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Survey and Analysis of Kernel and Userspace

Tracers on Linux: Design, Implementation, and

Overhead
Mohamad Gebai, Michel R. Dagenais Polytechnique Montreal

Abstract—As applications and operating systems are becoming
more complex, the last decade has seen the rise of many tracing
tools all across the software stack. This paper presents a hands-
on comparison of modern tracers on Linux systems, both in
user space and kernel space. The authors implement microbench-
marks that not only quantify the overhead of different tracers,
but also sample fine-grained metrics that unveil insights into the
tracers’ internals and show the cause of each tracer’s overhead.
Internal design choices and implementation particularities are
discussed, which helps to understand the challenges of developing
tracers. Furthermore, this analysis aims to help users choose and
configure their tracers based on their specific requirements in
order to reduce their overhead and get the most of out of them.

I. INTRODUCTION

Tracing has proved itself to be a robust and efficient

approach to debugging and reverse-engineering complex

systems. The past decade has seen the rise of many tracers

across all layers of the software stack, and even at the

hardware level [Intel CorporationIntel Corporation2016]

[Sharma and DagenaisSharma and Dagenais2016a]. Some

applications, such as Google Chrome, even provide tracers

natively integrated within the product itself. Fundamentally,

tracing is a sophisticated form of logging, where a software

component, called the tracer, provides a framework that

implements efficient and configurable logging. The most

common use of logging by developers is done via the

printf() function (or an equivalent), although this method

is largely inefficient and limited. Tracers provide more flexible

and robust approaches that can be easily maintained over

time and usually add little overhead. Tracing is common in

user applications, but is also widely used in the Linux kernel,

which provides multiple tracing infrastructures. With complex

online distributed systems, tracing becomes an efficient

way of debugging problems whenever they arise. Although

it is a problem that is often underestimated, the need for

efficient and low-impact tracers is increasing, especially with

modern parallel heterogeneous systems of ever increasing

complexity. The Linux kernel contains over 1000 tracepoints

and the volume of events that can be generated at runtime

reinforces the need for low-impact tracers. In this article, we

focus on the overhead that different tracers add to the traced

applications, both at the user and kernel levels, on Linux

systems. We start by establishing the nomenclature used in

this work, and categorizing the many tools that have been

gathered under the term “tracer”. We explain the differences

between them from the user point of view, we summarize

the mechanisms used by each to perform its tasks, and we

show key design and implementation decisions for each

when relevant. We propose a microbenchmark that aims at

providing reliable low-level and fine-grained metrics for an

in-depth analysis and comparison.

In this work, we highlight the performance and the footprint

of multiple tracers, as well as their underlying infrastructure.

Many commercial and broadly-known tools rely on the tracing

infrastructure variants studied here, and thus the overhead

measured directly applies. The contribution of this paper is

a deep dive into the design principles of modern tracers on

Linux. This work tackles the problem of comparing tracers

by measuring fine-grained and low-level performance metrics,

so that the design choices made by the tracer developers, as

well as the implementation and coding decisions, are taken

into consideration when assessing the impact of a tracing

tool on the traced system. Moreover, the contribution also

encompasses a methodology for low-level benchmarking that

unravels the real behavior of tracers, instead of using platform

and micro-architecture emulators.

The rest of the paper is structured as follows: section II

goes over previous work on tracers benchmarks, section III

includes a reminder of key concepts required to understand

the work presented and sets up the nomenclature used in this

paper, section IV explains the mechanisms used in tracing,

section V introduces the tracers and explains their internals

when relevant, section VI explains the benchmarks, section

VII shows the results of this work, section VIII concludes.

II. PREVIOUS WORK

Bitzes et al. [Bitzes and NowakBitzes and Nowak2014]

studied the overhead of sampling using performance

counters. However, their studies don’t address tracing

in general. It also only focuses on the approaches for

collecting hardware counters data and their performance

overhead, rather than covering the internals of the tracers,

or design and implementation choices. Sivakumar et al.

[Sivakumar and Sundar RajanSivakumar and Sundar Rajan2010]

measured the impact of the LTTng tracer, both in user and

kernel space. The authors ran multiple known general

benchmarks and reported the overhead that the tracer

added. This approach helps to estimate the impact that

LTTng may have on specific workloads but doesn’t

quantify in detail the cost of the instrumentation,
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or the cause of the overhead. Mihajlovic et al.

[Mihajlović, Žilić, and GrossMihajlović et al.2014] discuss

their work to enable hardware tracing in virtual environments

by modifying the ARM ISA emulation and show the overhead

added by their approach. While the approach it presents is

interesting, their approach relies on dynamic tracing which is

a specific approach to tracing. Furthermore, it doesn’t cover or

benchmark the fundamental work of tracers. Furthermore, no

detailed comparison with other tracers is presented. Moore et

al. [Moore, Cronk, London, and DongarraMoore et al.2001]

reviewed performance analysis tools for MPI application.

While they cover two of the tracers of this work, the

work focuses primarily on the MPI framework, and doesn’t

address kernel space tracing. The objective of the work also

differs in that fundamental design choices of tracers with

different scopes aren’t covered. In [GhodsGhods2016], the

author explains and analyzes the internals of the Perf tool,

mainly for sampling performance hardware counters. This

work doesn’t cover comparisons with other tracing tools.

The work of Desnoyers [DesnoyersDesnoyers2009] reports

benchmarking results for LTTng and other tracers, albeit only

showing the latency of recording an event, without presenting

a detailed comparison with other tracers.

The infrastructures and frameworks presented in this article

are often the basis for other commercial and more broadly-

known monitoring and performance tools. For instance, the

work by B. Gregg [??bgr2017] makes extensive use of Perf

and eBPF. Flamegraphs are often generated by profiling ap-

plications using Perf, although it is a profiler rather than a

tracer. Another example is SysDig, which uses the tracepoint

infrastructure to extract information from the kernel.

III. DEFINITIONS AND NOMENCLATURE

A. Definitions

This section serves as a reminder of some common terms

in the world of tracing that are essential for understanding the

rest of the paper.

Tracepoint: A tracepoint is a statement placed directly in

the code of an application that provides a hook to invoke a

probe. A tracepoint generally provides a way in which it can

be enabled or disabled dynamically.

Probe: A probe is a function that is hooked to a tracepoint

and is called whenever the tracepoint is encountered at run-

time (if enabled). A probe usually performs a custom task and

is either implemented by the tracer or by the user. Typically,

a probe needs to be as small and fast as possible, to add as

little overhead as possible and reduce the perturbation to the

system.

Event: An event marks the encounter of a tracepoint at run-

time. Depending on the kind of tracing, the event can have

a logical meaning, such as a context switch, or can simply

represent a location in the code, such as a function entry or

exit. An event is punctual and has no duration, and is usually

annotated with a timestamp.

Payload: An event typically holds a payload, which is

additional information related to the event. For instance, the

payload of a context switch may contain the identifiers of the

two tasks involved.

Ring buffer: A data structure that serves as a placeholder

for events. When an event is recorded at run-time, the tracer’s

probe is invoked. The probe records the encountered event by

placing it in memory in the ring buffer (producer). At a later

time, a consumer can read the contents of the ring buffer and

report them to the user. When the data structure is full, the

incoming events may either replace the oldest events (in a

ring-like fashion) or they may be discarded until some events

have been consumed from the buffer.

Atomic operation An atomic operation has the characteristic

of being indivisible, which implies that intermediate values

or intermediate states are invisible to concurrent operations.

Atomic operations usually require support from the hardware

or the operating system, and great care must be taken by

the developer to guarantee atomicity. For instance, on x86

architectures, a mov instruction isn’t guaranteed to be atomic

unless its operands are cache-aligned. Consider the case where

one of the operands is stored across two pages: the mov

instruction will require access to different pages (and poten-

tially cause virtual address translations), making the operation

divisible and non-atomic, as an intermediate unstable value

can be visible if the operand is accessed by another instruction

between these steps.

B. Nomenclature

We previously defined a tracepoint as a location in an

application where a probe can be hooked. This section starts by

introducing the different mechanisms used for probe callback,

as well as their implementations. A mechanism is a known

theoretical approach as to how a callback can be implemented,

but the actual implementation is left to the tracing infrastruc-

ture. For instance, a trampoline is a mechanism that allows

instrumentation at run-time, but the actual implementation of

the trampoline is left to a tracing infrastructure such as DynInst

or Kprobes. Similarly, a tool can support multiple mechanisms

and allow its users to configure the mechanism to be used,

depending on their needs. Tracers can then be built atop

of these technologies to leverage their callback mechanisms,

thus outsourcing this crucial part. Tracers can be built to

support multiple callback mechanisms, for better flexibility

and feature offerings. In summary, a tracer can use one or

many callback implementations, which in turn implement one

or many mechanisms. For instance, LTTng can use either

TRACE_EVENT or Kprobes, and Kprobes can use either a

trap or a trampoline.

We define a tracer as a tool that implements the following

pattern: callback, serialize, write1. The output of a tracer is a

trace, and efforts are dedicated to reducing as much as possible

its overhead. On the other hand, tools such as eBPF and

SystemTap fundamentally follow a different pattern: callback,

compute, update. We refer to them as aggregators, since their

work is often to collect and aggregate metrics in real time or in

a live fashion, on the critical path of the applications, contrary

to the post-mortem nature of trace analysis. To this end,

they provide users with scripting capabilities and advanced

1The write step here refers to a ring buffer rather than to a file
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data structures (such as hashmaps) to implement aggregation

methods to be executed upon certain events. As opposed to

tracers, the output of aggregators is the result of the user-

defined probe, which is typically a collection of metrics, an

alert when a threshold is exceeded at runtime, and so on. They

often neglect the timing aspect and don’t implicitly perform a

clock read on each callback.

IV. CALLBACK MECHANISMS

This section introduces the different mechanisms used to

instrument applications. The instrumentation can be static or

dynamic, where the former is built into the binary at compile-

time and tracepoint location is known in advance, and the latter

is inserted at run-time at user-defined locations. This is not to

be confused with dynamic tracing, which means that tracing

can be turned on or off at run-time. Dynamic tracing can be

supported for either static or dynamic instrumentation. To give

better insights on how the mechanisms work, we cover their

implementation in various technologies to show how they are

effectively implemented and used.

