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ABSTRACT 

Autonomous rendezvous and docking has been dlefined as one of 
the primary goals in today’s space technology. Autonomous 
operation of an unmanned space vehicle in a real world 
environment poses a series of problems. The kno,wledge about the 
environment is in general incomplete, uncertain and approximate. 
Perceptually acquired information is not precise, sensor’s noise 
introduces uncertainty and imprecision, sensor’s limited range and 
visibility introduces incompleteness. in this study, fuzzy logic and 
genetic algorithm (GA) have been applied to this problem in order 
to perform better in the case of all these problems. Fuzzy and GA 
combination imitates the role of human in the decision process. 

Background Information On Autonomous Rendezvous And 
Docking Technology 

The methodology presented in this research can be applied to any 
transportation problem. Some of the problems include decision 
making and evaluation of transportation system, transportation 
network design and traffic scheduling. Decision making and 
evaluation of a transportation system comprise of achieving 
multiple objectives using one of the alternate methods. All of 
these methods cannot satisfy all the objectives. Human decision 
making is required to weigh all the methods and choose the right 
alternative. Fuzzy logic with its role of human expert and GA 
being a strong search and optimization algorithm can mimic the 
human expert’s role. The problem can be formulated and GA- 
fuzzy method can be applied to find the method that satisfies all 
the objectives optimally. In the transportation network design, 
GA-fuzzy method can be applied to find the shortest path or 
routes to be traversed between the different nodes (for example, 
bus terminus). GA has been used to solve the traveling salesman 
problem (TSP), gas pipeline and other combinatorial problems. 
GA and fuzzy have also been used to find the optimal solution for 
a lot of scheduling problems. 
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Autonomous rendezvous and docking (ARD) is one of the most 
challenging aerospace problems. ARD is required for tasks such 
as refuelling and resupply of a spacecraft. The rendezvous and 
docking can be accomplished by manned control or autonomous 
control. Manned control can be from space or from the ground. 
ARD saves money and risks to the astronaut. ARD will be 
needed since manned control of the later phases of rendezvous 
from the ground or even from the space gets extremely tough or 
impossible because of astronaut reaction and time delays. It also 
reduces the ground station workload. The rendezvous mission is 
generally divided into six mission phases. They are launch, 
approach phase, terminal rendezvous phase, stationkeeping phase, 
docking approach phase and docking linkup phase. All these 
phases do not have to be included in a rendezvous mission and not 
necessarily in that order. 

Autonomous Rendezvous And Docking 

The autonomous rendezvous and docking is one of the space 
transportation’s interesting problems and numerous techniques [9] 
have been suggested for solving it. The study uses a 
straightforward concept based on the use of a standard video 
camera and a Remote Manipulator System (RMS) docking target. 
This concept was originally tested at Marshall Space Flight Center 
(MSFC). The system consists of a chase and a target spacecrafts. 
The target spacecraft has a three-dimensional target attached to it 
near its docking port. The chase spacecraft has to be maneuvered 
towards the target. A video camera of charge coupled device type 
acquires the images of the target, which is illuminated by two 
different wavelengths of laser diodes. Then Inverse Perspective 
Transformation is performed, which involves the computation of 
three-dimensional relative position and attitude from the two- 
dimensional image frame coordinates of the three retroreflector 
images. This is the exact reverse of the camera operation, which 
is creation of two-dimensional image of a threedimensional target. 
This transformation can be performed deterministically, but the 
resulting equations are very complex and time-consuming when 
executed on computer. Therefore this transformation was done by 
using neural networks. The neural networks are used to calculate 
the range, azimuth, elevation and the relative roll, pitch and yaw 
alignment. These are the six degrees of freedom. This 

information is used to drive the system’s fuzzy Proportional 
derivative (PD) controlled autopilot. The autopilot output consists 
of net delta-velocity and delta-omega (acceleration) maneuver 
commands which are executed by the reaction control system 
(RCS) during the next sample interval. Autopilot commands are 
then passed to a thruster selection algorithm, which chooses the 
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appropriate combination of thrusters to fire and calculates the 
length of time each is to burn. Further information on Docking 
and Space technology can be obtained from [l], [9], [lo]. 

