
METRICS FOR TARGETING CANDIDATES FOR REUSE: 
AN EXPERIMENTAL APPROACH 

Stephen R. Schach and Xuefeng Yang 

Vanderbilt University 

Abstract 

Accidental reuse of a software component is the utilization of 
that component in a new product, where the component was not 
specifically constructed for the purpose of possible future 
reuse. Software metrics have been used to try to identify which 
of the literally billions of available software components 
would make good candidates for accidental reuse. The selected 
candidates are then submitted to a domain expert for further 
study. In this paper, we point out that the decision regarding 
the reuse of a software code module is made on the basis of more 
than just the source code, whereas the metrics are computed 
from only the source code. Furthermore, the deciding factor is 
what we term “perceived reusability,” that is to say, a domain 
expert decides, on largely subjective grounds, whether or not to 
reuse a specific module. We conducted a experiment in which 
we measured various metrics for a number of different code mod- 
ules. The results of our experiment were that those metrics 
could not be used to predict perceived reusability. Conse- 
quently, we concluded that perceived reusability is largely sub- 
jective, and hence that automatic tools should not be used to 
predict whether a module would make a good candidate for future 
accidental reuse. 

Key Words 

Reusability, accidental reuse, software metrics, experimenta- 
tion. 

Introduction 

Software reuse refers to the utilization of a software component 
C within a product P, where the original motivation for con- 
structing C was other than for use in P. Component C may be 
any software component including, but not restricted to, a 
specification, plan, contract, design, or code module, or part of 
such a component. The idea underlying reuse is that we can 
produce software faster and more cheaply by reusing existing 
software components (with or without modification), rather 
than by building a new product from scratch. More formally, 
component C is reusable if the effort required to reuse it is sig- 
nificantly smaller than the effort required to implement a com- 
ponent with the same or similar functionality [12]. 

There are two types of reuse. Deliberate reuse occurs when 
component C was originally constructed for the purpose of 
possible reuse in future products that were not specified at the 
time that C was constructed, whereas accidental reuse occurs 
when the motivation for constructing C was as a part of some 
product Q not identical to P [13]. There are distinct advantages 
to deliberate reuse over accidental reuse. 

“Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commerical advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Compufing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission.” 

0 1995 ACM 0-89791-658-l 95 0002 3.50 

For example, if a component is specifically constructed with 
possible future reuse in mind, it is likely that such a component 
will be more carefully written, and more thoroughly teited and 
documented, than is usually the case with software compo- 
nents. Also, deliberate reuse components usually share a uni- 
formity of style that makes,both reuse and future maintenance 
easier. However, deliberate reuse has a major drawback in that 
it is expensive. The cost of specifying, designing, testing, 
and documenting a software component to the standards re- 
quired for potential future reuse will certainly not be recouped if 
that component is never reused. In fact, the cost may not be 
recouped if the component is reused only a small number of 
times in future products. 

The solution seems clear, namely accidental reuse. There are 
innumerable software components that have been constructed 
as part of existing software products. All that has to be done is 
to extract the relevant components, place them in some sort of 
reuse library, index them in some way, and then retrieve them 
when needed. Whereas the problems of indexing and retrieval 
have largely been solved (for example, see 19, ll]), the real 
issue is: Which of the literally billions of existing software 
components should be selected for future reuse? 

Research has been conducted on the use of metrics to predict 
whether an existing software component is a good candidate for 
future reuse. For example, in the work of Chen and Ramamoor- 
thy [4], Caldiera and Basili [3], and Dunn and Knight [6], the 
approach taken is to compute various software metrics for a 
code module. .Then, depending on the values of the metrics, the 
module is either discarded, or handed to a (human) domain ex- 
pert for further analysis regarding reusability. That is to say, 
automatic tools are used to decide whether a given module is a 
good candidate for further study, thus saving the time of the 
domain expert. 

