
OBJECT LINKAGE MECHANISM
FOR THREADED INTERPRETIVE LANGUAGES

Yang M. Lee
Trenton State College

Donald J. Alameda, Jr.
Integrated Automata, Inc.

Keywords: threaded ir~terpti~~ languages, object oriented
programming, Forth, inheritance

Abstract
Several programming languages, most notably Forth, have been
implemented as threaded interpretive languages. These
languages usually offer static threading as the primary linkage
mechanism. The demands of object oriented programming o&en
require more flexible binding options. This ppe-r discusses a
linkage for TILs that supports multiple inheritance and various
dynamic properties while preserving the other characteristics of
these languages.

Introductiun
The essence of a threaded interpretive language (TIL) is an
inner interpreter that sequentially executes atomic machine
language primitives in a manner analogous to the hardware
instruction fetch cycle. The inner interpreter employs an
interpretive pointer (IP). usualIy assigned to a dedicated
register, that serves as a software program counter. The IP
traverses a sequence of addressed cells called the interpretive
sfrel7M (IS).

In this discussion, the atomic machine language primitives are
called code jfekf routines (CFRs). Once a TIL run time
environment is launched, the hardware PC always remains
inside a CFR. As a program runs, the current CFR executes,
then passes control to the CFR for the next item in the IS. These
short machine language routines arc the software analogs of
hardware instructions.

In Forth, the most well known of the languages typically
implemented as TILs, the lexical unit is called a word. Each
item in a Forth IS represents a word after it as been compiled.
Forth words fall into two categories depending on the nature of
their CFRs: machine language primitive (MLP) and high kvef
(I-IL) words. The CFR for each MLP is unique and dedicaterl to
that word.

The CFR for a HL word characterizes a unique word type and
is shared among all words of that type. Basic HL word types
include constants, variables and colon dellnitions. That means
all variables share one CFR and all constants share another. The
portion of a HL word that makes it unique ie its parmeterjieid
PF).

“permission to copy without fee a~ or part of this material is gramed
provided that the copies are not made or distributed for direct
commerical advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is-by
permission of the Association for Computing Machinery. To COPY
otherwise, or to republish, requires a fee and/or specific permissic’n.”

63 1995 ACM O-89791-658-1 95 0002 3.50

In the case of wnstant or variable words, the PF contains a
numeric value. The PF of a MLP word is ita dedicated CFR.
Colon defmitions arc the most interesting of the basic word
types. The PF of a colon definition is a discrete segment of IS
code. In a typical Forth implementation, most of the words built
into the system arc colon words. A colon definition threads
together other words, both MLP and HL, to create a new word
representing the squence. This threading gives the class of
language8 its name.

Indirect threading is the most popular threading technique found
in TILs [l]. Its IS wmprises a sequence of pointers to word
bodies which in turn point to the execution addresses for
machine code. Modification of the linkage in an indirect thread
system requires patching the IS segment in the PF of a colon
deilnition.

Vector threading and table threading sacrifice a little speed to
provide more dynamic linkage. In these implementations, the IS
is a sequence of celIs wntaining the addresses of pointers to the
word bodies or indices into a table of execution addresses [2]. In
vector and table threading, link modification need not disturb
defined colon words. In this way, the behavior of wmpiled code
can be modifd or extended at run time by other code written
and compiled at a later date.

Thii paper describes a multiple table threading scheme, which
the authors have dubbed object threading, that supporta flexible
link options, permitting eeveral approaches to object ortented
programming (COP) language extension for TILs. The code
examples presented to facilitate the discussion arc written for the
Intel 80x86 family of processors (speci&ally MS-DOS and $be
Microsoft Macro Assembler Version 5.00 or later) but are as
easily or even more easily implemented under other
architwtured.

The implementation described here alao takes advantage of
80x86 memory segmentation and the segment registers to
provide natural boundaries between sol&are objecta. The 8086
memory addressing scheme uses four segment registers to
divide the physical memory address space into four
simultaneous tlat sixteen-bit (64 Kbyte) address spaces called
segments. Any or all of these segments may overlap to any
degree or they may all be independent.