Fuzzy PD controlled autopilot is a controller designed using 
Genetic algorithm and Fuzzy logic. Fuzzy logic was developed by 
Zadeh in the 1960’s in an attempt to deal with complex systems 
which are beyond exactness and precise description. Fuzzy logic 
uses linguistic descriptions for the system variables. Genetic 
Algorithm is a search and optimization technique based on the 
mechanics of natural selection and natural genetics [2]. Genetic 
algorithm has been used to design the fuzzy rules and combining 
this with fuzzy membership functions, an initial value of PD 
controller coefficients were obtained. Then these coefficients were 
adaptively adjusted with respect to output errors till the chase 
spacecraft docks near the target. 

Genetic Algorithm 

Traditional optimization techniques can be dividd into three main 
categories: calculus-based, enumerative and random. Calculus- 
based methods rely on derivative information to find local 
extrema. In most real world problems, derivatives may not exist, 
or the functions may be discontinuous, thus rendering these 
techniques useless. These methods tend to be around the peaks of 
local extrema as opposed to global extrema. Enumerative 
techniques evaluate every discretized point in the search space. 
It is obvious that this technique is extremely inefficient and 
impractical for large search spaces. Random techniques are no 
better than enumerative methods in the long run. 

Genetic Algorithm (GA) was developed by John Holland and his 
colleagues in an attempt to model the processes of natural 
selection and survival of the fittest. GA has a probabilistic 
nature; while it uses a structured yet randomized search procedure, 
it exploits historical information to find improved search points. 
Holland modeled the mechanics of GA after nature’s evolutionary 
process, including chromosomes, selection, reproduction, and 
mutation. Living beings are defined by their genes and 
chromosomes. How well a creature survives will depend on the 
traits found in the chromosomes. Stronger beings are more likely 
to be selected by nature to reproduce, thereby mixing the stronger 
chromosomes to form strong offspring. Mutation of chromosome 
information may occur with small probability to create an 
individual somewhat different from the parents. Genetic 
Algorithm requires the problem being evaluated to be formulated 
in such a way that a performance measure can be stated as a cost 
(objective) function. The variables in the problem are encoded in 
a low cardinal&y string, and a population of these strings are 
generated. The GA works to either maximize or minimize the 
cost function based on the performance of each individual. 
Selection of individuals for reproduction is based on the 
performance measure of the strings; strings with higher 
performance are more likely to be selected for reproduction. A 
new population is then formed by the reproductive process on the 
selected individuals. Several selection schemes have been 
developed [2], with the more typical ones used being roulette 
wheel selection and tournament selection. The reproductive 
process involves crossover and mutation. Mutation is a process 
whereby individual bits are changed with a low probability . 
Mutation serves to introduce new search points in the search 
space, and add diversity to the population. Crossover is an 

operation whereby a portion of one string is combined with a 
portion of a second string. The resulting string is then placed in 
a new population. There are different crossover operators 
discussed in Goldberg 121. 

Fuzzy Logic 

Fuzzy logic can be thought of as a generalization of set theory. 
Conventional set theory requires that an object be completely in 
a set, or not in the set at all, while fuzzy sets allow an object to 
partially belong to the set. Therefore, every fuzzy set should be 
characterized by a membership (characteristic) function which 
associates with each element a real number in the interval ]O,l], 
representing its degree of membership in that fuzzy set. A set of 
operators, such as union, intersection and product, are 
appropriately defined for fuzzy sets via their membership 
functions. Using these operators, fuzzy implication inference rules 
are defined utilizing the concept of linguistic variables [12]. This 
provides a rigid basis for a type of reasoning commonly known as 
approximate reasoning. Fuzzy logic controllers have been 
developed as an application of the above mentioned conceptual 
framework. A fuzzy controller consists of four principal 
components [7]: fuzzification interface, fuzzy knowledge base 
(containing membership function, linguistic control rule), fuzzy 
inference engine and a defuzzification interface. 