A. Function instrumentation

Function instrumentation is a static instrumentation method

that requires support from the compiler. The approach is to

have each function call of an application prefaced by a call to

a common tracing probe. In other words, the binary contains

explicit calls to a specific routine upon each function entry

(and exit in some cases). The implementation of this routine is

left to the developer, or the tracer, and can implement tracing,

profiling or any other monitoring feature.

GCC implements this callback mechanism in various ways.

For instance, the -pg flag will generate a binary where

each function has the mcount routine call as a preamble

[FrysingerFrysinger2016]:

$> echo "int main() {}" | gcc -pg -S -x c\

- -o /dev/stdout | grep mcount

call mcount

Since mcount is called at each function entry, additional

efforts need to be put into its implementation to provide tracing

at the lowest cost possible. Ftrace uses the mcount imple-

mentation to trace kernel functions entries, and implements

the mcount routine in platform-specific assembly. LTTng

UST also uses this method for userspace tracing, albeit with

the -finstrument-functions flag of gcc. Similarly to

-pg, calls to specific routines are built into the binary not

only at each function call entry, but also at function exit:

$> echo "int main() {}" | gcc

-finstrument-functions -S -x c - -o \

/dev/stdout | grep cyg_profile

call __cyg_profile_func_enter

call __cyg_profile_func_exit

With the -finstrument-functions

flag, the instrumentation routines are called

__cyg_profile_func_enter() and

__cyg_profile_func_exit() for function entry

and exit respectively.

B. Static Tracepoints

A tracepoint is a static instrumentation approach manually

inserted directly in the application code by the developers.

Unlike regular function calls, tracepoint statements in the

Linux kernel are optimized to have a minimal impact on

performance. As the instrumentation is directly in the code and

always built into the binary (unless the kernel is configured

otherwise), great care must be taken to reduce the added

overhead, especially when tracing is disabled, as is the case

most of the time. The rest of this subsection discusses how

this goal is achieved in the Linux kernel.

A disabled tracepoint has no effect and translates to a simple

condition check for a branch [DesnoyersDesnoyers2016c] (in

case it is enabled). To reduce the overhead for a disabled

tracepoint, a hint is given to the compiler to make the

tracepoint instructions far from the cache lines of the fast path

(which is the regular code). In that way, the cache-friendliness

of the fast path isn’t affected by the unexecuted code of the

tracepoint. Furthermore, for kernel tracing, the tracepoint call

is implemented as a C macro that translates to a branch over

a function call. In that manner, the overhead of the function

call and stack setup is avoided altogether.

Although the overhead impact of this approach is mini-

mal in theory, it still requires reading from main memory

the operand of the condition, to avoid the branch when

the tracepoint is off. This adds non-negligible overhead as

reading from memory not only is a slow process, but ul-

timately affects the efficiency of the pipeline. To overcome

this issue, the Immediate Value infrastructure was set in

place [Desnoyers and DagenaisDesnoyers and Dagenais2008]

by the LTTng project. This mechanism uses a constant value

directly into the instruction’s operand. In that manner, no

read from memory is required for the condition’s operand.

A disassembly of the generated tracepoint code clearly shows

the use of immediate values:

test %edx,%edx

jne [tracepoint tag]

When a tracepoint is turned on, the code is safely modified

on the fly to change the value of the constant test check.

Synchronization implications need to be taken into account

for this process as the code resides in memory, and is shared

amongst multiple CPUs, but copies may exist in instruction

caches.

In the Linux kernel, static tracepoints are implemented

as the TRACE_EVENT macro [RostedtRostedt2010], which

allows developers to easily define a tracepoint that can be in-

serted using the trace tracepoint name() function directly

in the kernel code. Many of the current kernel tracers can

interface to the TRACE_EVENT infrastructure by providing

their own probes. This infrastructure also makes for an easy

mechanism for a developer to implement their own tracer or

aggregator.
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For static tracepoints in user space, the LTTng tracer im-

plements this mechanism with the same optimizations as for

kernel space, reducing as much as possible the overhead added

by the instrumentation.

C. Trap

Trap-based instrumentation is a mechanism to dynamically

instrument an application at run-time. It relies on the

operating system support for traps, which it exploits to

insert and execute custom probes at virtually any location

in the kernel or application code. In the Linux kernel, this

mechanism is implemented by the Kprobe infrastructure,

which uses a trap-based approach to dynamically

hook into kernel code [Keniston J.Keniston J.2016]

[Mavinakayanahalli, Panchamukhi, Keniston, Keshavamurthy, and HiramatsuMavinakayanahalli et al.2006].

When a Kprobe is loaded and registered at a given instruction,

that instruction is copied and replaced with a breakpoint

instruction (int3 on x86). When the breakpoint instruction

is later executed by the CPU, the kernel’s breakpoint handler

is invoked. It saves the state of the application (registers,

stack, etc.) and gives control to the Kprobe infrastructure

using the Linux notifier call chain, which ends up calling

the tracing probe. Once this process completes and the trap

has been handled, the copied instruction (that was replaced

by the breakpoint) is finally executed and control continues

normally at the call site. Image 1 shows this entire process.

Kprobes also offer support for pre-handler and post-handler

probes, as well as function return instrumentation (Kretprobe)

which aren’t covered in this study.

Fig. 1: Trap-based callback mechanism with Kprobes

A tracing infrastructure can be built atop Kprobes, where

instead of manually inserting the trace tracepoint name()

statement in the code at the call site, a Kprobe can be

registered at the desired location at run-time. Tracers leverage

this approach to connect their probe to a Kprobe instead

of the TRACE_EVENT macro. In that manner, the callback

mechanism is abstracted and only connecting the tracer’s probe

to different backends provides more flexibility to the user. The

resulting trace is identical to one that is generated using the

TRACE_EVENT macro, but the callback mechanisms used to

invoke the probes are different, which can have an impact

on performance. When a Kprobe is unloaded, the breakpoint

instruction is replaced with the original one, thus removing

completely any trace of the instrumentation.

The Ptrace infrastructure in the kernel

[Haardt and ColemanHaardt and Coleman1999]

[PadalaPadala2002] also uses traps to offer to userspace

applications a mechanism to hook onto processes. It is

important to note that, contrary to what its name suggests,

Ptrace is not a tracer in itself, but rather an infrastructure

provided by the Linux kernel for processes to monitor other

processes. It allows a process to “hook” into another one

and interrupt its execution, inspect its internal data, access

its registers, etc. Many debuggers use Ptrace as a backend,

including GDB.

D. Trampoline

Trampolines are a jump-based approach to dynamically

patch or instrument an application at runtime. They provide

a lower overhead alternative to trap-based mechanisms for

the price of a more complex implementation. In more re-

cent versions, the Linux kernel tries to optimize registered

Kprobes using a jump-based trampoline instead of a costly

breakpoint. The core of the optimization is to have a “detour”

buffer (called the optimized region) to mimic the breakpoint

approach [Keniston J.Keniston J.2016]. Instead of patching an

instruction with a breakpoint instruction that triggers a trap,

it is replaced by a simple jump to the optimized region. The

jump-based approach starts by pushing the CPU’s registers

onto the stack, jumps to a trampoline that acts as an in-

termediate, which in turn jumps to the user-defined probe

[HiramatsuHiramatsu2010]. When it completes execution, the

process is reversed: the code jumps out of the optimized

region, the registers are restored from the stack and execution

of the original path continues. Note that not all loaded Kprobes

use the trampoline approach, as it requires a set of conditions

to be met (e.g., length of the instruction at the target location).

If they aren’t, the kernel falls back to the breakpoint-based

approach described previously.

V. THE TRACERS

This section introduces the tracers studied and benchmarked

in this work. When relevant, details of the design and imple-

mentation are provided for each tracer, and are later correlated

with the results. Table I, presented at the end of this section,

shows a summary of the tracers, as well as the mechanisms

used by each (see section IV for an explanation of the

mechanisms).

This work does not evaluate Dtrace

[Gregg and MauroGregg and Mauro2011] and Ktap

[??kta2017]. The former is a proven tracer on Solaris

and considered one of the pioneers in the field of tracing.

However, it does not appear to be actively developed any

more, with a total of 13 mailing list postings in the first half of

2017 on dtrace.org, its Linux port never reached the stability

or broad usage of the Solaris port, and its strength lied more
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in its flexibility and ease of use rather than its optimized

performance and scalability [BrosseauBrosseau2017].

Ktap was an interesting lightweight dynamic tracing tool

experiment based on bytecode, but was quickly superseded

by eBPF which offers similar functionality but sharing a core

infrastructure with other kernel subsystems.

A. Kernel tracers

1) None: The samples marked as ’None’ designate the

baseline, which represents the system with all tracing disabled,

effectively only benchmarking the instrumentation itself which

is negligible (translates to a constant check as explained

earlier).

2) Ftrace: Ftrace is a tracer included in the

Linux kernel and shows insights into its internal

behavior [RostedtRostedt2009a] [RostedtRostedt2016a]

[RostedtRostedt2009b] by tracing all kernel function entries.

It is controlled by a set of files in the debugfs pseudo-

filesystem. Some of the main configurations include which

“subtracer” to use, the size of the trace buffers and which

clock source to use to timestamp the events. It is also possible

to enable and disable specific events. Ftrace can be used in

many ways: function tracing, tracepoints, system calls tracing,

dynamic instrumentation and so on.

Function (and function graph) tracing reports the entry and

exit of all functions at the kernel level. Ftrace can use

the TRACE_EVENT infrastructure for static instrumentation

tracing or the Kprobe infrastructure to dynamically hook into

various parts of the kernel.

When tracing is enabled, the callback mechanism calls

Ftrace’s probe which stores the events in a ring buffer. It

is possible to configure Ftrace to either overwrite the oldest

events or drop incoming events, once the ring buffer is full.