The problem is that we do not know whether this approach 
works. That is to say, no research has as yet been published 
that shows that all the discarded modules are indeed poor candi- 
dates for reuse, and that many (or most) of the selected modules 
are later identified by the domain expert as good candidates for 
reuse. On the contrary, we believe that the metrics-based ap- 
proach has two weaknesses. First, an important criterion for 
reuse is that the component be considered useful. NO metric has 
yet been proposed for measuring this automatically, and it is 
unlikely that this will be achieved in the foreseeable future. 
For this reason, it is likely that many candidate components 
labeled as potentially reusable on the basis of metrics may in 
fact be rejected by a domain expert. Second, the decision as to 
whether to reuse a component is not made exclusively on the 
basis of the source code. A software developer will decide 
whether or not to reuse a particular software component on the 
basis of all information at his or her disposal. For example, in 
order to decide whether to reuse a code component, the software 
developer will examine the source code, comments within the 
source code, fault reports, reports regarding previous reuse ex- 
periences with that component, and any other relevant docu- 
mentation. Thus, if documentation is indeed available, it will 
be utilized in a reuse decision. However, there are no automatic 
tools that can peruse arbitrary documentation and use this in- 

379 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F315891.316024&domain=pdf&date_stamp=1995-02-26


formation, together with metrics based on the source code, IO 
judge reusability. On the other hand, if there is no documenta- 
tion available, then it is unlikely that the module will be reused 
at all. 

The important criterion is whether a software component is 
judged by a domain expert to be reusable. If not, it will never 
be reused. In what follows, we use the term “perceived reusabil- 
ity” of a component C to denote that a number of software pro- 
fessionals with relevant domain knowledge have examined 
component C, and the body of opinion is that C is easy to 
reuse. That is to say, they have decided that, if in the future 
they need a component with the functionality of C, it will be 
significantly easier to use C (either unchanged or modified) 
than to produce from scratch a new component C’ with func- 
tionality either identical or similar to that of C. 

We have conducted an experiment to determine if software met- 
rics can be used to predict whether or not a given module would 
be perceived to be reusable. These metrics fell into two 
classes, namely objective metrics, and perceived metrics. An 
example of an objective metric is cyclomatic complexity [lo], 
essentially, the number of different paths through a code mod- 
ule [5]. There exists a straightforward algorithm for computing 
the cyclomatic complexity of any code module. This algorithm 
uses only the source code itself. The cyclomatic complexity 
will be the same whether or nor there is any documentation of 
any kind, and whether or not such documentation is complete, 
correct, and up-to-date. The result of computing the cyclomatic 
complexity is a number that can then be used in statistical 
analyses, for example, to determine if it correlates with per- 
ceived reusability. 

An example of a perceived metric is perceived complexity. In 
order to determine the perceived complexity, the module, to- 
gether with all available relevant documentation, is shown to’ a 
number of software professionals. Each decides whether that 
module, in their opinion, has a high level of complexity, an 
average level of complexity, or a low level of complexily. 
(The word “complexity” is used in its nontechnical sense of 
“complicated” or “intricate.“) If there is some degree of agree- 
ment among the participants regarding the perceived complex- 
ity of the module, then we have confidence regarding the value 
of this perceived metric. 

We did not expect to find much correlation between an objec- 
tive metric and the corresponding perceived metric, because the 
objective metric is a number that is computed horn the software 
component alone. On the other hand, a perceived metric is es- 
timated on the basis of all the information that would be avail- 
able to the human who will decide whether or not to reuse the 
software component being considered, including domain in- 
formation. For the same reason, we also did not anticipate that 
objective metrics could be used to predict perceived reusability. 
However, we were interested to see whether there was any corre- 
lation between one or more perceived metrics and perceived 
reusability. 

In order to investigate these issues, we chose a number of soft- 
ware components. For each component we computed 8 objec- 
tive metrics. Subjects then assigned values to 6 perceived met- 
rics, including the perceived reusability of each component. 
We then analyzed the results. 

This paper i’s organized as follows. The various metrics are de- 
fined in the next section. Then we describe the experiment. 
The data analysis is presented in the following section, and we 
end the paper with our results and conclusions. 

Metrics of This Study 

Metrics were selected in two ways. First, we chose metrics that 
other researchers in the field have investigated from the view- 
point of predicting future reusability. Examples of such met- 
rics included cyclomatic complexity, and number of formal 
parameters. Others were metrics that we felt might be relevant, 
!juch as number of global variables. We considered a total of 14 
metrics, 8 of which were objective, and 6 perceived. We fist 
describe the objective metrics. 

