anti-dependencies from a read to a write that overwrites the value seen by the read; this is often
referred to as from-read order. There are other architecture-specific components that can influence
the observable orders; we return to these notions in Section 2.

For the rest of this section, we focus on developing an observation-based notion of serializability.
We first discuss committed transactions in isolation, then in combination with non-transactional
memory operations and aborted transactions.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

Transactions in Relaxed Memory Architectures 18:3

1.1 Observation-Based Serialization for Committed Transactions
Our version of the correctness of committed transactions replaces strict serializability with observ-
able serializability. Whereas strict serializability requires that there be a committed transaction
order that preserve real-time order, observable serializability requires only that the committed
transaction order preserve orders that can be observed, such as coherence and causal ordering.

Observable serializability permitsmore executions than strict serializability. For example, consider
the following execution, where we assume time flows from left to right. We use Rxv to denote read
events andWxv to denote and write events, where x is a location and v is a value. We use different
kinds of braces/parenthesis to indicate the begin and end of transactions. In implementations, the
begin and end actions have durations, but we ignore this duration for simplicity since they do not
matter to the examples in this introduction. Also for simplicity, we use examples in which each
thread executes at most one transaction — we refer to the transactions as T1, T2, T3, etc., where
the numbers correspond to the thread identifier. As is common in the relaxed memory literature, in
all our examples we assume that all variables are initialized to 0.
Thread 1: (Rx2)
Thread 2: [Wx2 Ry1]
Thread 3: < Wy1 >

In the above execution, due to the causal reads-from dependencies, T3 must precede T2, and T2 must
precede T1 in any serialization of the transactions. If the real-time order had to be respected, the
execution abovewould be forbidden; this is the case for criteria such as final-state opacity [Guerraoui
and Kapalka 2010] and TMS [Doherty et al. 2013]. However, since the order between T1 and T3
is not observable in a relaxed memory architecture, the serialization T3 T2 T1 is acceptable, and
therefore observable serializability permits this execution.
This view has broader implications for our current understanding of the efficiency of TM

implementations. Consider the following example from Hans et al. [2016], which is key to their
proofs of lower bounds and impossibility results for some STM implementations.

Thread 1: (Rx0 Wy1)
Thread 2: < Rx0 Wx1 >

Observable serializability requires that T1 be ordered before T2, due to the from-read anti-dependency
from Rx0 in T1 toWx1 in T2. This example is termed “reverse-commit anti-dependency” because
T2 commits before T1, yet the serialization must order T1 before T2. Since the commit order
between the two transactions is not directly observable, this execution is permitted by observable
serializability.

1.2 Non-transactional Events and Isolation
We now explore the interaction between transactional and non-transactional memory events,
often characterized by a notion known as isolation [Blundell et al. 2005], i.e., when and how can a
non-transactional event interact with transactional events in other threads. Inspired by Grossman
et al. [2006] and Dalessandro et al. [2010], we use an order-based approach and define:

• isolated transactions, which do not permit a non-transactional event to be both causally
preceded and followed by events that are part of the same transaction, and

• relaxed transactions, which do permit interleaved causal orders.
Consider the following example [Blundell et al. 2005], where the memory action in thread 2 is
non-transactional (indicated by the absence of surrounding transaction brackets).

Thread 1: (Wx1 Wx2)
Thread 2: Rx1

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

18:4 Brijesh Dongol, Radha Jagadeesan, and James Riely

This execution is not permitted by an isolated transaction since Rx1 is reads-from ordered after
Wx1 and from-read ordered before Wx2. The following variants are however acceptable for both
isolated and relaxed transactions:

Thread 1: (Wx1 Wx2)
Thread 2: Rx0

and
Thread 1: (Wx1 Wx2)
Thread 2: Rx2

Thus, we permit one-way order, where the non-transactional reads are ordered either before or
after the memory events of T1.

1.3 Aborted Transactions and Observability
We now discuss the implications of aborted transactions in the context of observable serializability.
The literature on TMs reflects an effort to reduce unnecessary aborts with the aim of improving per-
formance [Guerraoui et al. 2008; Hans et al. 2016; Keidar and Perelman 2009] or to eliminate aborts
altogether [Afek et al. 2012]. Observable serializability may be preferable to strict serializability in
this regard, since it requires fewer aborts, as discussed above.
The absence of a global real-time order and explicit notions of causality in memory models

provides a different perspective on the status of aborted transactions (see Dziuma et al. [2015]
for a survey). In particular, the use of observable serializability leads to a concomitant increase in
flexibility over conditions such as opacity [Guerraoui and Kapalka 2008, 2010] and TMS2 [Doherty
et al. 2013]. Consider the following example:

Thread 1: (Rx2 abort)
Thread 2: [Wx2 Ry1]
Thread 3: < Wy1 >

Here we use notation “abort)” to denote a transaction that ends with an abort. Note that due
to reads-from dependencies, T3 is causally ordered before T2, which is in turn causally ordered
before T1, and hence, their serialization must respect this ordering even though T1 is an aborted
transaction. Final-state opacity [Guerraoui and Kapalka 2008] does not allow this execution since
T1 occurs before T3 in real-time order, creating a cycle with respect to the existing causal order.
However, observable serializability does permit this execution since it does not impose a real-time
ordering constraint. We reemphasize that such a liberalization of real-time order does not alter a
programmer’s view of opaque transactions since all observable orders are preserved.

Discarding real-time order also impacts other models of aborted transactions such as TMS1 [Do-
herty et al. 2013]. From a programmer’s perspective of the opacity model, modifications to thread-
local variables made by an aborted transaction are not rolled back (e.g., because local caches may
not be cleared) [Attiya et al. 2013]; thus, the client can detect the presence of an aborted opaque
transaction. This is contrasted with the programmer perspective of TMS1 [Attiya et al. 2014], which
rolls back the local state of a transaction if it aborts. A client cannot be affected by an aborted
undoable transaction; so, the presence of such an aborted transaction is undetectable by the user.
We refer to TMS1-style transactions as undoable transactions.

The justification for the actions in an aborted undoable transaction in Doherty et al. [2013] is
based on the construction of a local history of the aborted transaction. The real-time ordering
makes the construction of such a local history subtle. In contrast, the causality order provides a
ready-made view of the local history of a transaction. Consider the following example from Doherty
et al. [2013, Figure 5].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

Transactions in Relaxed Memory Architectures 18:5

Thread 1: (Rx0 Wy1)
Thread 2: [Wx2]
Thread 3: < Rx2 Ry0 abort>

First note that there is no possible serialization order among the three transactions, as detected by
an observable cycle (cf. [Alglave et al. 2014]):

• T2 must be reads-from ordered before T3.
• T3 must be from-read ordered before T1 (since T1 overwrites the value of y read by T3).
• T1 must be from-read ordered before T2 (since T2 overwrites the value of x read by T1).

So, this execution does not satisfy the (final-state) opacity criterion, even in the relaxed world
(where real-time order is ignored). On the other hand, if we assume transactions are undoable,
using a TMS1-style notion of correctness, we are able to perform two separate serializations:
(1) serialize the committed transactions T2 and T3, excluding the aborted T1, and
(2) serialize the aborted transaction T1 with its unique causal predecessor, T2.

Since both of these serializations are valid, the full execution is validated. This model is consistent
with programmer-centric view that aborted transactions can be removed and a system replayed
with only committed transactions.

The restriction to a causal history in this analysis is reminiscent of the VWC criterion [Imbs and
Raynal 2012] for aborted transactions and implementations thereof (e.g. [Diegues and Romano
2015]). The observable order of a relaxed memory model provides a robust operational foundation
for the partial histories that motivates VWC and TMS1. In Section 4, we show an example that is
permitted by our treatment but not by VWC.

1.4 Our Results
The main contribution of this paper is a framework for the integration of transactions into hardware
relaxed memory models.

Our work is placed in the context of the framework described by Alglave et al. [2014], described
in Section 2. We establish the following results.

• In Section 3, we describe a semantics of transactions as an addition to any architecture
captured by the framework of Alglave et al. [2014]. The architectures that we can address
include sc, tso, ppc and the recently developed armv8. The semantics is local, i.e., it only
incorporates ordering constraints in the style of the standard specifications in [Alglave et al.
2014]. In particular, it does not assert the existence of global orders on transactions.

• Our framework for transactions is very general, providing variations along two dimensions:
isolated vs relaxed, abortion models of opaque vs undoable. In addition, transactions can be
nested, and placed flexibly with respect to program order and threads. We present several
examples in Section 4.

• Sections 5 and 6 present specialisations to ghb-architectures [Alglave 2010], i.e., those that
ensure a global happens-before relation. In Section 5, we describe a novel automata-based
characterization of execution in ghb-architectures.

• For ghb-architectures, we show that any program execution is equivalent to one with a global
total order on transactions that explains the execution’s reads, and in which the operations of
any given transaction are contiguous. This shows that the local constraints of the semantics
suffice to ensure that transactions behave as expected from a programmer’s perspective. We
discuss this and other results in Section 6.

• We describe a small programming language in Section 7. The executions of this language
illustrate the observational power afforded by our model of transactions.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

18:6 Brijesh Dongol, Radha Jagadeesan, and James Riely

• We have used MemAlloy [Wickerson et al. 2017] and the results of Chong et al. [2017] to
relate our approach to models of extant transactional hardware. We refer to Section 8 for
detailed comments.

2 A MODEL FORWEAK MEMORY AND TRANSACTIONS
Alglave et al. [2014] provide an exhaustive study of relaxed memory models. This is a technical
tour-de-force that is expressive enough to account for a variety of architectures. We use their
approach as a tool to introduce the key ideas behind relaxed memory and as the setting for our
addition of transactional features.

In this section, we provide a brief overview, referring the interested reader to the original paper
[Alglave et al. 2014] and thesis [Alglave 2010] for further details. In this section and those following,
we consider examples from several memory models: sc (Sequential consistency), tso (Total store
ordering), armv7 (ARM version 7) and armv8 (ARM version 8).
An event e is a tuple consisting of a unique identifier, an action label, and other data such as

thread identifiers. Actions include reads and writes, as well as architecture-dependent actions such
as fences. Reads and writes operate on a memory. We use x ∈ N for memory addresses and v ∈ N
for memory values.

An execution is a tuple consisting of a set of events and some relations over those events (described
below). For any execution, one is able to derive a happens-before relation hb over events (which
formalizes the notion of causality). We write relations using both set and arrow notation. For
relation o, “d o

−→ e” is synonymous with “⟨d, e⟩ ∈ o” and “d o e”.
A pre-execution is a tuple comprising a set of events and a strict subset of the relations used to

define an execution. Let E range over pre-executions and E over executions.
An architecture A is a function from pre-executions to executions. To simplify notation, we

assume that A(E) extends E. A pre-execution has the form E = ⟨E, po, rf, co, data, addr, ctrl⟩ and
an execution has the form A(E) = ⟨E, ppo, fences, prop⟩. The relations in a pre-execution have
the following intended interpretations, where Mxv is a memory event, i.e., either Rxv or Wxv .