It is interesting to note that the trace is kept in memory and

not flushed to disk, and only made available upon reading

the contents of the trace memory-backed file (it is possible

to manually dump the contents of the trace file to disk). It

is also possible to consume the ring buffer as it is written,

through the trace_pipe file.

By default, Ftrace uses the local clock to timestamp the

events it records. The local clock is a clock source that is

CPU-local and is thus faster to read, but doesn’t provide any

guarantee in terms of monotonicity and synchronization with

the other CPUs’ clocks. It is, however, possible to configure

Ftrace to use other clock sources, such as a global clock (which

is system-wide), a logical counter or even architecture-specific

clocks such as the TSC2 on x86.

Ftrace limits the size of an event, including its payload,

to that of a page. It uses per-CPU buffers, which avoids

the need for synchronization of the buffer when tracing on

multiple cores. Ftrace segments its ring buffers into pages and

manipulates them individually. The ring buffer itself is a linked

list of pages [RostedtRostedt2016b], and internal references

are kept for bookkeeping. For instance, the tail page is a

reference to the page into which the next event should be

written, and the commit page is a reference to the page that

2TimeStamp Counter

last finished a write. Although there can’t be simultaneous

writers to the same page (per-CPU buffers), a writer can still

be interrupted by another writer by the means of interrupts and

NMIs. An example of that can be an event to be written into

the buffer, from an interrupt handler context that was invoked

while a write to the ring buffer was already happening, as

shown in the following sequence:

Start writing

-> Interrupt raised

Enter interrupt handler

Start writing

Finish writing

Exit interrupt handler

Finish writing

These nested writes require the tracer and its ring buffer to

guarantee reentrancy in order to avoid data corruption and

misbehavior. Note that there can be more than two levels

of preemption (normal execution, interrupts, non-maskable

interrupts, machine check exceptions, etc.). The way Ftrace

ensures reentrancy is by dividing the writing process into three

parts: reserving, writing, committing. The writing process

starts by reserving a slot in memory in an atomic fashion,

making it indivisible and thus guaranteeing reentrancy for this

step. Only then can the writing into the reserved slot step

begin. If a nested write occurs, it has to follow the same

pattern, starting with a slot reservation. Since this can only

happen after the preempted write has already completed its slot

reservation (since it is indivisible), there can be no contention

over the writing area, making the writing process safe. Once

the nested write completes, it can commit which seals the

writing transaction. The interrupted write can then complete

its write and commit:

Reserve slot

Start writing

-> Interrupt raised

Enter interrupt handler

Reserve slot

Start writing

Finish writing

Exit interrupt handler

Finish writing

By following this scheme, writing transactions appear as being

atomic, in the sense that no two nested writes can write to

the same slot in the buffer. When nested writes occur, some

subtleties need to be implemented. For instance, the nested

write cannot commit before the write it preempted. Until then,

it is in the “pending commit” state. This is required since

all events prior to the commit page have to be committed

(the commit page actually points to the latest event that was

committed, and masking its least significant bits gives the

address of the page).

Furthermore, in order to consume tracing data, Ftrace keeps

an additional page, called the reader page, which is not a part

of the ring buffer. Rather, it is used as an interim to extract the

trace data from the buffer. When a reader wants to consume

trace data, the reader page is atomically swapped with the
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head page. The head page is simply an internal reference to

the page that should be read next. As this swap happens, the

old reader page becomes part of the ring buffer, and the old

head page can be safely consumed. This swapping happens in

an atomic fashion using CAS (compare-and-swap) operations.

After the swap happens, the head page pointer is updated to

reference the next page to be read.

We explained earlier in this section that Ftrace manipulates

pages individually in its ring buffer. Although this imple-

mentation choice has benefits such as avoiding lazy memory

allocations (and often a lazy TLB update), it also results in two

main limitations: the size of an event (including its payload) is

limited to the size of a page, and memory barriers are required

at page boundaries. The former limitation is due to the fact that

single pages are consumable. Consumption of the buffer can

be done at page granularity, which implies that a single event

cannot be stored across page boundaries. The latter limitation

is less obvious; a page of the buffer can only be read once

it is full. Thus, page management variables are required for

internal bookkeeping, such as flagging a page as ready to be

consumed. These variables are shared by the writer and any

reader. To guarantee coherent ordering between buffer data and

buffer management variables, memory barriers are required to

ensure that a page is not flagged as full before its data is

actually propagated to main memory.

3) LTTng: LTTng was created in 2006

[Desnoyers and DagenaisDesnoyers and Dagenais2006b]

[DesnoyersDesnoyers2009] [Desnoyers and DagenaisDesnoyers and Dagenais2009],

around the same time as Ftrace and thus both tracers share

many similarities design-wise. However, LTTng isn’t part

of the mainline Linux kernel and is rather deployed

as a group of loadable kernel modules for the kernel

tracing part, and a userspace component for tracing

management and trace consumption (as opposed to Ftrace’s

debugfs interface). LTTng was designed and implemented

with the objective of minimal performance impact

[Desnoyers and DagenaisDesnoyers and Dagenais2006a]

while being fully-reentrant, interrupt-safe and NMI-

safe. Similarly to Ftrace, LTTng uses per-CPU variables

and buffers to avoid concurrent writes and the need

for synchronization. Reentrancy is guaranteed by

the means of atomic slot reservation using local

CAS (Compare-And-Swap) to permit nested writes

[Desnoyers and DagenaisDesnoyers and Dagenais2012],

similarly to what was explained in section V-A2. Image 2

shows how having (local) atomic slot reservation guarantees

reentrancy. As the figure shows, in sub-buffer 1 of buffer

0 (on CPU 0), a first event was written into the buffer. A

slot was reserved after it for writing, but the process was

interrupted midway through by another write. We see that

this nested write completes successfully, and doesn’t affect

the end result of the interrupted write, as its slot is already

reserved.

The low-overhead requirements of the LTTng project have

lead to the creation of local atomic operations in the Linux

kernel [DesnoyersDesnoyers2016b], which aim to provide a

lower performance cost than regular atomic operations, by

leveraging the fact that some data is CPU-local (that is, data

Fig. 2: Anatomy of LTTng’s sub-buffers

that won’t be accessed by another CPU). When that is the

case, atomic operations accessing local-only data don’t require

the use of the LOCK prefix (which locks the memory bus)

or memory barriers to ensure read coherency between CPUs,

which leads to local atomic operations. This performance

improvement comes at the cost of a higher usage complexity,

and care is needed when accessing the data from other CPUs

due to weak ordering. It is worth mentioning that local atomic

operations disable preemption around the call site to avoid

CPU migration when accessing local variables from a process

context (as opposed to interrupt context). Ftrace also makes

use of local atomic operations.

To guarantee wait-free reads of tracing management

variables (such as enabling/disabling tracing,

filters to be applied, etc.), LTTng uses RCU3

for the synchronization of concurrent accesses

[McKenney and SlingwineMcKenney and Slingwine1998]

[Desnoyers and DagenaisDesnoyers and Dagenais2010].

Since writes to these variables are rare, but reads are

abundant and concurrent, RCU is ideal for such an access

pattern since it avoids all waiting on the reader side.

Contrary to Ftrace, LTTng doesn’t use pages as the finest-

grained entity for ring buffer management. Instead, it uses

per-CPU sub-buffers. The advantage of this approach is that

the size of an event can be greater than the size of a

page, and the performance hit of memory barriers is better

amortized (barriers are only required at sub-buffer boundaries

instead of page boundaries). Sub-buffer boundaries require

memory barriers mainly to guarantee in-order memory writes

to the sub-buffer data and its management variables. In other

words, out-of-order memory accesses to sub-buffer data and

the sub-buffer management variables can result in incoherent

perception from the reader’s side, where a sub-buffer can be

3Read-Copy-Update
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flagged as ready to be read while the tracing data hasn’t been

propagated to memory yet. It is interesting to note that the

impact of memory barriers is negligible on x86 64. Since the

architecture guarantees Total Store Ordering (TSO) between

CPUs [Hennessy and PattersonHennessy and Patterson2011],

write memory barriers do not actually create a fence but

resolve to nops and simply avoid instructions reordering at

compile-time. On architectures with other memory orderings

such as ARM, the use of memory barriers at sub-buffer

boundaries (page boundaries for Ftrace) has a larger impact

on the overhead.

4) LTTng-kprobe: We introduce LTTng-kprobe as a stan-

dalone tracer for simplicity purposes. In reality, it is sim-

ply the LTTng tracer configured to use Kprobes instead of

TRACE_EVENT for probe callback. Other than the callback

mechanism, there are no differences for the probes or the ring

buffer, and the same internals and guarantees as LTTng are

valid for this tracer.Comparing the benchmark results between

LTTng-kprobe and LTTng will highlight the impact of using

Kprobes instead of TRACE_EVENT. This comparison can help

developers assess the overhead of Kprobes-based tracers in

their applications when low overhead is key.

5) Perf: Perf is a performance monitoring tool integrated

into the mainline kernel. Its use case is typically different than

that of Ftrace or LTTng. Perf is targeted for sampling and

profiling applications, although it can interface with the tra-

cepoint infrastructure within the kernel and record tracepoints

(including system calls). Perf can also gather hardware-level

PMU4 such as different level of cache misses, TLB misses,

CPU cycles, missed branch predictions, and so on. Contrary

to Ftrace, Perf’s monitoring scope is restricted to a single

process. The events and counters reported by Perf are those

which occurred within the context of the traced process and

thus have been accounted for it. This property makes Perf

more suited to analyze the behavior of a given program and

can help answer practical questions such as cache-friendliness

of the code, or the amount of time spent in each function.

The Perf tool itself is built on top of the kernel’s

perf_events subsystem [GhodsGhods2016] which is the

part that actually implements the tracing, profiling and sam-

pling functionalities. Perf can also use Ftrace’s architecture

to hook to tracepoints, and trace similarly to Ftrace and

LTTng. Perf_events internally uses a ring buffer which

can be mapped to userspace to be consumed. Through the

perf_event_open() system call, a userspace process can

obtain a file descriptor on the metric/counter it wants to

measure. The file descriptor can then be mmap()’d and

accessed from the userspace process’s memory space.