The fuzzification is a process by which the crisp, real world input 
values are converted into fuzzy linguistic values. These fuzzy 
values can be labels for fuzzy sets such as Positive Medium (PM), 
Negative Small (NS), etc. The membership functions reflect 
expert’s knowledge about the application domain and the way they 
are defined substantially affects the performance of fuzzy 
controller. Fuzzy rules consists of a premise with one or more 
antecedents, and a conclusion with one or more consequences. 
The individual rules in the set are connected through the operator 
“also”. Given the fuzzy rule base and the input values, the fuzzy 
controller then applies some type of inference operation. The 
inference engine performs two functions: determination of 
applicable rules for a set of inputs, and inference of output fuzzy 
set(s). Several inference operators have been developed, but the 
two most common types are Min of Mamdani and Larsen’s 
product [7]. The Min operator takes the minimum of all fuzzy 
membership values in the “if-side” for the rule being evaluated, 
and clips the corresponding output membership at this level. The 
product operator scales the output membership as opposed to 
clipping them. Interpreting “also” as a Max operator combines the 
individual output membership functions, generated by each rule, 
and produces the final output fuzzy set. The result of the 
inference engine must now be defuzzified. Defuzzification serves 
to provide crisp, numeric output to the process being controlled. 
Two methods of defuzzification are used the most: Maximum 
membership and centroid or center of gravity [6]. The former 
chooses the output value corresponding to the maximum degree of 
membership in the output fuzzy set. One problem associated with 
this method is that typically many output values will have the 
same membership level, particularly when using the Min-Max 
inference. The second problem with maximum criterion method 
is that much of the information in the output set is ignored and 
lost. The centroid is the most commonly used method. An 
average, or weighted sum of the output values is calculated, 
yielding a single crisp value. 
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Integration Of Fuzzy Logic And Genetic Alg:orithm 

The application of GA to fuzzy logic controllers Inolds a great deal 
of promise in overcoming two of the major problems in fuzzy 
controller design, design time and design optimal@. Previous 
work has been done mainly in two areas: learning the fuzzy rules 
and learning membership functions. The GA’s robustness enables 
it to cover a complex search space in a relatively short period of 
time while ensuring an optimal or near-optimal solution. Beca.use 
of this capability, GA is a natural match for fuzzy controllers. 
Thrift [ll] examined the feasibility of using GA to find fuzzy 
rules. Karr [5] examined the feasibility of using a GA to I’lnd 
high performance membership function for a controller for the 
pole-cart system. While all these methodologies have provided 
improvements in fuzzy controller design, they have a major 
limitation; how can an optimal design be obtained when one of the 
two main components is designed using a non-optimizing method. 
Logically, to obtain an optimal rule set and set of membership 
functions, the two must be dksigned together so the links between 
them can be fully exploited. There is lot of research activity in 
this area. Homaifar and McCormick [4] examined the initial 
applicability of GA to solving the cart-centering problem and laid 
the foundation for this more in-depth study. The way the authors 
decoded the string for the membership functions deserves a 
mention. For the cart controller using a triangular membership 
function, they kept the center or peak of the triangle fixed. One 
bit per triangle was reserved for the base width of the triangle and 
decoding was done in such a way that minimum overlap between 
the membership functions was possible. Knowing the base width 
and the peak, the membership of both position and velocity could 
be determined. Moreover the string contained representation for 
the rules. GA was used to optimize a string of rules and 
membership functions. The controller thus designed, obtained 
very good results. The allele representation in each string was 
integer based as opposed to binary bits. Hogans et. al. [3] used 
GA to design fuzzy membership function and inference rules for 
variable structure control. Nomura et. al. [S] examined using a 
GA to determine both the membership function and optimum 
number of rules for a single input, single output nonlinear system. 
These examples show that by using GA to design both 
simultaneously, the two elements of fuzzy controllers can be fully 
integrated to deliver a more finely tuned, high performance 
controller. In this study, GA has been used to design rules and 
the endpoints of the membership functions. 