• po (program order), which defines a total order on the actions of each thread. Actions of
different threads are unrelated.

• co (coherence order), which defines a total order on the writes to each location. Writes of
different locations are unrelated.

• rf (reads from), which maps each read, with label Rxv (for any x ,v), to with a unique matching
write, with labelWxv (for the same x , v).

• addr (address dependency), where a source read is causally linked to the value x that is
subsequently accessed by the target event Mxv .

• data (data dependency), where a source read causally linked to the value of v that is subse-
quently accessed by the target eventMxv .

• ctrl (control dependency), where a source read is causally linked to a branch between itself
and the target event.

The architecture of an execution determines three derived relations:
• ppo (preserved program order), which is a suborder derived from po by removing order
between actions that commute according to the architecture.

• fences, which relates events in po that are separated by a fence.
• prop (propagation order), which relates writes that must propagate to memory in a particular
order. Propagation order is distinct from co, which only relates writes on the same location.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

Transactions in Relaxed Memory Architectures 18:7

Example 2.1. Consider the following execution.

Thread 1: Wx1 Ry0
Thread 2: Wy1 Rx0

The only possible rf relation is {⟨Rx0, Wx0⟩, ⟨Ry0, Wy0⟩}, both reading initial values. (Since all
events have distinct labels, we let the label stand for the corresponding event.) The intended co
order isWx0 (the initializing write to x) beforeWx1, andWy0 (the initializing write to y) before
Wy1. The execution above can be observed in architectures, such as tso, that do not preserve
program order between a write and a read, but is not observable under sc. □

To formalize the notion of an allowable execution, Alglave et al. [2014] define the following
additional relations. First, for any relation o, we can define an “external” restriction, denoted by
appending an e, as follows: oe = {⟨e, d⟩ | ⟨e, d⟩ ∈ o ∧ thread(e) , thread(d)}. Thus, rfe relates
read events from a thread to a matching write from another thread. The additional relations are
defined as follows.

• fr = {⟨r , w1⟩ | ∃w0.w0
rf
−→ r ∧w0

co
−→ w1} (from-read order), where r is a read, and w1 is a

write which must come after r , since r has seen a write that precededw1 on the same location.
In Example 2.1, the from-read relation for x is {⟨Rx0, Wx1⟩} and similarly for y.

• hb = ppo ∪ fences ∪ rfe (happens-before order), which orders causally related events.
• com = co ∪ rf ∪ fr (communication order), which combines the relations that constrain the
order of reads and writes to the memory subsystem.

• poloc = {⟨e, d⟩ ∈ po | location(e) = location(d)} (program order per location), which is
program order, restricted to the same location.

Example 2.2 ([Alglave et al. 2014]). In sc, all program order is maintained in ppo. Thus, there is
no need for fences and we have:

ppo = po fences = ∅ prop = po ∪ rf ∪ fr

In contrast to sc, under tso, ppo is derived from po by removing all orders from writes to reads
(denoted WR). The fences relation coincides with the mfence instruction (see [Alglave et al. 2014]
for details).

ppo = po \WR fences = mfence prop = ppo ∪ rfe ∪ fr

The early read available to local writes is reflected in the fact that only rfe contributes to global
propagation. We will soon see the impact of this distinction on the validity of execution. □

An execution E is considered to be valid, denoted correct(E), if it satisfies the following axioms:
acyclic(hb) (NoThinAir)
acyclic(poloc ∪ com) (SCPerLocation)
irreflexive(fre; prop; hb∗) (Observation)
acyclic(co ∪ prop) (Propagation)

By NoThinAir , causality cannot be cyclic; by SCPerLocation, each location taken separately is
sequentially consistent; by Observation, actions hidden in the causal past cannot be observed; and
by Propagation, writes must be propagated in an order consistent with coherence.

Example 2.3. Returning to the execution in Example 2.1, for sc, the execution has a cycle:

Ry0 fr
−→ Wy1

ppo
−−→ Rx0 fr

−→ Wx1
ppo
−−→ Ry0

In tso, this cycle is not present since the two ppo edges are not present. □

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

18:8 Brijesh Dongol, Radha Jagadeesan, and James Riely

3 MODELING TRANSACTIONS
This section develops an observation-based notion of correctness for executions extended with
transactional events. We develop a flexible axiomatic framework that describes the behaviors
of many different types of transactions, including nested transaction, and their interaction with
transactional and non-transactional events.

A key component of our framework is a mechanism for lifting standard relations to the level of
transactions (see Definition 3.1). Using this, we develop a “per transaction” notion of correctness
(see Definition 3.8), which enables different types of transactions to exist within a single system.

3.1 Characterizing Transaction Types
We first describe the different types of transactions permitted within our framework and informally
describe some of their inter-relationships and characteristics.
Let TransactionId be a set of transaction identifiers. A transaction t ∈ TransactionId can be

nested inside another s ∈ TransactionId, and hence, we assume TransactionIds are arranged as a
tree ≥nest, where s ≥nest t iff t is nested inside of s . The root of the tree is a distinguished top element,
⊤, such that for any s ∈ TransactionId, we have ⊤ ≥nest s . TransactionIds can be partitioned in
different ways, as follows.

• Transactions may be Committed or Aborted. As a system executes, there may be live trans-
actions that are not yet Committed or Aborted. In this case, we say that the execution is
valid as long as each live transaction can be assigned either Committed or Aborted, and the
resulting execution is valid.

• Transactions can be declared as Relaxed or Isolated. This attribute influences the transaction’s
interaction with non-transactional code. In both cases, events within the same transaction
cannot be causally interleaved with other transactions. However, while non-transactional
events may be causally interleaved with the events of a relaxed transaction, this is forbidden
in an isolated transaction.

• Transactions can be declared as Opaque and Undoable. This attribute determines the trans-
action behavior in the case that it is aborted. The programming language intuition for this
division is as follows.
– The intuition behindOpaque transactions is that everyOpaque transaction must fit within
a total order of committed transactions. Such a history is perforce global; so, aborted
Opaque transactions have to be validated as being consistent with this global perspective.
The existence of an aborted Opaque transaction is visible to the execution, and therefore
these cannot simply be removed.

– On the other hand, an aborted Undoable transaction can be replaced by a skip, leaving
behind an execution that consists solely of Committed and aborted Opaque transactions.
That is, aborted Undoable transactions can leave no residue of their execution. Conse-
quently, we expect the future actions that depend on an aborted Undoable transaction to
also be part of an aborted Undoable transaction. The Undoable transactions are validated
only with respect to their own local causal history, permitting great flexibility in executing
them, e.g., with speculation.

We assume that the top transaction ⊤ is Committed, Relaxed and Opaque. Since there must be a
relationship of containment between parent and child transactions, we require that if s ∈ Aborted
and s ≥nest t then t ∈ Aborted. Moreover, if a parent transaction is Isolated, then all of its children
will behave as though they are Isolated, regardless of whether they are declared to be Isolated
or Relaxed. It is reasonable to require that every Undoable transaction is also Isolated: if a thread
cannot use a value from an aborted transaction, we should also not allow values from the aborted

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

Transactions in Relaxed Memory Architectures 18:9

transaction to be seen by non-transactional events. Thus, we have three overall categories of
transactions: RelaxedOpaque = Relaxed ∩ Opaque, IsolatedOpaque = Isolated ∩ Opaque and
Undoable = Isolated ∩ Undoable.
Since we are developing a general framework, we place very few restrictions on transactions.

Below we list some surprising flexibility in our model.
• We permit transactions that are not contiguous in po. Such transactions are permitted in the
transaction architecture for Power [Cain et al. 2013]. Consider:

< Wx1 yield Wy2 resume Wz3 >

The atomic code of the transaction is < Wx1 Wz3 > whereas the code between the yield
and resume (Wy2 in this case) is not part of the transaction. The motivation for this feature
in the Power architecture is as an aid in debugging, e.g., to observe the intermediate states of
the transaction, or to provide intermediate values for the rest of the transaction. Our model
supports these use cases for relaxed transactions. Of course, there could be more than one
such debugging point in a transaction.

• We do not confine a transaction to be inside a single thread. This interesting feature of
parallelism inside a transaction has already been investigated in the STM context by Diegues
and Cachopo [2013], where the aim is to describe coarse-grained transactions that permit
efficient implementations on multicore systems.

• Following the classical STM view of composable transactions [Haines et al. 1994; Harris et al.
2005], we permit unrestricted combinations of all the above features and nesting.

Our intent is not that a given architecture permit the full flexibility of our transaction model.
Rather, our aim is to establish general principles and properties that hold even when restricted to
subsystems of our full model.

3.2 Transactions and Pre-executions
We now describe a method for introducing transactions into a pre-execution and describe a tech-
nique for enhancing the existing orders in the pre-execution (via lifting) to take transactional
behavior into account.

For any pre-execution E, let trans : E → TransactionId be a (total) function that maps each event
of E to a TransactionId. Non-transactional events are mapped to ⊤ and we let

TransEv = {e ∈ E | trans(e) , ⊤}

be the set of transactional events. We use a set descend(t), which includes events assigned to the
same or nested transactions, i.e.,

descend(e) = {e ′ | trans(e) ≥nest trans(e ′)}

Note that if trans(d) ≥nest trans(e) then descend(d) ⊇ descend(e). For any set T ⊆ TransactionId,
we write e ∈ T as shorthand for trans(e) ∈ T .

It is common in the literature on transactions to include events that denote the beginning and
end of transactions. While not strictly necessary, such markers are convenient in some defini-
tions and examples. To denote these markers, we augment the set of actions with transaction
begin/commit/abort actions, which are lifted to events in the standard manner. As discussed above,
we use pairs of brackets, e.g., (), to denote matching begin and commit events, and prefix the
closing bracket with abort to denote a transaction that aborts. As is common in the literature, we
assume that the begin marker causally precedes every event in the transaction and the end marker
causally follows every event in the transaction.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

18:10 Brijesh Dongol, Radha Jagadeesan, and James Riely

We now define our mechanism for lifting relations over events to the level of transactions, which
is possible if the source or target of the relation is a transactional event.

Definition 3.1. Suppose o ⊆ E × E. Define lift(o) so that e lift(o)
−−−−→ d whenever either

(1) e o
−→ d , or

(2) e ′ o
−→ d for some e ′ ∈ descend(e), d < descend(e) and e < Undoable ∩ Aborted and either

e ∈ Isolated or d ∈ TransEv, or
(3) e o

−→ d ′ for some d ′ ∈ descend(d), e < descend(d) and d < Undoable ∩ Aborted and either
d ∈ Isolated or e ∈ TransEv. □

The purpose of lift is to make the events in a transaction appear atomic. We do this by extending
every order o to include all of the events of the transaction. By Definition 3.1(1), we have o ⊆ lift(o).
The next two clauses deal with o-successors and o-predecessors of transactional events, respectively.
We discuss the successor clause in detail; the predecessor clause is similar.