II. Complexity. Complexity reflects the difficulty in design- 
ing, coding, testing, or maintaining a software component. 
McCabe’s cyclomatic complexity is defined as the cyclomatic 
complexity number v(G) of the underlying flowgraph. For a 
llowgraph G with e edges and n nodes, v(G) is given by 

v(G)=e-n+2 

The computation of v(G) can be greatly simplified by noting 
that v(G) = DE + 1, where DE is the decision count, the number 
of branches within the component [5]. 

High cyclomatic complexity is- thought to be negatively corre- 
l,ated with reusability [3]. However, low cyclomatic complexity 
frequently implies low functional usefulness. Thus, we did not 
anticipate a linear relationship between cyclomatic complexity 
iand perceived reusability. 

.2. Volume. Volume is a measure of the size of a component. 
:In terms of Halstead’s software science indicators [7]. volume V 
,is defied to be 

where “1 is the number of unique operators, “2 is the number of 
unique operands, Nl is the total number of operators, and N2 is 
the total number of operands in the component . 

Volume could be a characteristic of a reusable component since 
the reuse value of too small a component might not justify the 
cost of re-engineering, while too large a component is fre- 
quently fault-prone, and thus has potential quality problems 
[31. 

3. Regularity. Regularity is another software science measure, 
the ratio of the actual length of a component to the predicted 
length. It is given by the formula [7] 

“1 x log,! I + “2 x loJ2, “2 
r= 

N1+ N2 

It has been suggested that a component with regularity close to 
1 is readable and nonredundant, and hence reusable [3]. How- 
ever, we saw no reason to anticipate that regularity would corre- 
late with perceived reusability. 

4. Number of commenf words. Comments are an important, 
sometimes essential, way of understanding the functionality 
and structure of a component. Up to a certain point, the more 
comments, the greater the likelihood that the component will 
be understood. However, too many comments can reduce the 
comprehensibility of a component. Thus, we expected the 
number of comments to be related to perceived reusability, but 
nonlinearly. 

5. Number of numerical constants. It is hard to understand a 
component with a large number of numerical constants. Fur- 
thermore, modifying such a component is difficult. Thus, this 
metric might be a measure of reusability. 

380 



Table I. Objective Metrics for the Seven Selected Modules. 

6. Number of global variables. This metric appears to have 
asimilar impact on reusability as number of numerical con- 
stants. 

7. Number of formal parameters. A component with a large 
number of formal parameters is generally hard to reuse. Selby 
has reported that, in an environment in which reuse was permit- 
ted but not actively encouraged, reused components could gen- 
erally be characterized by having a small number of formal 
parameters [14]. 

8. Average length of variable names. We had anticipated that 
perceived reusability would increase with average length of 
variable names, but would then decrease as the average length 
continued to increase to the point of unwieldliness. 

Now we describe the 6 perceived metrics. 

9. Perceived reusability. A domain expert assigns this metric a 
value from 1 to 5, where 1 denotes “not reusable” (that is, ex- 
tremely difficult to comprehend and/or does not fulfill a useful 
purpose), and 5 denotes “reusable” (that is, easy to understand, 
and can be directly reused in other contexts with little or no 
modification). 

10. Perceived complexity. A domain expert decides whether 
the component is very complex, complex, or easy, within the 
context of future reuse. 

II. Perceived number of comments. A domain expert decides 
whether the number of comments is insufficient, enough, or 
too many, within the context of future reuse. 

12. Perceived length of variable names. A domain expert de- 
cides whether the lengths of the variable names are too short, 
appropriate, or too long, within the context of future reuse. 

13. Perceived number of global variables. A domain expert 
decides whether there are too many global variables or if the 
number of global variables is appropriate, within the context 
of future reuse. 

14. Perceived number of formal parameters. A domain expert 
decides whether there are too many formal parameters, or if the 
number of formal parameters is appropriate, within the context 
of future reuse. 

