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Abstract 
Several programming languages, most notably Forth, have been 
implemented as threaded interpretive languages. These 
languages usually offer static threading as the primary linkage 
mechanism. The demands of object oriented programming o&en 
require more flexible binding options. This ppe-r discusses a 
linkage for TILs that supports multiple inheritance and various 
dynamic properties while preserving the other characteristics of 
these languages. 

Introductiun 
The essence of a threaded interpretive language (TIL) is an 
inner interpreter that sequentially executes atomic machine 
language primitives in a manner analogous to the hardware 
instruction fetch cycle. The inner interpreter employs an 
interpretive pointer (IP). usualIy assigned to a dedicated 
register, that serves as a software program counter. The IP 
traverses a sequence of addressed cells called the interpretive 
sfrel7M (IS). 

In this discussion, the atomic machine language primitives are 
called code jfekf routines (CFRs). Once a TIL run time 
environment is launched, the hardware PC always remains 
inside a CFR. As a program runs, the current CFR executes, 
then passes control to the CFR for the next item in the IS. These 
short machine language routines arc the software analogs of 
hardware instructions. 

In Forth, the most well known of the languages typically 
implemented as TILs, the lexical unit is called a word. Each 
item in a Forth IS represents a word after it as been compiled. 
Forth words fall into two categories depending on the nature of 
their CFRs: machine language primitive (MLP) and high kvef 
(I-IL) words. The CFR for each MLP is unique and dedicaterl to 
that word. 

The CFR for a HL word characterizes a unique word type and 
is shared among all words of that type. Basic HL word types 
include constants, variables and colon dellnitions. That means 
all variables share one CFR and all constants share another. The 
portion of a HL word that makes it unique ie its parmeterjieid 
PF). 
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In the case of wnstant or variable words, the PF contains a 
numeric value. The PF of a MLP word is ita dedicated CFR. 
Colon defmitions arc the most interesting of the basic word 
types. The PF of a colon definition is a discrete segment of IS 
code. In a typical Forth implementation, most of the words built 
into the system arc colon words. A colon definition threads 
together other words, both MLP and HL, to create a new word 
representing the squence. This threading gives the class of 
language8 its name. 

Indirect threading is the most popular threading technique found 
in TILs [l]. Its IS wmprises a sequence of pointers to word 
bodies which in turn point to the execution addresses for 
machine code. Modification of the linkage in an indirect thread 
system requires patching the IS segment in the PF of a colon 
deilnition. 

Vector threading and table threading sacrifice a little speed to 
provide more dynamic linkage. In these implementations, the IS 
is a sequence of celIs wntaining the addresses of pointers to the 
word bodies or indices into a table of execution addresses [2]. In 
vector and table threading, link modification need not disturb 
defined colon words. In this way, the behavior of wmpiled code 
can be modifd or extended at run time by other code written 
and compiled at a later date. 

Thii paper describes a multiple table threading scheme, which 
the authors have dubbed object threading, that supporta flexible 
link options, permitting eeveral approaches to object ortented 
programming (COP) language extension for TILs. The code 
examples presented to facilitate the discussion arc written for the 
Intel 80x86 family of processors (speci&ally MS-DOS and $be 
Microsoft Macro Assembler Version 5.00 or later) but are as 
easily or even more easily implemented under other 
architwtured. 

The implementation described here alao takes advantage of 
80x86 memory segmentation and the segment registers to 
provide natural boundaries between sol&are objecta. The 8086 
memory addressing scheme uses four segment registers to 
divide the physical memory address space into four 
simultaneous tlat sixteen-bit (64 Kbyte) address spaces called 
segments. Any or all of these segments may overlap to any 
degree or they may all be independent. 

In this implementation, the 8086 code segment (CS) and stack 
segment (SS) registers are always equal and never change. All 
hardware stack operations and instruction executions reference 
this one sixty-four Kbyte segment. Therefore, the parameter 
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rtack (Fstack), all the CFFb in the ryrtem and the cold start 
codemustallreaidehere. 

The PFs for HL words an defined with respect to the data 
segment (DS). Therefore, the IS as well as all data alwayr exist 
within an 8086 data segment. In a simple sixteen bit Forth 
implementation, the DS would be set equal to the CS and SS 
registers and all operations would share the same address space. 
None of the impkmentations discussed here require any special 
usage for the fourth segment register, the extra segment (ES) 
register. 

In the object threading implementation described here, the DS 
register changes to map various different high level code 
contexta. A threaded segmcnr ia identified by a unique DS value 
and can occupy up to &y-four Kbytes of physical memory. 
~ChobjtctirathrrrdedregmentuirtheKtofhigh~~ 
worda built into the system (which is not an object). 