Roughly, we require that e lift(o)
−−−−→ d when e ′

o
−→ d for some e ′ such that trans(e ′) = trans(e) ,

trans(d). The three conjuncts of Definition 3.1(2) refine this as follows.
• To handle nested transactions, we require e ′ ∈ descend(e) and d < descend(e) rather than
just trans(e ′) = trans(e) and trans(d) , trans(e).

• Actions that are both Aborted and Undoable may behave non-atomically, so we don’t want
to lift in this case. Therefore we require e < Aborted ∩ Undoable.

• Whereas Isolated transactions must be atomic to all other events, Relaxed transactions need
only be atomic to all other transactional events. Therefore we require either e ∈ Isolated or
d ∈ TransEv.

We now consider three examples that provide intuition on our lifting construction.

Example 3.2 (Empty and singleton transactions). An empty transaction is characterized by a pair of
begin and end markers (possibly aborting) with no transactional memory event. Empty transactions
do not affect any lifted relation, or in other words, an execution is unaltered by the addition or
removal of empty transactions.

A singleton transaction, instead, contains a single memory event. Singletons also do not contribute
to any lifted relation. Hence, an execution that contains only singleton committed transactions is
valid if, and only if, the execution is valid when none of the events are transactional. In the presence
of non-singleton transactions, an event e in a singleton transaction is still different from the event
e being non-transactional. □

Further examples for empty and singleton transactions are given in Section 4.2.

Example 3.3 (Isolated vs relaxed transactions). Consider the execution with an isolated transaction
T1 and a relaxed transaction T3. Recall that we assume all variables are initialized to 0.

Thread 1: [Wx1 Wu1]
Thread 2: Ry1 Rx1
Thread 3: <Wy1 Wz1 Ru1 >

Consider above execution with Wx1 rf
−→ Rx1, Wy1 rf

−→ Ry1 and Wu1 rf
−→ Ru1. In the lifted relation,

we get Wu1 lift(rfe)
−−−−−→ Rx1, but no edge from Wz1 to Ry1, because T3 is relaxed. We also get lifted

edges from both Wx1 andWu1 to all of Wy1,Wz1 and Ru1.
This example also illustrates the earlier comment that lifting does not preserve transitive closure,

since we get no edge from Wx1 to Ry1, even though they are transitively linked via T3. □

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

Transactions in Relaxed Memory Architectures 18:11

Example 3.4 (Parent and child transactions). Consider the following execution where T1 is a
nested transaction comprising an outer transaction [T1] and an inner transaction <T1>. We use
labels to distinguish the identical actions in the execution.

Thread 1: [Wx1 <Wy1 Rz1> Ru1]
Thread 2: a:Ry1 b:Rx1 Wz1 Wu1
Thread 3: (c:Ry1)
Thread 4: {d:Rx1}

There is a unique write fulfilling each read, thus determining rf. Let us consider all possible cases.
• [T1] and <T1> are both isolated. In this case, the lifted relation introduces lifted rfe edges
– from all events in T1 to a:Ry1, b:Rx1, c:Ry1, and d:Rx1 (by Definition 3.1(2)), and
– fromWz1 andWu1 to all the events in T1 (by Definition 3.1(3)).
This highlights the fact that nested isolated transactions can be flattened into a single isolated
transaction.

• [T1] is isolated and <T1> is relaxed. This case has the same behavior aswhen both transactions
are isolated. This shows that the stronger isolation guarantees of the outer transaction
overwrites the isolation guarantees of any inner transaction.

• [T1] is relaxed and <T1> is isolated. In this case, the lifted relation adds edges:

Rz1 lift(rfe)
−−−−−→ a:Ry1 Wz1

lift(fre)
−−−−−→ Wy1

in addition to edges to the events in threads 3 and 4 from all events of the first thread.
• [T1] and <T1> are both relaxed. In this case, the lifting introduces edges from all events of
T1 to the events in T3 and T4. □

3.3 Correctness
We now formalize the notion of correctness for pre-executions enhanced with transactions. Our
definition copes with each of the different types of transactions discussed in Section 3.1.
The notion of a correct transaction is defined with respect to a general notion of causality,

formalized as a relation “causal” over events. The causal history of an event is the minimum
information needed to justify the event.
We describe the general recipe for the definition of the causality relation. The causal relation

always includes the following relations:
• rf ∪ data ∪ addr, thus the immediate use of a write or read is part of the causal history.
• (chb∪poloc∪ctrl)\{(d, e) | d ∈ Aborted, e < Aborted}, where chb is a causal happens-before
relation (see below).

To justify the ignored edges in the second relation, consider an event e that is not an event of an
aborted transaction, that is chb preceded by an event of an aborted transaction. In this case, we
ignore the chb edges from events of the aborted transaction to e , since the events of the aborted
transaction are not needed to validate e . This models the case of pure aborts, where the aborted
transaction does not leave behind any residue.

As alluded to earlier, some hardware transaction models permit aborted transactions to leave a
residue via a failure bit that is visible even after the abort. The above constraint does not record
these dependencies in the causal history. One can imagine variants where this dependency is
permitted in the causal history.

Example 3.5 (Instantiating a causal happens-before for specific architectures).
tso: In tso, we have:

chb = hb = fences ∪ ppo ∪ rfe

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

18:12 Brijesh Dongol, Radha Jagadeesan, and James Riely

i.e., hb is as described by Alglave et al. [2014]. In some formulations of tso, chb includes
coe and fr; we do not include them here because they do not capture causality in our sense.
In particular, co (and consequently fr) is a total order on writes to the same location that is
selected post-hoc — an execution is correct if there exists an appropriate co. On the other
hand, there is less freedom to select an appropriate instantiation of the orders included in
chb above. Thus, since the relations data, addr and ctrl are empty for tso, we have

causal = rf ∪ ((hb ∪ poloc) \ {(d, e) | d ∈ Aborted, e < Aborted}).

armv8: In armv8, we have:
chb = dob ∪ aob ∪ bob

This definition is derived from the notion of “observed before” in the armv8 specification
[Deacon 2017; Flur et al. 2016; Pulte et al. 2018]. Namely, dob (dependency ordered before),
aob (atomic ordered before) and bob (barrier ordered before) are subcomponents of the
ordered before relation.

ppc: In ppc, chb is again the happens-before relation for ppc as given by Alglave et al. [2014].

We require that the architectures under consideration preserve correctness for causal history, i.e.,
any correct pre-execution E remains correct when restricted to a causally closed subset of events
of E. We let E | D denote the restriction of E to the events of D.

Definition 3.6. D is causally closed for A(E) = ⟨E, . . .⟩ if D ⊇ {e ∈ E | ∃d ∈ D. e
causal∗
−−−−−→ d}. □

Definition 3.7. Let E be a pre-execution. We say an architecture A preserves causal history iff for
any causally-closed D, if correct(A(E)) then correct(A(E | D)). □

For the rest of this paper, we assume that architectures under consideration preserve causal
history; this requirement holds for each memory model under consideration.
We now formalize our notion of correctness. For any structure D = ⟨D, o1, o2, . . . , on⟩, we

let lift(D) = ⟨D, lift(o1), lift(o2), . . . , lift(on)⟩ be the structure obtained by applying the lifting in
Definition 3.1 to each oi pointwise.

Definition 3.8. We say a pre-execution E = ⟨E, . . .⟩ is legal iff each of the following hold, where
T = Undoable ∩ Aborted and rwdep = rf ∪ data ∪ addr ∪ ctrl:

(1) correct(lift(A(E | D))), where D = E \ events(T),
(2) correct(lift(A(E | D))), for every t ∈ T , where D ⊇ events(t) is causally closed for A(E),

(3) ∀d ∈ Aborted.∀e ∈ E. d
rwdep
−−−−→ e implies e ∈ Aborted,

(4) ∀d ∈ Aborted ∩ Undoable.∀e ∈ E. d
rwdep
−−−−→ e implies e ∈ Aborted ∩ Undoable. □

In the next section, we provide a suite of examples to illustrate the definition. Here, we identify
some of its basic features.

Definition 3.8(1) ensures that all committed transactions and all Opaque transactions (including
aborted) form a valid execution. Note that in this case of the definition, we ignore the aborted
Undoable transactions.

Definition 3.8(2) addresses the abortedUndoable transactions. For each of these, we are permitted
to choose a local causal history to validate against. This means that different subhistories may be
used to validate different aborted Undoable transactions. This permits Undoable transactions to be
executed with a great deal of speculation and flexibility, as we illustrate by the examples in the next
section. Moreover, the flexibility matches architectural transactional specifications, where global
consistency is enforced only at the point of commitment.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

Transactions in Relaxed Memory Architectures 18:13

Definition 3.8(3) ensures that the only dependencies caused by events in an aborted transaction
are seen in other aborted transactions. For example, the readers of values written by an aborted
transaction are also aborted transactions. This restriction is slightly looser than in STMs, where
the restriction is usually that the rf-chain of aborted transactions is of length 1. Our definition is
motivated by the desire to be very flexible about executing transactions as outlined above. The
STM view has great relevance for maintaining general software invariants; however, it is unclear
whether it is warranted in a HTM context1.

Definition 3.8(4) ensures that the events of undoable aborted transactions do not affect any
other kinds of events. This requirement allows one to ignore aborted Undoable transactions when
analyzing validity of an execution, because it permits us to remove an abortedUndoable transaction
and all its dependent successors.

4 IMPACT OF OBSERVATION-BASED SERIALIZATION
In this section, we explore the implications of different sorts of transactions through the lens of
observation-based serializability via a series of examples, many of which are drawn from the litera-
ture. We organize the examples into four groups, focusing on speculative execution of transactions
(subsection 4.1), transaction ordering (subsection 4.2), the interaction between transactional and
non-transactional code (subsection 4.3), and the observability of aborted transactions (subsec-
tion 4.4). In the examples, we assume that all variables are initialized to 0.

4.1 Speculative Execution of Transactions
We first explore a couple of examples to illustrate the flexibility available in executing Undoable
transactions. Consider two undoable transactions as follows. This is a permitted execution.

Thread 1: <Wx1 Wx2 >
Thread 2: [Rx1 abort]

We permit this execution because we assume transactions may execute speculatively. In particular,
the second transaction speculatively readsWx1, but it cannot commit because the read is invalidated
by the second write in the committed transaction T1. So, T2 aborts. Formally, the causal history of
the Rx1 only includes the first write and not the second write from T1.

Consider the following execution in TSO. This execution is permitted in the case where the sole
transaction is Undoable.

Thread 1: Wx1 fence < Ry0 abort>
Thread 2: Wy1 fence Rx0

We first note that the above execution is not a valid TSO execution if Ry0 is not part of a transaction.
Ourmodel permits this execution because it is flexible with respect to abortedUndoable transactions.
The causal history of the aborted transaction is the initialization of x and Wx1. The execution
without the events of the aborted transaction is also clearly valid.

The motivation to permit such executions in our model is to not restrain the transactional
execution even by the constraints of the underlying memory model. Of course, the above execution
would not be valid if the transaction were committed; so, committed transactions do indeed have
to obey the constraints of the underlying memory model.