Methodology And Simulation Results 

Autopilot controller is based on a PD controller. The PD 
coefficients have to be designed and adaptively varied for effective 
docking. Typical example of the controller is as follows: 
“output error = Kp+(Actual azimuth-desired azimuth)- 

Kr*(actual azimuth rate-desired azim,uth rate)” . . (Z) 

where Kp and Kr are proportional and rate coefficients 
respectively. Kp and Kr have been designed using GA and Fuzzy 
logic. 

Initial Conditions 
To find a satisfactory controller, the controller must be able to 
operate over the entire range of input spaces. For a GA to 
properly design fuzzy rules and membership functions, this fact 
must be integrated into function evaluation. This was done by 

using multiple initial conditions in the evaluation of each member 
of the population. If a single initial condition was used, then the 
GA would find a controller which would work well around that 
particular point but may fail elsewhere. This makes the choice of 
initial conditions an important consideration. The points must be 
chosen to sufficiently cover the input spaces, but at the same time, 
more initial conditions leads to increased run time for the 
program. Eleven initial conditions were considered for the 
simulation of each controller. In evaluating each member of the 
population, the total fitness of the individual was the sum of the 
fitnesses at each initial condition. 

Fitness Function 
The process was divided into two stages, an evolution stage and 
a refinement stage. In the evolution stage, the GA was used to 
find satisfactory controllers, while in the refinement stage, the GA 
used the previously developed controllers and attempted to get the 
optimized controller. 
The fitness function associated with the two stages are as follows: 

Evolution Stage Fitness Function 
fitness = k//(e: 

Refinement Stage Fitness Function " 2 

fitness = k * Ce,' + &f,', 

where e, and 6, are position and rate errors and k is. an arbitrary 
constant that will enable good convergence to an optimal solution. 
Fitness function derivation was one of the most crucial portion of 
the research. The fitness function had to incorporate the ability to 
produce a controller capable of docking the spacecraft successfully 
and reduce the noise to a desirable level. Furthermore, the fitness 
function must be formulated to discriminate between different 
individuals. The evolution stage lasted until generation 40 and the 
refinement stage was from generation 41 through generation 100. 
The fitness functions were obtained through experimentation. It 
was derived in such a way that it matched the performance of PD 
controller by the MSFC. 

String or Chromosome Representation 
The objective of the GA was to simultaneously design fuzzy rules 
and endpoints of the membership function of the inputs and the 
outputs. The GA-fuzzy combination has to design an initial value 
of proportional (Kp) and rate (Kr) coefficients for the PD 
controller of MSFC. Hence the outputs of GA-fuzzy are Kp and 
Kr. The inputs are error and error rate. The input and output 
spaces were divided into five fuzzy sets each. Hence, the 
controller could be termed as 5555 controller. Two inputs (error 
and error rate) were considered to be- of five alleles each. Hence 
the rules came to be 25 alleles long for a single output. 25 rules 
for Kp and 25 rules for Kr. Chromosome is divided into small 
parts called as allele. The outputs (Kp and Kr) were also 
considered to be of five alleles each. Hence, the chromosome 
length was designed to be 70 (5+5+25+25+5+5) alleles. GA used 
was floating point version of genetic algorithm. The alleles in the 
string were of floating point representation. The inputs and 
outputs were partitioned into different fuzzy sets (negative medium 
(NM), negative small (NS), zero (ZE). positive small (PS) and 
positive medium (PM)). GA optimizes the rules, membership 
functions simultaneously and also optimizes the overlap between 
the different fuzzy sets. For the rules, the alleles were interpreted 
into different fuzzy sets as follows: 
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Range Fuzzy Sets 
&.x-d NM 
15xc2 NS 
21x<3 ZE 
35zx<4 PS 
45x55 PM 