The ANSI standard for the Forth prowing language does 
not speei@ or require any type of thr&ing [3], but many Forth 
ryatemr are *till impkmented as TILa. Therefore, one design 
goal for the objeet threading linkage mechanism was that it 
provide a suitabk substrate for Forth implementation. 
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FigtUO1:Ifldirecr~ 

The Inner IntcrpreLcr 
Just as the hardwate FC mtut alwayr point to valid executahk 
machine code for co- program performance, the TIL IP 
must always point to a cell within an IS thread in a colon word 
PP. The inner interpreter is urually called NEXT because it usea 
the IP to fetch the next interpretive token just as the hardware 
instruction f#ch logic uses the program counter (PC) to fetch 
the next machine instruction. NEXT advances the IP and 
redirecta ihe hardware PC accordingly by jumping to the 
machine code CFR fcktal to the cunmt interprUive cell. 

In some impkmentations, NEXT is a macro that is expanded 
when required. In other systema, including the one dtscribcd 

hm,NEXTLar~p~ofoode~tbesy~crnpbysa 
jump to invoke NEXT. 

Inawordbody,apoktertothcCPRforthrtwordircrlltda 
codejield (CF). The addrear of a code fkld is called a co&J&i 
&ress (CFA). For indirect threaded code, the IS is a sequence 
of CFAs [l]. Fiiun 1 illustrates the relationships between the 
elements of indirect threukd code. Figure 2 ill- those 
datio~hipa for table thruded code. 
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Pi 2: Tabk Thmading 

CFRS, both primitive and c-, usually end in an 
invocation of NEXT. Figure 3 ill- an kdireet Utraded 
NEXT in a sixteen bit impkmenuttion of Forth for an Intel 
8ox86proceasor. 

NEXT : 
Laosu 
mv BX,hX 
Jw word ptr CBXI 

Figu1w3:kdirectT’hre&dInnerInteqmter 

In all of the implementations described here, the SI register 
servcaastheIP.Intheindh%thrc&dNEXT,theaddmr 
loadcdintoAXirtheCFAforthenextwordkrhcIS.TheCFR 
pointer is transfti to the base register, BX, to permit an 
indireet jump to the CFB. 

Figure 4 iBustntu a table threaded NEXT in a sixteen bit 
itnpkmentation of Forth for an Intel 80x86 proceuo r. Thi8 time 
theaixteenbitcellloadedintoAXismindexintoatabk 

375 



(CFA-TABLE) that contains the CFAs for every word in Ihe 
system. Consequently, each word is represented by a unique 
index. Because each CFA is two bytes long, BX is added to 
itself to convert the index into a table offset. The NEXT routine 
then loads the CFA from CPA-TABLE into BX allowing an 
indireot jump to the appropriate CFR. 

NEXT: 

LWSY 

NDV BX,AX 

ADD BX,BX 

Nov BX,CFA_IABLE CEXI 

JMP word ptr CBXI 

Figure 4: Table Threaded Inner Interpreter 

Word Vector Tables 
Object threading is simii to table threading in that the 
interpretive cells in its IS represent table indices rather than 
hardware addresses. However, the cells in the vector table used 
in object threading are more complex than the simple CFAs of 
table threading. Figure 5 illustrates the structure of a word 
vector (WV) in a word vector table (WVT). 

CFR Offset 

El 

into Code Segment 
PF Offset into Threaded Segment 
PF Se ment Common or Object 

CFR Code Field Routine 
PF Parameter Field 

Figure 5: Object Threading Word Vector 

A WV is a two dimensional vector. It has three distinct sixteen 
bit fields: two address offset values and one address segment 
value. The first part is the familiar CFR execution address with 
a range of sixty-four Kbytes. The next two fields together locate 
the associated PF within a specified threaded segment. The PF 
dimension of the vector has the entire 8086 segmented address 
spaw as its range. 

The threaded segment that contains the parameter fields for the 
high level words built into the system is called the common 
threaded segment. AlI other threaded segments are associated 
with objects and are called object threaded segments. 

The root worok are the set of machine code primitive words 
together with the set of common threaded words plus all 
extensions to root word lists. They are accessible to all other 
words through the normal outer interpreter source stream at 
compile time and the IS at run time. All words in standard Forth 
word lists (CORE, CORE EXT, DOUBLE, FILE, etc.) would 
be implemented as root words. 

Object threaded code segments each define an object. One 
feature of an object threaded segment is that it contains a WVT 
while the common thrcadcd segment does not. In fact, the WVT 
in an object threadcd segment is at the base (offset zero) of the 

segment address space. Forth words whose PFs are located via 
object segment WVTs are called member words. 

