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Probabilistic programs extend classical imperative programs with real-valued random variables and random
branching. The most basic liveness property for such programs is the termination property. The qualitative (aka
almost-sure) termination problem asks whether a given program program terminates with probability 1. While
ranking functions provide a sound and complete method for non-probabilistic programs, the extension of them
to probabilistic programs is achieved via ranking supermartingales (RSMs). Although deep theoretical results
have been established about RSMs, their application to probabilistic programs with nondeterminism has been
limited only to programs of restricted control-flow structure. For non-probabilistic programs, lexicographic
ranking functions provide a compositional and practical approach for termination analysis of real-world
programs. In this work we introduce lexicographic RSMs and show that they present a sound method for
almost-sure termination of probabilistic programs with nondeterminism. We show that lexicographic RSMs
provide a tool for compositional reasoning about almost-sure termination, and for probabilistic programs with
linear arithmetic they can be synthesized efficiently (in polynomial time). We also show that with additional
restrictions even asymptotic bounds on expected termination time can be obtained through lexicographic
RSMs. Finally, we present experimental results on benchmarks adapted from previous work to demonstrate
the effectiveness of our approach.
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1 INTRODUCTION

Probabilistic programs with nondeterminism. Randomness plays a fundamental role in many areas
across science, and in computer science in particular. In applications such as stochastic network
protocols [Baier and Katoen 2008; Kwiatkowska et al. 2011], randomized algorithms [Dubhashi
and Panconesi 2009; Motwani and Raghavan 1995], security [Barthe et al. 2016b,c] machine learn-
ing [Ghahramani 2015; Kaelbling et al. 1996], the probabilistic behavior must be considered to
faithfully model the underlying dynamic system. The extension of classical imperative programs
with random value generators, that produce random values according to some desired probability
distribution, naturally gives rise to probabilistic programs. Along with probability, nondeterminism
also plays a crucial role. In particular in program analysis, for effective analysis of large programs, all
variables cannot be considered, and abstraction ignores some variables, and the worst-case analysis
is represented by adversarial nondeterminism. Hence, probabilistic programs with nondeterminism
have become an active and important research focus in program analysis.

Termination problem. In static analysis of programs the most basic, as well most important, liveness
property is the termination problem. While for non-probabilistic programs the termination question
asks whether an input program always terminates, for probabilistic programs the termination
questions must account for the probabilistic behaviors. The most basic and fundamental extensions
of the termination problem for probabilistic programs are:

(1) Almost-sure termination. The almost-sure termination problem asks whether the program termi-
nates with probability 1.

(2) Positive termination. The positive termination problem asks whether the expected termination
time is finite. A related quantitative generalization of the positive termination question is to
obtain asymptotic bounds on the expected termination time.

While the positive termination implies almost-sure termination, the converse is not true (e.g., see
Example 4.9).

Ranking functions and ranking supermartingales (RSMs). The key technique that applies for liveness
analysis of non-probabilistic programs is the notion of ranking functions, which provides a sound and
complete method for termination of non-probabilistic programs [Floyd 1967]. There exists a wide
variety of approaches for construction of ranking functions for non-probabilistic programs [Bradley
et al. 2005a; Colón and Sipma 2001; Podelski and Rybalchenko 2004a; Sohn and Gelder 1991].
The generalization of ranking functions to probabilistic programs is achieved through ranking
supermartingales (RSMs) [Chakarov and Sankaranarayanan 2013; Chatterjee and Fu 2017; Fioriti
and Hermanns 2015]. The ranking supermartingales provide a powerful and automated approach
for termination analysis of probabilistic programs, and algorithmic approaches for special cases
such as linear and polynomial RSMs have also been considered [Chakarov and Sankaranarayanan
2013; Chatterjee et al. 2016a,b, 2017].

Limitations of existing approaches. An impressive set of theoretical results related to RSMs has been
established [Chakarov and Sankaranarayanan 2013; Chatterjee and Fu 2017; Chatterjee et al. 2016a,b,
2017; Fioriti and Hermanns 2015]. However, previous martingale-based methods for probabilistic
programs with nondeterminism [Chatterjee and Fu 2017; Chatterjee et al. 2016a,b, 2017] are only
applicable to programs of rather restricted control-flow structure. The key reason can be understood
as follows: already in the world of non-probabilistic programs we know that while ranking functions
are sound and complete, they do not necessarily provide an efficient approach. This is because
to prove termination, a witness in the form of a ranking function has to be computed: to do this
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automatically, ranking functions of a restricted form (such as linear ranking functions) have to
be considered. But 1-dimensional ranking functions of a restricted type might be too weak to
prove termination of programs of more complex control-flow structure, such as programs with
multiple nested loops or programs where there are several possible paths through some loop, each
path exhibiting a profoundly different behaviour. To remedy this problem in the world of non-
probabilistic programs, the notion of lexicographic ranking functions has been widely studied [Alias
et al. 2010; Bradley et al. 2005a; Brockschmidt et al. 2016; Cook et al. 2013; Gonnord et al. 2015].

Algorithmic approaches for linear lexicographic ranking functions allow the automated termina-
tion analysis to be applied to real-world non-probabilistic programs (after abstraction). However,
the theoretical foundations for lexicographic termination arguments are completely missing for
probabilistic programs, an issue which we address in this work.

Our contributions. In this paper we present several contributions to termination proving for proba-
bilistic programs, chief of which is defining a notion of a lexicographic ranking supermartingale
and proving that lexicographic RSMs are sound for proving almost-sure termination. We describe
our main contributions below:

(1) Theoretical foundations. First, we introduce the notion of lexicographic RSMs, and show that
such supermartingales ensure almost-sure termination (Theorem 3.4 in Section 3). The key
contribution is a purely mathematical result that introduces a new concept and proves that it
is sound for proving almost-sure termination. The result is independent of any probabilistic
program. While the concept of lexicographic RSMs might look as a natural extension of classical
lexicographic ranking functions, the proof of soundness is rather delicate and deals with
several intricacies that are not present in non-probabilistic world or when dealing with 1-
dimensional RSMs. Based on the mathematical result, we show that for probabilistic programs
with nondeterminism the existence of a lexicographic RSM with respect to an invariant ensures
almost-sure termination (Theorem 4.8 in Section 4). We also show that lexicographic RSMs are
capable of proving almost-sure termination of programs with infinite expected termination
time (Example 4.9).

(2) Compositionality. Second, we study the compositional properties of lexicographic RSMs. A key
limitation of the previous approaches related to compositional RSMs [Fioriti and Hermanns
2015] is that it imposes a technical uniform integrability condition, which is hard to reason about
automatically. We show (in Section 6) how lexicographic RSMs present an easy-to-automatize
compositional approach for almost-sure termination of probabilistic programs.

(3) Algorithm.We then consider algorithms for synthesis of lexicographic RSMs, and for efficient al-
gorithms we consider nondeterministic probabilistic programs that are affine (i.e., the arithmetic
operations are linear). We present a polynomial-time algorithm for synthesis of lexicographic
RSMs for affine programs (Theorem 5.1), which generalizes an existing termination-proving
algorithm for non-probabilistic programs [Alias et al. 2010].

(4) Asymptotic bounds. In general, the existence of lexicographic RSMs does not imply positive
termination. In other words, we present an example (Example 4.9) where a lexicographic RSM
exists ensuring almost-sure termination, yet the expected termination time is infinite. We then
present a natural restriction under which the lexicographic RSMs not only imply positive
termination, but even asymptotic bounds on the expected termination time can be derived from
them (Theorem 7.2 and Corollary 7.3). Moreover, the asymptotic bounds we obtain establish
polynomial bounds on the expected termination time (see Remark 5).

(5) Experimental results.We present experimental results to demonstrate the applicability of our
approach. We consider the benchmarks of non-probabilistic programs from [Alias et al. 2010],

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 34. Publication date: January 2018.



34:4 Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný

which include abstractions of classical algorithms (e.g. sorting ones), and where lexicographic
ranking functions were applied for termination analysis. We extend these benchmarks with
probabilistic statements and apply lexicographic RSMs to these programs.While the benchmarks
used are still rather small (10-100 LOC), proving their almost-sure termination is beyond the
capabilities of one-dimensional RSMs, and hence they are suitable for testing the termination-
proving power of lexicographic RSMs. Our results show that our approach works well on top
of existing non-probabilistic termination-proving infrastructure pioneered in aforementioned
works. We also experiment on larger synthetic programs to obtain data on scalability of our
algorithm.

2 PRELIMINARIES

We use a notation standard in the field of probabilistic program analysis [Chatterjee et al. 2017].

2.1 Basic Notions

For a set A we denote by |A| the cardinality of A. We denote by N, N0, Z, and R the sets of all
positive integers, non-negative integers, integers, and real numbers, respectively. We assume basic
knowledge of matrix calculus. We use boldface notation for vectors, e.g. x, y, etc., and we denote
an i-th component of a vector x by x[i]. We identify 1-dimensional vectors with numbers. For an
n-dimensional vector x, index 1 ≤ i ≤ n, and number a we denote by x(i ← a) a vector y such that
y[i] = a and y[j] = x[j] for all 1 ≤ j ≤ n, j , i . For comparison of vectors (e.g. as in x ≤ y), we
consider componentwise comparison. For comparing functions f ,д with the same domains, we
write f ≤ д if f (x) ≤ д(x) for all x in the domain. Throughout the paper we fix a countable set of
variablesV . We consider some arbitrary but fixed linear order on the set of all variables, hence we
writeV = {x1,x2,x3, . . . }.

2.2 Syntax of Probabilistic Programs

In this subsection we define the form of probabilistic programs that we consider in our analysis.
We consider two classes of probabilistic programs: general probabilistic programs (PPs) with
arbitrary (measurable) expressions and their subclass, affine probabilistic programs (Apps) where
all expressions are restricted to be affine (see below for a precise definition). The reason for this
dual view is that our work also has two main points of focus: a theoretical one, where we introduce
new concepts that can be used to prove properties of general probabilistic programs; and an
algorithmic one, where we aim to prove properties of probabilistic programs automatically, using
the aforementioned concepts. As already testified in the non-probabilistic world, programs that
contain only affine expressions allow for more efficient automation of the analysis and at the same
time, due to the presence of non-determinism, they can be used to form sound abstractions of
programs with non-linear arithmetic. Hence, we consider general programs when providing our
theoretical results and Apps when presenting the automation of our techniques.

Expressions. An expression over the set of variables {x1, . . . ,xn} is an expression in the standard
programming-language sense, i.e. a formula built in a finite number of steps from constants,
variables x1, . . . ,xn , and numerical operators from some fixed finite set. Each expression E over
{x1, . . . ,xn} determines a function which for eachm-dimensional vector x, wherem ≥ n, returns a
number resulting from substituting each xi in E by x[i]. Slightly abusing our notation, we denote
this function also by E and the value of this function on argument x by E(x). We do not a priori fix
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a concrete set of operators that can be used to form expressions. However, in order to ensure that
semantics of probabilistic programs with real-valued variables is defined correctly, we impose the
following two conditions on the set of expressions used in each program: (1) For each expression E
over variables {x1, . . . ,xn} and each n-dimensional vector x the value E(x) is well defined.1 (2) The
function defined by each expression E is Borel-measurable (for definition of Borel-measurability,
see, e.g. [Billingsley 1995]). Frommeasure theory it is known that these conditions hold in particular
for programs where expressions are build using the standard arithmetic operators of addition,
subtraction, multiplication, and division (provided that expressions evaluating to zero are not
allowed as divisors).

Affine Expressions. An affine expression over the set of variables {x1, . . . ,xn} is an expression of the
form d +

∑n
i=1 aixi , where d,a1, . . . ,an are real-valued constants. A function of the form E(x) for

some affine expression E is called affine. As noted above, each affine function is Borel-measurable.

Predicates.A predicate is a logical formula obtained by a finite number of applications of conjunction,
disjunction and negation operations on atomic predicates of the form E ≤ E ′, where E, E ′ are
expressions. We denote by x |= E the fact that E is satisfied by substituting values from of x for the
corresponding variables in E.