In this implementation, the 8086 code segment (CS) and stack
segment (SS) registers are always equal and never change. All
hardware stack operations and instruction executions reference
this one sixty-four Kbyte segment. Therefore, the parameter

http://crossmark.crossref.org/dialog/?doi=10.1145%2F315891.316023&domain=pdf&date_stamp=1995-02-26

rtack (Fstack), all the CFFb in the ryrtem and the cold start
codemustallreaidehere.

The PFs for HL words an defined with respect to the data
segment (DS). Therefore, the IS as well as all data alwayr exist
within an 8086 data segment. In a simple sixteen bit Forth
implementation, the DS would be set equal to the CS and SS
registers and all operations would share the same address space.
None of the impkmentations discussed here require any special
usage for the fourth segment register, the extra segment (ES)
register.

In the object threading implementation described here, the DS
register changes to map various different high level code
contexta. A threaded segmcnr ia identified by a unique DS value
and can occupy up to &y-four Kbytes of physical memory.
~ChobjtctirathrrrdedregmentuirtheKtofhigh~~
worda built into the system (which is not an object).

The ANSI standard for the Forth prowing language does
not speei@ or require any type of thr&ing [3], but many Forth
ryatemr are *till impkmented as TILa. Therefore, one design
goal for the objeet threading linkage mechanism was that it
provide a suitabk substrate for Forth implementation.

IP

IS: ~CFA~CFA~CFA~CFA~CFA~CFA~CFA~
1 1 1 1 1

CF CF CF CF CF

I
MCR CFFUICFR Iunique MC]

CF

HL CFRA Data or IS St ment

Jp

IS Interpretive Stream CF Code Field
MC Machine Code CFA CF Address
MCP MC Primitive word CFR CF Boutine
HL High Level Word CFRA CFRAddrcu

FigtUO1:Ifldirecr~

The Inner IntcrpreLcr
Just as the hardwate FC mtut alwayr point to valid executahk
machine code for co- program performance, the TIL IP
must always point to a cell within an IS thread in a colon word
PP. The inner interpreter is urually called NEXT because it usea
the IP to fetch the next interpretive token just as the hardware
instruction f#ch logic uses the program counter (PC) to fetch
the next machine instruction. NEXT advances the IP and
redirecta ihe hardware PC accordingly by jumping to the
machine code CFR fcktal to the cunmt interprUive cell.

In some impkmentations, NEXT is a macro that is expanded
when required. In other systema, including the one dtscribcd

hm,NEXTLar~p~ofoode~tbesy~crnpbysa
jump to invoke NEXT.

Inawordbody,apoktertothcCPRforthrtwordircrlltda
codejield (CF). The addrear of a code fkld is called a co&J&i
&ress (CFA). For indirect threaded code, the IS is a sequence
of CFAs [l]. Fiiun 1 illustrates the relationships between the
elements of indirect threukd code. Figure 2 ill- those
datio~hipa for table thruded code.

IS:

VT:

I CF
I

C-F CF

WA? CFRA(CFR (unique MC]
CF

HL’ CFFlA Data or IS Se ment

Jw

IS Interpretive stlum CF code Fiiki
VT Vector Table CFA CFAddreu
MC Machine Code CFI CF Index
MCP MC Rimitive Word CFR CF Routine
HL High Level Word CFRA CFJRAddma

Pi 2: Tabk Thmading

CFRS, both primitive and c-, usually end in an
invocation of NEXT. Figure 3 ill- an kdireet Utraded
NEXT in a sixteen bit impkmenuttion of Forth for an Intel
8ox86proceasor.

NEXT :
Laosu
mv BX,hX
Jw word ptr CBXI

Figu1w3:kdirectT’hre&dInnerInteqmter

In all of the implementations described here, the SI register
servcaastheIP.Intheindh%thrc&dNEXT,theaddmr
loadcdintoAXirtheCFAforthenextwordkrhcIS.TheCFR
pointer is transfti to the base register, BX, to permit an
indireet jump to the CFB.