Because an interpretive token in an object threaded IS wrvea as 

an index into a WVT, it is called a word vector index (WVI). 

The high order bit of a WVI is called the root bit and ia used as 

a flag to the NEXT routine. 

Root WVI: 1 1 5-bit index field 

,Code Sc’j 

[IS Segments 

Word Vector Index 
WVT Word Vector Table 
CFR Code Field Routine 
IS Interpretive Stream 

Figure 6: Root WVI CFR Address Translation 

The root bit distinguishes two classes of WVI. A root WVI (one 
with its root bit set) is the index for a root word and is unique 
within the system. It always rcfm to the same word. The root 
WVT resides in the code segment along with all of the CFRs for 
the system (even the CFRs for member words). A member WVZ 
(one with its root bit clear) is the index for a member word and 
is interpreted in the context of the’ current object. Figure 6 
illustrates CFR address translation for root WVIs and figure 7 
does the same for member WVIs. 

To maintain object context, a third stack (the O-stack) is 

introduced in addition to the standard P-stack and R-stack. The 
80x86 SP, BP and DI registers are reserved as the P-stack, R- 
stack and O-stack pointers respectively. All three stacks in the 
described implementation reside in the code segment. 

Current object context b defined by the value at the top of the 
O-stack which is interpreted as the DS segment register value 
that maps the current object threaded segment, and consequently 
the current object WVT. Entire objects (mcluding their threaded 
segments and WVTs) are identified by object words which, 
when executed, change context to the associated object. Because 
they must be available to the public at all times, the object words 
themselves are root words and are compiled into the wmmon 
threaded segment. 

The table threaded NEXT processes a very simple table. Each 
entry is simply the CFA of the indexed word. The location of 
the associated PF is calculated tiom the CFA value. The WVT 
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entries employed by object threading in the example 80x86 
implementation contain more information. Each entry is six 
bytes long to support the WV structure described above. 

Member WI: 1011 5bit index field1 

I 
Code Sea 

IIS Segment8 J 

1 

WV1 Word Vector Index 
WVT Word Vector Table 
CFR Code Field Routine 
IS Interpretive Stream 

Figure 7: Member WVI CFR Address Translation 

Figure 8 illustrates the relationships between the elements of 
object threaded code. Figure 9 illustrates an object threaded 
NEXT in a sixteen bit implementation of Forth for an Intel 
80x86 processor. The most striking feature of the object 
threaded NEXT is that it has two distinct branches. The first 
portion handles root words; the remainder handles object 
member words. 

IP 

IS: 

WVT: 

1 1 MCP:tw 

WV Word Vector MC Machine Code 
WV1 WV Index MCP MC Primitive Word 
WVT WV Table CFR CF Routine 

HL High Level Word 

Figure 8: Object Threading 

Like the other 80x86 NEXT routines described above, the 
object threaded NEXT moves the interpretive token. a WVI in 
this case, from the IS to the AX register and advances the IP. 
Then it tests the root bit in the WV1 and branches to the member 
word handler if it is clear. If the WV1 root bit is set. the index 
value is doubled to discard the root bit and placed in the base 
register allowing an indirect jump to the appropriate CFR via 
the CFR offset field in the selected WV in the root WVT. 

Because the size of each WV is six bytes, the fitleen bit index 
fields in WVIs must be exact multiples of three. Any other value 
is illegal and undefined. Assuring that WVIs are generated in 
this manner is a simple matter for the outer interpreter which 
performs colon deI%ition compiling. 

NEXT : 
LDD!u 
TEST AX,RDDT-SIT 
JZ NEXT1 
HDV SX,AX 
ADD BX,BX 
JHP word ptr CS: RDDT-BVT 16x1 

NEXT1 : 
HDV SX,AX 
ADD BX,BX 
PUSH DS 
HOV DS,CS: CD11 
HDV DX, CBXI 
PDP DS 
JMP DX 

Figure 9: Table Threaded Inner Interpreter 

Member word handling is similar. Again the WV1 is doubled to 
discard the root bit and transferred to the bane register. Because 
member WVIs are translated through the current object WVT, 
the value from the top of the O-stack (at CS: IDI]) provides the 
DS to locate the object segment WVT. The CFR offset field in 
the selected WV in the object WVT is used for a dii jump 
(within the CS). 

Placing the CFA (CFR offset field) in the WV instead of keeping 
it with the word body is not a requirement for objcot threading. 
This design decision was made for the described system because 
of the idiosyncrasies of the Intel 80x86 segmented memory 
architecture. The essence of object threading lies in the selection 
of a WVT based on object context, not in any strict 
segmentation of memory or the structure of the WV. In fact, 
many styles of WV are possible for an 80x86 object threaded 
implementation. 