Linear constraints, assertions, predicates. In the case of predicates involving only linear expression
we use the following standard nomenclature:

• Linear Constraint. A linear constraint is a formula of the formψ or ¬ψ , whereψ is a non-strict
inequality between affine expressions.
• Linear Assertion. A linear assertion is a finite conjunction of linear constraints.
• Propositionally Linear Predicate. A propositionally linear predicate (PLP) is a finite disjunction of
linear assertions.

The Syntax of Probabilistic Programs (PPs). We consider the standard syntax for probabilistic
programs, which encompasses basic programming mechanisms such as assignment statement
(indicated by ‘:=’), while-loop, if-branch. Expressions appear on right-hand sides of assignments,
and predicates act as loop guards and conditions in if-then-else statements. We also consider basic
probabilistic mechanisms such as probabilistic branch (indicated by ‘prob’) and random sampling
(e.g. x := sample(Uniform[−2, 1]) assigns to x a random number uniformly sampled from interval
[−2, 1]). We also allow constructs for (demonic) non-determinism, in particular non-deterministic
branching indicated by ‘if ⋆ then...’ construct and non-deterministic assignment. We assume that
all distributions that we sample from have a well-defined and finite expectation; distributions not
conforming to this can be abstracted using non-deterministic assignment. Variables (or identifiers)
of a probabilistic program are of real type, i.e., values of the variables are real numbers. We also
assume that each PP P is preceded by a preamble specifying possible initial values of program
variables: the preamble consists of a single predicate characterizing possible initial valuations.

Affine Probabilistic Programs (Apps).A probabilistic program is affine if all the expressions that occur
in the program (i.e. in loop guards, conditionals, right-hand sides of assignments) are affine and if
the set of possible initial valuations is a polyhedron. We refer to the class of affine probabilistic
programs as Apps.

1Our results can be easily extended to programs where encountering an expression of undefined value, such as division by
zero, triggers an exception which terminates the program, but we abstract away from such details for the sake of clarity.
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Due to space restrictions, details of syntax (such as grammar) are relegated to the full ver-
sion [Agrawal et al. 2017]. For an example see Figure 1.

2.3 Semantics of Probabilistic Programs

Basics of Probability Theory. A probability space is a triple (Ω,F,P), where Ω is a non-empty set (so
called sample space), F is a sigma-algebra of measurable sets over Ω, i.e. a collection of subsets of
Ω that contains the empty set ∅, and that is closed under complementation and countable unions,
and P is a probability measure on F, i.e., a function P : F → [0, 1] such that: (1) P(∅) = 0, (2) for
all A ∈ F it holds P(Ω ∖ A) = 1 − P(A), and (3) for all pairwise disjoint countable set sequences
A1,A2, · · · ∈ F (i.e., Ai ∩Aj = ∅ for all i , j) we have

∑∞
i=1 P(Ai ) = P(

⋃∞
i=1Ai ).

Following the usual probabilistic terminology, we say that almost all ω belonging to some set
O ⊆ Ω satisfy some property Ψ if it holds that P({ω ∈ O | ω does not satisfy Ψ}) = 0.

Random variables and filtrations. A random variable in a probability space (Ω,F,P) is an F-
measurable function R : Ω → R ∪ {∞}, i.e., a function such that for every a ∈ R ∪ {∞} the
set {ω ∈ Ω | R(ω) ≤ a} belongs to F. If R(ω) ∈ R for all ω ∈ Ω, we say that R is real-valued. We
denote by E[X ] the expected value of a random variable X (see [Billingsley 1995, Chapter 5] for a
formal definition). We also denote by {X ∼ x}, where ∼ is a comparison operator and x ∈ R∪{±∞},
the set {ω ∈ Ω | X (ω) ∼ x}. A random vector in (Ω,F,P) is a vector whose every component is a
random variable in this probability space. A stochastic process in a probability space (Ω,F,P) is an
infinite sequence of random vectors in this space. We will also use random variables of the form
R : Ω → S for some finite set S , which is easily translated to the variables above. A filtration of a
sigma-algebra F is a sequence {Fi }∞i=0 of σ -algebras such that F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · · ⊆ F. A
stochastic process {Xi }

∞
i=0 is adapted to filtration {Fi }∞i=0 if for all i it holds that each component

of Xi is Fi -measurable.

Distributions.We assume the standard definition of a probability distribution specified by a cumula-
tive distribution function [Billingsley 1995]. We denote by D the set of probability distributions on
real numbers, both discrete and continuous.

Probabilistic Control Flow Graphs.We consider standard operational semantics of PPs defined via an
uncountable state-space Markov decision process (MDP) (uncountable due to real-valued variables).
That is, we associate to each program a certain stochastic process. To define this process, we first
define so called probabilistic control flow graphs [Chatterjee et al. 2016a].

Definition 2.1. A probabilistic control flow graph (pCFG) is a tuple C = (L,V , ℓinit ,Ξinit , 7→,Up, Pr,G),
where

• L is a finite set of locations partitioned into four pairwise disjoint subsets LNB, LPB, LD , and LA of
non-deterministic branching, probabilistic branching, deterministic, and assignment locations;
• V = {x1, . . . ,x |V |} is a finite set of program variables (note that V ⊆ V) ;
• ℓinit is an initial location and Ξinit is a set of initial assignment vectors;
• 7→⊆ L × L is a transition relation;
• Up is a function assigning to each transition outgoing from an assignment location a tuple (i,u),
where 1 ≤ i ≤ |V | is a target variable index and u is an update element, which can be one of the
following mathematical objects: (a) a Borel-measurable function u : R |V | → R; (b) a distribution
d ∈ D with a well-defined expectation; or (c) a set R ⊆ R (representing a non-deterministic
update).
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• Pr = {Prℓ}ℓ∈LPB is a collection of probability distributions, where each Prℓ is a discrete proba-
bility distribution on the set of all transitions outgoing from ℓ;
• G is a function assigning a propositionally linear predicate (a guard) over V to each transition
outgoing from a deterministic location.

We assume that each location has at least one outgoing transition. Also, for every deterministic
location ℓ we assume the following: if τ1, . . . ,τk are all transitions outgoing from ℓ, then G(τ1) ∨
· · · ∨ G(τk ) ≡ true and G(τi ) ∧ G(τj ) ≡ false for each 1 ≤ i < j ≤ k . For each distribution d
appearing in the pCFG we assume the following features are known: expected value E[d] of d and
a set SPd containing the support of d . The support is the smallest closed set of real numbers whose
complement has probability zero under d .2 Finally, we assume that each assignment location has at
most (and thus exactly) one outgoing transition. The translation from probabilistic programs to the
corresponding pCFG is standard [Chatterjee et al. 2016b], and the details are presented in the full
version [Agrawal et al. 2017].

Configurations. A configuration of a pCFG C is a tuple (ℓ, x), where ℓ is a location of C and x is
an |V |-dimensional vector. We say that a transition τ is enabled in a configuration (ℓ, x) if ℓ is the
source location of τ and in addition, x |= G(τ ) provided that ℓ is deterministic.

Executions and reachable configurations. We say that a configuration (ℓ′, x′) is a successor of a
configuration (ℓ, x) if there is a transition τ = (ℓ, ℓ′) enabled in (ℓ, x) and x′ satisfies the following:

• if ℓ is not an assignment location, then x′ = x;
• if ℓ is an assignment location with Up(τ ) = (j,u), then xi+1 = xi (j ← a) where a satisfies one of
the following depending on the type of u: (a) if u is a Borel-measurable function, then a = u(x);
(b) if u is a distribution d , then a ∈ supp(d); and (c) if u is a set, then a is some element of u.

A finite path (or execution fragment) of length k in C is a finite sequence of configurations
(ℓ0, x0) · · · (ℓk , xk ) such that ℓ0 = ℓinit , x0 ∈ Ξinit , and for each 0 ≤ i < k the configuration
(ℓi+1, xi+1) is a successor of (ℓi , xi ). A run (or execution) in C is an infinite sequence of configura-
tions whose every finite prefix is a finite path. A configuration (ℓ, x) is reachable from the initial
configuration (ℓinit , xinit) (where, xinit ∈ Ξinit ) if there is a finite path starting in (ℓinit , xinit) that
ends in (ℓ, x). We denote by Conf C, FpathC and RunC the sets of all configurations, finite paths and
runs in C, respectively, dropping the index C when known from the context.

Non-determinism and Schedulers. The probabilistic behaviour of C can be captured by constructing a
suitable probability measure over the set of all its runs. Before this can be done, non-determinism in
C needs to be resolved. This is achieved using the standard notion of a scheduler. Note that there are
two sources of non-determinism in our programs: one in branching and one in assignments. We call
a location ℓ non-deterministic if ℓ is a non-deterministic branching location or if ℓ is an assignment
location with the only transition τ outgoing from ℓ having a non-deterministic assignment. A
configuration (ℓ, x) is non-deterministic if ℓ is non-deterministic.

Definition 2.2 (Schedulers). A scheduler in a pCFG C is a function σ assigning to every finite
path that ends in a non-deterministic configuration (ℓ, x) a probability distribution on successor
configurations of (ℓ, x).

2In particular, a support of a discrete probability distribution d is simply the at most countable set of all points on a real line
that have positive probability under d .
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Measurable schedulers. Note that schedulers can be viewed as partial functions from the set Fpath to
the set of probability distributions over the set Conf . Since we deal with programs operating over
real-valued variables, both Fpath and Conf can be uncountable sets. Hence, we impose an additional
measurability condition on schedulers, so as to ensure that the semantics of probabilistic non-
deterministic programs is defined in a mathematically sound way. The definition of a measurable
scheduler that we use is the standard one used when dealing with systems that exhibit both
probabilistic and non-deterministic behaviour over a continuous state space [Neuhäußer et al. 2009;
Neuhäußer and Katoen 2007]. The definition is somewhat technical, and not substantial to our
results, so we defer it to [Agrawal et al. 2017]. In the rest of this work, we refer to measurable
schedulers simply as łschedulers.ž In particular, if the set of all reachable variable valuations is
discrete (such as the integers), then each scheduler in the associated pCFG is measurable.

Stochastic process. A pCFG C together with a scheduler σ and initial valuation xinit ∈ Ξinit define a
stochastic process which produces a random run (ℓ0, x0)(ℓ1, x1)(ℓ2, x2) · · · . The evolution of this
process can be informally described as follows: we start in the initial configuration, i.e. (ℓ0, x0) =
(ℓinit , xinit). Now assume that i steps have elapsed, i.e. a finite path πi = (ℓ0, x0)(ℓ1, x1) · · · (ℓi , xi )
has already been produced. Then a successor configuration (ℓi+1, xi+1) is chosen as follows:

• If ℓi is a non-deterministic location, then (ℓi+1, xi+1) is sampled according to scheduler σ , i.e.
from the distribution σ (πi ).
• If ℓi is an assignment location (but not a non-deterministic one), there is exactly one transition
τ = (ℓi , ℓ

′) outgoing from it and we put ℓi+1 = ℓ′. Denoting Up(τ ) = (j,u), the vector xi+1 is
then defined as xi+1 = xi (j ← a) where a is chosen depending on u:
ś If u is a function u : R |V | → R, then a = f (xi ).
ś If u is a distribution d , then a is sampled from d .
• In all other cases we have xi+1 = xi , and ℓi+1 is determined as follows:
ś If ℓi is a probabilistic branching location, then a transition (ℓi , ℓ′) is sampled from Prℓi and
we put ℓi+1 = ℓ′;

ś If ℓi is deterministic, then there is exactly one transition (ℓi , ℓ′) enabled in (ℓi , xi ), in which
case we put ℓi+1 = ℓ′.