We now describe the experiment we conducted to measure the 
correlations between these various metrics. 

Experimental Details 

The experiment was performed in two phases. First, we se- 
lected appropriate software modules from a public domain 
package. Then we asked a group of subjects to evaluate the 
reusability and the 5 other perceived metrics for each of the 
modules. 

The modules to be evaluated had to be carefully chosen. First, 
it was important to select components that were not written 
with reuse in mind, the purpose of our experiment was to study 
accidental reuse. Second, we wanted to use high-quality soft- 
ware, because poor quality software is almost impossible to 
reuse. Third, we needed an application domain that was not too 
specific, so that all the subjects would have some knowledge of 
that domain. Fourth, the components had to be from the same 
package to assure a reasonable uniformity of quality and pro- 
gramming style. Finally, the components had to have a broad 
range of values for the objective metrics in order to be able to 
detect statistical dependencies. 

In order to compute the values of the objective metrics we wrote 
a static code analyzer. It is amusing that the analyzer consists 
largely of reused code, including UNIX utilities and a graphical 
front end taken from a different sort of static analyzer. We used 
the analyzer to help us select C components (functions) from 
the GNU C compiler gee. The values of the objective metrics 
for the seven modules we selected are shown in Table I. As can 
be seen from that table, the values of the objective metrics vary 
as widely as we had wished. 

The subjects of the experiments were 39 computer science stu- 
dents. The majority were graduate students, but there were a few 
final-year undergraduates (we do not know the exact number as a 
consequence of our attempts to maintain confidentiality of re- 
sponses). It would certainly have been better to have used 
software professionals [13]. Nevertheless, there are those who 
feel that the use of students as software engineering subjects is 
justified [l, 21. 

All the subjects were familiar with C. We provided them with 
an oral explanation of the purpose of the survey, and an outline 
of reusability. Then, written instructions and a careful defini- 
tion of reusability were attached to the listings of the seven 
modules. The subjects were told that they did not have to return 
the survey, if they chose not to, for any reason. As a result, 
only 20 of the 39 who had agreed to take part actually returned 
their surveys. As a result, we feel confident that the surveys 

381 



Table II. Results of MANOVA for Perceived Reusability 
z-Scores. 

Module 

builtin-function 0.164 
global conflicts -0.266 
buildeld-call 0.291 
finish-decl -0.467 
init-declgrocessing -0.001 
convert-harshness -0.207 

Mean 

c decode option 0.485 
Between-subjects effects: F = 1.69 (P c 0.209) 

I 
I 

Standard 
)eviatiolr -. 
0.769 
0.821 
0.739 
0.539 
0.932 
0.910 
0.925 

Within-subjects effects: F6. 14 = 2.92 (P < 0.011) 

1 

were thoughtfully filled out by participants who considered 
themselves qualified to do so. 

A separate evaluation form was attached to the listing of each 
module; all available information about the module was includ- 
ed in the listing. The subjects were asked to review each mod- 
ule, and then fill out the form. The results were then analyzed. 

Data Analysis 

The fist step was to analyze the perceived reusability data in 
order to ensure that the seven modules were assigned signifi- 
cantly different perceived reusability scores. After all, the 
seven modules have dramatically different objective metrics 
and functionalities, so we expected different perceived levels of 
reusability. Only if this held would there be any point in look- 
ing further to find what determined the differences. 

We used MANOVA (multivariate analysis of variance) [8] to 
analyze the perceived reusability scores. We were concerned 
that the individual variability might adversely influence the 
analysis of reusability scores, because each subject might have 
his or her own standard of evaluation. In order to minimize in- 
dividual variability, it was necessary to bansform the reusabil- 
ity scores to z-scores [8]. Consequently we applied MANOVA 
to the z-scores. The results, as shown in Table II, showed that, 
in general, the subjects did perceive the reusability of the mod- 
ules differently. The F-test revealed a reusability difference that 
was significant (P < 0.011). This result was encouraging, and 
suggested that further analysis was needed to determine what 
features of the modules affected their perceived reusability. 

Table III. Correlation Coefficient Matrix for Perceived 
Reusability and Objective Metrics. 

