
E�icient and E�ective Tail Latency Minimization in Multi-Stage
Retrieval Systems

Joel Mackenzie

RMIT University

Melbourne, Australia

joel.mackenzie@rmit.edu.au

J. Shane Culpepper

RMIT University

Melbourne, Australia

shane.culpepper@rmit.edu.au

Roi Blanco

RMIT University

Melbourne, Australia

rblanco@udc.es

Ma� Crane

University of Waterloo

Waterloo, Canada

ma�.crane@uwaterloo.ca

Charles L. A. Clarke

University of Waterloo

Waterloo, Canada

claclarke@gmail.com

Jimmy Lin

University of Waterloo

Waterloo, Canada

jimmylin@uwaterloo.ca

ABSTRACT

Scalable web search systems typically employ multi-stage retrieval

architectures, where an initial stage generates a set of candidate

documents that are then pruned and re-ranked. Since subsequent

stages typically exploit a multitude of features of varying costs

using machine-learned models, reducing the number of documents

that are considered at each stage improves latency. In this work, we

propose and validate a uni�ed framework that can be used to predict

a wide range of performance-sensitive parameters which minimize

e�ectiveness loss, while simultaneously minimizing query latency,

across all stages of a multi-stage search architecture. Furthermore,

our framework can be easily applied in large-scale IR systems, can

be trained without explicitly requiring relevance judgments, and

can target a variety of di�erent e�ciency-e�ectiveness trade-o�s,

making it well suited to a wide range of search scenarios. Our

results show that we can reliably predict a number of di�erent

parameters on a per-query basis, while simultaneously detecting

and minimizing the likelihood of tail-latency queries that exceed a

pre-speci�ed performance budget. As a proof of concept, we use the

prediction framework to help alleviate the problem of tail-latency

queries in early stage retrieval. On the standard ClueWeb09B col-

lection and 31k queries, we show that our new hybrid system can

reliably achieve a maximum query time of 200 ms with a 99.99%

response time guarantee without a signi�cant loss in overall e�ec-

tiveness. �e solutions presented are practical, and can easily be

used in large-scale distributed search engine deployments with a

small amount of additional overhead.

CCS CONCEPTS

•Information systems→ Retrieval e�ciency; Search engine

architectures and scalability; Learning to rank;

KEYWORDS

Multi-Stage Retrieval; �ery Prediction; Experimentation; Mea-

surement; Performance

1 INTRODUCTION

�e competing goals of maximizing both e�ciency and e�ective-

ness in large-scale retrieval systems continue to challenge builders

of search systems as the emphasis in modern architectures evolves

towards multi-stage retrieval [43]. Many old e�ciency problems

become new again in the increasingly complex cascade of docu-

ment re-ranking algorithms being developed. For example, research

groups can focus on early stage retrieval e�ciency [4, 16, 57], bal-

ancing feature costs [56, 59], or improving the performance of the

learning-to-rank algorithms [5, 26, 36, 37, 39].

While great strides have been made in all of these areas, gaps

remain in our understanding of the delicate balance between e�-

ciency and e�ectiveness in each “stage” of the re-ranking cascade.

One of the most signi�cant limitations preventing further progress

is in training data availability. While query sets to measure e�-

ciency in various collections are plentiful, the costs of gathering

relevance judgments in order to measure e�ectiveness limit the

number of topics available for more detailed trade-o� analyses.

In this work we explore how to apply a reference list frame-

work [13, 48, 50, 58] to alleviate this problem. We leverage the

new framework to build machine-learned models capable of pre-

dicting query response times, candidate set sizes in early stage

retrieval, and algorithm aggressiveness to balance e�ciency and

e�ectiveness on a query-by-query basis. In particular, we focus on

using this uni�ed framework to identify and reduce tail-latency
queries [18, 24, 25, 28], i.e., those with unusually large response

time. We explore three important research questions:

Research�estion 1 (RQ1): What is the best way to use reference
lists to accurately perform dynamic per query parameter predictions
in early stage retrieval?
Research�estion 2 (RQ2): What is the relationship between tail-
latencies and index traversal algorithm, and can our new prediction
framework be used reliably provide worst case guarantees on �rst-
stage query e�ciency?
Research �estion 3 (RQ3): What combination of predictions
will lead to e�cient �rst-stage retrieval, minimizing the number of
candidate documents exiting the �rst stage (and thus making later
stages more e�cient), and also minimize e�ectiveness loss in �nal
stage re-ranking?
In answering these questions, our research contributions include:

(1) A uni�ed framework that can be used to predict a wide variety

of performance-sensitive parameters in multi-stage retrieval

systems.

ar
X

iv
:1

70
4.