1The formal properties of our model however do not depend on the presence of this restriction, so the reader might view
the rest of this paper with that in mind.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

18:14 Brijesh Dongol, Radha Jagadeesan, and James Riely

4.2 Observation-Based Serialization
4.2.1 Empty Transactions. As discussed in Example 3.2, empty transactions do not contribute to

any lifted relation, and hence, they do not contribute to a happens-before. Therefore they can be
removed and one can pretend that they do not exist.
This treatment conflicts with the idea that transactions enforce a happens-before relation. For

example, the draft C++ standard [Luchangco et al. 2013; Ni et al. 2008] says “The transaction order
contributes to the synchronizes with relationship defined in the C++11 standard. In particular, each
EndTransaction operation synchronizes with the next StartTransaction operation in the transaction
order executed by a different thread”.

Explicit coordination release is needed to emulate the behavior specified by the C++ standards for
transactions. For example, in tso, one could associate a variable tord with transactions, associate
every EndTransaction with the increment of tord and every StartTransaction with a read of tord.

4.2.2 Singleton Transactions. Singleton transactions also do not contribute to any lifted relation,
and hence, an execution containing only committed singleton transactions is valid exactly when
the execution is valid when all of the events are non-transactional.

Singleton aborted transactions, however, do make a difference. Consider the following execution:
Thread 1: < Wx1 abort>
Thread 2: Rx1

The execution is disallowed due to Definition 3.8(3), but would be allowed if Wx1 was non-
transactional.

4.2.3 Control Dependencies from Aborted Transactions. We do not allow aborted Undoable
transactions to leak information via control-dependencies. To see where this makes a difference,
consider the code block:

atomic{S1; b=committed?1:0}; if (b) S2

where b is a local boolean-valued register that is set to 1 if the transaction in the atomic block
commits, and to 0 otherwise. We assume b=committed?1:0 is executed as the last statement in the
transaction even if S1 aborts halfway through execution. Thus, the program branches based on
the value of b, setting up a control dependency from the actions in S1 to those in S2 even if the
transaction aborts.

Our model does not permit such behavior for undoables, however, we can emulate the detection
of the abortion by associating a boolean variable b with each transaction that is set to 0 before the
transaction and to 1 as the last action in the transaction. For example, the code block above can be
emulated by:

b=0; atomic{S1; b=1}; if (b) S2

Hence, the fact that a transaction has aborted can be detected even when control dependencies are
disallowed.

4.3 Mixed-Mode Transactions and Isolation
In this section, we consider the interactions between transactional and non-transactional code,
highlighting the differences between isolated and relaxed transactions.

4.3.1 Non-interference. In a mixed-mode context, a non-transactional write could interfere
with a reads within a transaction. Following Blundell et al. [2005], we take the view that isolated
transactions satisfy non-interference, where relaxed transactions may not. Consider the following
execution, from [Grossman et al. 2006, Figure 2]. This execution is allowed if T1 is relaxed and
disallowed if T1 is isolated.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

Transactions in Relaxed Memory Architectures 18:15

Thread 1: <Rx1 Rx2 >
Thread 2: Wx1
Thread 3: Wx2

The memory model induces two external reads-from edges: Wx1 rfe
−−→ Rx1 andWx2 rfe

−−→ Rx2.
If T1 is relaxed, no new edges are added by lifting. So, the execution is considered to be valid.

However, if T1 is isolated, transactional lifting introduces new edges as follows.

• The rfe edges respectively induce lifted edges Wx1 lift(rfe)
−−−−−→ Rx2 and Wx2 lift(rfe)

−−−−−→ Rx1.

• IfWx1 coe
−−→ Wx2 then we have Rx1 fre

−−→ Wx2, which creates a lifted edge Rx1 lift(fre)
−−−−−→ Wx2.

Thus, we have a cycle between Rx1 and Wx2.

• The case whereWx2 coe
−−→ Wx1 is symmetric.

4.3.2 Containment. The containment property [Blundell et al. 2005] states that whenever a
write in a committed transaction is overwritten by another write to the same location in the
same transaction, the first write should not be visible, even to a non-transactional read. Isolated
transactions satisfy containment whereas relaxed transactions do not.

Consider the following execution, from [Grossman et al. 2006, Figure 3]. This execution is allowed
if T1 is relaxed and disallowed if T1 is isolated.

Thread 1: < Wx1 Wx2>
Thread 2: Rx1

The memory model induces edges Wx1 rfe
−−→ Rx1 and Rx1 fre

−−→ Wx2. If T1 is relaxed, no new edges
are added via lifting, so the execution is valid. However, if T1 is isolated, Wx1 rfe

−−→ Rx1 induces
Wx2 lift(rfe)

−−−−−→ Rx1, which in combination with Rx1 fre
−−→ Wx2 creates a cycle between Rx1 and Wx2.

4.3.3 Non-transactional Code Affects Containment. The following example shows how non-
transactional code has the effect of weakening containment, even between transactions. This
phenomenon is not observable for isolated transactions.
Consider the following execution, from [Grossman et al. 2006, Figure 5]. This execution is

allowed if T1 is relaxed and disallowed if T1 is isolated. In this example, the idea is that the events
in thread 2 result from a client executing r=x; y=r , which creates a data dependency from Rx1 to
Wy1. Grossman et al. [2006] say that some find this example surprising, presumably because T3 is
able to observe an intermediate state of T1.

Thread 1: <Wx1 Wx2>
Thread 2: Rx1 data Wy1
Thread 3: [Ry1]

If T1 is isolated, the execution is disallowed by containment. However, if T1 is relaxed the execution
is permitted. Here, the memory model creates reads-from edgesWx1 rfe

−−→ Rx1 andWy1 rfe
−−→ Ry1 as

well as a from-read edge Rx1 fre
−−→ Wx2, but lifting adds no new edges. So, the acyclicity conditions

are satisfied and the execution is valid.

4.3.4 Interleaving Unprotected Code between Protected Code. The following example shows
that relaxed transactions may be forced to interleave with non-transactional code. Consider the
following execution. This execution is allowed if T1 is relaxed and disallowed if T1 is isolated.

Thread 1: <Wy1 Rx1>
Thread 2: Ry1 addr Wx1

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

18:16 Brijesh Dongol, Radha Jagadeesan, and James Riely

If the transaction is isolated, the execution is not permitted because there is a cycle. From thememory
model, we have Wy1 rfe

−−→ Ry1 and Wx1 rfe
−−→ Rx1 as well as address dependency Ry1 addr

−−−→ Wx1.
The first of these induces Rx1 lift(rfe)

−−−−−→ Ry1. The execution is permitted if the transaction is relaxed.
In that case, any path in the execution automaton has to perforce interleave as follows:

Wy1 Ry1 Wx1 Rx1

4.3.5 Thread-Safe Lazy Initialization. Consider a scenario where we wish to use a transactional
write to x as a flag to indicate the publication of a second variable y that is part of the same
transaction. In the terminology of Grossman et al. [2006], we refer to such a publication idiom
as thread-safe lazy initialization. Consider the following execution, from [Grossman et al. 2006,
Figure 6]. This execution is allowed if T1 is relaxed and disallowed if T1 is isolated.

Thread 1: <Wx1 Wy1>
Thread 2: Rx1 addr Ry0

Note that we have Ry0 fre
−−→ Wy1. If T1 is isolated, lifting the memory-model edge Wx1 rfe

−−→ Rx1
induces Wy1 lift(rfe)

−−−−−→ Rx1, which when composed with Rx1 addr
−−−→ Ry0 yields order from Wy1 to

Ry0. So, this execution is not permitted, as the address dependency forces the read of y to be 1.
However, if T1 is relaxed, lifting does not induce any new edges. So, even though there is an

address dependency between the two reads in thread 2, Ry0 is permitted and the above execution is
valid. In this case, the use of x as a flag to indicate the publication of y does not work as intended.

4.3.6 Aborted Writer Transactions. Our final mixed-mode example highlights the interaction
between a writing transaction that aborts and a non-transactional read, and shows that writes
in an aborted transaction can never be seen by a client. Consider the following execution, from
[Grossman et al. 2006, Figure 4]. This execution is disallowed regardless of whether T1 is relaxed
or isolated. Consider the following execution.

Thread 1: <Wx1 abort>
Thread 2: Rx1

We do not permit rf edges from an aborted transaction to a non-transactional operation so the
above execution is not allowed regardless of whether T1 is isolated or relaxed.

4.4 Aborted Transactions and Observability
Our final set of examples pertains to executions with aborted transactions and considers their
interaction with observability. For each example in this section, all code is protected by a transaction,
and hence, we do not need to consider the difference between isolated and relaxed transactions.
Instead the focus is on the differences between opaque and undoable transactions. Throughout this
section, we assume all transactions are isolated.

4.4.1 Aborted Opaque Transactions and Happens-Before. We have seen in Example 4.3.6 that
the value written within an aborted transaction cannot be read. However, an aborted transaction
can affect happens-before orders, which potentially affects the validity of an execution.

Consider the following execution. This execution is allowed if T1 is undoable and disallowed if
T1 is opaque.

Thread 1: [Wx1]
Thread 2: < Wy1 >
Thread 3: (Rx1 Ry0)
Thread 4: {Rx0 Ry1 abort}

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

Transactions in Relaxed Memory Architectures 18:17

If T4 is an opaque transaction, the execution is not permitted because we have a cycle:

Rx0 fre
−−→ Wx1

rfe
−−→ Rx1 lift(fre)

−−−−−→ Wy1
lift(rfe)
−−−−−→ Rx0

where Rx1 lift(fre)
−−−−−→ Wy1 is induced by lifting Ry0 fre

−−→ Wy1 and Wy1 lift(rfe)
−−−−−→ Rx0 is induced by

lifting Wy1 lift(rfe)
−−−−−→ Ry1. Thus, even though there are no rf edges from an aborted transaction, the

hb from an aborted transaction can affect the validity of an execution.
However, the execution is permitted if T4 is an undoable transaction. In this case, we have to

validate the execution without T4:

Thread 1: [Wx1]
Thread 2: < Wy1 >
Thread 3: (Rx1 Ry0)

and the execution which includes the causal past of T4:

Thread 2: < Wy1 >
Thread 4: {Rx0 Ry1 abort}

both of which are clearly valid.

4.4.2 TMS1 and Read Switching. In TMS1, a transactional read can be validated by “temporarily”
justifying the read using an aborted transaction, then “switching” to a valid committed transaction at
a later point in time. Due to this, TMS1 has the property that removal of an aborted transactions can
make an execution invalid. Consider the following execution, from [Doherty et al. 2013, Figure 3].
Since the execution contains two events with the same action, we use labels a and b to distinguish
them.