Figure 4 iBustntu a table threaded NEXT in a sixteen bit
itnpkmentation of Forth for an Intel 80x86 proceuo r. Thi8 time
theaixteenbitcellloadedintoAXismindexintoatabk

375

(CFA-TABLE) that contains the CFAs for every word in Ihe
system. Consequently, each word is represented by a unique
index. Because each CFA is two bytes long, BX is added to
itself to convert the index into a table offset. The NEXT routine
then loads the CFA from CPA-TABLE into BX allowing an
indireot jump to the appropriate CFR.

NEXT:

LWSY

NDV BX,AX

ADD BX,BX

Nov BX,CFA_IABLE CEXI

JMP word ptr CBXI

Figure 4: Table Threaded Inner Interpreter

Word Vector Tables
Object threading is simii to table threading in that the
interpretive cells in its IS represent table indices rather than
hardware addresses. However, the cells in the vector table used
in object threading are more complex than the simple CFAs of
table threading. Figure 5 illustrates the structure of a word
vector (WV) in a word vector table (WVT).

CFR Offset

El

into Code Segment
PF Offset into Threaded Segment
PF Se ment Common or Object

CFR Code Field Routine
PF Parameter Field

Figure 5: Object Threading Word Vector

A WV is a two dimensional vector. It has three distinct sixteen
bit fields: two address offset values and one address segment
value. The first part is the familiar CFR execution address with
a range of sixty-four Kbytes. The next two fields together locate
the associated PF within a specified threaded segment. The PF
dimension of the vector has the entire 8086 segmented address
spaw as its range.

The threaded segment that contains the parameter fields for the
high level words built into the system is called the common
threaded segment. AlI other threaded segments are associated
with objects and are called object threaded segments.

The root worok are the set of machine code primitive words
together with the set of common threaded words plus all
extensions to root word lists. They are accessible to all other
words through the normal outer interpreter source stream at
compile time and the IS at run time. All words in standard Forth
word lists (CORE, CORE EXT, DOUBLE, FILE, etc.) would
be implemented as root words.

Object threaded code segments each define an object. One
feature of an object threaded segment is that it contains a WVT
while the common thrcadcd segment does not. In fact, the WVT
in an object threadcd segment is at the base (offset zero) of the

segment address space. Forth words whose PFs are located via
object segment WVTs are called member words.

Because an interpretive token in an object threaded IS wrvea as

an index into a WVT, it is called a word vector index (WVI).

The high order bit of a WVI is called the root bit and ia used as

a flag to the NEXT routine.

Root WVI: 1 1 5-bit index field

,Code Sc’j

[IS Segments

Word Vector Index
WVT Word Vector Table
CFR Code Field Routine
IS Interpretive Stream

Figure 6: Root WVI CFR Address Translation

The root bit distinguishes two classes of WVI. A root WVI (one
with its root bit set) is the index for a root word and is unique
within the system. It always rcfm to the same word. The root
WVT resides in the code segment along with all of the CFRs for
the system (even the CFRs for member words). A member WVZ
(one with its root bit clear) is the index for a member word and
is interpreted in the context of the’ current object. Figure 6
illustrates CFR address translation for root WVIs and figure 7
does the same for member WVIs.

To maintain object context, a third stack (the O-stack) is

introduced in addition to the standard P-stack and R-stack. The
80x86 SP, BP and DI registers are reserved as the P-stack, R-
stack and O-stack pointers respectively. All three stacks in the
described implementation reside in the code segment.

Current object context b defined by the value at the top of the
O-stack which is interpreted as the DS segment register value
that maps the current object threaded segment, and consequently
the current object WVT. Entire objects (mcluding their threaded
segments and WVTs) are identified by object words which,
when executed, change context to the associated object. Because
they must be available to the public at all times, the object words
themselves are root words and are compiled into the wmmon
threaded segment.