The above intuitive explanation can be formalized by showing that each pCFG C together with
a scheduler σ and initial valuation xinit ∈ Ξinit uniquely determine a certain probability space
(ΩRun,R,P

σ
xinit
) in which ΩRun is the set of all runs in C, and a stochastic process C = {Ci }

∞
i=0 in

this space such that for each run ϱ ∈ ΩRun we have that Ci (ϱ) is the i-th configuration on ϱ (i.e., Ci

is a random vector (ℓi , xi ) with ℓi taking values in L and xi being a random vector of dimension |V |
consisting of real-valued random variables). The sigma-algebra R is the smallest (w.r.t. inclusion)
sigma-algebra under which all the functions Ci , for all i ≥ 0, are R-measurable. The probability
measure Pσxinit is such that for each i , the distribution of Ci reflects the aforementioned way in which
runs are randomly generated. The formal construction of R and Pσxinit proceeds via the standard
cylinder construction [Ash and Doléans-Dade 2000, Theorem 2.7.2] and is somewhat technical,
hence we omit it. We denote by Eσxinit the expectation operator in probability space (ΩRun,R,P

σ
xinit
).

2.4 Almost-Sure and Positive Termination

Termination and termination time. In the following, consider a PP P and its associated pCFG CP . This
pCFG has a special location ℓterm corresponding to the value of the program counter after executing
P . We say that a run terminates if it reaches a configuration whose first component is ℓterm. We
define a random variable Term such that for each run ϱ the value Term(ϱ) represents the first point
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while x ≥ 0 and y ≥ 0 do

i f ∗ then

i f prob ( 0 . 5 ) then

x := x − 2
e l se skip

f i

e l s e

x := 2x ;
y := y − 1

f i

od

ℓ0 ℓ1 ℓ2

ℓ6

ℓ3 ℓ4

ℓ5

ℓ7

x < 0 ∨ y < 0

x ≥ 0
∧

y ≥ 0

1
2

1
2

x := 2xy := y − 1

x := x − 2

Fig. 1. An exampleApp and its associated pCFG. Probabilistic branching locations are depicted by circles, with
probabilities given on outgoing transitions, nondeterministic branching locations are denoted by diamonds.
Transitions are labelled by their effects. Location ℓ0 is initial and ℓ7 is terminal.

in time when the current location is ℓterm. If a run ϱ does not terminate, then Term(ϱ) = ∞. We call
Term the termination time of P. We consider the following fundamental computational problems
regarding termination:

(1) Almost-sure termination: A probabilistic program P is almost-surely (a.s.) terminating if un-
der each scheduler σ and for each initial valuation xinit ∈ Ξinit it holds that Pσxinit ({ϱ |
ϱ terminates}) = 1, or equivalently, if it holds Pσxinit (Term < ∞) = 1. In almost-sure termi-
nation question for P we aim to prove that P is almost-surely terminating.

(2) Positive termination:Aprobabilistic program P is positively terminating if under each schedulerσ
and for each initial valuation xinit ∈ Ξinit it holds that Eσxinit [Term] < ∞. In positive termination
question for P we aim to prove that P is positively terminating. Note that each positively
terminating program is also a.s. terminating, but the converse does not hold.

3 LEXICOGRAPHIC SUPERMARTINGALES

In this section we introduce the notion of a lexicographic ranking supermartingale, which generalizes
the standard notion of a ranking supermartingale. However, to define any form of a supermartingale,
we need the crucial notion of conditional expectation.

Conditional Expectation. Let (Ω,F,P) be a probability space, X : Ω → R an F-measurable function,
and F′ ⊆ F sub-sigma-algebra of F. A conditional expectation of X given F′ is an F′-measurable
random variable denoted by E[X |F′] which satisfies, for each set A ∈ F′, the following:

E[X · 1A] = E[E[X |F] · 1A], (1)

where 1A : Ω → {0, 1} is an indicator function of A, i.e. function returning 1 for each ω ∈ A and 0
for each ω ∈ Ω \A. Note that the left hand-side of (1) intuitively represents the expected value of
X (ω) with domain restricted to A.

Note that any F′-measurable random variable satisfying (1) can be called a conditional expectation.
The definition does not guarantee that the conditional expectation is uniquely defined or that it
exists at all (though if X itself happens to be F-measurable, which is not always the case, then it
satisfies the definition of conditional expectation). However, we have the following:
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Proposition 3.1. Let (Ω,F,P) be a probability space, X : Ω → R an F-measurable function, and
F′ ⊆ F a sub-sigma-algebra of F. Assume that one of the following conditions hold: (a) E[|X |] < ∞,
or (b) X is real-valued and non-negative. Then there exists a conditional expectation of X given F′

and it is almost-surely unique, i.e. for each two F′-measurable functions f , д that satisfy (1) it holds
P({ω | f (ω) , д(ω)}) = 0.

Proof (Key ideas). The proof for the case when E[|X |] < ∞ is standard and appears in many
textbooks on probability theory (e.g. [Ash and Doléans-Dade 2000; Billingsley 1995; Rosenthal
2006]). The proof for the second case is essentially the same: the condition that X is non-negative
and not admitting infinite value suffices for satisfying the assumptions of Radon-Nikodym Theorem,
the main theoretical tool used in the proof. For the sake of completeness we present the proof
in [Agrawal et al. 2017]. □

Since the constraint (1) defining conditional expectation is phrased in terms of expected values, the
almost-sure uniqueness cannot be strengthened to uniqueness, as re-defining a random variable
on a set of probability zero does not change its expectation. In the following, when we say that a
conditional expectation of a random variable X satisfies some inequality (e.g. E[X | F] ≥ 0) on
a set L ⊆ Ω, we mean that for each F-measurable function E[X | F] satisfying (1) the inequality
holds on some subset L′ ⊆ L such that P(L′) = P(L).

Remark 1. In context of probabilistic programs we work with probability spaces of the form (Ω,R,Pσ ),
where Ω is a set of runs in some pCFG C and R is (the smallest) sigma-algebra such that all the
functions Ci , where i ∈ N0 and σ is a scheduler, are R-measurable. In such a setting we can also
consider sub-sigma-algebras Ri , i ∈ N0, of R, where Ri is the smallest sub-sigma-algebra of R such
that all the functions Cj , 0 ≤ j ≤ i , are Ri -measurable. Intuitively, each set A ∈ Ri consists of runs

whose first i steps satisfy some property. Then, for each A ∈ Ri , the value E[E[X |Ri ] · 1A] represents
the expected value of X (ϱ) for the randomly generated run ϱ provided that we restrict to runs whose
prefix of length i satisfies the property given by A. The sequence R0,R1,R2, . . . forms a filtration of
R, which we call a canonical filtration.

Definition 3.2. Let (Ω,F,P) be a probability space and {Fi }∞i=0 a filtration of F. A random variable
T : Ω → N0 ∪ {+∞} is a stopping time w.r.t. {Fi }∞i=0 if for each i ∈ N0 the set {T > i} belongs to Fi .

Note that termination time Term of a PP is a stopping time w.r.t. canonical filtration.

Definition 3.3 (Lexicographic Ranking Supermartingale). Let (Ω,F,P) be a probability space, {Fi }∞i=0
a filtration of F, T a stopping time w.r.t. that filtration, and ϵ ≥ 0. An n-dimensional real-valued
stochastic process {Xi }

∞
i=0 is a lexicographic ϵ-ranking supermartingale for T (ϵ-LexRSM) if the

following conditions hold:

(1) For each 1 ≤ j ≤ n the 1-dimensional stochastic process {Xi [j]}
∞
i=0 is adapted to {Fi }∞i=0.

(2) For each ω ∈ Ω, i ∈ N0 and 1 ≤ j ≤ n it holds Xi (ω)[j] ≥ 0.
(3) For each i ∈ N0 there exists a partition of the set {T > i} into n + 1 subsets Li1, . . . ,L

i
n ,L

i
n+1, all

of them Fi -measurable, such that for each 1 ≤ j ≤ n:
• E[Xi+1[j] | Fi ] ≤ Xi [j] − ϵ on Lij ;

• for all 1 ≤ j ′ < j we have E[Xi+1[j
′] | Fi ] ≤ Xi [j

′] on Lij ; and

• E[Xi+1[j] | Fi ] ≤ Xi [j] on Lin+1.

The n-dimensional LexRSM is strict if Lin+1 = ∅ for each i .
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An instance of an n-dimensional LexRSM {Xi }
∞
i=0 is a tuple ({Xi }

∞
i=0, {L

i
1, . . . ,L

i
n+1}

∞
i=0) where

the second component is a sequence of partitions of Ω satisfying the condition in Definition 3.3.
Intuitively, the sets Lij for 1 ≤ j ≤ n represent the lexicographic ranking condition, i.e. for strict
LexRSMs, we are in each step able to partition Ω into subsets such that on j-th subset the j-th
component ofX is expected to decrease while the previous components are not expected to increase.
On additional sets Lin+1, none of the components is expected to increase, but decrease is not required:
this will become handy later when we deal with compositional LexRSM-based proofs (Section 6) ś
we will not require decrease in every step as long as decrease happens at least once on each cycle in
the pCFG. We say that ω ∈ Ω has level j in step i of instance ({Xi }

∞
i=0, {L

i
1, . . . ,L

i
n+1}

∞
i=0) if ω ∈ L

i
j .

We also say that ω has level 0 in step i if T (ω) ≤ i .

The strict 1-dimensional lexicographic ϵ-ranking supermartingale is, to a large extent, equivalent to
the notion of a ranking supermartingale as studied in [Chatterjee et al. 2016b; Fioriti and Hermanns
2015]. There is one significant difference: in these works there is an additional integrability condition
imposed on the one-dimensional process {Xi }

∞
i=0, which requires that for each i ≥ 0 it holds

E[|Xi |] < ∞ (or equivalently E[Xi ] < ∞, as the process is required to be non-negative). We do
not impose this condition, which simplifies possible application of LexRSMs to programs with
non-linear arithmetic, where, as already shown in [Fioriti and Hermanns 2015], integrability of
program variables is not guaranteed. The reason why integrability condition can be dropped is
that it is only needed in the previous works to ensure that the conditional expectations exist and
are well-defined. However, the existence of conditional expectations is also guaranteed for random
variables that are real-valued and non-negative, see Proposition 3.1. This is exactly the case in both
the original 1-dimensional ranking supermartingales and our generalization to LexRSMs.

The following theorem states our main mathematical result on LexRSMs.

Theorem 3.4. Let (Ω,F,P) be a probability space, {Fi }
∞
i=0 a filtration of F, T a stopping time w.r.t.

that filtration, and ϵ > 0. Assume there exists an n-dimensional ϵ-LexRSM for T and its instance
({Xi }

∞
i=0, {L

i
1, . . . ,L

i
n+1}

∞
i=0) such that P({ω ∈ Ω | level of ω is < n + 1 in infinitely many steps}) =

1. Then P(T < ∞) = 1. In particular, if there exists a strict ϵ-LexRSM for T , then P(T < ∞) = 1.

Proof. The proof proceeds by contradiction, i.e. we assume that an ϵ-LexRSM for T satisfying the
above conditions exists and P(T = ∞) > 0. For succinctness we denote the set {ω | T (ω) = ∞} by
A∞.

For ω ∈ Ω we denote the level of ω at step i by levi (ω). The value levi (ω) is well-defined for
all ω and moreover, the random variable levi is Fi -measurable. We denote by min-lev(ω) the
smallest 0 ≤ j ≤ n such that j is a level of ω at infinitely many steps. Note that ω ∈ A∞ if and
only if min-lev(ω) , 0, so P(A∞) = P({min-lev , 0}). We denote by Mi the set of all ω’s with
min-lev(ω) = i .

Throughout the proof we use several times the following fundamental fact: if P(A) > 0 for some
set A and A = A1 ∪A2 ∪A3 · · · for some sequence of sets A1,A2,A3, . . . , then there exists i such
that P(Ai ) > 0.