In flat addressing and virtual addressing schema, especially 
with thirty-two bit or larger addresses, the WVT may simply 
contain long form CFAs as in simple table threading. In this 
case, the cell that contains the CFR address for a word would 
still be part of the body of that word and location of object 
WVTs would require other conventions and addresr 
computations. 
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In the system from which the object threaded inner interpreter 
example was derived, CFRs for HL words exist in two variants: 
one for root words and one for member words. Again, thii 
division was the result of implementation decisions and is not a 
requirement of object threading. However, object threading does 
introduce one new CFR: the machine code to support the HL 
object word type. The CFR for object words pushes the segment 
address for the object onto the O-stack. Until that address is 
popped, or another object address is pushed on top of it, all 
member WVI references PIE interpreted via the WVT belonging 
to that object by default. ln flat addressing implementations, ,the 
value on the O-stack would be the address of the base of the 
object segment, which would also be the address of the WVT 
for that object. 

Inheritance 

While a member word executes (the IS is within an object 
segment), both root and member WVIs are encountered. If the 
PF vectors within each of the HL WVs in’an object segment 
WVT all refer to only the root common threaded segment and 
the object itself, the object is independent of all other objects. 
However, object threading allows an object WVT to refer to 
PFs in any threaded segment (the set of all object segments plus 
the common segment). Therefore, for one object segment to 
inherit behavior from another, it may simply map the parameter 
field of a colon definition within the other object segment. 

So far in this discussion, no distinction has been made between 
an object and an insmnce of an object type or clars. The reason 
for deferring that discussion until now is that object threading 
supports many variants of object implementation. Ob.ject 
threading directly supports encapsulation and other OOP 
language featurea. most notably overloaded operators and late 
binding. But any object design, with or without class support, 
even with late binding, can be implemented with indirect or 
table threaded code. A TlL designer would choose object 
threading for compilation speed, execution efficiency and ease 
of outer interpreter design and implementation. 

In the simple type of inheritance described above, the WVs for 
each of the WVIs compiled into the inherited word must have 
the same meaning (same values in the same positions) in each of 
the two WVTs. Overriding an inherited member word means 
that the WV1 for that member word must have analogous but 
different meanings (values at the overridden position) in the two 
WVTs. For class instance support, the colon member WVs 
(object behavior) would refer to an external object segment 
while the data member WVs (object state) would refer to the 
local object segment. Object threadiig can not enforce such 
relationships: the inner interpreter only provides the linkage. 
The proper construction of object segments and WVTs for 
object type, instance and inheritance support is an outer 
interpreter issue coupled to the specific semantics of the object 
relationships to be enforced. 
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There are many options for outer interpreter implementations of 
systems employing object threading. The fmt consideration is 
that the outer interpreter should not recognize the name of a 

member word without an object instance context. The most 
obvious method is to employ a scan forward technique where 
the token following an object word is pluckad from the source 
stream and lookup is performed in a special word list that 
belongs to the object word. The outer interpreter must force the 
compilation of WVIs for the object word, the member word and, 

unless object context is to be transferred to the referenced 
object, the MCP root word that Performs a return from object. 

Separating class and instance makes inheritance much easier to 
implement. While an object requires both class behavior and 
instance statc to function, inheritance is a property of class 
behavior only. In a class and instance implementation, class 
words sewe as the defining words used to create instance words 
and construct their corresponding object segments. Under this 
design, instance words become the agents that set object context 
to their own object segments. In the system described, instance 
object segments contain only base relative data member words 
[4] and the class object segments contain only colon member 
words referring only to base relative data in the current instance 
object segment and the P-stack. 

Multiple inheritance presents a more diificult problem. The 
described object threaded system supports multiple inheritance 
by further segmenting object segment WVTs with parallel 
changes in WVI structure. For member words, the fifteen bit 
index field in the multiple inheritance WV is subdivided into a 
seven bit member offset and an eight bit parent class offset. 
Root word WVIs do not change and the root WVT is not 
segmented. The additional overhead this change introduces into 
the inner interpreter affects the member word branch only. 

c4mchlsion 
Neither simple nor multiple inheritance require a special 
linkage. In a TIL, these featurea can be supported by 
appropriate outer interpreter design. The strengths of object 
threading result from supporting encapsulation and inheritance 
at the IS level. Consequently, object threading excels at mn time 
binding and other deferred binding support. Well behaved 
words that manipulate class or instance object segment WVTs at 
run time are easily designed. 
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