Thread 1: <a:Wx1 abort>
Thread 2: [Rx1]
Thread 3: (b:Wx1)

Consider a real-time order execution of the above, i.e., where Rx1 begins after a:Wx1 finishes, but
before b:Wx1 begins. This execution is permitted by TMS1 by allowing Rx1 to initially read from
a:Wx1, then “switching” the justifying reads to b:Wx1 when T1 aborts. Note that without T1, the
execution would not satisfy TMS1 since T2 and T3 are real-time ordered and T2 does not have a
validating write in its prefix.

We do not require “read-switching”. Since we ignore real-time order, our definition forces Rx1 to
be satisfied by b:Wx1, since there are cannot be any reads-from edges from aborted transactions.
The execution is valid regardless of whether the aborted transaction is opaque or undoable.

In general, for many of the examples, the seeming extra flexibility provided by TMS1 in terms of
matching is intuitively compensated for by a relaxation from real-time to observable order. On the
other hand, consider the execution above without T1. As already discussed, TMS1 forbids this new
execution, but when using our definitions, the execution remains valid.

4.4.3 Omitting Undoable Aborted Transactions. The next example highlights the difference
between an undoable and an opaque transaction. Consider the following example from [Doherty
et al. 2013, Figure 5]. This execution is allowed if T3 is undoable and disallowed if T3 is opaque.

Assuming real-time order is respected, this execution is not permitted by opacity, but is permitted
by TMS1 and VWC.

Thread 1: (Rx0 Wy1)
Thread 2: [Wx2]
Thread 3: < Rx2 Ry0 abort>

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

18:18 Brijesh Dongol, Radha Jagadeesan, and James Riely

The example is not permitted by our definitions if T3 is opaque because of a cycle. Note that we
have memory model edges Wx2 rfe

−−→ Rx2 and Ry0 fre
−−→ Wy1, thus lifting gives us Wx2 lift(rfe)

−−−−−→ Ry0
and Ry0 lift(fre)

−−−−−→ Rx0, respectively. Since we also have Rx0 fre
−−→ Wx2, the example contains a cycle.

However, the example is permitted if T3 is an undoable transaction. To verify this we must consider
(1) the example without T3 (i.e., restricted to T1 and T2 only), which is clearly valid, and
(2) the causal-history of T3:

Thread 2: [Wx2]
Thread 3: < Rx2 Ry0 abort>

which is also clearly valid.

4.4.4 Differentiating TMS1 from VWC. The following execution, from [Doherty et al. 2013,
Figure 6], is allowed if T4 is undoable and disallowed if T4 is opaque. Assuming real-time order,
this example is not permitted by traditional opacity or VWC, but is permitted by TMS1. We use
labels to distinguish the identical actions Rx0 in T1 and T3.

Thread 1: < a:Rx0 Wy1 >
Thread 2: [Wx2]
Thread 3: (b:Rx0 Wz3 abort)
Thread 4: {Rx2 Ry0 Rz3 abort}

Now consider the example using our definitions.
If both T3 and T4 are opaque, this execution is not permitted as seen by the cycle

Wx2
rfe
−−→ Rx2 lift(fre)

−−−−−→ Wy1
lift(fre)
−−−−−→ Wx2

where the lifted edges are obtained from the memory-model edges Ry0 fre
−−→ Wy1 and Rx0 fre

−−→ Wx2,
respectively.

If T3 is undoable and T4 is opaque, then the execution is illegal because an undoable transaction
(T3 in this case) cannot causally influence a non-undoable transaction (T4 in this case).

If T3 is opaque and T4 is undoable, we must verify
(1) the execution restricted to T1, T2 and T3:

Thread 1: < a:Rx0 Wy1 >
Thread 2: [Wx2]
Thread 3: (b:Rx0 Wz3 abort)

(2) the causal history of T4:
Thread 2: [Wx2]
Thread 3: (b:Rx0 Wz3 abort)
Thread 4: {Rx2 Ry0 Rz3 abort}

Both of these are valid.
Finally, if both T3 and T4 are undoable, we must verify
(1) the execution restricted to T1 and T2
(2) the causal history of T3:

Thread 1: < a:Rx0 Wx1 >
Thread 3: (b:Rx0 Wz3 abort)

(3) the causal-history of T4 shown above.
All three of these are valid.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

Transactions in Relaxed Memory Architectures 18:19

5 GLOBAL HAPPENS BEFORE AND AN OPERATIONAL CHARACTERIZATION
A focus of this paper is architectures whose pre-executions can be enhanced with an acyclic global
happens before relation ghb. We follow Chapter 3.3 of Alglave [2010] for the basic definitions. This
class of models includes sc, tso, and armv8, but does not include armv7 or ppc (see Example 5.3).
Our main contribution in this section is a novel automata-based characterization of the executions
of such models.

5.1 Global Happens Before
A global event is one which is published to every processor, and so has to be accounted for by every
processor. Thus, an execution can be enhanced with a ghb relation iff all the memory events can be
embedded into a single global timeline. While the existence of such a global timeline is self-evident
for sc, perhaps surprisingly, it also applies to tso and armv8. The idea is to carefully separate out
local and global events. For example, in tso, the write to a local buffer is not part of the global time
line; it only gets published to the global time line when the write is flushed to main memory.2 In
the words of Alglave [2010], ghb focuses on “the history of the system from the main memory’s
point of view.”

A ghb-architecture is an architecture that extends a pre-execution with a ghb relation. That is, if
A is a ghb-architecture and E a pre-execution, A(E) is a tuple of the form ⟨E, ghb, . . . ⟩. We refer
to any pre-execution that is extended with a ghb relation as a ghb-execution.

One of the contributions of this paper is to describe conditions for ghb-executions under which
no explicit transaction order is necessary (Theorem 6.2). In order to state this result, we parameterize
the axioms by a relation R ⊆ E × E. The standard axioms are recovered by setting R = ∅.

Definition 5.1. Given a ghb-execution E and relation R ⊆ E × E, we write correctghb(E, R) if
ghb is a global happens before relation such that both of the axioms below hold:

acyclic(ghb ∪ R) (GlobalHappensBefore)
acyclic(poloc ∪ com ∪ R) (SCPerLocation)

Example 5.2. The ghb relation for sc and tso architectures are from [Alglave 2010] and ghb for
armv8 is the ordered-before relation ob [Deacon 2017; Flur et al. 2016; Pulte et al. 2018].

sc: ghb = po ∪ co ∪ rf ∪ fr
tso: ghb = ppo ∪ co ∪ rfe ∪ fr ∪ fences
armv8: ghb = ob □

Example 5.3. Any ghb-architecture supports multi-copy atomicity [Maranget et al. 2012]. Con-
sider the following example (known as IRIW). As usual, all locations are initialized to 0.

Thread 1: Wx1
Thread 2: Wy1
Thread 3: Rx1 addr Ry0
Thread 4: Ry1 addr Rx0

Here, coherence must order the initializing writes before the two write events in threads 1 and 2.
Furthermore, the reads in both threads must follow program order due to an address dependency.
Now, since there exists a from-read (anti-dependency) from Rx0 to Wx1 and from Ry0 to Wy1 we
have a cycle in any ghb-architecture. However, this example is allowed by armv7, demonstrating
that armv7 is not a ghb-architecture. □

The following lemma identifies a sufficient set of restrictions on an execution to guarantee that
it has a ghb relation.
2A similar notion of delayed writes in global time is a central idea behind TSO-linearizability [Derrick et al. 2014].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

18:20 Brijesh Dongol, Radha Jagadeesan, and James Riely

Lemma 5.4. Suppose E = ⟨E, . . . ⟩ is an execution such that correct(E). If D = ⟨E, ghb⟩, then
correctghb(D, R) provided ghb = prop and prop is a transitive relation that satisfies:

hb ∪ (fr; prop) ⊆ prop prop; poloc = poloc; prop = prop coe ∪ fre ∪ rfe ⊆ prop .

5.2 Transactions in ghb Executions
To define legality of transactions in a ghb-architecture, we apply the lifting constructions from
Definition 3.1 to ghb and adapt Definition 3.8. In particular, we say a pre-execution E is legal for a
ghb-architecture A if the conditions in Definition 3.8 hold with correct(lift(A(E | D))) in clauses
(1) and (2) replaced by correctghb(lift(A(E | D)), ∅).

A technical point to note is that lift(ghb) is not necessarily transitively closed. However, the
transitive closure of a lift-closed relation is lift-closed. For example, lift((lift(ghb))∗) = (lift(ghb))∗.
The lifted versions of ghb and poloc ∪ com are acyclic. In the light of our earlier discussion,

acyclicity of lift(ghb) is the same as the irreflexivity of lift(ghb)+. Acyclicity of poloc ∪ com is the
assertion that the transaction ordering does not contradict the total order of reads and writes for
each location.

Our definitions integrate transactions with the ghb relation induced by a memory model to avoid
unintuitive results.

Example 5.5 ([Dalessandro and Scott 2009]). Consider the following execution.
Thread 1: [Wx1 Ry0]
Thread 2: <Wy1 Rx0>

This example should not be permitted because both serializations of the transactions are coun-
terintuitive. Indeed, this behavior is not permitted in our model even for relaxed transactions.
From the memory model, we obtain Rx0 fre

−−→ Wx1 and Ry0 fre
−−→ Wy1, which become lifted edges

Rx0 lift(fre)
−−−−−→ Ry0 and Ry0 lift(fre)

−−−−−→ Rx0, leading to a cycle. □

This leads naturally to an analogue of transactional sequential consistency [Dalessandro and Scott
2009]3, which holds if there is a global total order on events that (a) explains the execution’s reads,
(b) is consistent with program order of each thread, and (c) keeps the events of each transaction
contiguous. In the setting of relaxed memory models, transactional sequential consistency is too
strong. However, one can replace program order above by ghb, then show that any program
execution is equivalent to one with a global total order on operations consistent with ghb, in which
the operations of any given transaction are contiguous. We prove such an abstraction theorem
later in the paper (see Corollary 6.3).

5.3 Execution Automaton
Weoperationalize the intuition behind ghb by developing an automaton that accepts such executions.
This automata characterization is a key tool in the proof of the abstraction theorem for transactions.

The automaton generalizes the well-known store buffering operational model of tso. In compari-
son to the automaton of Alglave et al. [2014]; intuitively, the ghb ordering constrains the executions
considerably by only permitting paths that are linearizations of ghb.

Consider an execution E with event set E. We build a ghb-automatonME from E as follows. Let
⟨ghb, polocs⟩lex be the lexicographic ordering of events where we order by ghb first and by polocs
second. The states ofME are triples of the form ⟨U, L, G⟩, where U is the set of events that are yet to
be processed, L is the set of locally visible events (i.e., those that are visible to some set of threads),
3Transaction sequential consistency is similar to the StrongBasic semantics by Moore and Grossman [2008], the strong
semantics by Abadi et al. [2011], strong isolation by Harris et al. [2010] and transactional memory with store atomicity
by Maessen and A. [2007].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

Transactions in Relaxed Memory Architectures 18:21

and G is the set of events are globally visible. We require the following, where ⊎ denotes disjoint
union.