6) eBPF: eBPF has evolved from the Berke-

ley Packet Filter [Schulist J.Schulist J.2016]

[McCanne and JacobsonMcCanne and Jacobson1993] to

a standalone monitoring tool included in the Linux kernel. It

allows users to write programs (similarly to probes) which

can be dynamically inserted at any location in the kernel

using Kprobes (section IV-C). eBPF programs are compiled

to bytecode which is interpreted and executed by the kernel

4Performance Monitoring Units

in a limited context to ensure security. The kernel also

supports just-in-time compilation for sections of the generated

bytecode [Sharma and DagenaisSharma and Dagenais2016b].

It is important to note that eBPF isn’t a tracer, as it doesn’t

follow the callback, serialize, write scheme, but rather an

aggregator. The eBPF interpreter provides data structures

to its users, such as simple arrays and hashmaps, which

makes it a great tool for aggregation, bookkeeping, and live

monitoring. As eBPF provides arrays that can be shared from

the kernel space to user space, a tracer-like behavior can

be implemented. For the purpose of this study, we wrote a

minimal eBPF program that samples the clock and writes a

data structure holding a timestamp and a payload to an eBPF

array. We hook this program to the same static tracepoint

used for benchmarking other tracers using Kprobes. Although

the data is never read, this program simulates the behavior of

a tracer, making its benchmarking relevant for this study. As

of version 4.7, the Linux kernel supports eBPF tracing, which

hooks directly into the TRACEPOINT infrastructure. The

same eBPF program was then ran on a 4.12 Linux kernel,

with the only difference being a direct hook onto kernel

tracepoints instead of going through Kprobes.

7) SystemTap: SystemTap is similar to eBPF

(section V-A6) as it provides a simple language

to write probes for aggregation and live monitoring

[Prasad, Cohen, Eigler, Hunt, Keniston, and ChenPrasad et al.2005].

SystemTap provides an easy scripting language for users to

create custom probes to monitor their systems. The users can

provide kernel or userspace symbols to hook on. SystemTap

programs are then translated to C code and compiled into

a loadable kernel module [EiglerEigler2006]. Once loaded,

the module dynamically inserts the probe into the kernel’s

code using Kprobes. Similarly to eBPF, since SystemTap

follows the callback, compute, update pattern, it is, in

fact, an aggregator rather than a tracer. However, for the

purposes of our work, a tracing behavior can be simulated by

implementing a probe that samples the time and writes the

value along with a constant payload to an internal array.

8) Strace: Strace is a tool for sys-

tem calls tracing [KerriskKerrisk2010]

[Johnson and TroanJohnson and Troan2004]. Using Ptrace

(section IV-C), it hooks into a process and intercepts all its

system calls, along with their arguments. The result is written

to a file descriptor for later analysis. Due to the heavy trap

mechanism, along with the scheduling costs (as multiple

processes are involved, the monitored and the monitoring),

Strace typically adds a large overhead which doesn’t usually

suit production environments. Other tracers, such as LTTng

and Ftrace, can provide the same information using different

tracing mechanisms.

9) SysDig: SysDig [Selij and van den HaakSelij and van den Haak2014]

is a modern commercial tool used for monitoring systems.

It covers a wide range of applications, from containers,

to web services, etc. SysDig also allows users to write

Chisels [??chi2017], which are lua scripts capable of custom

analysis similar to eBPF and SystemTap. SysDig leverages

the TRACEPOINT infrastructure in the kernel, which was

introduced by the LTTng project, to hook onto available
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tracepoints and provide system and application monitoring.

Upon loading, the SysDig kernel modules register to context

switch and system calls events. The work presented in this

article does not cover SysDig for two main reasons. Primarily,

SysDig doesn’t allow the users to control the kernel tracing

part of the product, and this aspect is only used to gather a

few metrics about the monitored applications, such as reads,

writes and CPU usage. Moreover, SysDig doesn’t follow the

callback, serialize, write pattern, but rather uses tracepoints

for on-the-fly metric gathering. Finally, as SysDig uses the

same underlying infrastructure as LTTng and Ftrace, the

overhead of SysDig is implicitly covered when studying the

TRACEPOINT infrastructure.

B. Userspace tracers

1) Printf: Printf() is a rudimentary form of tracing,

but is the easiest to use. It uses a string as input as well

as some variables for pretty-printing. Printf() uses an

internal buffer to store the data before it is flushed to a

file descriptor. Thus, we can implement a basic tracer using

printf() by sampling the time and printing it along with

a payload into printf()’s internal buffer. This satisfies the

definition of a tracer given in section III-A.

Glibc’s implementation of printf() is thread-safe

[PeekPeek1996], although multiple threads within the same

application share the same global buffer for the output stream.

Printf() uses an internal lock to protect the output buffer

and avoid corruption on contention. However, reentrancy

is not guaranteed, and calling printf() from different

contexts (such as from a signal handler that interrupts

printf()) might have unexpected results.

2) LTTng UST: LTTng UST (UserSpace Tracer)

[Blunck, Desnoyers, and FournierBlunck et al.2009]

is a port to userspace of LTTng (section V-A3).

Although they are independent, both tracers share the

same design, using a ring buffer to store the trace

[Fournier, Desnoyers, and DagenaisFournier et al.2009],

RCU mechanism for data structure synchronization

and atomic operations for reentrancy. To this effect,

the RCU mechanism was ported to userspace as well,

creating the URCU (Userspace Read-Copy-Update) project

[Desnoyers, McKenney, Stern, Dagenais, and WalpoleDesnoyers et al.2012].

All programs to be traced with LTTng UST should be linked

against the library, as well as libust (the tracing library).

Similarly to its kernel counterpart, LTTng UST was designed

and implemented to perform tracing at low cost, while

guaranteeing reentrancy, interrupt-safety, signal-safety, etc.

No tracing data is copied and no system calls are invoked by

the tracer, removing the typical sources of overhead.

3) LTTng using tracef(): Since part of printf()’s la-

tency is split between pretty printing the input and storing to an

internal buffer, we added LTTng’s tracef() function for a

more equitable/fair comparison. Tracef() is a function that

combines, from the developer’s point of view, LTTng’s tracer

and printf(). Instead of implementing actual tracepoints

that can be called within the code, tracef() generates

a lttng_ust_tracef event which holds as payload a

pretty-printed string similarly to printf(). In that manner,

LTTng’s internal ring buffer mechanism is used, while includ-

ing the cost of pretty printing for a more equitable comparison

with printf(). In that way, we compare more accurately

the actual serialization to a ring buffer between LTTng and

printf().

Since tracef() uses LTTng’s internals and only affects

the serialization part, the same guarantees as tracing using

regular tracepoints apply, such as reentrancy, thread-safety,

interrupt-safety and so on.

4) Extrae: Extrae is a tracer developed at the

Barcelona Supercomputing Center (BSC) as part of a

tracing and analysis infrastructure for high-performance

computing. It has complementary software such as Paraver

[Pillet, Labarta, Cortes, and GironaPillet et al.1995] for trace

visualization and analysis. In this paper, we focus exclusively

on the tracing part. The tracer supports many mechanisms for

both static and dynamic instrumentation, as shown in Table

I. It also uses LD_PRELOAD to intercept MPI library calls

at runtime and instrument them. In addition, Extrae supports

sampling hardware counters through the PAPI interface

[Terpstra, Jagode, You, and DongarraTerpstra et al.2010],

and other features which aren’t covered in this study as they

are beyond the scope of tracing [??ext2016]. Extrae also uses

internal per-thread buffers to store the data on the fly. Static

tracepoints have limited features: only one type of tracepoint

exists which is called Extrae_event, having two fields as

a payload. The fields are a pair of integers, the first one being

a number representing the type of event that occurred, and

the other flags either a function entry or exit. This provides

less flexibility to the user to create and use custom tracepoints

with variable payloads.

5) VampirTrace: VampirTrace is

a high-performance computing tracer

[Knüpfer, Brunst, Doleschal, Jurenz, Lieber, Mickler, Müller, and NagelKn

[Müller, Knüpfer, Jurenz, Lieber, Brunst, Mix, and NagelMüller et al.2007]

[Schöne, Tschüter, Ilsche, and HackenbergSchöne et al.2010],

with the ability to interface with large-scale computing

frameworks such as MPI. Similarly to Extrae, it offers

many ways to instrument applications, either statically or

dynamically. For static tracing, VampirTrace uses a different

approach and relies on the developer to define the sections of

code to be analyzed. When tracing of a section is disabled

through a delimiter, an event is generated and written

to the buffer. VampirTrace uses per-thread buffers to avoid

synchronization and maintain scalability. The microbenchmark

of this paper for VampirTrace consists of a tight loop that

enables and disables tracing. This implementation defines

an empty section to trace, but generates an event on each

loop, due to disabling tracing on each loop so that a behavior

similar to other tracers is achieved.

6) Lightweight UST: Lightweight UST (LW-ust) is an in-

house minimal tracer built for the purpose of this study. It

targets the fastest possible naive tracing implementation, at the

cost of actual usability, reentrancy, and thread-safeness. The

purpose of this tracer is to show a baseline of how fast tracing

can be achieved, which is a simple clock read and a copy into

an internal buffer. LW-ust uses per-CPU circular buffers to
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write data, which are cache line-aligned to avoid false sharing.

The data copied into the buffer is simply an integer referring to

the tracepoint type, a timestamp (using clock_gettime(),

similarly to other tracers) as well as another integer as the

tracepoint payload. No effort is made towards reentrancy

or thread-safety, and thus data integrity is not guaranteed.

Although LW-ust can not be used on production systems, it is

still interesting to benchmark it as it provides a lower bound

on the impact of a tracer.

VI. BENCHMARKING

A. Objectives

The objective of this study is to quantify the overhead

added by tracing, taking into consideration different callback

mechanisms, internal tracers’ architectures, and the guarantees

they provide. We focus on the cost of individual tracepoints,

rather than analyzing the impact on more general workloads.