03
97

0v
2

 [
cs

.I
R

]
 2

0
A

pr
 2

01
7

(2) A pragmatic, yet highly e�ective solution to tail-latency query

minimization that can easily be implemented in large-scale re-

trieval systems, and provide worst case performance guarantees

on performance.

(3) A pathway to more �ne-tuned per-query optimization tech-

niques, and the tools necessary to implement and test systems

leveraging these ideas.

We achieve these goals using three ideas. First, we exploit the idea

of query di�culty prediction [10] and static pre-retrieval features

to build a uni�ed prediction framework. Next, we explore the re-

lationship between the number of documents returned in a top-k
candidate set and the index traversal algorithm. �ree di�erent

index traversal algorithms have been commonly used: document-at-

a-time (DaaT), term-at-a-time (TaaT), and score-at-a-time (SaaT).

A recent paper by Crane et al. [14] performed a comprehensive

comparison of state-of-the-art DaaT and SaaT algorithms and

found that both approaches have advantages and disadvantages.

In this work we look at a simple index mirroring approach which

selectively uses the best algorithm based on a series of pre-retrieval

predictions. Finally, the e�ciency predictors are integrated with an

e�ectiveness loss minimization prediction. Together, this series of

“Stage-0” pre-retrieval predictions produces a pipeline that maxi-

mizes e�ciency and e�ectiveness in a multi-stage retrieval system,

and is capable of achieving 99.99% response time guarantees when

using a worst case running time of 200 ms on a commonly used

web collection.

2 BACKGROUND AND RELATEDWORK

E�cient�ery Processing. E�cient query processing can be at-

tained through a range of index organizations and traversal strate-

gies based on the inverted index data structure [62]. Document-

at-a-time (DaaT) query processing relies on postings lists being

sorted in ascending order of the document identi�ers. At query

time, a pointer is set at the beginning of each postings list. Once the

current document has been evaluated, the pointers are forwarded

to the next document in the lists. An e�cient method for disjunc-
tive DaaT processing is the Weak-AND (Wand) algorithm [8]. In

order to support Wand traversal, the upper-bound score that term

t can contribute to any given document must be pre-computed and

stored in the index (Ut). At query time, Wand uses the lowest-

scoring heap document as a threshold. When selecting the next

document in which to score, Wand will only select a document in

which the sum of the Ut scores is larger than the heap threshold.

�e advantage of Wand is that documents that are not able to

make the �nal top-k results are able to be safely ignored, making it

highly e�cient. Although originally aimed for traversing on-disk

indexes, Wand has been proven to be e�cient in-memory on many

occasions [4, 14, 22, 41, 44, 51].

Ding and Suel [21] (and at a similar time, Chakrabarti et al.

[11]) explored an improved version of Wand named Block-Max
WAND (Bmw). �e key observation in Bmw is that since many

index compression algorithms are block-based [32, 61], skipping

can be achieved at the block level, thus saving an entire block

decompression. In order the facilitate this skipping, the Ut score

is computed for every block in each postings list, known as the

Ub,t score. When a pivot document is found (by summing the

Ut scores until the threshold is exceeded), the local block score is

then used to re�ne the estimated score, that is, the sum of the Ub,t
scores is computed. If this sum still exceeds the threshold, then

the pivot document is scored. Otherwise, a new pivot is selected.

Additional gains from Bmw are achieved through an improved

skipping function that identi�es if the current block con�guration

could not contain a document with a score above the threshold.

If this condition is met, a new pivot is selected that may contain

enough weight to enter the top-k heap. Further enhancements to

Bmw have been made in the literature, usually by using additional

auxiliary structures that provide a quicker search time while using

additional space, or using hybrid indexes [19, 45, 46].