E = U ⊎ L (1)
G ⊆ L (2)
∀d ∈ E, e ∈ G. (d, e) ∈ (ghb ∪ com) ⇒ d ∈ G (3)
∀d ∈ E, e ∈ L. (d, e) ∈ ghb⇒ d ∈ L (4)

By (1), E is partitioned into U and L. In this context, L represent events whose processing has begun.
By (2), every globally visible event is also locally visible. Invariant (3) ensures that the publication
order into G is consistent with the ghb order and with the com order, while invariant (4) ensures
that events are processed in an order consistent with ghb. Note that a consequence of (3) is that
global publication preserves the sc order per location.

The initial state of the automaton ME is ⟨E, ∅, ∅⟩, so all events are unprocessed. The final state
of the automaton is ⟨∅,E,E⟩, i.e, all events are processed and published globally.
There are four kinds of transitions.
Local write: Ifw is ⟨ghb, polocs⟩lex-minimal in U then:

⟨U ⊎ {w}, L, G⟩ −→ ⟨U, L ⊎ {w}, G⟩

Publication: If d is ⟨ghb, polocs⟩lex-minimal in L \ G, and ∀e ∈ E. (e,d) ∈ com ⇒ e ∈ G,
then:

⟨U, L ⊎ {e}, G⟩ −→ ⟨U, L, G ⊎ {e}⟩

Local read: If r is ⟨ghb, polocs⟩lex-minimal in U, and (w, r) ∈ rf \ rfe, then:

⟨U ⊎ {r }, L, G⟩ −→ ⟨U, L ⊎ {r }, G⟩

Global read: If r is ⟨ghb, polocs⟩lex-minimal in U, and (w, r) ∈ rfe andw ∈ G, then:

⟨U ⊎ {r }, L, G⟩ −→ ⟨U, L ⊎ {r }, G ⊎ {r }⟩

For any transition that removes events from U, we ensure that we follow the ⟨ghb, polocs⟩lex order
over U; a Local write transition only checks this minimality condition. Publication makes a
locally visible event, d , globally visible. Therefore, in addition to following the ⟨ghb, polocs⟩lex order
on the unpublished local events, we also ensure that the all writes that precede d (in com order)
are already globally visible. By the assumptions on ghb, this also ensures that the entire sc prefix
of this variable is already in G. In a local-read, since r reads fromw in same thread in E, we know
thatw precedes r in ⟨ghb, polocs⟩lex order, thus allowing us to deduce thatw ∈ L. This read is not
yet globally seen. In a global-read, r reads fromw in a different thread in E, so we know thatw
is ahead of r in ghb, thus allowing us to deduce thatw ∈ L. However, we do have to ensure thatw
is globally visible, hence the hypothesisw ∈ G. Since the writes are published only when all the
other memory actions of this location that are ahead in the com order are public, we deduce that
the writew is in fact the last write on this location in G. In this case, the read is already globally
visible, so we also add it to the set of globals.

The transition relation of the automaton is monotone; i.e. in any state of the automaton, the
execution of a transition in a state does not disable the other enabled transitions in the state.
Formally, if ⟨U, L, G⟩ −→ ⟨U1, L1, G1⟩, and ⟨U, L, G⟩ −→ ⟨U2, L2, G2⟩, then:

⟨U1, L1, G1⟩ −→ ⟨U1 ∩ U2, L1 ∪ L2, G1 ∪ G2⟩

and
⟨U2, L2, G2⟩ −→ ⟨U1 ∩ U2, L1 ∪ L2, G1 ∪ G2⟩

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

18:22 Brijesh Dongol, Radha Jagadeesan, and James Riely

Thus, the branching in the automaton is best viewed as expressing deterministic concurrency, as
opposed to non-determinism.

We now prove that states in the automaton are never stuck.

Theorem 5.6. If correctghb(E, ∅), all states of ME have a path to final state ⟨∅,E,E⟩.

Proof. We proceed by contradiction. Consider a state ⟨U, L, G⟩ where we don’t have an enabled
transition. Let S ⊆ U be the set of ⟨ghb, polocs⟩lex-minimal elements.

• Since the local-write rule is not enabled, S does not have any writes.
• We now show that L ⊆ G. If not, consider any e that is ⟨ghb, polocs⟩lex-minimal in L. Since the
transition is not enabled, there exists d ∈ E, (d, e) ∈ com ∧ e < G. Since d is not in S (otherwise
e would not be ⟨ghb, polocs⟩lex-minimal), we deduce that there is a d ′ ∈ S, (d ′,d) ∈ ghb. Thus,
we deduce that (d ′, e) ∈ ghb, contradicting ⟨ghb, polocs⟩lex-minimality of e .

• So, we deduce that S is a set of reads, say r1 . . . , rn . Since the Local read rule is not enabled,
we further deduce that all the writes matching these reads are external. Since none of the
reads are enabled for the Global read rule, we deduce that none of the writes are in G. Since
G agrees with L on writes, this means that for each of the satisfying writes,w1 . . .wm , there
is a corresponding read in S that precedes it in ⟨ghb, polocs⟩lex. Since, ghb is closed under
pre and post composition with ⟨ghb, polocs⟩lex, we deduce that there is a cycle in ghb, which
is a contradiction. □

6 ABSTRACTION FOR TRANSACTIONAL EXECUTIONS
This section establishes the main properties of ghb-executions extended with transactions. Namely,
that for any ghb-architecture (which includes sc, tso, and armv8, but not ppc or armv7), any legal
pre-execution ensures client abstraction.
We first define a relation txo that relates any two transaction ids that are not in a nesting

relationship. From subsection 3.1, recall that ≥nest defines a tree over TransactionId.

Definition 6.1. A relation txo over transaction identifiers is a transaction ordering if for every
t , s ∈ TransactionId if t ̸≥nest s ∧ s ̸≥nest t then either t txo

−−→ s or s txo
−−→ t .

We lift txo from transactions to events as follows: d txo
−−→ e whenever trans(d) txo

−−→ trans(e).
The following theorem states the essence of observation-based serializability. It ensures that

given a correct ghb-execution, we can find an equivalent execution with a global total order on
operations, consistent with ghb and poloc, such that the operations of any given transaction appear
contiguously. The idea is that any correct execution with transactions has an intrinsic partial
order on transactions; the relation R defined below represents the observable partial order of the
execution.

Theorem 6.2. Suppose E is a ghb-execution such that correctghb(E, ∅). Let R be a relation over
TransactionId defined by R = {(t , s) | t ̸≥nest s ∧ s ̸≥nest t ∧ ∃e ∈ t ,d ∈ s . (e,d) ∈ (lift(ghb))∗} and
let txo be a transaction ordering that linearizes R. Then correctghb(E, txo).

Proof. Since correctghb(E, ∅) and (lift(ghb))∗ is transitive, R is a partial order. We show that
any linearization of R that is a transaction ordering of ≥nest satisfies the conclusion of the theorem.
This stronger statement conforms with our expectation that R captures all the observable order.

In this proof, we use the linearization of the execution provided by the automaton as per
Theorem 5.6. Let ≤ be any total order that extends txo and nesting, i.e., t txo

−−→ s ⇒ t ≤ s and
t ≥nest s ⇒ s ≤ t .

Consider the path in the automaton from initial state to final state. In every state, we use the
transition that is enabled by the event e as follows:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

Transactions in Relaxed Memory Architectures 18:23

If there is any enabled transition using a transactional event, choose the transac-
tion that is ≤-minimum.

Since (lift(ghb))∗ is lift(·) closed, all events in a transaction have identical order properties with
respect to events in other transactions, i.e., for non-nested transactions t , s , if there exists an event
e of t related by (lift(ghb))∗ to an event d of s , then any event e of t is related by (lift(ghb))∗ to any
event d of s .
Consequently, the path construction above ensures that in the global order generated by this

path of the automaton, any two non-nested transactions never overlap. □

Our main abstraction result for transactions follows as an immediate corollary. Given a legal
execution, the first item considers the subexecution induced by deleting the aborted undoable
transactions. For this subexecution, the corollary provides a programmer friendly perspective, via
an abstract and correct execution that imposes a global total order (consistent with nesting) on
transactions such that the operations of any given transaction are contiguous. The second item
considers each of the aborted undoables that were removed in the first item; for each of them, it
provides a similar programmer friendly explanation, but only on the transactions and memory
events that are part of the causal history of the aborted undoable transactions under consideration.

To define legality of transactions in a ghb-architecture, we adapt Definition 3.8. In particular, we
say a pre-execution E is legal for a ghb-architecture A if the conditions in Definition 3.8 hold with
correct(lift(A(E | D))) in (1) and (2) replaced by correctghb(lift(A(E | D)), ∅).

Corollary 6.3 (Abstraction for transactions). Suppose E is a pre-execution that legal for a
ghb-architecture A. Let T = Undoable ∩ Aborted. Then both of the following hold.
(1) There exists an order txo satisfying the conditions of Theorem 6.2 for A(E | D), where D =

E \ events(T).
(2) For every t ∈ T , there exists a txot satisfying the conditions of Theorem 6.2 for A(E | D), where

D ⊇ A(events(t)) is causally closed for E.

Proof. For (1), by correctghb(lift(A(E | D)), ∅) and Theorem 6.2, we deduce the existence of txo
satisfying the conditions of Theorem 6.2 for this execution.
For (2), for any t ∈ T , we have correctghb(lift(A(E | D)), ∅). So, by Theorem 6.2, we deduce the

existence of txot satisfying the conditions of Theorem 6.2 for this execution. Note that txot is an
independent order for each t , unrelated to txo. □

The next corollary deduces that a correct execution maintains Consistency (the “C” in ACID), i.e.
if every transaction is a correct transformation of the state4, then so is a correct execution. In the
following corollary, we are considering predicates ϕ(x ,y) of the kind x + y = 10.
First, a couple of preliminary definitions. A predicate ϕ(x1, . . . ,xn) holds for an execution E if

ϕ(v1, . . . ,vn) holds, where vi is the value of the last write from a non-aborted transaction in the co
order of E. A predicate ϕ(x1, . . . ,xn) is said to be an invariant for a transaction t in an execution E

if ϕ holds for any execution of t in isolation whenever an initial memory satisfies ϕ. We show that
ϕ is invariant for any legal execution with no non-transactional writes to any of the x ’s.

Corollary 6.4. Suppose E is a pre-execution that is legal for some ghb-architecture such that
• ϕ holds for the initial memory state, and
• trans(e) , ⊤, for every e such that ∃x . ∃v . label(e) =Wxv , i.e., every write is transactional.

If ϕ is an invariant for each committed transaction in E, then ϕ holds at the end of the execution.
4The actions in a transaction taken in isolation without any interference do not violate any of the integrity constraints
associated with the state

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

18:24 Brijesh Dongol, Radha Jagadeesan, and James Riely

Proof. We use the abstract execution order txo = t1, . . . , tn yielded by the first item of the
Corollary 6.3 and proceed by induction on the length of txo.
Base case follows from assumption since, ϕ holds for the initial memory.
For the inductive case, consider t1, . . . , tn , tn+1. There are two cases based on the commitment

status of tn+1.
• tn+1 is aborted. Since the validity of ϕ in E depends only on the final writes from committed
transactions in the co order, tn+1 does not affect it. Result follows from induction hypothesis.