The rules, thus interpreted are as listed below: 
. . 3 

“‘If error N h4 and rate error PM Then Kp PS” 
“If error N M and rate error PM Then Kr PS” . . 4 

Fuzzy logic Parameters 
Membership function used was of triangular in nature. Rules used 
were the ones designed by GA. GA designed rules and the 
endpoints were used with the fixed center (or the peaks of the 
triangle) to obtain crisp value of Kp and Kr. The defuzzification 
operator used was centroid. Kp and Kr designed this way was 
taken as the initial guess and was adaptively varied subsequently. 
The adaptive variation was done as follows: 
If output error>previous output error then Kp=Kp-constant 
I’ou~put errorcprevious oulpu~ error then Kp=Kp+consta~~t 
lf output error>previous output error then Kt=Kr-constant 
If output rrrorcprevious output error then Kt=Kr+constant 

RESULT COMPARISON 

Five of the six degree of freedom controllers were designed. The 
block diagram of the controller is shown in Fig. 1. It can be 
observed from the figure that the MSFC designed PD controller is 
the base and GA and fuzzy logic are placed on top of it. GA 
designs the optimal membership functions and rules. These rules 
are then evaluated and a crisp Kp and Kr values are determined 
by defuzzification. The Kp and Kr designed in such a way 
plugged into the controller equation. The output error and the 
autopilot command are used to select the appropriate thrusters to 
fire. The subsequent Kp and Kr values are adaptively adjusted 
according to equation (5). The results of two of the five 
controllers are shown in Fig. 2-4. The GA-fuzzy tuned PD 
controllers were compared with the PD controller designed at 
MSFC. Fig. 2 and 3 describe the elevation controllers. The 
controller designed in Fig. 3 has reduced the noise and final error 
has been reduced as compared to the one in Fig. 2. The elevation 
controller in Fig. 3 has brought the chase spacecraft to within 0.01 
feet of the target while MSFC controller was 0.07 feet from the 
target on the elevation plane. The chase spacecraft is very near 
to the target on the elevation plane than the controller designed by 
MSFC. Fig. 4 describe the pitch controllers. The controller 
designed in this study is smoother and has less output error on the 
pitch axis from the target than the one designed by MSFC. The 
pitch controller designed in this study ends has the final output 
error of -5e-05 as compared to -5.8e-04 for the MSFC controller. 
The other three controllers (Azimuth, Yaw and Roll) have also 
shown noticeable improvement. The chase spacecraft is docked 
very close to the target spacecraft. The errors on all the five 
controllers indicate that there exists a docking misalignment with 
the target spacecraft and some modifications in the controller 
design have to be done. 

Even though the performance of GA-fuzzy adaptive PD controller 
has improved performance, there is still considerable error on all 
the five degrees of the freedom control. The present design has 
to be modified to reduce these errors. The concept of hierarchy 

of controllers is going to be considered to improve the 
performance of the present design. 

CONCLUSION 

The five one degree freedom controller has been designed and has 
been shown to have an improved performance than the MSFC 
designed controllers. Further modifications will be done in the 
controller design and the concept of hierarchy will be considered. 
Present research in hierarchy has shown encouraging results. 
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- g 1. Block Diagram of GA-Fuzzy 
Pmportional Delivative Controller 

Fig. 2 Performance Of Marshall Space 
Pxupotional Derivative Controller For 
Elevation Control 

zig. 3 Performance Of GA-Fuzzy Controller 
For Elevation Control 

I 
Fig. 4 Performance Comptison Of GA- 
Fuzzy Controller With Marshall Space 
Proportional Derivative Controller For Pitch 
Control 
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