The table threaded NEXT processes a very simple table. Each
entry is simply the CFA of the indexed word. The location of
the associated PF is calculated tiom the CFA value. The WVT

,

entries employed by object threading in the example 80x86
implementation contain more information. Each entry is six
bytes long to support the WV structure described above.

Member WI: 1011 5bit index field1

I
Code Sea

IIS Segment8 J

1

WV1 Word Vector Index
WVT Word Vector Table
CFR Code Field Routine
IS Interpretive Stream

Figure 7: Member WVI CFR Address Translation

Figure 8 illustrates the relationships between the elements of
object threaded code. Figure 9 illustrates an object threaded
NEXT in a sixteen bit implementation of Forth for an Intel
80x86 processor. The most striking feature of the object
threaded NEXT is that it has two distinct branches. The first
portion handles root words; the remainder handles object
member words.

IP

IS:

WVT:

1 1 MCP:tw

WV Word Vector MC Machine Code
WV1 WV Index MCP MC Primitive Word
WVT WV Table CFR CF Routine

HL High Level Word

Figure 8: Object Threading

Like the other 80x86 NEXT routines described above, the
object threaded NEXT moves the interpretive token. a WVI in
this case, from the IS to the AX register and advances the IP.
Then it tests the root bit in the WV1 and branches to the member
word handler if it is clear. If the WV1 root bit is set. the index
value is doubled to discard the root bit and placed in the base
register allowing an indirect jump to the appropriate CFR via
the CFR offset field in the selected WV in the root WVT.

Because the size of each WV is six bytes, the fitleen bit index
fields in WVIs must be exact multiples of three. Any other value
is illegal and undefined. Assuring that WVIs are generated in
this manner is a simple matter for the outer interpreter which
performs colon deI%ition compiling.

NEXT :
LDD!u
TEST AX,RDDT-SIT
JZ NEXT1
HDV SX,AX
ADD BX,BX
JHP word ptr CS: RDDT-BVT 16x1

NEXT1 :
HDV SX,AX
ADD BX,BX
PUSH DS
HOV DS,CS: CD11
HDV DX, CBXI
PDP DS
JMP DX

Figure 9: Table Threaded Inner Interpreter

Member word handling is similar. Again the WV1 is doubled to
discard the root bit and transferred to the bane register. Because
member WVIs are translated through the current object WVT,
the value from the top of the O-stack (at CS: IDI]) provides the
DS to locate the object segment WVT. The CFR offset field in
the selected WV in the object WVT is used for a dii jump
(within the CS).

Placing the CFA (CFR offset field) in the WV instead of keeping
it with the word body is not a requirement for objcot threading.
This design decision was made for the described system because
of the idiosyncrasies of the Intel 80x86 segmented memory
architecture. The essence of object threading lies in the selection
of a WVT based on object context, not in any strict
segmentation of memory or the structure of the WV. In fact,
many styles of WV are possible for an 80x86 object threaded
implementation.

In flat addressing and virtual addressing schema, especially
with thirty-two bit or larger addresses, the WVT may simply
contain long form CFAs as in simple table threading. In this
case, the cell that contains the CFR address for a word would
still be part of the body of that word and location of object
WVTs would require other conventions and addresr
computations.

377

In the system from which the object threaded inner interpreter
example was derived, CFRs for HL words exist in two variants:
one for root words and one for member words. Again, thii
division was the result of implementation decisions and is not a
requirement of object threading. However, object threading does
introduce one new CFR: the machine code to support the HL
object word type. The CFR for object words pushes the segment
address for the object onto the O-stack. Until that address is
popped, or another object address is pushed on top of it, all
member WVI references PIE interpreted via the WVT belonging
to that object by default. ln flat addressing implementations, ,the
value on the O-stack would be the address of the base of the
object segment, which would also be the address of the WVT
for that object.