• tn+1 is committed. By induction hypothesis, ϕ holds in the subexecution induced by t1, . . . , tn .
Since all events in E belong to one of t ’s, by Definition 3.8(3) tn+1 only reads from the last
write (in the co order) of committed transactions in t1, . . . , tn . Result follows from inductive
hypothesis on t1, . . . , tn and ϕ-invariance of tn+1. □

7 PROGRAMS TO GENERATE EXECUTIONS
We sketch a language of clients which allows rollback of aborted undoable transactions. By virtue
of corollary 6.3, such a client cannot detect whether a legal execution includes an explicit order
on transactions. Thus, these clients capture the observational power afforded by our model. The
language departs from the traditional presentation of transactions in several respects.

Starting from an initial map assigning a command to each threads, the semantics generates a set
of candidate pre-executions, as described in Section 2. Memory locations are represented concretely,
as integers. The candidate pre-executions can then be filtered using a notion of correctness, as
described in Section 3. The semantics must be instrumented to generate any dependency information
required by the architecture.
Thread-local state is carried in registers. The language is abstract with respect to registers, but

concrete with respect to memory addresses and TransactionIds, which are represented as integers.
Thus, values, memory locations and TransactionIds are all derived from a single syntactic category
of expressions.
Let r range over the set of Registers. Let v, t , x range over a set of Values. Let op range over a

set of operators. Then the syntax of (side-effect free) expressions is as follows.

E,T ,X ::= r | v | op(E1, ...,En)

We use the metavariable T to represent an expression that is being used as a TransactionId, X to
represent an expression that is being used as a memory location, and E to represent an expression
that is being used as a value. Note that a single register may be used in all three contexts. This
means that a thread can invent memory addresses and TransactionIds.
Let τ range over the set {RelaxedOpaque, IsolatedOpaque, Undoable}. Then the syntax of

commands is as follows.

C ::= new r=E in C | r=E | C1 ;C2 | while E do C | if E then C1 else C2

| new r=*X in C | *X=E
| new r=begin τ in C | T [C] | abort | ifcommit T then C1 else C2

The first line gives standard constructs to allocate and update registers and execute sequences of
commands. The second line gives the constructs for reading and writing memory. The last line
gives the transaction-oriented constructs.

The execution of a memory read or write causes the creation of a new event with the appropriate
label. For writes, the value is determined. For reads, any value is possible. Rather than determine
the rf relation as we generate the thread-local semantics, we instead allow a read to return any
value, and filter the out the impossible reads later, when generating a rf relation.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

Transactions in Relaxed Memory Architectures 18:25

Syntax for transactions is typically given using block structure. Instead, we adopt explicit
transaction markers. Combined with the use of integers for TransactionIds, the use of explicit
markers make it is possible to express other idioms such as suspend/resume and multi-threaded
transactions. To mimic the block-structured approach in our language, one would write something
such as the following.

new r=begin IsolatedOpaque in (r [C0] ; ifcommit r then C1 else C2)

In evaluation, this first allocates a new TransactionId and binds it to register r . Then it executes C0
as part of the new transaction and attempts to commit. Then either C1 or C2 executes, depending
upon whether the transaction commits or aborts.

Whereas all memory addresses are valid, the same is not true for TransactionIds. The semantics
maintains a partial map ρ : TransactionId⇀ {Live, Committed, Aborted} and a relation R giving
the nesting relations of transactions. These are defined only for TransactionIds that have been
returned from a prior call to begin. To handle transaction types, we simply partition TransactionIds
into three sets based on the bottom two bits, representing RelaxedOpaque, IsolatedOpaque and
Undoable. At top-level, execution begins with TransactionId ⊤, which is RelaxedOpaque and
always Committed. A begin adds a fresh Live transaction to ρ and places it as a child of the current
transaction in R.

If a thread attempts to use a TransactionId that is not defined in ρ, it becomes stuck and will no
longer evaluate. The same is true with registers, which belong to the transaction that created them.
We design a semantics to enforce the last clause of Definition 3.8: We require that an unrelated
transactions cannot read from a register belonging to anUndoable, and anUndoable cannot write to
a register belonging to an unrelated transaction. Aborts cascade from parent to child: a committed
child will change its state to Aborted when its parent aborts. Therefore, it is safe for a child to read
a register of its parent, but not vice versa. Publicly readable registers are associated with ⊤.

Commands attributed to an aborted transaction are skipped. An abort forces the current transac-
tion (and it’s descendants) to abort. Note that the state of a proper descendant may change from
Committed to Aborted when the parent aborts. However, if the current transaction is already
committed, then an attempt to abort is an error, causing the thread to become stuck. In addition to
explicit aborts, a live transaction may nondeterministically abort at any time.

An ifcommit causes the transaction to attempt to commit. In the case where the commit succeeds,
the local registers of the committing transactions are made publicly available by reassigning them
to ⊤. If the commit fails and the transaction is aborted, then no code from that transaction or any
of its descendants will ever execute again; thus, its registers are effectively discarded.

8 OTHER RELATEDWORK
We have already cited the related work in context throughout the paper. In this section, we provide
links to some missing context.

Hardware transactional models have been explored for the Pentium and Power [Cain et al. 2013]
microprocessors. Pentium either uses the older Hardware Lock Elisionmodel or the newer Restricted
Transactional Memory (RTM) instruction set. The Power model permits nested transactions and also
supports a suspend and resume instruction, so the transactional instructions are not necessarily
contiguous in the program order. Both models implement isolated undoable transactions. The
design of a transactional architecture for the ARM microprocessor is an ongoing research project5.
Our approach to the relaxed memory of these architectures is through the intellectual pathway
provided by [Alglave 2010; Alglave et al. 2014; Deacon 2017; Flur et al. 2016; Pulte et al. 2018].

5See http://materials.dagstuhl.de/files/16/16471/16471.StephanDiestelhorst.Slides.pdf.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

 http://materials.dagstuhl.de/files/16/16471/16471.StephanDiestelhorst.Slides.pdf

18:26 Brijesh Dongol, Radha Jagadeesan, and James Riely

The relationship between our framework and these existing hardware transactional models
is established via the pioneering work of Chong et al. [2017]. From our perspective, their paper
makes three important contributions. First, building on their earlier work [Wickerson et al. 2017],
they describe a tool for modeling hardware transactions. Second, they provide detailed models of
several extant transactional hardware architectures and their experimentally validate their models
with respect to hardware execution. Third, they describe a theoretical extension of armv8 with
transactions. The authors graciously provided us an early version of their tool, MemAlloy6, along
with their formalizations of the hardware models.

We have used MemAlloy extensively to validate that the Isolated and Undoable subset of our
framework does indeed conform to Chong et al.’s empirical observations. In particular, we are able
to establish that, apart from the issue of the control dependencies on aborted transactions (see
Example 4.2.3), our models permit all the executions that are permitted by the hardware transaction
models. In particular, our tso model includes all behaviors allowed by the hardware, and our
armv8 model includes all behaviors allowed by the theoretical armv8 transactional memory model
described in [Chong et al. 2017]. Thus, our abstraction theorem applies to both tso and armv8. For
ppc [Cain et al. 2013], Chong et al.’s model attempts to capture the essential features of the ppc
without imposing a global order on transactions. This is related to the fact that since the ppc relaxed
memory model does not satisfy multi-copy atomicity, it is not a ghb-architecture, and hence our
abstraction theorem does not apply. Chong et al.’s model is more expressive than the ppc hardware
specification, and our formalization of ppc permits all behaviors allowed by their model. These
claims for tso, armv8 and ppc have been verified up to models of size 5; beyond this MemAlloy
times out. Future versions of MemAlloy will permit more extensive exploration of the state space
and hence models of bigger size. We will revisit our experiments to revalidate when that happens.

While this paper focuses on transactions in hardware memory models, we have drawn extensive
inspiration from transaction in software transactional memory. This thriving area of literature
encompasses correctness criteria, algorithms, implementations and experiments, and has found its
way into several programming languages, notably Haskell in GHC 6.4, C++ [Luchangco et al. 2013]
and experimental designs and systems for Java [Jagannathan et al. 2005], C# [Abadi et al. 2009].
We refer the reader to the introductory books and surveys [Guerraoui and Kapalka 2010; Harris
et al. 2010; Larus and Kozyrakis 2008; Scott 2015] and tutorials on the subject such as [Grossman
et al. 2007].
We draw inspiration from two ideas found in the STM literature. First, the variety of semantic

correctness conditions [Dziuma et al. 2015] that we alluded to the introduction, albeit suitably
modified to the relaxed memory setting, provide a rich design space — in contrast, tso and armv8
only support undoable aborted transactions. Second, the rich and varied idea of composable
transactions: [Diegues and Cachopo 2013; Haines et al. 1994; Harris et al. 2005] develop methods
to compose transactions with all the standard programming combinators, including sequencing,
hierarchy, higher-order functions and parallel composition, providing a striking contrast to the
comparatively sparse methods of composition in the hardware models above.

9 SUMMARY
We have explored an expressive model of transactions in a general framework for relaxed memory.
Our key contributions are twofold: first, the recognition that observable serializability provides
an opportunity to reexamine traditional formulations of correctness with the aim of validating
more transactions, even while maintaining the programmer model; second, providing an analysis

6MemAlloy is based on (bounded) model-checking, allowing users to automatically compare hardware memory models. It
is available from https://github.com/johnwickerson/memalloy.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

https://github.com/johnwickerson/memalloy

Transactions in Relaxed Memory Architectures 18:27

of expressive and composable transactions inspired by STMs in the hardware context. The latter is
applicable to sc, tso and the newly designed armv8 architectures. Our intent is not that a given
design permit all the features of our model; rather, we aim to establish general properties that hold
even for restrictions of our full model.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science Foundation under Grant
No. 1617175. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the views of the National Science Foundation.
This work has benefitted greatly from discussions with Nathan Chong and John Wickerson. We
also thank our anonymous POPL reviewers and shepherd, Viktor Vafeiadis, for their thoughtful
suggestions that have helped improve the paper.

REFERENCES
M. Abadi, A. Birrell, T. Harris, and M. Isard. 2011. Semantics of Transactional Memory and Automatic Mutual Exclusion.