By analyzing the results, we hope to help the users configure

the tracers to adapt them for their specific use cases when low

overhead is a requirement in production systems.

B. Approach

1) Overview: We start by explaining our benchmark related

to kernel tracing as well as the metrics we measured. Our

objective is to measure the cost of tracing an event using

the different tracers. To be able to get this metric with the

best possible precision, two conditions have to be met: first,

all tracers must be running in the overwrite mode. That way,

we guarantee that all tracepoints are executed, even when the

internal ring buffers are full, as opposed to benchmarking a

test and nop operation (testing the buffer size and jumping

over the tracepoint if the buffer is full). Secondly, when

possible, we launch tracers in a producer-only mode. This

requirement helps to cancel outside noise that might interfere

with the benchmarking. In our case, the consumer process

might preempt the traced process, or the action of writing

to the disk or the network might also interfere in some way

with the producer. Although we are only measuring isolated

tracepoints, and preemption doesn’t directly affect the duration

of executing a tracepoint, it still, however, impacts the duration

of a tracepoint since it might invalidate caches (including the

TLB for which misses are particularly expensive).

The actual measurement is done in a microbenchmark which

is simply a tight loop executing a tracepoint call. The payload

of the event is 4 bytes. The microbenchmark is implemented

in a kernel module to avoid the overhead of switching between

user and kernel spaces. A single ioctl() call to the module

(via the sysfs pseudo-filesystem) triggers the benchmark and

blocks until its completion.

The time is measured prior and after the call at the nanosecond

granularity. We point out that there is no system call for

reading the time since the benchmark is already running in

kernel space (although some clock access functions can be

used in user space to avoid a system call, such as the mono-

tonic clock). Hardware performance counters are also read

before and after the tracepoint, allowing us to track specific

metrics that give insight into each kernel’s implementation.

The benefit of sampling many hardware counters in a single

run, instead of sampling a single counter across many runs

(to reduce the impact of these samplings) is that it is possible

a posteriori to make correlations between many metrics for a

single recorded event. For instance, we can verify if the slow

path (given by sampling the number of instructions) can be

further optimized by reducing cache misses (given by sampling

the number of cache misses). Due to hardware limitations, only

four hardware counters can be sampled at a time. Thus, two

runs of the benchmark are executed, each sampling different

counters. Furthermore, in order to avoid interruption while

the tracepoint is executing, which would interfere with the

measurements, we disable interrupts before each call and

enable them after. Since this approach doesn’t disable NMIs

(which are, by definition, non-maskable), we read the NMI

count prior to and after each tracepoint call, discarding the

result values in case an NMI is detected. Algorithm 1 shows

the pseudo-code of the benchmark. The results shown in this

paper are gathered by running the tight loop 5000 times in a

steady state for each benchmark run. For scalability tests, the

tight loop iterates 5000 times per core (in parallel) in a steady

state for each benchmark run.

Algorithm 1: Pseudo-code of the kernel tracer benchmark

Input: numberOfLoops
Output: ArrayOfResults

payload = (int32 t) 0;
results = allocateArray();
i = 0;
while i != numberOfLoops do

disableInterrupts();
numberNMI = getNumberNMI();
readPMU(metric1 start);
readPMU(metric2 start);
readPMU(metric3 start);
readPMU(metric4 start);
start time = gettime();
tracepoint(payload);
end time = gettime();
readPMU(metric1 end);
readPMU(metric2 end);
readPMU(metric3 end);
readPMU(metric4 end);
enableInterrupts();
if numberNMI == getNumberNMI() then

results[i].duration = end time - start time;
results[i].metric1 = metric1 end - metric1 start;
results[i].metric2 = metric2 end - metric2 start;
results[i].metric3 = metric3 end - metric3 start;
results[i].metric4 = metric4 end - metric4 start;
i++;

end
end
return results;

The final results array is then dumped in a CSV

(Comma-Separated Value) file, which is used to generate the

graphs shown in section VII. The same algorithm is used for

both kernel and user space.

Benchmarking system calls and analyzing the results require

a different methodology than regular tracepoints. The added

cost of the actual system call, as well as the fact that the Linux
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TABLE I: Callback mechanisms for kernel and userspace tracers
’X’ indicates that a callback mechanism is supported by the tracer and is covered in this work
’O’ indicates that the mechanism is supported by the tracer but wasn’t benchmarked in this work

Kernel space User space

Static Dynamic Static Dynamic

Mechanism Static tracepoint Function tracing Trap Trampoline Static tracepoint Function tracing Trampoline Trap

Implementation TRACE EVENT Compiler Kprobe Optimized kprobe Function call Compiler DynInst Uprobe Ptrace

LTTng X X X X O O

Ftrace X O O O

Perf X O O

eBPF O X X

SystemTap X X O X

Strace X

Printf X

Extrae X O

LW-ust X

kernel automatically instruments system call entry and exit,

make getting fine-grained metrics about the tracing mechanism

only more difficult. Since actual work is done by the system

call, PMU counters values aren’t representative of the tracing

mechanism solely, but also include the system call’s execution.

In addition, the CPU transitions from user mode to kernel

mode through a trap that represents the actual kernel invoca-

tion. This is a relatively costly process, since it requires saving

the state of the stack, registers, and switching CPU rings

[Tanenbaum and BosTanenbaum and Bos2014]. This proce-

dure is therefore implicitly accounted for the tracepoint in the

benchmark. The analysis and benchmarking of system calls

are thus done at a higher level, with coarse-grained results.

It is worth mentioning that system calls tracing is a subset

of kernel tracing, which we presented in the previous section.

In other words, writing to the ring buffer is done in the same

fashion, and only serializing the payload differs from a regular

tracepoint.

In order to reduce as much as possible the duration of

the system call’s actual work and get samples that are as

close as possible to the cost of instrumentation solely, we

benchmarked an empty ioctl() system call. For the purpose

of this work, we wrote a kernel module that exports an entry in

procfs. We implemented its ioctl() function as an empty

function, such that calling ioctl() on the file descriptor

returns as quickly as possible, and ends up being only the

tracing instructions and a CPU context switch to kernel space

and back.

2) Test setup: We ran the benchmarks on an Intel i7-3770

CPU running at a 3.40 GHz frequency with 16 GB of RAM,

running a 4.5.0 vanilla Linux kernel, and a 4.7.0 Linux kernel

for eBPF tracing (as it is the first version that introduced

built-in eBPF tracing). We built manually the following

software: LTTng from its 2.9-rc1 branch, SystemTap from

its master branch at version 3.0/0.163, and Extrae at version

3.3.0, and VampirTrace at version 5.14.4.

3) Configuration: Benchmarking at such a low granularity

proves to be a tedious task relatively to higher level

benchmarks [Kalibera and JonesKalibera and Jones2013].

Optimizations, both at the operating system level as well as

the hardware level, can interfere greatly with the results. Not

only are the results biased, but reproducibility of the results

is also affected. For instance, dynamically adjustable CPU

frequency has a direct impact on the latency of a tracepoint.

In order to have the most control over the environment,

we disabled the following features at the hardware level:

hyperthreading, C-states, dynamic frequency and Turbo

Boost.

Furthermore, we configured the tracers to have as much

of the same behavior as possible to obtain relatively fair

results. For instance, as shown in section V-A2, Ftrace uses a

CPU-local clock source to sample the time, whereas LTTng

uses a global clock. At the nanosecond scale, as we are

benchmarking, this behavioral difference can have a major

impact on the results. We configured Ftrace to use the global

clock so that the same time sampling mechanism is used by

all tracers. We configured LTTng to use 2 sub-buffers per CPU

buffer, each of 8 KB, and Ftrace to use a 16 KB buffer per CPU

(same ring buffer size). We also configured LTTng to trace in

flight recorder mode, in which the contents of the ring buffer

are never flushed to disk, and new tracing data overwrites

the older one. This guarantees that flushing to disk doesn’t

interfere with the benchmark, which is also the behavior of

Ftrace.

4) Steady state: Another important factor that impacts the

accuracy of the results is benchmarking in a steady state. When

tracing is first enabled, the tracer typically allocates memory

for the internal ring buffer. Running in the steady state means

that all code paths have been covered at least once (and hence

are in some cache level), all memory locations have been

touched at least once, virtual addresses have been resolved

and stored in the TLB, and all other initialization routines

have been covered. For instance, when memory is allocated, it

typically isn’t physically reserved until it is actually touched by

the owner process. This mechanism happens by the means of a

page fault, which implies a frame allocation by the operating

system. The overhead of this procedure is accounted to the
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process, and particularly during the call to tracepoint()

(or its equivalent), which might be misleading and not rep-

resentative of the actual cost of the tracepoint. Note that this

particular example doesn’t apply for LTTng and Ftrace as they

make sure memory frame allocation is done at allocation time,

avoiding postponed page faults and lazy TLB filling. Thus,

running in a transient state may result in biased numbers for

the tracepoint() call, since a costly TLB miss due to

an initial virtual address resolution will get accounted to the

tracepoint. On the other hand, earlier runs have shown that Perf

varies greatly between the transient state and the steady state,

due to internal initialization being done on the critical path

of tracepoints. In the remainder of this paper, all benchmarks

results are done in a steady state.

The steady state is reached once the amount of trace data is

equal to the size of the tracers’ internal buffers to guarantee

that all locations have been accessed at least once. We make

sure we that the entire ring buffer has been filled at least

once before results are recorded. Since tracers are configured

to overwrite mode, all calls to tracepoint should happen in

optimal conditions, with all memory allocated, hot code in

the cache, and data and instruction addresses in the TLB.

5) Metrics: Table II shows the collected metrics for each

executed tracepoint. The raw data generated by the bench-

marks contains the value of these metrics for each recorded

event. These values are sampled using the perf_events

infrastructure from the kernel space, for kernel tracing, and the

perf_event_open() system call, for user space tracing.