Now A∞ = M1 ∪ · · · ∪Mn ∪Mn+1 and P(Mn+1) = 0 (as the measure of ω’s that have level < n + 1
in only finitely many steps is zero, per Theorem’s assumption). Hence, there must be 1 ≤ j∗ ≤ n s.t.
P(Mj∗ ) > 0, i.e. with positive probability the smallest level appearing infinitely often is j∗. For each
ω ∈ Mj∗ there is the smallest number iω, j∗ ∈ N0 such that for all i ≥ iω, j∗ it holds levi (ω) ≥ j∗, i.e.
after step iω, j∗ the level of ω in all steps up to infinity is at least j∗. Denote by S j∗,i the set of all ω’s
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inMj∗ s.t. iω, j∗ = i . SinceMj∗ = Mj∗,1∪Mj∗,2∪Mj∗,3∪ · · · , there is i∗ ∈ N0 s.t. P(Mj∗,i∗ ) > 0. That is,
there is a point in time such that with positive probability, after this point the level of ω is at least j∗,
and it is equal to j∗ infinitely many times. Continuing on the same note, for each B ∈ N we denote
byMB

j∗,i∗ the set off all ω’s inMj∗,i∗ s.t. Xi∗ [j
∗](ω) ≤ B. SinceMj∗,i∗ = M

1
j∗,i∗ ∪M

2
j∗,i∗ ∪M

3
j∗,i∗ ∪ · · · ,

there is B∗ ∈ N s.t. P(MB∗

j∗,i∗ ) > 0.

So there is a set of positive probabilityM = MB∗

j∗,i∗ such that for all ω’s in the set: after step i∗ the
level of ω is at least j∗ (which, intuitively, means that X[j∗] does not have a tendency to increase
after this time step on ω’s inM), the level of ω is infinitely often equal to j∗ (intuitively, X[j∗] has
infinitely often the tendency to decrease by ≥ ϵ for ω’s inM), and at time i∗ the value of X[j∗] is
bounded (by B) onM . This should, again intuitively, lead to a conclusion that when łrestricted to
Mž, X[j∗] has tendency to decrease unboundedly over time, a contradiction with non-negativeness
of X[j∗]. However, proving this intuitive result is much more intricate: most importantly, it is
not clear what łrestricted toMž stands for. The stochastic process {X}∞i=0 as well as the LexRSM
conditions are tied to the filtration {Fi }∞i=0, but the setM is not necessarily Fi measurable for any
concrete i , since whether ω belongs toM depends on values of levi (ω) for infinitely many i . Hence,
we use a work-around.

Let D be the set of all ω ∈ Ω such that Xi∗ [j
∗](ω) ≤ B∗. Note thatM ⊆ D and D ∈ Fi∗ (and thus also

D ∈ Fi′ for all i ′ ≥ i∗). Define a stopping time F w.r.t. filtration {Fi }∞i=0 as follows: for all ω ∈ Ω we
put F (ω) = inf{k ∈ N0 | k ≥ i

∗ and levk (ω) < j
∗}.

Define a (one-dimensional) stochastic process {Yk }∞k=0 as follows:

Yk (ω) =





0 if ω < D

B∗ if ω ∈ D and k < i∗

Xk [j
∗](ω) if ω ∈ D, k ≥ i∗ and F (ω) > k

XF (ω)[j
∗](ω) if ω ∈ D, k ≥ i∗ and F (ω) ≤ k .

Intuitively, the process {Yk }∞k=0 is an over-approximation of what we would like to call łX[j∗]
restricted toM .ž We prove several properties of the process. First, clearly for all k ≥ 0, Yk (ω) ≥ 0.
Second, for each k ≥ i∗, the variable Yk is Fk -measurable, as D ∈ Fi∗ , {Xi [j

∗](ω)}∞i=0 is adapted to
the filtration {Fi }∞i=0, and F is a stopping time w.r.t. this filtration. Finally, for any k ∈ N0 denote
by ♯k the random variable such that ♯k (ω) = |{i ′ ∈ N | i∗ ≤ i ′ < k and levi′(ω) = j

∗}|, i.e. ♯k (ω)
counts the number of steps between i∗ and k in which level is j∗. We prove that for each k ≥ i∗ it
holds

E[Yk ] ≤ B
∗ · P(D) − ϵ ·

k−i∗∑

ℓ=0

ℓ · P(D ∩ {F ≥ k} ∩ {♯k = ℓ}). (2)

The proof of (2) goes by induction on k . The computations being somewhat technical, we defer
them to the full version [Agrawal et al. 2017].

Now according to (2) it holds E[Yk ] ≤ B∗ · P(D) − ϵ ·
∑k−i∗

ℓ=0 ℓ · P(D ∩ {F ≥ k} ∩ {♯k = ℓ}) for all
k ≥ i∗. Letm = 3B∗ · P(D)/(ϵ · P(M)). For each ω ∈ M we see level j∗ infinitely often, so there exists
step k(ω) ≥ i∗ such that ♯k (ω) ≥ m, i.e. ω has level j∗ at least inm steps between steps i∗ and k(ω).
Clearly, M =

⋃∞
ℓ=i∗ (M ∩ {k(ω) ≤ ℓ}) and hence P(M) = limℓ→∞ P(M ∩ {k(·) ≤ ℓ}). Thus, there

exists ℓ0 ≥ m + i∗ such that P(M ∩ {♯ℓ0 ≥ m}) = P(M ∩ {k(·) ≤ ℓ}) ≥ P(M)/2.
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ClearlyM ∩ {♯ℓ0 ≥ m} ⊆ D ∩ {F ≥ ℓ0} ∩ {♯ℓ0 ≥ m}. From (2) it follows that

E[Yℓ0 ] ≤ B
∗ · P(D) − ϵ ·

ℓ0−i
∗∑

ℓ=0

ℓ · P(D ∩ {F ≥ ℓ0} ∩ {♯ℓ0 = ℓ})

= B∗ · P(D) − ϵ ·

ℓ0−i
∗∑

ℓ=1

P(D ∩ {F ≥ ℓ0} ∩ {♯ℓ0 ≥ ℓ})

≤ B∗ · P(D) − ϵ ·

m∑

ℓ=1

P(D ∩ {F ≥ ℓ0} ∩ {♯ℓ0 ≥ ℓ})

≤ B∗ · P(D) − ϵ ·

m∑

ℓ=1

P(D ∩ {F ≥ ℓ0} ∩ {♯ℓ0 ≥ m})

≤ B∗ · P(D) − ϵ ·m · P(M)/2 < 0,

where the second line follows by standard re-arranging of terms, the third line follows from the
fact thatm ≤ ℓ0 − i∗, the fourth line follows from {♯ℓ0 ≥ m} ⊆ {♯ℓ0 ≥ ℓ} for each ℓ ≤ m, the first
inequality on the last line follows by using P(M)/2 ≤ P(M ∩ {♯ℓ0 ≥ m}) ≤ P(D ∩ {F ≥ ℓ0} ∩ {♯ℓ0 ≥
m}), and the last inequality follows by expanding the definition ofm. But for each k the random
variable Yk is non-negative, so it must also have a non-negative expectation, a contradiction. Finally,
note that for strict n-dimensional LexRSMs the condition of level < n + 1 appearing infinitely many
times is trivially satisfied. □

Remark 2. This section presents a purely mathematical result about general LexRSMs, and does not
present specific examples. In the following section we apply the result to PPs and illustrate on examples.

4 LEXICOGRAPHIC SUPERMARTINGALES FOR PROBABILISTIC PROGRAMS

We now discuss how to leverage the mathematical results of the previous section to provide a
sound method for almost-sure termination of probabilistic programs. Hence, for the rest of this
section we fix a PP P and the associated pCFG CP = (L,V , ℓinit ,Ξinit , 7→,Up, Pr,G).

We aim to define a function assigning a non-negative vector to each configuration (so called
measurable map) such that in each point of computation, the expected value of the function after
performing one more computational step is smaller (in lexicographic ordering) than the current
one. We formalize this property below.

Definition 4.1 (Measurable Maps and Linear Expression Maps). A 1-dimensional measurable map for
a PP P is a real-valued function η assigning to each program location ℓ of CP a Borel-measurable
function η(ℓ) of program variables, i.e. each η(ℓ) is a function of type R |V | → R. As a special case,
if all the functions η(ℓ) are affine, then we call η a 1-dimensional linear expression map (LEM). An
n-dimensional measurable/linear expression map is a vector −→η = (η1, . . . ,ηn) of 1-dimensional
measurable/linear expression maps.

Each 1-dimensional measurable map η and location ℓ determines a function η(ℓ) which takes as an
argument a |V |-dimensional vector. We use η(ℓ, x) as a shorthand notation for η(ℓ)(x).

We now formalize the notion of a transition in a pCFG being ranked by a measurable map. We first
define this notion for transitions that do not go out of a probabilistic branching location, as the
latter require a special treatment.
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Definition 4.2. Let η be a measurable map, (ℓ, x) be a configuration such that ℓ < LPB and let
τ = (ℓ, ℓ′) be a transition outgoing from ℓ. For an ϵ ∈ R we say that τ is ϵ-ranked by η from (ℓ, x) if
the following conditions are satisfied, depending on the type of ℓ:

• if ℓ is a deterministic or non-deterministic branching location, then

η(ℓ′, x) ≤ η(ℓ, x) − ϵ ;

• If ℓ is an assignment location, then we distinguish three cases, depending on Up(τ ) = (j,u)
(recall that u is an update element):
ś If u : R |V | → R is a Borel-measurable function, then we require

η(ℓ′, x(j ← u(x))) ≤ η(ℓ, x) − ϵ

ś If u is a distribution d , then we require

η(ℓ′, x(j ← E[d])) ≤ η(ℓ, x) − ϵ,

where E[d] is the expected value of the distribution d .
ś If u is a set, then we require

sup
a∈u

η(ℓ′, x(j ← a)) ≤ η(ℓ, x) − ϵ .

Since ranking supermartingales are required to decrease on average, for individual transitions
outgoing from LPB it does not make sense to say that they are ranked or not. Instead, for each
ℓ ∈ LPB we consider all outgoing transitions together.

Definition 4.3. Let η be a measurable map, and let (ℓ, x) be a configuration with ℓ ∈ LPB. For an
ϵ ∈ R we say that ℓ is ϵ-ranked by η from (ℓ, x) if

∑

(ℓ,ℓ′)∈7→

Prℓ (ℓ, ℓ
′) · η(ℓ′, x) ≤ η(ℓ, x) − ϵ . (3)

To capture the specific of LPB, we introduce the notion of generalized transition.

Definition 4.4. A generalized transition of a pCFG C is either a transition of C outgoing from a
location not in LPB or a location ℓ ∈ LPB.

Intuitively, we represent the set of transitions outgoing from ℓ ∈ LPB by the source location ℓ. For
generalized transitions τ̃ = ℓ ∈ LPB we say that τ̃ is outgoing from ℓ.

Definitions 4.2 and 4.3 define when is a generalized transition ϵ-ranked by η from configuration
(ℓ, x). We say that a generalized transition is unaffected by η from (ℓ, x) if it is 0-ranked by η from
(ℓ, x).

As in termination analysis of non-probabilistic programs, our LexRSMs are typically supported by
invariants, i.e. overapproximations of the set of reachable configurations.

Definition 4.5 (Invariant Map and Linear Invariant Map). An invariant map for a PP P is a function
I assigning to each location ℓ of CP a Borel-measurable set I (ℓ) ⊆ R |V | of variable valuations, so
called invariant of ℓ, such that for each configuration (ℓ, x) reachable from some initial configuration
it holds x ∈ I (ℓ). Additionally, if each set I (ℓ) is of the form {x | x |= Ψ

ℓ} for some propositionally
linear predicate Ψℓ , then we call I a linear invariant map (LIM).
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Slightly abusing the notation, we view each LIM equivalently as a function assigning linear predi-
cates (whose satisfaction sets overapproximate the set of reachable valuations) to program locations.

We now have all the ingredients needed to define the notion of LexRSM maps for probabilistic
programs. For notational convenience, we extend the function G (which assigns guards to deter-
ministic transitions) to the set of all generalized transition: for a generalized transition τ ′ which is
not a standard transition outgoing from deterministic location, we put G(τ ′) = 0 ≤ 0 ≡ true.