Legend: PREUS: perceived reusability; CMPLX: com- 
plexity; VOL: volume; REGU: regularity; COMM: number 
of comment words; NUMC: number of numerical con- 
stants; LNAME: average length of variable names; 
GLOBV: number of global variables; FPAR: number of 
formal parameters. 

Table IV. Correlation Coefficient Matrix for Perceived 

~~! 

Legend: PREUS: perceived reusability; PCMPLX: per- 
ceived complexity; PCOMM: perceived number of com- 
ment words; PLNAME: perceived length of variable 
names; PGLOBV: perceived number of global variables; 
PFPAR: perceived number of formal parameters. 

Specifically, correlation analysis might yield some insights 
:into the relationship between the metrics and perceived 
reusability. 

‘First we considered the objective metrics. The correlation coef- 
ficients are shown in Table III. There is no linear relationship 
‘between perceived reusability and all but one of the objective 
metrics. The one exception is the number of comment words, 
which is negatively correlated (coefficient of correlation 
-0.926, P c 0.003). Superficially, this does not make much 
sense; it implies that the fewer the comments, the greater the 
likelihood of perceived reusability. Our interpretation of this 
result is that reading the comments convinced certain subjects 
that the modules in question were not reusable. In the absence 
of comments, there was some doubt in their minds as to 
reusability, and they decided that it was possible to reuse those 
modules. 

Next, we analyzed the perceived metrics. The results are shown 
in Table IV. Two of the correlation coefficients are significant, 
namely the coefficient between perceived reusability and per- 
ceived complexity (P c 0.002). and between perceived reusabil- 
ity and perceived number of formal parameters (P c 0.023). 
When multiple regression analysis was applied to the data, the 
corresponding regression coefficients were also significant 
(see Table V). Thus, only these two perceived metrics can be 
used to predict perceived reusability. 

Finally, we measured the pairwise correlation between each of 
the 5 corresponding objective and perceived metrics. This is 
shown in Table VI, which reflects the fact that there is no linear 
relationship between an objective metric and the correspond- 
ing perceived metric. The closest to a linear relationship oc- 
curs with the metric number of formal parameters, but even here 
P < 0.069. The objective metric number of formal parameters 
is simply a count of how many formal parameters there are. 
The corresponding perceived metric is an indication as to the 
extent to which a domain expert feels that the number of formal 
parameters is appropriate within the context of reuse. Thus, 
the fact that there is no significant linear relationship between 
the two metrics is not too surprising. 

Table V. Multiple Regression Analysis of Perceived 
Reusability Scores against Perceived Metrics. 

Perceived Metric 

Perceived Complexity 

Regression P-Value 
Coefficient (F-test) 

-0.030 0.005 

Perceived No. of Formal Parameters -0.101 0.036 

(Intercept) 2.889 0.000 

382 



Table VI. Pairwise Correlation Analysis of Corresponding 
Objective and Perceived Metrics. 

Metric 
Correlation P-Value 
Coefficient (F-test) 

Results and Conclusions 

The results we obtained from the statistical analysis of the data 
generally confiied what we had anticipated. The major results 
we obtained were as follows: 

1. There was a great variability in the evaluations of the mod- 
ules by the subjects. For example, 4 of the 20 subjects as- 
signed reusability score 1 to every module, that is, they indi- 
cated that they did not believe that any of the modules could be 
reused for any purpose. There are also significant differences 
between the evaluations of the modules by the other 16 sub- 
jects. The possible reasons for this include: 

(a) Reuse of these modules is genuinely problematic. 
(b) Some of the subjects may have deemed the available 

documentation to be inadequate for reuse purposes. 
(c) Some of the subjects may have incomplete domain 

knowledge. 

If reason (c) is true, then this suggests that a domain analysis 
expert system should be incorporated into an automated tool 
for identifying reusable modules. This would be extremely hard 
to achieve, and a major obstacle to implementing a program of 
accidental reuse. If reasons (a) or (b) are true, then this sug- 
gests that there are other major obstacles to accidental reuse. 
Instead, reusable modules must be designed from the beginning 
with future reuse in mind, that is, planned reuse is the way to 
achieve reuse. 