TABLE II: Metrics

Metric Meaning

Latency Time to execute a tracepoint in nanoseconds
L1 misses Number of first level cache misses
Cache misses Number of all levels cache misses
CPU cycles Number of CPU cycles
Instructions Number of instructions
TLB misses Number of TLB misses
Bus cycles Number of memory bus cycles
Branch misses Number of mispredicted branch instructions
Branch instructions Number of branch instructions

Some of these metrics are more significant than others,

as the results section will show. We start by explaining the

runtime penalty of some of these metrics.

A TLB (Translation lookaside buffer) miss happens when a

virtual address to physical address mapping isn’t stored in

the TLB. The penalty is the page walk process, which needs

to perform the translation from virtual to physical addresses.

Depending on the architecture, this process might be more

or less costly. On x86 64, a page walk results in 4 memory

accesses (one for each level of the page tables) which is a

major performance setback, given the low frequency of the

memory bus relative to the frequency of modern CPUs.

A branch miss indicates a branch misprediction from the

compiler or the hardware itself. The compiler can optimize

the fast path of an application by predicting branches based

on hints given by the developer. The CPU can also predict

branches at run-time, depending on the path that is most

often taken. Instruction and data caches, as well as overall

pipeline efficiency, are optimized for the fast path by fetching

instructions prematurely, before the branching instruction has

been evaluated. The penalty of a branch miss is having to

load the instructions that were assumed unused, as well as

any data related to them. This fetching might occur from

either main memory or from higher levels of the cache (L2 or

L3). Consequently, this process reduces the efficiency of the

pipeline as it stalls while the data and instructions are fetched.

VII. RESULTS

A. Kernel tracing

We now present the results of the benchmark for the kernel

tracers. Unless stated otherwise, all results are gathered from

single-core benchmark runs. We start by showing in Table III

an overview of the results which we will try to explain using

the more detailed graphs. The standard deviation is provided

when the results indicate an average value. The 90th percentile

helps filtering out corner cases where tracepoint latency is

exceptionally high.

TABLE III: Average latency of a kernel space tracepoint

Average (ns) STD 90th percentile

None 17 0 17
LTTng 92 5 89
Ftrace 116 7 114
Perf 121 1 118
LTTng-Kprobe 123 5 121
eBPF-tracing 128 5 124
SystemTap 130 5 125
eBPF 140 10 126

In the graphs that follow, we show, for each run, the value

of different metrics for each tracepoint call. By showing the

results of all tracepoint calls for each tracer, it is much easier

to find trends in the usage of different resources. Furthermore,

this approach helps explaining corner cases, where a given

set of circumstances influences the cost of a single tracepoint

and helps setting an upper bound for the cost of an individual

tracepoint, once the steady state is reached.

As explained in section VI-B, we sample performance

counters at the beginning and end of each tracepoint invocation

in order to precisely measure different metrics, such as the

number of instructions executed, the number of cycles, or

the number of cache misses. The number of instructions is

directly related to the code logic and should not bring any

surprise. Furthermore, although the number of instructions

as an absolute value is not significant in isolation (compiler

versions, options, etc. directly influence this value), it still is

an interesting metric to capture, as it uncovers the different

code paths that are taken by the program at runtime. Other

metrics such as the number of cycles and the number of

cache misses are interesting to show any erratic behavior. For

instance, a larger number of cycles per instruction 5 (much

5This value depends on the architecture of the CPU. Superscalar processors
can have multiple pipelines to achieve parallelism within a single processor.
When that is the case, we can see a number of cycles per instructions that
is lower than 1 (multiple instructions per cycle per processor). This paper
focuses on multi-core scalar processors, which typically have one pipeline
per processor.
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higher than 1) might be due to contention over the memory

bus, or to inefficient instructions. A lower number of cycles

per instruction (closer to 1) could be a good sign, but it can

often hint at potential optimizations, such as doing calculations

in advance and caching them for future use. Added latency

might be caused by an abnormally high number of page faults,

and might help discover hard-to-detect and unexpected issues.

On the other hand, these low-level metrics can confirm that

everything is running smoothly, for instance, when most of the

tracepoints seem to indicate a ratio of instructions per cycle

close to 1.

For all of the following graphs, the y-axis always shows

the tracepoint latencies whereas the x-axis shows the values

of different counters.

Looking at Figure 3 a) and b), it is interesting to note the

lack of direct effect of the cache misses on the tracepoint

latency. Contrary to what would have been expected, more

L1 misses do not impact in any significant manner the cost

of a tracepoint. We can make this assessment since the

tracepoints that triggered 0 L1 misses range widely in the

latency spectrum. Furthermore, tracepoints with higher L1

misses record similar latency as the ones with no misses.

Of course, cache misses do affect latency, but their impact

is diluted by other factors. We also notice that benchmarking

in a steady state helps to keep the number of cache misses to

a minimum, as shown in b).

On the other hand, CPU cycles have a direct linear relation

with the latency of a tracepoint. However, this is more a

consequence than a cause, since tracepoints are uninterruptible

in our setup (interrupts disabled and the ones interrupted by

NMIs are ignored) and the CPU frequency is maintained at a

maximum, it is only natural that the more costly tracepoints

require more CPU cycles. The interesting thing to note is

that the nearly-perfect linear relation between CPU cycles

and latency doesn’t exist with dynamic CPU frequency

enabled. Since the CPU frequency can change dynamically, a

high latency tracepoint can actually record a low number of

cycles, changing the trend between latency and CPU cycles.

A few outliers exist, potentially caused by an imprecision

by sampling the pipeline to extract CPU cycles values

[Wilhelm, Grund, Reineke, Schlickling, Pister, and FerdinandWilhelm et al.2009].

Figure 3 d) shows a metric that directly impacts latency:

the number of instructions. As the number of instructions

grows, the groups of samples are higher on the latency axis.

As we might have expected, more instructions per tracepoint

usually implies more time to complete and thus record a higher

latency. With that said, the graph suggests that other factors

impact the latency, as even for tracepoints that require the

same number of instructions, their distribution on the latency

spectrum is quite wide (tracepoints recorded using Ftrace that

required 1052 instructions range between 110ns and 225ns).

Another interesting point that we can take from Figure 3

d) is the code path for each tracer. Looking at tracepoints

sampled for LTTng, we can easily guess the three internal code

paths of the tracer: the samples are grouped into three possible

number of instructions: 870 instructions, 927 instructions, or

1638 instructions (for this particular build of LTTng and

kernel). As explained in section V-A3, LTTng uses internal

sub-buffers with their size being a multiple of a page for its

ring buffer. We might guess that these three code paths shown

in the graph represent the tracepoints that cross boundaries: the

tracepoints requiring 870 instructions to complete are the most

frequent ones and execute the fast path. Storing the tracepoint

into a sub-buffer is straightforward and translates to a simple

memcpy(). The middle path, requiring 927 instructions, is

covered when storing a tracepoint is still within the same

sub-buffer but crosses page boundaries. The memory area

backing a sub-buffer is manually managed by LTTng, and

thus pages that make up a sub-buffer aren’t contiguous: LTTng

doesn’t use virtual addresses but rather uses physical memory

frames, which requires page stitching when data needs to be

stored across (or read from) more than a single page. Finally,

the slow path, requiring 1638 instructions, is covered by the

tracepoints that cross sub-buffer boundaries (and implicitly

page boundaries, as sub-buffers are page-aligned). LTTng then

requires internal bookkeeping, such as writing some header

data into the sub-buffer, which adds instructions to the critical

path and further latency. Thus, if tracepoint latency is an issue,

avoiding the slow path is possible by allocating larger sub-

buffers and reducing the frequency of the slow path (although

this might lead to other problems, such as events loss). With

this information, it is possible to predict how many instructions

an event might require, depending on the empty space left

in the sub-buffer at the moment the tracepoint is hit. In

other words, the middle and slow paths are taken at regular

intervals. The middle path is taken every (PAGE_SIZE /

EVENT_SIZE) events, and the slow path is taken every

(SUB-BUFFER_SIZE / EVENT_SIZE) events, assuming

all events are the same size.

This analysis can help the users choose the right buffer

size to configure their tracer. In order to reduce the average

tracepoint latency, the slow path should be avoided as much

as possible. This is possible by setting larger sub-buffers.

On the other hand, since sub-buffers can only be flushed

once they are full, having larger sub-buffers usually implies a

higher probability of event loss. Flushing large buffers requires

more time, and if the events are recorded at a high rate,

the ring buffer has time to loop and start overwriting unread

sub-buffers before a single sub-buffer is consumed entirely.

For a fixed buffer size, a trade-off has to be made between

the number of sub-buffers and their size. Smaller sub-buffers

reduce the risk of lost events, but larger sub-buffers result in

faster tracepoints on average. We conclude this by mentioning

that comparing the number of instructions per event between

tracers isn’t necessarily a relevant metric, as the number of

cycles an instruction requires may vary greatly and isn’t a

direct indicator of latency (unless the numbers of instructions

differ greatly). However, it is still interesting to analyze the

number of instructions for the same tracer to deconstruct

different code paths that have been taken, and get a deeper

understanding of a tracer’s internals.

A similar observation can be made for Ftrace. However, we

can only group the samples as executing one of two paths:

1052 instructions or 1341 instructions, which we reference

respectively as the fast path and the slow path. The reason

Ftrace samples only show two code paths, instead of 3 like
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Fig. 3: All tracepoints latencies in kernel space against different hardware counters (Part 1)

LTTng, is the fact that Ftrace doesn’t use the notion of sub-

buffers and only manipulates pages, albeit manually similarly

to LTTng. Thus, a tracepoint recorded with Ftrace can only

cover one of two cases: it either fits directly into a page, or it

crosses page boundaries. This behavior can be achieved with

LTTng if the size of the sub-buffers is set to the page size.

Figure 4 a), indicating the number of bus cycles per

tracepoint, shows a result similar to Figure 3 c), which is

naturally expected. Figure 4 b) shows that all tracepoints

for all tracers are recorded without triggering any TLB

misses. This is due to the fact that the events are sam-

pled in the steady state and all TLB misses have already

gradually been fulfilled. This is also to be expected as

there are no outliers in the samples, since a TLB miss is

costly relatively to the average tracepoint latency (memory

accesses are orders of magnitude slower than cache accesses

[Hennessy and PattersonHennessy and Patterson2011]).