Definition 4.6 (Lexicographic Ranking Supermartingale Map). Let ϵ > 0. An n-dimensional lexico-
graphic ϵ-ranking supermartingale map (ϵ-LexRSMmap) for a program P supported by an invariant
map I is an n-dimensional measurable map −→η = (η1, . . . ,ηn) for P such that for each configuration
(ℓ, x) where ℓ , ℓterm and x ∈ I (ℓ) the following conditions are satisfied:

• for all 1 ≤ j ≤ n, ηj (ℓ, x) ≥ 0; and
• for each generalized transition τ̃ outgoing from ℓ such that x |= G(τ̃ ) (we say that such a τ̃ is
enabled in (ℓ, x)) there exists 1 ≤ j ≤ n such that
ś τ̃ is ϵ-ranked by ηj from (ℓ, x)
ś for all 1 ≤ j ′ < j we have that τ̃ is unaffected by ηj′ from (ℓ, x).

If additionally η is a linear expression map, then we call it a linear ϵ-LexRSM map (ϵ-LinLexRSM).

Example 4.7. Consider the program shown in Figure 2. A 2-dimensional 1-LinLexRSM map for
the program is given on the right, along with the supporting invariants in square brackets. The
invariants and a LinLexRSM on each line belong to the program location in which the program is
before executing the command on that line. The function is indeed a 1-LinLexRSM, since in the
probabilistic branching location ℓ we have the LHS of (3) equal to 3c + 3 and 3c + 3 ≤ 6c + 1 − 1 for
all c ≥ 1.

The main result is the soundness of ϵ-LexRSM maps for proving a.s. termination.

Theorem 4.8. LetP be a probabilistic program. Assume that there exists an ϵ > 0 and ann-dimensional

ϵ-LexRSM map −→η = (η1, . . . ,ηn) for P supported by some invariant map I . Then P terminates almost
surely.

Proof. Let σ be any measurable scheduler and xinit ∈ Ξinit any initial variable valuation in P.
We make the proof under the assumption that σ is location-pure, which means that in each
nondeterministic branching location it selects (depending on the current execution fragment) a
concrete transition to execute with probability 1 (rather than randomizing between łifž and łelsež
branches). The general proof is more technical and we defer it to [Agrawal et al. 2017].

We define an n-dimensional stochastic process {Xi }
∞
i=0 on the probability space (ΩRun,R,P

σ
xinit
)

such that for each i ≥ 0 and 1 ≤ j ≤ n and each run ϱ we put Xi [j](ϱ) = ηj (Ci (ϱ)). We claim
that {Xi }

∞
i=0 is a strict n-dimensional ϵ-LexRSM for the termination time Term of P. Clearly, the

process is real-valued, componentwise non-negative, and adapted to the canonical filtration of R
(see Remark 1). It remains to prove that condition (3) in Definition 3.3 is satisfied. To this end, for
each i ≥ 0 we define a partition of the set {ϱ ∈ ΩRun | Term(ϱ) > i} into sets Li1, . . . ,L

i
n as follows:

we put Lij to be the set of all runs ϱ such that Term(ϱ) > i and the index j is the smallest one such
that the unique generalized transition enabled in Ci (ϱ) is ranked by ηj from Ci (ϱ) (here we use
that σ is location pure, as in such a case there is indeed a unique enabled generalized transition).
Due to definition of an ϵ-LexRSM map such a j exists for all ϱ ∈ {Term > i} and hence we indeed
have a partition (so Lin+1 = ∅ for all i). It remains to prove that irrespective of the initial choice of
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x := 1 ; c := 1 ;
while c ≥ 1 do

i f prob ( 0 . 5 ) then

x := 2 · x
e l se

c := 0
f i

od ;
while x ≥ 0 do x := x − 1 od

(6c + 2,x)
(6c + 1,x)
(6c + 3,x)

(3,x)

(0,x)

[c ≥ 0 ∧ x ≥ 1]
[c ≥ 1 ∧ x ≥ 1]
[c ≥ 1 ∧ x ≥ 1]

[c ≥ 1 ∧ x ≥ 1]

[x ≥ 0]

Fig. 2. An example program that is a.s. terminating but with infinite expected termination time.

σ and xinit it holds, for each 1 ≤ j ≤ n and j ′ < j, that Eσxinit [Xi+1[j] | Ri ] ≤ Xi [j] − ϵ on Lij and

E
σ
xinit
[Xi+1[j] | Ri ] ≤ Xi [j] on Lij′ . This follows easily from the definition of Li1, . . . ,L

i
n and from the

definition of a transition being ϵ-ranked by ηj .

Since {Xi }
∞
i=0 is an ϵ-LexRSM for Term, from Theorem 4.8 it follows that Pσxinit (Term < ∞) = 1,

irrespective of σ and xinit . □

For 1-dimensional RSMs, their existence imply both a.s. termination as well as positive termination.
In contrast, we show that (Lin)LexRSMs can prove a.s. termination of programs whose expected
termination time is infinite.

Example 4.9. Consider the program in Figure 2. By Example 4.7 and Theorem 4.8 it follows that the
program terminates a.s., but the expected termination time is infinite: to see this, note that that the
expected value of variable x upon reaching the second loop is 1

2 ·1+
1
4 ·2+

1
8 ·4+· · · =

1
2+

1
2+

1
2+· · · = ∞

and that the time needed to get out of the second loop is equal to the value of x upon entering the
loop.

Also, similarly to non-probabilistic programs, LexRSMs are more powerful than 1-dimensional
LexRSMs already on single-loop programs.

Example 4.10. Consider the program in Figure 1 and, for simplicity, assume that initial values of
variables are non-negative. One can rather straightforwardly check that there is no 1-dimensional
Lin(Lex)RSM map for the program, given any invariant. Intuitively, this is because any such RSM
map has to decrease as x decreases, since x is the only variable modified in the łifž branch of the
non-deterministic choice, but x can increase unboundedly in the łelsež branch, and this cannot
be compensated by a bounded decrease of y. However, there is the following 3-dimensional 1

2 -

LinLexRSMmap −→η : −→η (ℓ0) = (y+1,x+2, 3),
−→η (ℓ1) = (y+1,x+2, 2),

−→η (ℓ2) =
−→η (ℓ3) = (y+1,x+2, 1),

−→η (ℓ4) = (y + 1,x + 3, 0),
−→η (ℓ5) = (y + 1,x + 1, 0),

−→η (ℓ6) = (y +
1
2 ,x + 2, 1),

−→η (ℓ7) = (0, 0, 0). (Here
−→η is supported by invariant I s.t. I (ℓ0) = x ≥ −2 ∧ y ≥ −1, I (ℓi ) = x ≥ 0 ∧ y ≥ 0 for i = 1, . . . , 6,
and I (ℓ7) = true.) A bit more intricate LinLexRSM map exists also without the assumption that the
initial valuation is non-negative.

5 ALGORITHMIC ASPECTS

In this section we describe a polynomial-time algorithm for synthesizing linear ϵ-LexRSM maps
in affine probabilistic programs supported by a given linear invariant map I . A fully automated
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method of termination proving can be obtained by pre-processing a given program using a suitable
invariant generation tool, and inputting the program along with the computed invariants into our
algorithm. This is also what we do in our experiments (Section 8).

The algorithm, based on iterative solving of linear constraints, is a generalization of an algorithm
for finding lexicographic ranking functions in non-probabilistic programs [Alias et al. 2010]. Hence,
we provide only a high-level description, focusing on the new aspects. For clarity of presentation,
we show an algorithm which works for programs whose pCFGs have the property that a guard
of each transition is a linear assertion (this particularly holds if each guard of while loop or a
conditional branch in the program is a linear constraint). We also assume that we work with
invariant maps such that each I (ℓ) is a polyhedron, i.e. a set defined by a linear assertion. This is
exactly the setting in which non-probabilistic termination was considered in [Alias et al. 2010]. In
the full version [Agrawal et al. 2017], we show how to extend the algorithm to general guards and
invariants.

The main idea is to iteratively synthesize 1-dimensional linear expression maps (LEMs) that 1-rank
a subset of generalized transitions. These maps form the individual components of the sought-
after 1-LinLexRSM map. In each iteration, we start with a setU of the yet-unranked generalized
transitions. We seek a 1-dimensional LEM which ranks the maximal number of elements ofU , and
is unaffected by the remaining elements ofU (here, by ranking a generalized transition τ̃ we mean
ranking it from each configuration (ℓ, x), where ℓ is the source location of τ̃ and x ∈ I (ℓ)). If no
1-dimensional LEM that would rank at least one element in U exists, then there is no LinLexRSM
map for the program. Otherwise, we remove the newly ranked elements from U and continue into
the next iteration, untilU becomes empty. The process is summarized in Algorithm 1.

Hence, the main computational task of the algorithm is to check, for a given set of generalized
transitionsU , whether there exists a 1-dimensional LEM η such that:

(1) for each location ℓ ∈ L and all x ∈ I (ℓ) it holds η(ℓ, x) ≥ 0;
(2) for each τ̃ ∈ U and each configuration (ℓ, x) where ℓ is the source of τ̃ and x ∈ I (ℓ) ∩ {x′ | x′ |=

G(τ̃ )} we have that τ̃ is unaffected by η from (ℓ, x); and
(3) there is τ̃ ∈ U that is 1-ranked by η, from each configuration (ℓ, x) where ℓ is the source of τ̃

and x ∈ I (ℓ) ∩ {x′ | x′ |= G(τ̃ )}; we then say that η ranks τ̃ w.r.t. I .

Moreover, if such an LEM η exists, the algorithm has to find one that maximizes the number of gen.
transitions inU ranked by it. Both these tasks can be accomplished by the standard method of linear
constraints based on the use of Farkas’s lemma, which was widely use for synthesis of termination
proofs in both probabilistic and non-probabilistic programs [Chakarov and Sankaranarayanan
2013; Chatterjee et al. 2016b; Colón and Sipma 2001; Podelski and Rybalchenko 2004a]. That is,
the algorithm first constructs, for each location ℓ a template for η, i.e. an expression of the form
aℓ1x1 + · · · + a

ℓ

|V |
x |V | + b

ℓ , where x1, . . . ,x |V | are program variables and aℓ1 , . . . ,a
ℓ

|V |
,bℓ are yet

unknown coefficients. Supplying concrete values for all the unknown coefficients yields an LEM.
Now the conditions (1) and (2) above can be expressed using linear constraints on the coefficients.
More precisely, using the construction provided e.g. in [Chakarov and Sankaranarayanan 2013;
Chatterjee et al. 2016b] (which includes a use of the Farkas’s lemma) we construct, in polynomial
time, for each generalized transition τ̃ , a system of linear constraints Lτ̃ over set of variables
{aℓ1 , . . . ,a

ℓ

|V |
,bℓ | ℓ ∈ L} ∪ {ϵτ̃ } ∪ F , where F is the set of fresh variables (not appearing in any

template) and ϵτ̃ is constrained to be non-negative. Each solution of the system Lτ̃ yields a LEM
which satisfies the constraints (1) and (2) for τ̃ . Moreover, each solution of Lτ̃ yields a LEM which
ϵτ̃ -ranks τ̃ . To find a LEM which satisfies all constraints (1)ś(3) as well as maximizes the number
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of 1-ranked elements ofU it is sufficient to construct Lτ̃ for each τ̃ ∈ U and solve the following
linear program LPU :

maximize
∑

τ̃ ∈U

ϵτ̃ subject to constraints

Lτ̃ ∧ 0 ≤ ϵτ̃ ≤ 1; τ̃ ∈ U

Each system Lτ̃ is constructed in such a way that if it admits a solution with some ϵτ̃ positive, then
decreasing the value of ϵτ̃ in that solution to any non-negative value still yields a valid solution
(this corresponds to the fact that if some transition is ϵ-ranked by η, than it is ϵ ′-ranked by η for
each 0 ≤ ϵ ′ ≤ ϵ). Moreover, each solution where ϵτ̃ is positive can be rescaled into another solution
in which ϵτ̃ is at least 1. It follows that if LPU has at least one feasible solution, then it has an
optimal solution in which each ϵτ̃ is either 0 or 1. If the system does not have a solution or all the
ϵτ̃ are equal to zero then there is no LEM satisfying (1)ś(3). Otherwise, the optimal solution of
LPU yields a LEM η which satisfies (1)ś(3) and maximizes the number of 1-ranked elements ofU .