2. There are significant differences in the perceived reusabili- 
ties recorded by the subjects. This implies that perceived reuse 
is subjective. This, too, suggests that there are major obsta- 
cles to accidental reuse. 

3. The only linear relationship that was observed between per- 
ceived reusability and the 8 objective metrics was that between 
perceived reusability and number of comment words. However, 
this was a negative correlation, and thus hard to believe. We 
conclude that our objective metrics cannot be used to predict 
reusability. Consequently, we feel that an automated tool based 
on software metrics would not be reliable. 

4. The objective metrics were not found to be linearly related 
to their perceived counterparts. This result supports our con- 
tention that software metrics cannot be employed to predict 
perceived reusability. 

5. On the other hand, the relationships between perceived 
reusability and perceived complexity and perceived number of 
formal parameters were significant (P < 0.002 and P < 0.024, 
respectively). This result confirms our view that accidental 
reusability is subjective. Whereas it indicates that prediction 
of reusability is possible, the problem is how to measure the 
perceived metrics of a reusable module automatically. In pass- 
ing, the result suggests that a development method that reduces 
perceived complexity would enhance perceived reusability. An 
example of such a method is the object-oriented paradigm. 

Our overall conclusion is that accidental reusability is very 
much in the eye of the beholder. As a consequence, we do not 
believe that a tool that scans existing code modules could suc- 
cessfully predict which modules would make good candidates 
for future reuse. 

Address for Correspondence 

Stephen R. Schach 
Computer Science Department 
Vanderbilt University 
Box 1679. Station B 
Nashville, TN 37235 
U.S. A. 

E-mail: srs@vuse.vanderbilt.edu 

References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Boehm-Davis, D. A., Holt, R. W., and Schultz, A. C. The 
Role of Program Structure in Software Maintenance. In- 
ternational Journal of Man-Machine Studies 36 (1992). 
21-63. 
Brooks, R. Studying Programmer Behavior Experimen- 
tally: The Problems of Proper Methodology. Communica- 
tions of the ACM 23 (1980). 207-213. 
Caldiera, G. and Basili, V. R. Identifying and Qualifying 
Reusable Software Components. IEEE Computer 24, 2 
(1991), pp. 61-70. 
Chen, Y. F., and Ramamoorthy, C. V. The C Information 
Abstractor. Proc. Compsac 86, Chicago, Ill., October 
1986. 
Conte, S. D., Dunsmore, H. E., and Shen, V. Y. Software 
Engineering Metrics and Models. Benjamin/Cummings, 
Menlo Park, Calif., 1986. 
Dunn, M. F., and Knight, J. C. Automating the Detection 
of Reusable Parts in Existing Software. In Proc. 15th In- 
ternational Conference on Software Engineering, Balti- 
more, Md., May 1993, pp. 381-390. 
Halstead, M. H. Elements of Software Science. Elsevier 
North-Holland, New York, N.Y., 1977. 
Halstead, D. C. Statistical Methods for Psychology. 
PWS-KENT, Boston, Mass., 1987. 
Maarek, Y. S., Berry, D. M., and Kaiser, G. E. An In- 
formation Retrieval Approach for Automatically Con- 
structing Software Libraries. IEEE Trans. on Software 
Engineering 17 (1991), 800-813. 
McCabe, T. J. A Complexity Measure. IEEE Traruactions 
on Software Engineering SE-2 (1976), 308-320. 
Prieto-Diaz, R. Implementing Faceted Classification for 
Software Reuse. Communications of the ACM 34 (1991), 
88-97. 
Prieto-Diaz, R. and Freeman, P. Classifying Software for 
Reusability. IEEE Software 4, 1 (1987), 6-16. 
Schach, S. R. Classical and Object-Oriented Sojiware 
Engineering. Third Edition, Richard D. Irwin, Homewood, 
Ill., 1995 (to appear). 
Selby, R. W. Quantitative Studies of Software Reuse. In 
Software Reusability. Volume II: Applications and Experi- 
ence, T. J. Biggerstaff and A. J. Perlis (Eds), ACM Press, 
New York, N.Y., pp. 213-233, 1989. 

383 