Finally, Figure 4 c) showing the branch misses can support

the theory about the slow and fast paths we discussed for

Ftrace and LTTng. The binary is typically optimized for the

fast path by the compiler (and by the pipeline at run-time),

and thus should trigger no branch misses [SmithSmith1981].

Figure 4 c) validates this theory as most of the samples have

0 branch misses. When the tracepoint data to be written into

the ring buffer crosses a page boundary, a branch miss should

occur when the remaining free size in the current page of

the buffer is tested against the size of the event. This process

explains sample where 1 branch miss happens. Looking at

the raw data, we can confirm that all cases going through the

slow (and middle) paths for Ftrace and LTTng trigger exactly

1 branch miss. The reciprocate of this hypothesis is also valid:

all samples that trigger at least one branch miss are executing

either the middle or slow path.

The difference in tracepoint latency between LTTng and

LTTng-kprobe highlights the impact of the callback mecha-

nism used by the tracer. We see that using Kprobes increases

the frequency of L1 misses (Figure 3 a)) as well as the number

of instructions per tracepoint (Figure 3 d)) which contribute

to a higher overall latency. Table III shows that changing the

callback mechanism from TRACE_EVENT to Kprobes adds

around 30 ns of overhead.

Figure 5 shows how the kernel tracers scale as the number

of cores involved in the tracing effort grows. Notice that the la-

tency axis is in logarithmic scale. Ftrace, eBPF and SystemTap

show poor scalability, while LTTng and Perf scale with almost

no added overhead. Such a significant performance impact on

parallel systems usually indicates the use of an internal lock.

It is indeed the case for Ftrace, as the global clock is protected
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Fig. 4: All tracepoints latencies in kernel space against different hardware counters (Part 2)

Fig. 5: Average tracepoint latency in kernel space against the

number of cores (Log scale)

using a spin lock [LoveLove2005]. When configured to use a

global clock, Ftrace internally manages a data structure used

as a clock source to timestamp all events. This data structure

simply holds the timestamp of the last clock value at the last

timestamp, so that consecutive clock reads perceive the time

as strictly monotonically increasing. However, as this clock

is global to the system and shared amongst CPUs, proper

synchronization is required to avoid concurrent writes. The

following code, taken from the kernel source tree, shows a

snippet of the global clock read function in Ftrace. In the

following snippet, function sched_clock_cpu() reads the

local CPU clock.

u64 notrace trace_clock_global(void)

{

unsigned long flags;

int this_cpu;

u64 now;

...

this_cpu = raw_smp_processor_id();

now = sched_clock_cpu(this_cpu);

/*

* If in an NMI context then dont risk lockups

* and return the cpu_clock() time:

*/

if (unlikely(in_nmi()))
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goto out;

arch_spin_lock(&trace_clock_struct.lock);

if ((s64)(now - trace_clock_struct.prev_time) < 0)

now = trace_clock_struct.prev_time + 1;

trace_clock_struct.prev_time = now;

arch_spin_unlock(&trace_clock_struct.lock);

...

out:

return now;

}

This implementation choice might be eligible for optimiza-

tion as the global clock is, in fact, most often used for highly

parallel workloads, making the use of an internal lock counter-

intuitive. On the other hand, our micro-benchmark implements

an extreme case, where a CPU has a hold of the lock at any

given time, which might not be the case in real-life workloads

unless the event rate is unusually high. Once again, discretion

is given to the user on the choice of the clock. Figure 6

shows that when choosing the CPU local clock, the scalability

of Ftrace is greatly improved and the added overhead is

acceptable (ftrace-local). The Figure also shows the scalability

of a global counter as a clock source, which doesn’t require a

lock but rather uses atomic operations to increment the variable

at each clock read. The use of a global counter also shows

somewhat poor scalability and makes its choice less than ideal

for parallel workloads with a high event density. It is worth

noting that atomic operations use the LOCK prefix to lock the

memory bus, which explains the poor scalability.

Although great care was taken to use per-CPU arrays

for eBPF and SystemTap programs, both tracers show poor

scalability and the results suggest that they use internal locks

either to access per-CPU data or the system clock.

B. Userspace tracing

As with kernel tracing, we start by showing an overview of

the results for userspace tracing in Table IV.

TABLE IV: Average latency of a userspace tracepoint

Average (ns) STD 90th percentile

None 17 0 17
LW-UST 66 2 64
VampirTrace 84 87 72
Extrae 120 7 118
LTTng-UST 158 27 150
Printf 250 65 242
LTTng-tracef 446 73 433
SystemTap 1039 52 1020

Figure 7 shows the same metrics as the ones for kernel

tracing. For simplicity purposes, as the results are more scarce

Fig. 6: Average tracepoint latency in kernel space for Ftrace

using different clock sources against the number of cores (Log

scale)

than for kernel space, the Figure only shows 1000 sample for

each tracer, instead of 5000 for the previous Figures 3 and 4.

The user space results can be interpreted in the same manner as

for kernel space: L1 misses aren’t a major factor of tracepoint

latency since events that caused between 0 and 20 L1 miss

range in the same latency spectrum. However, one of the main

differences with kernel tracing is that the order of magnitude

of the metrics is much higher. Looking at the number of

instructions of individual tracepoints in Figure 7 d), we notice

that LTTng has two main code path (for the regular and the

tracef() variants). We’ve explained in section V-A3 that

LTTng uses internal sub-buffers to write tracing data. The slow

path in the Figure indicates events write that cross sub-buffer

boundaries. Contrary to kernel space, LTTng UST doesn’t

handle individual physical frames of memory that make up the

sub-buffer, which explains why the middle path seen for the

kernel tracer that covers page boundaries doesn’t exist in user

space. Extrae, the high-performance computing tracer, only

seems to have a single code path in the steady state for all

events. As explained earlier, this performance gain comes at

the price of lesser flexibility for the user. Furthermore, it is

interesting to mention that the tracef() average tracepoint

cost is almost equal to the sum of LTTng’s and printf’s

costs. This was to be expected as the tracef() function

simply combines LTTng’s regular tracepoint mechanisms to

printf()’s pretty-printing functionality.

LTTng UST version 2.9, used in this work, brings major per-

formance improvements. Previous benchmarks ran on slightly

older versions of the tracer had suggested that tracepoints were

72% slower. Version 2.9 introduces a faster inline memcpy,

inlining some ring-buffer access functions, as well as other

internal improvements regarding shared memory management.

Additionally, defining the _LGPL_SOURCE macro in the

benchmark code, which causes liburcu6 to inline functions,

further improves performance by 5 nanoseconds per tracepoint

6Userspace RCU library, required by LTTng UST
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on average. On the other hand, a major performance setback

for LTTng UST is the usage of the getcpu() system call on

each tracepoint, as this information is part of the payload of all

events. Furthermore, scheduling is disabled around the call-site

to avoid CPU migration while the CPU number is being read

which further adds overhead. It is eligible for improvement in

the near future as a new mechanism might be integrated into

the Linux kernel for a faster access to kernel data from user

space. The patch which introduces the restartable sequences

as an alternative to getcpu() [DesnoyersDesnoyers2016a],

is submitted by the creator of the LTTng project, and imple-

ments the Prepare-Write-Restart pattern. Instead of disabling

scheduling, the user space process alerts the kernel of the

operation it wants to perform (the prepare step). It then

tries to read the CPU number and is forced to restart if the

information is invalid (the thread was migrated to another

CPU) by the time it has been read, thus the restart step of the

pattern. A cleanup function has to be provided to handle the

case where the sequence is aborted and has to be restarted.

Restartable sequences promise major improvements for user

space tracepoints as they directly shorten their critical path.

Preliminary benchmarks have shown the latency of tracepoints

to drop to a little over 100ns per event (instead of 158ns)

with a kernel supporting restartable sequences and a version

of LTTng which takes advantage of them. Reading the CPU

number and shared memory abstraction in user space are

the two major causes of the performance difference between

LTTng in kernel space and user space.

Although the Extrae tracer shows low overhead, it is still

eligible for improvement. Sampling the clock either uses

the TSC7 (x86 only), or rusage8 to query the operat-

ing system about user and kernel CPU usage (respectively

rusage.utime and rusage.stime). The latter case,

although not used in this work, adds significant overhead to

the critical path of each event write, as interaction with the

operating system via a system call is required. The tracer also

keeps internal states between which it switches when entering

and leaving a tracepoint. When entering a tracepoint, the tracer

checks for the amount of free memory in the buffer for the

event to be written. When the amount of the remaining free

memory is too low, the buffer is flushed synchronously before

the event can be recorded. Although this approach has the

advantage of not dropping any events, it may significantly

alter the behavior of the traced application. Moreover, Extrae

samples hardware counters using PAPI9 at each event write.

Extrae uses arrays to store per-thread data, where each element

of the array is specific to a thread. However, because the array

isn’t cache-aligned, false sharing might occur when the traced

application is multi-threaded, which might slightly impact the

pipeline efficiency. Additional experimental runs did in fact

show that L1 Data cache misses increase when Extrae is

tracing a multi-threaded software. Finally, browsing the Extrae

source code shows the use of many levels of unnecessary

function calls. For instance, some functions have the sole role

7TimeStamp Counter
8Resource Usage
9Performance API, a Linux infrastructure to access hardware counters

of assigning values to global variables and, in some cases,

two functions only differ by the value they assign to the

same global variable. Although some of these function calls

might be inlined by the compiler, they can contribute to the

performance overhead in case they are not. In all cases, the

critical path of the tracepoint code goes through many layers

of function calls that are not eligible for inlining. Having the

instruction pointer move across a large memory region might

increase the number of cache misses (L1 Instruction cache),

in addition to the regular procedure of setting up the stack for

each function call and exit. Moreover, some functions in the

Extrae code do not contribute to time nor space optimization,

and can potentially be replaced by C macros to maintain code

readability. It is worth mentioning that Extrae isn’t reentrant,

and thus can have a much more straightforward probe with

regard to writing the tracing data, since there is no need for

synchronization nested writes.