This polynomial-time linear-programming step is used as a sub-procedure in Algorithm 1 for
LinLexRSM synthesis.

Algorithm 1: Synthesis of LinLexRSMs for Apps

input :An App P together with an invariant map I .
output :A multi-dimensional LinLexRSM if it exists, otherwise łNo LinLexRSMž

1 U ← all generalized transitions of CP
2 d ← 0

3 whileU is non-empty do

4 d ← d + 1

5 construct and solve LPU
6 if LPU does not have a feasible solution or optimal value is 0 then
7 return No LinLexRSM

8 else

9 sol ← optimal solution of LPU
10 ηd ← the LEM η induced by sol

11 U ← U \ {τ̃ | ϵτ̃ = 1 in sol}

12 return (η1, . . . ,ηd )

Both soundness and relative completeness of Algorithm 1 can be proved by generalization of
arguments presented in [Alias et al. 2010].

Theorem 5.1. Suppose that Algorithm 1 is run on an App P together with linear invariant map I . If

the algorithm returns a d-dimensional LEM −→η = (η1, . . . ,ηd ), then
−→η is a 1-LinLexRSM map for P

supported by I . Conversely, if the algorithm returns łNo LinLexRSMž, then for any d ′ ∈ N and ϵ > 0

there is no d ′-dimensional ϵ-LinLexRSM for P supported by I . If guards of all transitions in CP are
linear assertions, then the algorithm runs in time polynomial in size of P and I .

Proof (Key Ideas). For soundness, letUi denote the content of U just before the i-th iteration of
the while loop. Then each τ̃ ∈ Ui \Ui+1 is 1-ranked by ηi , for each 1 ≤ i ≤ d . Since Ud = ∅, each
generalized transition of CP is 1-ranked by some component of −→η . Non-negativity of each ηi is
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ensured directly by LPUi . Hence, it remains to show that each τ̃ ∈ Ui is unaffected by η1, . . . ,ηi−1.
But this follows from Ui ⊆ Ui−1 ⊆ · · · ⊆ U1 and from the fact that each gen. transition in Uj is
unaffected by ηj .

Proving completeness is more intricate; as pointed out in [Alias et al. 2010], one needs to show that
the greedy strategy of selecting LEM that ranks maximal number of remaining transitions does not
cut off some possible LinLexRSMs. In [Alias et al. 2010] the completeness of the greedy strategy is
proved by using several geometric arguments that exploit the fact that the underlying programs are
affine. The same geometric properties hold for our generalization to Apps (all ranking conditions
in Definitions 4.2 and 4.3 are linear in program variables), so the result is easily transferable.
The complexity argument is rather standard and we present it in the full version [Agrawal et al.
2017]. □

6 COMPOSITIONALITY OF RANKING SUPERMARTINGALES REVISITED

In this section we discuss compositional aspects of LexRSMs. We start with the one-dimensional
case, and then present the multidimensional case.

6.1 One-Dimensional Compositional Proofs of Almost-Sure Termination

Compositionality in the context of termination proving means providing the proof of termination
step-by-step, handling one loop at a time, rather than attempting to construct the proof (in our case,
a LexRSM) at once [Kroening et al. 2010]. In the context of probabilistic programs, the work [Fioriti
and Hermanns 2015] introduced a compositional notion of almost-sure termination proof based on
the probabilistic variant rule (V-rule), which we explain in a more detail below. However, for the
method to work, [Fioriti and Hermanns 2015] impose a technical uniform integrability condition,
whose checking is hard to automatize. In this section we show that using our insights into LexRSMs
we can obtain a different notion of a probabilistic V-rule which is sound without any additional
assumptions, and which can be used to compositionally prove termination of programs that the
previous method cannot handle.

Let P be a PP of the form while Ψ do Pbody od, and let CP be the associated pCFG, whose set of
locations we denote by L. We denote by loops(P) the set of all locations of CP that belong to a
sub-pCFG of CP corresponding to some nested loop of P. We also define slice(P) to be the set
L \ loops(P) of locations that do not belong to any nested sub-loop. A formal definition of both
functions is given in the full version [Agrawal et al. 2017], we illustrate them in the following
example.

Example 6.1. Consider the programP in Figure 4a and its associated pCFG. Then loops(P) = {ℓ2, ℓ3}
and slice(P) = {ℓ0, ℓ1, ℓ4, ℓ

out}.

Given an invariant map I , we say that a 1-dimensional measurable map η for CP is ϵ-I -
ranking/unaffecting in location ℓ, if for each x ∈ I (ℓ) each generalized transition τ̃ outgoing
from ℓ is ϵ-ranked/unaffected by η from (ℓ, x).

We recall the notion of compositional ranking supermartingale as introduced in [Fioriti and Her-
manns 2015]. We call it a PV supermartingale, as it is based on so called probabilistic variant
rule. Due to differences in syntax and semantics, the definition is syntactically slightly different

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 34. Publication date: January 2018.



34:20 Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný

from [Fioriti and Hermanns 2015], but the essence is the same. A measurable map η is proposition-
ally linear, if each function η(ℓ) is of the form 1G1

· E1 + · · · 1Gk
· Ek , where each 1Gi

is an indicator
function of some polyhedron and each Ei is a linear expression.

Definition 6.2 (PV-supermartingale [Fioriti and Hermanns 2015, Definition 7.1.]). A 1-dimensional
propositionally linear map η is a PV supermartingale (PVSM) for a program P supported by an
invariant map I if there exists ϵ > 0 such that η is ϵ-I -ranking an I -non-negative (i.e. non-negative
on all configurations within I ) in each location ℓ ∈ slice(P) and I -unaffected in each ℓ ∈ loops(P).

The condition that η should be non-negative in locations of slice(P) is not explicitly mentioned in
[Fioriti and Hermanns 2015]. However, it is implicitly used in some of the proofs and one can easily
construct an example where, if the non-negativity in slice(P) is not required, the Theorem 6.3
below, which also comes from [Fioriti and Hermanns 2015], does not hold. Hence, we state the
condition explicitly.

In [Fioriti and Hermanns 2015], they present an intriguing example showing that even if all nested
loops were already proved to terminate a.s. and there is a PVSM for the program, then the program
itself might not terminate a.s. This is in stark contrast with the non-probabilistic setting, where
an analogous argument would be sound for proving termination. To remedy this, they impose a
uniform integrability constraint on the PVSM under which a PVSM together with a proof of a.s.
termination of each nested sub-loop of P entails termination of the whole program P. Uniform
integrability is a deep concept from probability and measure theory: a sequence X0,X1,X2, . . . of
random variables is uniformly integrable if for each δ > 0 there exists aK ∈ N such that for alln ≥ 0

it holds E[|Xn | · 1Xn ≥K ] ≤ δ . Apart from uniform integrability being somewhat restrictive in itself,
already in [Fioriti and Hermanns 2015] it is argued that proving uniform integrability is beyond
the capability of state-of-the-art automated theorem provers. As a substitute for these, [Fioriti
and Hermanns 2015] introduce a type system that can be used to automatically prove uniform
integrability of ranking supermartingales for a restricted class of programs. We do not repeat the
precise definition of the typesystem here, we just say that a PVSM satisfying the condition imposed
by the type system typechecks correctly. The following result about PVSMs was proved:

Theorem 6.3 ([Fioriti and Hermanns 2015]). Let P be a PP of the form while Ψ do Pbody od.
Assume that each nested loop of P terminates in finite expected time from each reachable configuration,
and that there exists a PVSM for P that typechecks correctly. Then P terminates almost surely.

The intricacies of uniform integrability are shown in the following example.

Example 6.4. Consider the two Apps in Figure 3. For the inner loop there exists (in both cases)
a 1-dimensional linear ranking supermartingale whose value in each location is equal to c + dℓ ,
where dℓ is a location-specific constant. Since the expected change of c in each loop step is −0.5,
this is indeed a LRSM. Also, in both cases, a LEM of the form x + d ′

ℓ
, again for some suitable

location-specific constants d ′
ℓ
, is a PVSM for the outer loop. However, the variable x is uniformly

integrable within the inner loop of the right program while for the left program this does not
hold: we show this in the full version [Agrawal et al. 2017]. The example shows that proving
uniform integrability requires intricate reasoning about quantitative behaviour of the program and
dependencies of its variables. Moreover, as shown below, none of the two programs have a PVSM
that typechecks.

Indeed, taking a closer look at typesystem in [Fioriti and Hermanns 2015], there are several reasons
for typechecking of a PVSM to fail. The major ones are:
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while x ≥ 0 do

c := 1 ;
while c ≥ 1 do

i f prob ( 0 . 5 ) then

x := 0 ; c := 0
e l se x := 2x f i ;

od ;
x := x − 1

od

while x ≥ 0 do

c := 1 ;
while c ≥ 1 do

i f prob ( 0 . 5 ) then x := 0
e l se x := 2x f i ;
i f prob ( 0 . 5 ) then c := 0
e l se skip f i

od ;
x := x − 1

od

Fig. 3. Examples of programs with (right) and without (left) uniformly integrable PVSMs.

while x ≥ 0 and z ≥ 0 do

y := z ;
while y ≥ 3 do

y := y+sample(Uniform[−3, 1])

od ;
x := x − 1

od

ℓ0

ℓout

ℓ1 ℓ2

ℓ3

ℓ4

x < 0 ∨ z < 0

x ≥ 0
∧

z ≥ 0

y := z
y < 3

y ≥ 3y := . . .

x := x − 1

(a) Example for slicing illustration: program and
its pCFG.

while x ≥ 0 do

while y ≥ 0 do

z := x ;
while z ≥ 0 do

z := z − 1 ;
x := x − 1

od ;
y := y − 1

od ;
x := x+sample(Uniform[−3, 1])

od

(b) Program where the outer loop does not have
a PVSM that typechecks.

Fig. 4. Program illustrations.

(1) A PVSM η for PP P will not typecheck if P has a nested loop in which the value of η can change
unboundedly in a single step (see Figure 3).

(2) A PVSM η for PP P will not typecheck if P has a nested loop which itself has a nested loop in
which some variable appearing in some expression of η is modified, see Figure 4b.3

Thus, the typechecking algorithmmay rule out programswhere the termination-controlling variable
represents e.g. a length of an array, which can be doubled/halved in some sub-program due to
(de)allocation, merging, or splitting. To overcome the typechecking, we use the results on LexRSMs
to define a new notion of compositional ranking supermartingales, which we call non-negative

3Both these statements regarding typechecking failure are somewhat simplified, even in these two cases the PVSM might
sometimes typecheck correctly, in case where the nested loops are followed by assignments which completely overwrite the
effect of these loops, e.g. if the program in Figure 4b contained an assignment x := 0. However, the statements intuitively
summarize the major reasons for typechecking failure.
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compositional (NC) supermartingales. For the sake of generality, we allow NC martingales to be
general measurable maps, not necessarily propositionally linear.

Definition 6.5. A 1-dimensional measurable map η is an NC supermartingale (NCSM) for a program
P supported by an invariant map I if there exists ϵ > 0 such that η is:

(1) non-negative in each (ℓ, x) where ℓ is a location of CP and x ∈ I (ℓ);
(2) ϵ-I -ranking in each location ℓ ∈ slice(P); and
(3) I -unaffecting in each ℓ ∈ loops(P).

A (propositionally) linear NCSM (LinNCSM) is a NCSM which is also a (propositionally) linear
expression map.

We can prove that NCSMs are a sound method for proving a.s. termination in a compositional way,
without any additional assumptions.