Inheritance

While a member word executes (the IS is within an object
segment), both root and member WVIs are encountered. If the
PF vectors within each of the HL WVs in’an object segment
WVT all refer to only the root common threaded segment and
the object itself, the object is independent of all other objects.
However, object threading allows an object WVT to refer to
PFs in any threaded segment (the set of all object segments plus
the common segment). Therefore, for one object segment to
inherit behavior from another, it may simply map the parameter
field of a colon definition within the other object segment.

So far in this discussion, no distinction has been made between
an object and an insmnce of an object type or clars. The reason
for deferring that discussion until now is that object threading
supports many variants of object implementation. Ob.ject
threading directly supports encapsulation and other OOP
language featurea. most notably overloaded operators and late
binding. But any object design, with or without class support,
even with late binding, can be implemented with indirect or
table threaded code. A TlL designer would choose object
threading for compilation speed, execution efficiency and ease
of outer interpreter design and implementation.

In the simple type of inheritance described above, the WVs for
each of the WVIs compiled into the inherited word must have
the same meaning (same values in the same positions) in each of
the two WVTs. Overriding an inherited member word means
that the WV1 for that member word must have analogous but
different meanings (values at the overridden position) in the two
WVTs. For class instance support, the colon member WVs
(object behavior) would refer to an external object segment
while the data member WVs (object state) would refer to the
local object segment. Object threadiig can not enforce such
relationships: the inner interpreter only provides the linkage.
The proper construction of object segments and WVTs for
object type, instance and inheritance support is an outer
interpreter issue coupled to the specific semantics of the object
relationships to be enforced.

3713

There are many options for outer interpreter implementations of
systems employing object threading. The fmt consideration is
that the outer interpreter should not recognize the name of a

member word without an object instance context. The most
obvious method is to employ a scan forward technique where
the token following an object word is pluckad from the source
stream and lookup is performed in a special word list that
belongs to the object word. The outer interpreter must force the
compilation of WVIs for the object word, the member word and,

unless object context is to be transferred to the referenced
object, the MCP root word that Performs a return from object.

Separating class and instance makes inheritance much easier to
implement. While an object requires both class behavior and
instance statc to function, inheritance is a property of class
behavior only. In a class and instance implementation, class
words sewe as the defining words used to create instance words
and construct their corresponding object segments. Under this
design, instance words become the agents that set object context
to their own object segments. In the system described, instance
object segments contain only base relative data member words
[4] and the class object segments contain only colon member
words referring only to base relative data in the current instance
object segment and the P-stack.

Multiple inheritance presents a more diificult problem. The
described object threaded system supports multiple inheritance
by further segmenting object segment WVTs with parallel
changes in WVI structure. For member words, the fifteen bit
index field in the multiple inheritance WV is subdivided into a
seven bit member offset and an eight bit parent class offset.
Root word WVIs do not change and the root WVT is not
segmented. The additional overhead this change introduces into
the inner interpreter affects the member word branch only.

c4mchlsion
Neither simple nor multiple inheritance require a special
linkage. In a TIL, these featurea can be supported by
appropriate outer interpreter design. The strengths of object
threading result from supporting encapsulation and inheritance
at the IS level. Consequently, object threading excels at mn time
binding and other deferred binding support. Well behaved
words that manipulate class or instance object segment WVTs at
run time are easily designed.

Address correspondence to:
Yong M. Lee
Computer Science Department
Trenton State College
Trenton, NJ 08650

[l] Biggs, T. L. i&‘orth Programmer Reference Manual.
Lawrenceville, NJ: Integrated Automata, Inc., 1985.
[2] Alameda, D. J. and T. L. Biggs. RZZ5 Design Handbook.
Upper Montclair, NJ: Integrated Automata, Inc., 1991.
[3] Woehr, Jack. Forth: Ihe New Model. San Mata, CA:
M&T Books, 1992.
[4] Lee, Y. and D. J. Alameda. C+ + Style Class Suppoe
Under FIG Forth. In Proceedings of the 1994 ACM
Symposium on Applied Computing, pagea 341-345,~~.