VampirTrace is more optimized than Extrae. First, data

accessed by the tracing probe is cache-aligned to avoid false

sharing. Furthermore, it makes extensive use of macros along

the critical path of the probe, to avoid costly function calls.

Similarly to Extrae, a check for the free size of the buffer

is made on the critical path and causes a flush to disk

when not enough free memory is left. The implementation of

VampirTrace is straightforward and is highly optimized, but

doesn’t guarantee reentrancy. Finally, as shown in Table IV,

the standard deviation shown in VampirTrace numbers is due

to the slow path that causes trace data to be flushed, which has

a small period compared to other tracers. In our benchmark,

the flush rate was exactly 85 events, which means that every

85 events a flush to the filesystem had to be made. Lastly,

Table IV shows that the 90th percentile of latency values for

VampirTrace is much lower (17% lower) than the average,

comparatively to other tracers, and is actually very close to

LW-ust’s. This information is valuable as it shows how much

VampirTrace is optimized for the fast path (shown by the 90th

percentile). The 8 nanoseconds difference between LW-ust and

VampirTrace fast paths values is quite negligible and is a low

price to pay on top of LW-ust to get a usable tracer. This slight

overhead is due to verifying the remaining space in the buffer,

on top of other internal minor procedures. VampirTrace is very

close to the lower bound we set for userspace tracing.

1) Printf: Figure 8 shows how userspace tracers scale with

the number of cores when multiple threads simultaneously

trace as part of the same application. Other than printf()

and SystemTap, all tracers show good scalability as they

leverage per-CPU or per-thread data structures to guarantee a

lockless buffering scheme. Printf() shows poor scalability:

the average tracepoint latency more than doubles going from

a single-threaded application to a two-threaded one and again

when four threads are spawned. These results confirm that

printf() uses an internal lock to protect the buffer where

pretty-printed strings are stored.

C. System calls

We explained in section VI-B that we benchmarked system

calls through an empty ioctl() function to a procfs
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Fig. 7: All tracepoints latencies in userspace against different hardware counters

file exposed by a custom kernel module. Table V shows

the results for system call tracing with different tracers. We

notice Strace’s overwhelming performance overhead, making

an empty ioctl() call almost 19 times slower. We mention

that our benchmark redirects Strace’s output to /dev/null

to avoid all overhead due to writing to a file or the terminal.

We also used the -t flag to assign a timestamp to each

system call, although the performance impact is similar even

without timestamping. The large performance overhead added

by Strace is due to the Ptrace infrastructure and mechanism,

where a trap has to be generated by the operating system on

each system call entry and exit. Along with this trap, the traced

process needs to be put in the blocked state, and the tracer

is woken up from the blocked state. Context switches and

moving processes from the blocked to the running state by the

operating system also contribute to the overhead. Furthermore,

Strace doesn’t implement its own low-cost internal buffer for

storing collected data, and simply outputs the results to a file

descriptor.

Although Ftrace and LTTng use a different mechanism than

Strace to trace system calls, they provide the same information

at a much lower cost, with even more context information

than Strace. However, it is interesting to note that for system

calls tracing, Ftrace shows limited information compared to

Strace and LTTng. Often times, the parameters of a system

call are required for investigation, rather than the system call

itself (for instance, when looking at open() system calls to

investigate files opened by a certain process). Ftrace records

system calls, but data structures and literal strings received as

parameters aren’t resolved and presented in the trace. Instead,

the value of the pointers to those arguments is recorded, which

usually has no significance a posteriori. On the other hand,

resolving string literals as LTTng does has the effect of adding

some overhead, as copying of internal data will be required.

This added information explains the difference in system call

tracing performance between LTTng and Ftrace. Although

LTTng showed better performance for regular tracepoints,

Ftrace has a lower latency for system calls. To prove this

artifact, we benchmarked (latency only) the open() system

call, depending on the length of the file name to open. The

results are shown in Figure 9. Except for an empty file name,

which we assume causes open() to return early without
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Fig. 8: Average tracepoint latency in userspace against the

number of threads/cores

reaching the Virtual File System, tracing the system call using

Ftrace takes 700 ns regardless of the length of the file’s name.

However, tracing with LTTng adds overhead that is in linear

relation to the file name length. Once again, a trade-off has

to be made between overhead and usability. The requirements

and needs of a specific use case can lead the users to choose

either one of those tracers. Finally, Strace provides the most

ease of use at a much higher cost.

TABLE V: Average latency of an empty ioctl() system

call for multiple tracers

Average (ns) STD 90th percentile

None 63 0 61
Ftrace 300 13 296
LTTng 327 13 320
Strace 18991 351 18288

D. Additional analysis

To dig a little further into the reasons for tracepoint latency,

we decided to compare the amount of time spent in the

different steps of recording an event for the two most efficient

tracers. As was presented in section III-B, recording an event

for an enabled tracepoint is summed up to the callback mecha-

nism, the probe, and the write to a ring buffer. The serialization

part can be further divided into sampling the clock, and

formatting the event and its payload into data to be written

in the buffer (LTTng uses CTF [DesnoyersDesnoyers2012] as

a format and Ftrace can be configured to use a binary format

as well). Table III showed that recording an event requires

about 92 ns with LTTng and 116 ns with Ftrace. Figure 10

shows the profile of these latencies for each tracer and breaks

down the time spent at each step.

We showed in Table I that we benchmark both LTTng and

Ftrace for tracing static tracepoints using the TRACE_EVENT

Fig. 9: Latency to trace the open() system call according to

the file name length

macro. This callback mechanism is optimized to have the

lowest cost possible and ends up requiring only 4 ns. As

presented in section VI-B3, we configured Ftrace to use a

global clock (instead of the default local clock) for time

sampling, similarly to LTTng. Reading a global clock requires

32 ns which accounts for 34% and 27% of the total time

for LTTng and Ftrace respectively. Serialization is the part

that differentiates the most the overhead between the tracers.

LTTng’s serialization step takes 29 ns, which accounts for 31%

of its total time, while Ftrace requires 56 ns, which accounts

for 47% of the entire process. Writing to the ring buffer,

as they share similar designs, shows very similar overhead,

although LTTng’s ring buffer is slightly slower due to the sub-

buffer granularity and additional checks for boundaries. This

analysis shows where Ftrace requires more time than LTTng, at

the serialization step, which could be eligible for improvement.

Fig. 10: Time distribution for different steps of a tracepoint

for LTTng and Ftrace

E. Summary

As a reference, Table VI consolidates all the results and

shows a summary of all tracers. The table is sorted by

ascending values of the average latency. Other metrics that

were only shown as graphs previously are also included.

The results of table VI allow us not only to compare tools

among themselves, but also different underlying mechanisms.
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TABLE VI: Summary of the overhead per tracepoint for all tracers (Average and Standard Deviation) sorted by latency average

Latency (in ns) L1 misses Cache misses Instructions CPU cycles

Average STD Average STD Average STD Average STD Average STD

VampirTrace (Userspace) 84 87 0 8 0 6 670 233 695 299

LTTng 92 5 0 0 0 0 870 24 629 18

Ftrace 116 7 0 0 0 0 1053 18 709 26

Extrae (Userspace) 117 7 1 2 0 0 750 0 672 25

Perf 121 1 0 0 0 0 1099 0 720 6

LTTng-Kprobe 123 5 0 0 0 0 1012 20 731 18

eBPF-tracing 128 5 0 0 0 0 1138 0 746 18

SystemTap 130 5 0 0 0 0 1157 0 753 20

eBPF 140 10 0 0 0 0 1157 0 782 32

LTTng-UST (Userspace) 158 27 0 3 0 0 1228 117 944 161

Printf (Userspace) 245 144 0 6 0 3 1916 168 1250 492

LTTng-tracef (Userspace) 446 73 0 4 0 0 3211 205 1917 253

SystemTap (Userspace) 1046 45 4 2 0 0 2111 68 3958 155

Strace 18224 252 336 14 0 0 10666 362 11984 447

The TRACEPOINT infrastructure is the most efficient callback

mechanism, compared to Kprobes and other mechanisms. The

choice of the tracer to use can be difficult depending on the

needs of the developer. For kernel tracing, LTTng and Ftrace

serve similar purposes and both add little overhead to the

system when tracing. Ftrace is more configurable than LTTng,

for low-level tweaking such as the choice of the clock. Ftrace

is integrated into the Linux kernel in most distributions, and as

a result is more easily accessible. On the other hand, LTTng is

more feature-rich in terms of usability. For example, the CTF

output allows LTTng to be compatible with visualization and

analysis tools that understand this format. Tracing using Perf

is the best choice when quick statistics are needed. Its ease of

use is overwhelming compared to Ftrace and LTTng, but its

output (as a tracer) is a short summary and hides the details

that are provided by other kernel tracers. SystemTap and eBPF

serve similar roles, although eBPF is gaining more traction in

recent kernel versions. eBPF adds slightly more overhead than

SystemTap due to the need of an in-kernel virtual machine,

while SystemTap translates user scripts into loadable kernel

modules. The wide availability of targeted tools for kernel

subsystems make eBPF, particularly within the BCC project

[??bcc2017], a more user-friendly tool than SystemTap. As for

high performance applications, VampirTrace performs better

than Extrae, and provides similar features as well, making it

a better choice in terms of added overhead.

VIII. CONCLUSION

In this paper, we explained the designs of different kernel

and user space tracers. The benchmark results not only helped

to quantify the overhead that each tracer adds to the traced ap-

plication, but also point out specific details about the internals

of each tracer. By sampling low-level performance counters,

this analysis helps users determine where the overhead usually

originates from, and how to configure tracers to reduce their

footprint depending on their requirements. Lastly, this research

also helps tracer developers, as we were able to point out

potential optimizations in some tracers, and showed design

limitations in others. In conclusion, designing a tracer is a

trade-off between usability, features and overhead. Fundamen-

tal designs choices have to be made that dictate how the tracer

behaves under critical conditions.
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