Theorem 6.6. Let P be a PP of the form while Ψ do Pbody od. Assume that each nested loop of P
terminates almost surely from each reachable configuration, and that there exists a NCSM for P
supported by some invariant map. Then P terminates almost surely from each initial configuration.

Proof (Key Idea). Let {Xi }
∞
i=0 be a stochastic process returning the value of NCSM η in step i .

Then {Xi }
∞
i=0 is a (non-strict) 1-dimensional ϵ-LexRSM for the termination time of the program,

for some ϵ > 0. Since all sub-loops of P terminate, with probability one each run has level < 2 in
infinitely many steps. From Theorem 3.4 it follows that Pσxinit (Term < ∞) = 1, for all σ and xinit . □

For Apps, synthesizing linear NCSM entails synthesizing sufficient program invariants (for which
there is a good automated tool support [Feautrier and Gonnord 2010]) and encoding the ranking,
unaffection, and non-negativity conditions into a collection of linear constraints (as for general
LinLexRSMs in Section 5). Figures 3 and 4b show instances where attempts to prove a.s. termination
via PVSMs fail while proofs via LinNCSMs work.

Example 6.7. All programs in Figures 3 and 4b have LinNCSMs for all their loops, which shows
that the programs terminate a.s. In Figure 3, for both programs the inner loops have LinNCSMs
of the form c + dℓ , for dℓ a location-specific constant, while the outer loops have LinNCSMs of
the form x + d ′

ℓ
. In Figure 4b the program similarly has LinNCSMs defined, proceeding from the

innermost loop and neglecting the location-specific constants, by variables z, y, x .

Using LinNCSMs, we can devise a simple algorithm for compositional proving of almost-sure
termination of Apps, which is pictured in Algorithm 2.

The soundness of the algorithm follows from Theorems 6.6 and 6.3. We can use the PVSM-based
algorithm of [Fioriti and Hermanns 2015] in the case when LinNCSM-based proof fails. Hence,
Algorithm 2 can compositionally prove a.s. termination of strictly larger class of programs than the
PVSM-based algorithm alone.

Example 6.8. A compositional proof of almost-sure termination for the left program in Figure 3
would go as follows: First, the algorithm takes the inner loop and synthesizes its one-dimensional
RSM of the form c + dℓ (clearly, c is non-negative inside the loop and its value decreases by an
average of 0.5 in each loop execution). This proves a.s. termination of the inner loop. Then, the
algorithm takes the whole program and synthesizes a function of the form x +d ′

ℓ
, which, in addition

to being a one-dimensional RSM for the outer loop, is also non-negative and non-increasing (on
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Algorithm 2: Compositional Termination Proving

input :An App P together with an invariant map I .
1 for i ← depth of loop nesting in P to 0 do

2 foreach sub-loop P ′ of P nested i levels below the main loop do

3 L ← system of lin. constraints encoding the existence of LinNCSM for P ′ supported
by I

4 if L not solvable then
5 check termination of P via PVSM-algorithm from [Fioriti and Hermanns 2015]

6 return łP terminates a.s.ž

average) in the inner loop, i.e. it is a NCSM for the program. Paired with the already proved a.s.
termination of the inner loop, this proves a.s. termination of the whole program.

To summarize, the novelty of NCSMs is the following:

(1) NCSMs allow compositional, fully automated proofs of a.s. termination without the need for
reasoning about uniform integrability.

(2) LinNCSMs are capable of proving a.s. termination of programs for which no uniformly integrable
PVSMs exist (and hence the PVSM method cannot be used at all on such programs).

(3) LinNCSMs are capable of proving a.s. termination of programs for which the PVSM method
cannot be applied in an automated way, due to failure of the typechecking procedure.

(4) Unlike the PVSMmethod, NCSMs do not require the nested loops to terminate in finite expected
time in order to prove a.s. termination.

6.2 Multidimensional Compositional Ranking

Above, we defined NCSMs as one-dimensional objects, to make them analogous to PVSMs for
better comparison. However, we can also define a multi-dimensional version of NCSMs, to take
advantage of the fact that LexRSMs can handle loops for which no 1-dimensional linear RSM exists
(see Example 4.10). We say that, given an invariant map I , an n-dimensional measurable map is
ϵ-I -ranking in a location ℓ if for each x ∈ I (ℓ) and each gen. transition τ̃ outgoing from ℓ there
exists 1 ≤ j ≤ n such that τ̃ is ϵ-ranked by ηj from (ℓ, x) and for each j ′ < j we have that τ̃ is
unaffected by ηj′ .

Definition 6.9. An n-dimensional measurable map −→η = (η1, . . . ,ηn) is an NC supermartingale
(NCSM) for a program P supported by an invariant map I if there exists ϵ > 0 such that:

(1) for each 1 ≤ i ≤ n, ηi is non-negative in each location of CP ;
(2) −→η is ϵ-I -ranking in each location ℓ ∈ slice(P); and
(3) for each 1 ≤ i ≤ n, ηi is unaffected in each ℓ ∈ loops(P).

An n-dimensional linear NCSM (LinNCSM) is an n-dimensional NCSM which is also a linear
expression map. The following theorem can be proved in essentially the same way as Theorem 6.6.

Theorem 6.10. Let P be a PP of the form while Ψ do Pbody od. Assume that each nested loop of
P terminates almost surely from each reachable configuration, and that there exists a NCSM for P
supported by some invariant map. Then P terminates almost surely.
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For Apps, we can generalize Algorithm 2 by changing line 2 to łcheck existence of a multi-
dimensional LinNCSM for P ′ž and line 3 to łif a multi-dimensional LinNCSM does not exist.ž
The check of existence of a multi-dimensional LinNCSM for P ′ can be done by algorithm presented
in Section 5, modified so as to only pursue ranking for generalized transitions outgoing from
locations belonging to slice(P ′). (I.e., only these gen. transitions have ϵτ included in the objective
function, and algorithm terminates once all such transitions are ranked.)

7 BOUNDS ON EXPECTED TERMINATION TIME

As shown in Example 4.9, already LinLexRSM maps are capable of proving almost-sure termination
of programs whose expected termination time is infinite. However, it is often desirable to obtain
bounds on expected runtime of a program. In this section, we present a LexRSM-based method for
obtaining bounds on expected runtime using a restricted class of LexRSMs.

As in the case of a.s. termination we start with general mathematical statement about LexRSMs. We
define a restricted class of strict LexRSMs with bounded expected conditional increase property. Recall
from Definition 3.3 that strict LexRSM for a stopping time T is characterized by the possibility to
a.s. partition, for each i ∈ N0, the set {ω ∈ Ω | T (ω) > i} into n sets Li1, . . . ,L

i
d
such that, intuitively,

on Lij the conditional expectation of Xi+1[j] given Fi is smaller than Xi [j], and for all j ′ < j, on Lij′
the conditional expectation of Xi+1[j] given Fi is no larger than Xi [j]. This leaves the opportunity
of conditional expectation of Xi+1[j] being larger than Xi [j] on Lij′′ with j ′′ > j. The expected
conditional increase (ECI) property bounds the possibility of this increase.

Definition 7.1. Let {Xi }
∞
i=0 be an n-dimensional strict LexRSM for some stopping time T , defined

w.r.t. some filtration {Fi }∞i=0. We say that {Xi }
∞
i=0 has c-bounded expected conditional increase (ECI),

for some non-negative vector c ∈ Rd , if there exists an instance ({Xi }
∞
i=0, {L

i
1, . . . ,L

i
n+1}

∞
i=0) of

the strict LexRSM (i.e. Lin+1 = ∅ for all i) such that for each i ∈ N0 and each 1 ≤ j ≤ n it holds
E[Xi+1[j] | Fi ] ≤ Xi [j] + c[j] on Lij′′ , for all j

′′ > j (here Li1, . . . ,L
i
n are as in Definition 3.3).

For strict LexRSMs with c-bounded ECI we have the following result. For simplicity, we formulate
the result for 1-LexRSMs, though it is easy to prove analogous result for general ϵ-LexRSMs, ϵ > 0,
at the cost of obtaining less readable formula.

Theorem 7.2. Let {Xi }
∞
i=0 be an n-dimensional strict LexRSM with c-bounded ECI for some stopping

time T . Then E[T ] ≤
∑n

j=1 E[X0[j]] · (1 +
∑

j<j′≤j′′≤n

∏j′′

k=j′
c[k]).

Proof. Fix an instance ({Xi }
∞
i=0, {L

i
1, . . . ,L

i
n+1}

∞
i=0) satisfying Definition 7.1. Denote ♯lev j (ω) the

number of steps i in which ω ∈ Lij . Since by Theorem 3.4 the existence of strict LexRSM entails
P(T < ∞) = 1, the value ♯lev j (ω) is a.s. finite for all 1 ≤ j ≤ n. We prove that for each 1 ≤ j ≤ n it
holds E[♯lev j ] ≤ c[j] ·

(∑
j′<j E[♯lev j′]

)
+ E[X0[j]]. Since T (ω) =

∑
1≤j≤n ♯lev j (ω), for each ω ∈ Ω

(and hence, due to linearity of expectation E[T ] =
∑

1≤j≤n E[♯lev j ]), the statement of the Theorem
follows by an easy induction.

To prove the required inequality, let ♯k lev j (ω) be the number of steps i within the first k steps such
thatω ∈ Lij . We prove, by induction onk , that for eachk it holdsE[♯k lev j ] ≤ c[j]·

(∑
j′<j E[♯k lev j′]

)
+

E[X0[j]] − E[Xk [j]]. Once this is proved, the desired inequality follows by taking k to ∞, since
limk→∞ E[♯k lev j ] = E[♯lev j ] and limk→∞ E[Xk [j]] ≥ 0. The inductive proof is somewhat technical
and deferred to [Agrawal et al. 2017]. □
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To transfer this mathematical result to probabilistic programs, we want to impose a restriction
on LexRSM maps that ensures that all components of a LexRSM map have, from each reachable
configuration, an expected one-step increase of at most c . Here c can be a constant, but it can also be
a value that depends on the initial configurations: this is to handle cases where some variables are
periodically reset to a value related to the initial variable values, such as variable y in Figure 4a. To
this end, let P be a PPwith a pCFG CP and let −→η = (η1, . . . ,ηn) be an n-dimensional 1-LexRSMmap
for P. Consider an n-dimensional vector c̄ = (c̄1, . . . , c̄n) whose each component is an expression
over variables of P. We say that −→η has c̄-bounded ECI w.r.t. invariant map I if the following holds
for each initial configuration (ℓinit , xinit) with xinit ∈ Ξinit : for each configuration (ℓ, x) with x ∈ I (ℓ)
and generalized transition τ̃ of CP outgoing from (ℓ, x) it holds that if j is the smallest index such
that τ̃ is 1-ranked by ηj from (ℓ, x), then for all j ′ > j the gen. transition τ̃ is f -ranked by ηj′ from
(ℓ, x), where f = −c j′(xinit). From Theorem 7.2 we have the following:

Corollary 7.3. Let P be a probabilistic program. Assume that there exists an n-dimensional ϵ-

LexRSM map −→η = (η1, . . . ,ηd ) for P supported by some invariant map I , such that −→η has c̄-bounded
ECI (w.r.t. I ) for some vector of expressions c̄ = (c̄1, . . . , c̄n). Then under each scheduler σ and for each
initial valuation of program variables xinit ∈ Ξinit it holds E

σ
xinit
[Term] ≤ 2 ·

∑n
j=1 ηj (ℓinit , xinit) · (1 +∑

j<j′≤j′′≤n

∏j′′

k=j′
c̄k (xinit)).

Remark 3. Somewhat crisper statement of our result (weaker than Corollary 7.3) is as follows: Consider
the class of programs where each assignment is of the form x := x + c , where c is a real constant;
or x := a0 · init(x0) + ... + an · init(xn) + c , where a0, ...,an , c are real constants and init(xi ) is the
initial value of variable xi . For such programs, if a LinLexRSM exists, then the LinLexRSM implies
a (computable) bound B on expected termination time which is a polynomial function of the initial
variable values.