ACM Trans. Program. Lang. Syst. 33, 1, Article 2 (Jan. 2011), 50 pages.
M. Abadi, T. Harris, and M. Mehrara. 2009. Transactional memory with strong atomicity using off-the-shelf memory

protection hardware. In PPoPP, D. A. Reed and V. Sarkar (Eds.). ACM, 185–196.
S. V. Adve and H.-J. Boehm. 2010. Memory models: a case for rethinking parallel languages and hardware. Commun. ACM

53, 8 (2010), 90–101.
S. V. Adve and K. Gharachorloo. 1996. Shared Memory Consistency Models: A Tutorial. Computer 29, 12 (1996), 66–76.
Y. Afek, A. Matveev, and N. Shavit. 2012. Pessimistic Software Lock-Elision. In DISC (Lecture Notes in Computer Science),

M. K. Aguilera (Ed.), Vol. 7611. Springer, 297–311.
J. Alglave. 2010. A shared memory poetics. PhD thesis. Université Paris 7 and INRIA.
J. Alglave, L. Maranget, and M. Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining for Weak

Memory. ACM Trans. Program. Lang. Syst. 36, 2 (2014), 7:1–7:74.
A. Armstrong, B. Dongol, and S. Doherty. 2017. Proving Opacity via Linearizability: A Sound and Complete Method. In

FORTE (Lecture Notes in Computer Science), Vol. 10321. Springer, 50–66.
H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky. 2013. A Programming Language Perspective on Transactional Memory

Consistency. In PODC. ACM, New York, NY, USA, 309–318.
H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky. 2014. Safety of Live Transactions in Transactional Memory: TMS is

Necessary and Sufficient. In DISC (Lecture Notes in Computer Science), F. Kuhn (Ed.), Vol. 8784. Springer, 376–390.
M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. 2011. Mathematizing C++ concurrency. In POPL. ACM, 55–66.
C. Blundell, E. C. Lewis, and M. M. K. Martin. 2005. Deconstructing Transactions: The Subtleties of Atomicity. In Fourth

Annual Workshop on Duplicating, Deconstructing, and Debunking.
H.-J. Boehm and S. V. Adve. 2008. Foundations of the C++ concurrency memory model. In PLDI, R. Gupta and S. P.

Amarasinghe (Eds.). ACM, 68–78.
H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H. Q. Le. 2013. Robust architectural support for transactional

memory in the Power architecture. In ISCA, A. Mendelson (Ed.). ACM, 225–236.
N. Chong, T. Sorensen, and J. Wickerson. 2017. The Semantics of Transactions and Weak Memory in x86, Power, ARMv8,

and C++. ArXiv e-prints (Oct. 2017). arXiv:cs.PL/1710.04839
L. Dalessandro and M. L. Scott. 2009. Strong Isolation is a Weak Idea. In TRANSACT ’09: 4th Workshop on Transactional

Computing.
L. Dalessandro, M. L. Scott, and M. F. Spear. 2010. Transactions As the Foundation of a Memory Consistency Model. In DISC

(Lecture Notes in Computer Science). Springer-Verlag, Berlin, Heidelberg, 20–34.
P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. 2006. Hybrid Transactional Memory. SIGOPS

Oper. Syst. Rev. 40, 5 (Oct. 2006), 336–346.
W. Deacon. 2017. ARM64 cat file. https://github.com/herd/herdtools7/commit/daa126680b6ecba97ba47b3e05bbaa51a89f27b7.
J. Derrick, G. Smith, and B. Dongol. 2014. Verifying Linearizability on TSO Architectures. In IFM (Lecture Notes in Computer

Science), Vol. 8739. Springer, 341–356.
N. Diegues and J. Cachopo. 2013. Practical Parallel Nesting for Software Transactional Memory. In DISC (Lecture Notes in

Computer Science). Springer-Verlag New York, Inc., New York, NY, USA, 149–163.
N. Diegues and P. Romano. 2015. Time-Warp: Efficient Abort Reduction in Transactional Memory. ACM Trans. Parallel

Comput. 2, 2, Article 12 (June 2015), 44 pages.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

http://arxiv.org/abs/cs.PL/1710.04839
https://github.com/herd/herdtools7/commit/daa126680b6ecba97ba47b3e05bbaa51a89f27b7

18:28 Brijesh Dongol, Radha Jagadeesan, and James Riely

S. Doherty, L. Groves, V. Luchangco, and M. Moir. 2013. Towards formally specifying and verifying transactional memory.
Formal Asp. Comput. 25, 5 (2013), 769–799.

D. Dziuma, P. Fatourou, and E. Kanellou. 2015. Consistency for Transactional Memory Computing. Springer International
Publishing, Cham, 3–31.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. 1976. The Notions of Consistency and Predicate Locks in a Database
System. Commun. ACM 19, 11 (Nov. 1976), 624–633.

S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon, and P. Sewell. 2016. Modelling the ARMv8
architecture, operationally: concurrency and ISA. In POPL. ACM, 608–621.

D. Grossman, J. Manson, and W. Pugh. 2006. What do high-level memory models mean for transactions?. In Memory System
Performance and Correctness. ACM, New York, NY, USA, 62–69.

D. Grossman, V. Menon, S. Srinivas, and C. Zilles. 2007. Transactional Memory in Managed Runtimes - Hardware/Software
View. https://www.microarch.org/micro40

R. Guerraoui, T. A. Henzinger, and V. Singh. 2008. Permissiveness in Transactional Memories. In DISC (Lecture Notes in
Computer Science), G. Taubenfeld (Ed.), Vol. 5218. Springer, 305–319.

R. Guerraoui and M. Kapalka. 2008. On the Correctness of Transactional Memory. In PPoPP. ACM, New York, NY, USA,
175–184.

R. Guerraoui and M. Kapalka. 2010. Principles of Transactional Memory. Morgan & Claypool Publishers.
N. Haines, D. Kindred, J. G. Morrisett, S. M. Nettles, and J. M. Wing. 1994. Composing First-class Transactions. ACM Trans.

Program. Lang. Syst. 16, 6 (Nov. 1994), 1719–1736.
S. Hans, A. Hassan, R. Palmieri, S. Peluso, and B. Ravindran. 2016. Opacity vs TMS2: Expectations and Reality. In DISC

(Lecture Notes in Computer Science), C. Gavoille and D. Ilcinkas (Eds.), Vol. 9888. Springer, 269–283.
T. Harris, J. Larus, and R. Rajwar. 2010. Transactional Memory, 2nd edition. Morgan & Claypool Publishers.
T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. 2005. Composable Memory Transactions. In PPoPP. ACM, New York,

NY, USA, 48–60.
M. Herlihy and J. E. B. Moss. 1993. Transactional Memory: Architectural Support for Lock-Free Data Structures. In ISCA,

A. J. Smith (Ed.). ACM, 289–300.
M. P. Herlihy and J. M. Wing. 1990. Linearizability: a correctness condition for concurrent objects. ACM Trans. Program.

Lang. Syst. 12, 3 (1990), 463–492.
D. Imbs and M. Raynal. 2012. Virtual world consistency: A condition for STM systems (with a versatile protocol with

invisible read operations). Theor. Comput. Sci. 444 (2012), 113–127.
S. Jagannathan, J. Vitek, A. Welc, and A. Hosking. 2005. A transactional object calculus. Science of Computer Programming

57, 2 (2005), 164 – 186.
I. Keidar and D. Perelman. 2009. On avoiding spare aborts in transactional memory. In SPAA, F. M. auf der Heide and M. A.

Bender (Eds.). ACM, New York, NY, USA, 59–68.
L. Lamport. 1979. How to Make a Correct Multiprocess Program Execute Correctly on a Multiprocessor. IEEE Trans.

Computers 46, 7 (1979), 779–782.
J. Larus and C. Kozyrakis. 2008. Transactional Memory. Commun. ACM 51, 7 (July 2008), 80–88.
V. Luchangco, J. Maurer, M. Moir, H. Boehm, J. Gottschlich, M. Michael, T. Riegel, M. Scott, T. Shpeisman, M. Spear, and M.

Wong. 2013. Transactional Memory Support for C++. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3718.
pdf

J.-W. Maessen and A. 2007. Store Atomicity for Transactional Memory. Electronic Notes in Theoretical Computer Science 174,
9 (2007), 117 – 137. Proceedings of the Thread Verification Workshop (TV 2006).

J. Manson, W. Pugh, and S. V. Adve. 2005. The Java memory model. In POPL, J. Palsberg and M. Abadi (Eds.). ACM, 378–391.
L. Maranget, S. Sarkar, and P. Sewell. 2012. A Tutorial Introduction to the ARM and POWER Relaxed Memory Models.

http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf.
K. F. Moore and D. Grossman. 2008. High-level small-step operational semantics for transactions. In POPL, G. C. Necula and

P. Wadler (Eds.). ACM, 51–62.
A. T. Nguyen. 2015. Investigation of Hardware Transactional Memory. Master’s thesis. MIT.
Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits, J. Cownie, R. Geva, S. Kozhukow, R. Narayanaswamy, J. Olivier, S.

Preis, B. Saha, A. Tal, and X. Tian. 2008. Design and Implementation of Transactional Constructs for C/C++. In OOPSLA.
ACM, New York, NY, USA, 195–212.

C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, and P. Sewell. 2018. Simplifying ARM Concurrency: Multicopy-atomic
Axiomatic and Operational Models for ARMv8. In POPL. To appear.

S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. 2011. Understanding POWER multiprocessors. In PLDI. ACM,
175–186.

M. Scott. 2015. Transactional Memory Today. SIGACT News 46, 2 (June 2015), 96–104.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

https://www.microarch.org/micro40
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3718.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3718.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

Transactions in Relaxed Memory Architectures 18:29

J. Sevcík. 2008. Program Transformations in Weak Memory Models. PhD thesis. Laboratory for Foundations of Computer
Science, University of Edinburgh.

P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. 2010. x86-TSO: a rigorous and usable programmer’s model
for x86 multiprocessors. Commun. ACM 53, 7 (2010), 89–97.

N. Shavit and D. Touitou. 1995. Software Transactional Memory. In Proceedings of the Fourteenth Annual ACM Symposium
on Principles of Distributed Computing (PODC ’95). ACM, New York, NY, USA, 204–213.

J. Wickerson, M. Batty, T. Sorensen, and G. A. Constantinides. 2017. Automatically comparing memory consistency models.
In POPL, G. Castagna and A. D. Gordon (Eds.). ACM, 190–204.

R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. 2013. Performance evaluation of Intel® transactional synchronization
extensions for high-performance computing. In SC, W. Gropp and S. Matsuoka (Eds.). ACM, 19:1–19:11.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 18. Publication date: January 2018.

	Abstract
	1 Introduction
	1.1 Observation-Based Serialization for Committed Transactions
	1.2 Non-transactional Events and Isolation
	1.3 Aborted Transactions and Observability
	1.4 Our Results

	2 A Model for Weak Memory and Transactions
	3 Modeling Transactions
	3.1 Characterizing Transaction Types
	3.2 Transactions and Pre-executions
	3.3 Correctness

	4 Impact of Observation-Based Serialization
	4.1 Speculative Execution of Transactions
	4.2 Observation-Based Serialization
	4.3 Mixed-Mode Transactions and Isolation
	4.4 Aborted Transactions and Observability

	5 Global Happens Before and an Operational Characterization
	5.1 Global Happens Before
	5.2 Transactions in ghb Executions
	5.3 Execution Automaton

	6 Abstraction for Transactional Executions
	7 Programs to Generate Executions
	8 Other Related Work
	9 Summary
	Acknowledgments
	References