Remark 4. Previous works testify that analogous łbounded expected changež constraints naturally
emerge when one aims to obtain additional information about termination time of probabilistic
programs [Chatterjee et al. 2016b, 2017; Fioriti and Hermanns 2015]. However, all previous works
consider bounded expected change to use well-known tail-bound inequalities for martingales such as
Azuma’s inequality to obtain concentration bounds on termination time, but not asymptotic bounds
on expected termination time. In contrast, the major novelty of our bounded ECI condition is that we
show it can be used to obtain asymptotic bounds on expected termination time, and in particular, they
can be used to obtain polynomial bounds on expected runtime using linear supermartingales.

Example 7.4. Consider the program in Figure 4a, with initial condition xinit ≥ 0. There is an invariant
map I with I (ℓ0) = x ≥ −1, I (ℓ1) = I (ℓ4) = x ≥ 0∧ z ≥ 0, I (ℓ2) = I (ℓ3) = x ≥ 0∧y ≥ 0∧ z ≥ 0, and
I (ℓout) = true. Further, there exists the following 3-dimensional 1-LinLexRSM map −→η supported by
I : −→η (ℓ0) = (2x + 3, 0, 2),

−→η (ℓ1) = (2x + 3, 0, 1),
−→η (ℓ2) = (2x + 2,y, 1),

−→η (ℓ3) = (2x + 2,y, 0),
−→η (ℓ4) =

(2x + 2, 0, 0), and −→η (ℓout) = (0, 0, 0). It is easy to check that −→η is has (0, z, 2)-bounded ECI. Applying
Corollary 7.3 yields Eσxinit [Term] ≤ 2 · (2xinit + 3) · (3+ 3zinit)+ 0+ 4 = 12xinitzinit + 12xinit + 9zinit + 22.
Note that this quadratic bound is asymptotically optimal for the program.

Remark 5 (Polynomial bounds). Now consider that we have synthesized a 1-LexRSM map −→η and

we want to check if there exists c̄ such that −→η has c̄-bounded ECI. In the linear setting (i.e. the program
is an App, maps η and I are linear, and we seek c̄ which is a vector of affine expressions) we can encode
the existence of c̄ into a system of linear inequalities in a similar way as the existence of linear LexRSM
maps was encoded in Section 4 (some static analysis might be required to identify łresets to the initial
valuež). I.e., we set up a linear template with unknown coefficients for each component of c̄ and using
Farkas’s lemma we set up a system of linear constraints, which includes the unknown coefficients as
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variables, encoding the fact that −→η has c̄-bounded ECI. In this way, we can check in polynomial time if

Corollary 7.3 can be applied to −→η , and if yes, we can synthesize the witness vector c̄. Since c̄ consists of
affine expressions, Corollary 7.3 provides a polynomial (in the size of initial variable valuation) upper
bound on expected runtime.

8 EXPERIMENTAL RESULTS

We implemented the algorithm of Section 5 (in C++) and present two sets of experimental results.
For all the experimental results we use the tool Aspic [Feautrier and Gonnord 2010] for invariant
generation, and our algorithm requires linear-programming solver for which we use CPlex [cpl
2010]. The results were obtained on the following platform: Ubuntu16.04, 7.7GB, Intel-Core i3-4130
CPU 3.40GHz QuadCore 64-bit.

Benchmarks adapted from previous work. For developing our benchmark suite, we build on a bench-
mark suite of non-probabilistic programs from [Alias et al. 2010] (see also [Chawdhary et al. 2008]).
To the best of our knowledge, there are no abstraction tools available for probabilistic programs.
Hence, we construct our benchmark suite by taking abstractions of non-probabilistic programs in
the benchmark suite of [Alias et al. 2010] and extending these programs with probabilities. Given
these non-probabilistic programs, we obtain probabilistic programs in two ways: (a) probabilistic
loops, where the existing while loops are made probabilistic by executing the existing statements
with probability 1/2, and with remaining probability executing skip statements; and (b) probabilistic
assignments, where the existing assignments are perturbed uniformly in range [−1, 1] (i.e., we
consider additional variables whose value is, in each loop iteration, generated by probabilistic
assignment uniformly in the range [−1, 1], and we add such variable to the RHS of an existing
assignment). We report our results on twenty five benchmarks in Table 1 (we consider around fifty
benchmark examples and the results on the remaining ones, along with detailed description of the
table, are presented in the full version [Agrawal et al. 2017]). The experimental results show that
the time taken by our approach is almost always less than 1/10-th of a second. In the table, along
with the benchmark name, and time in seconds, we show whether a solution exists or not (i.e.,
whether linear lexicographic RSMs exist or not), and if the solution exists we present the dimension
of the lexicographic RSM we obtain. The final two columns of the table represent whether the
non-probabilistic program is extended with probabilistic loops and/or probabilistic assignments.

Synthetic examples of large programs. The programs in the aforementioned benchmark suite have
between 10-100 lines of code. To test the how does our approach scale with larger codes we consider
synthetic examples of large probabilistic programs generated as follows. Given n Boolean variables,
we consider probabilistic while loops, with some nondeterministic conditional branches, and
generate all possible 2n if conditions based on the Boolean variables. Hence, given n variables we
have probabilistic programs of size O(2n). For such programs, we first run an invariant generation
tool, followed by our algorithm. In all these examples lexicographic RSMs exist, and have dimension
at most 3. Even for programs with around 12K lines of code the total time taken is around one hour,
where the invariant generation (i.e., running Aspic) takes the maximum time, and our algorithm
requires around two minutes. The results are presented in Table 2 where we present the number of
variables, then lines of code, followed by the time taken for invariant generation by Aspic, then the
time taken by our algorithm, and finally the total time.
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Table 1. Experimental results for benchmarks from [Alias et al. 2010] extended with probabilistic loops/as-
signments.

Benchmark Time (s) Solution Dimension Prob. loops Prob. Assignments

alain 0.11 yes 3 yes yes
catmouse 0.08 yes 2 yes yes

counterex1a 0.10 no - no no
counterex1c 0.11 yes 2 yes yes

easy1 0.09 yes 1 yes yes
exmini 0.09 yes 2 yes yes

insertsort 0.10 yes 3 yes yes
ndecr 0.09 yes 2 yes yes
perfect 0.11 yes 3 yes yes

perfect2
0.10 yes 3 yes no
0.11 no - yes yes

real2 0.09 no - no no
realbubble 0.22 yes 3 yes yes
realselect 0.11 yes 3 yes yes

realshellsort 0.09 no - yes no
serpent 0.10 yes 3 yes yes

sipmabubble 0.10 yes 3 yes yes
speedDis2 0.09 no - no no

speedNestedMultiple 0.10 yes 3 yes yes
speedpldi2 0.09 yes 2 yes yes
speedpldi4 0.09 yes 2 yes yes

speedSimpleMultipleDep 0.09 no - no no

speedSingleSingle2
0.12 yes 2 yes no
0.10 no - yes yes

unperfect
0.10 yes 2 yes no
0.16 no - yes yes

wcet1 0.11 yes 2 yes yes
while2 0.10 yes 3 yes yes

9 RELATED WORK

Probabilistic programs and termination. In early works the termination for concurrent probabilistic
programs was studied as fairness [Sharir et al. 1984], which ignored precise probabilities. For
countable state space a sound and complete characterization of almost-sure termination was
presented in [Hart and Sharir 1985], but nondeterminism was absent. A sound and complete
method for proving termination of finite-state programs was given in [Esparza et al. 2012]. For
probablistic programs with countable state space and without nondeterminism, the Lyapunov
ranking functions provide a sound and complete method to prove positive termination [Bournez
and Garnier 2005; Foster 1953]. For probabilistic programs with nondeterminism, but restricted
to discrete probabilistic choices, the termination problem was studied in [McIver and Morgan
2004, 2005]. The RSM-based (ranking supermatingale-based) approach extending ranking functions
was first presented in [Chakarov and Sankaranarayanan 2013] for probabilistic programs without
non-determinism, but with real-valued variables, and its extension for probabilistic programs with
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Table 2. Experimental results for synthetic examples.

Variables LOC Inv Time (s) Our Time (s) Total Time (s)

2 20 0.06 0.03 0.08
3 32 0.07 0.03 0.09
4 56 0.08 0.04 0.11
5 104 0.14 0.06 0.19
6 200 0.36 0.10 0.46
7 392 1.31 0.3 1.61
8 776 7.56 0.7 8.25
9 1544 33.07 2.5 35.57
10 3080 164.09 8.77 172.86
11 6152 817.92 35.37 853.29
12 12296 4260.96 145.18 4406.14

non-determinism has been studied in [Chatterjee and Fu 2017; Chatterjee et al. 2016a,b, 2017; Fioriti
and Hermanns 2015; McIver and Morgan 2016]. Supermartingales were also considered for other
liveness and safety properties [Barthe et al. 2016a; Chakarov et al. 2016]. While all these results
deeply clarify the role of RSMs for probabilistic programs, the notion of lexicographic RSMs to
obtain an efficient approach for termination analysis for probabilistic programs has not been studied
before, which we consider in this work. A compositional rule for proving almost-sure termination
was studied in [Fioriti and Hermanns 2015] under the uniform integrability assumption. In [McIver
and Morgan 2005], a soundness of the probabilistic variant rule is proved for programs with finitely
many configurations.

Other approaches. Besides RSMs, other approaches have also been considered for probabilistic
programs. Logical calculi for reasoning about properties of probabilistic programs (including termi-
nation) were studied in [Feldman 1984; Feldman and Harel 1982; Kozen 1981, 1983] and extended
to programs with demonic non-determinism in [Gretz et al. 2014; Kaminski et al. 2016; Katoen et al.
2010; McIver and Morgan 2004, 2005; Olmedo et al. 2016]. However, none of these approaches is
readily automatizable. A sound approach [Monniaux 2001] for almost-sure termination is to explore
the exponential decrease of probabilities upon bounded-termination through abstract interpreta-
tion [Cousot and Cousot 1977]. A method for a.s. termination of weakly finite programs (where
number of reachable configurations is finite from each initial configuration) based on patterns was
presented in [Esparza et al. 2012].

Non-probabilistic programs. Termination analysis of non-probabilistic programs has also been
extensively studied [Bradley et al. 2005a,b; Colón and Sipma 2001; Cook et al. 2006, 2011; Kroening
et al. 2010; Lee et al. 2001; Podelski and Rybalchenko 2004a,b; Sohn and Gelder 1991]. Ranking
functions are at the heart of the termination analysis, and lexicographic ranking functions have
emerged as one of the most efficient and practical approaches for termination analysis [Alias et al.
2010; Bradley et al. 2005a; Cook et al. 2013; Gonnord et al. 2015], being used e.g. in the prominent
T2 temporal prover [Brockschmidt et al. 2016]. In this work, we extend lexicographic ranking
functions to probabilistic programs, and present lexicographic RSMs for almost-sure termination
analysis of probabilistic programs with non-determinism. Theoretical complexity of synthesizing
lexicographic ranking functions in non-probabilistic programs was studied in [Ben-Amram and
Genaim 2013, 2015].
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10 CONCLUSION AND FUTURE WORK

In this work we considered lexicographic RSMs for termination analysis of probabilistic programs
with non-determinism. We showed that lexicographic RSMs present a sound approach for almost-
sure termination, that they enable compositional reasoning about termination, and can be used,
under certain conditions, to obtain polynomial bounds on expected runtime. There are several
interesting directions of future work. First, lexicographic ranking functions have been considered
in several works to provide different practical methods for analysis of non-probabilistic programs.
While our work presents the foundations of lexicographic RSMs for probabilistic programs, it
would be interesting to extend other practical methods based on lexicographic ranking functions to
lexicographic RSMs in order to provide better scalability and termination analysis of real-world and
large-scale probabilistic code. Developing supporting tools for such an analysis, such as automated
tools for computing abstractions of probabilistic programs, would be an indispensable part of such
an effort. Second, while our algorithmic approaches focus on the linear case, it would be interesting
to consider non-linear functions in the future.
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