Another entirely di�erent method for top-k query processing

is the term-at-a-time (TaaT) and the closely related score-at-a-

time (SaaT) approach. Term-at-a-time processing opts to process

an entire postings list before moving onto the next list. Clearly,

an additional data structure must be kept to store the partially

accumulated scores while processing the lists. Anh et al. [2] made

the observation that the term weight for any given document wd,t
could be pre-computed and stored, rather than the term frequencies

(fd,t). Since the wd,t are typically �oating point numbers, they

are quantized into integer values to facilitate compression [2], the

range of which impacts both e�ectiveness and e�ciency [15]. For

score-at-a-time processing, each postings list is sorted by decreasing
impact score, which allows the most high scoring documents for

each term to be processed �rst, and can allow for early-termination

without sacri�cing e�ectiveness. Recently, Lin and Trotman [34]

introduced Jass, a modern SaaT algorithm which can be used for

anytime retrieval, making it suitable for use in time-constrained

environments and for controlling tail latencies.

Finally, some optimizations can be generalized to all index struc-

tures. For example, many compression algorithms have been pro-

posed in the literature [32, 53, 55, 61] which are o�en applicable

to frequencies, (quantized) document weights, and DocIDs. An-

other general improvement is to apply a special ordering to the

DocID space [20, 27, 51]. Assignment strategies such as lexico-

graphically sorting the DocIDs by the corresponding URL has been

shown to improve both the compression rate, and reduce the query

latency [49, 51].

Tail Latencies. A tail-latency query is an “outlier” query whose re-

sponse time occurs above thenth percentile, wheren is a large value

such as 95, 99, or even 99.99 [28, 60]. As collections grow larger,

systems must scale accordingly. As systems become more complex,

the probability of tail latencies occurring also increases [18], partic-

ularly for distributed architecture where end-to-end latency is o�en

bound by the slowest component. Tail latencies can be addressed

through either hardware or so�ware optimizations, or both. For

example, replicating and partitioning collections [18, 23, 29, 30]

allows e�ective load balancing which can minimize tail-latency

queries.

Previous work has a�empted to reduce tail latencies in a range

of di�erent contexts. Jeon et al. [25] focus on 99th percentile tail-

latency queries at the level of a single Index Server Node (ISN)

by predicting long running queries, and running them in paral-

lel. �eries that are not predicted as long running are simply ran

2

Query TermsInverted Lists

Simple
Scoring
Function

Top-t
documents

22

Acacia

Avenue
DAAT

Reranking
Stages

Fast BOW

SAAT
or

Top-k
documents

t ≤ k

Figure 1: Architecture of a typical multi-stage retrieval system.

�eries are �rst processed using an e�cient bag-of-words pro-

cessing algorithm. �e initial candidate set of k documents then

undergoes a series of re-ranking stages where the candidate pool is

shrunk, and more expensive learning-to-rank algorithms are used

to produce a �nal set of top-t documents to return to the user, where

o�en t � k .

sequentially, which avoids the overhead cost of parallalization. An-

other recent work targets extreme tail latencies (ie, at the 99.99th

percentile) [24, 28]. �is target is achieved through Dynamic, De-
layed, Selective (DDS) prediction. DDS prediction works as follows.

First, a new query is ran for a short time, such as 20ms, and dy-

namic features are collected from this initial processing. �en, new

dynamic features (and, some additional static features) are used

to predict whether the query is a long running query. If so, or if

there is reasonable uncertainty (based on the predicted error), then

the query will be accelerated using parallelization. �e prediction

error is then used to improve coverage of midpredicted true long

running queries.

Beyond the tail latency in ISNs, DDS also reduces the latency of

the aggregator node, which aggregates the results from the mul-

tiple ISNs before reporting them to the user. Yun et al. [60] also

address the problem of aggregating information from ISNs, but this

is orthogonal to our work, which focuses on the processing at an

ISN, and not at the aggregation node.

Multi-stage Search Architectures. Multi-stage retrieval has be-

come the dominant model in modern web search systems [3, 4,

9, 38, 39, 43]. In this approach, a set of candidate documents are

generated that are likely to be relevant to a query, and then in

one or more stages, the document sample is iteratively reduced

and reordered using a series of increasingly expensive machine

learning techniques. Since re-ordering can be computationally ex-

pensive and is sensitive to the number of documents that must be

reordered, minimizing the size of the candidate set is an important

problem [9, 38, 52].

Figure 1 exempli�es a typical multi-stage retrieval architecture. A

fast bag-of-words processing algorithm produces a top-k candidate

set. �is initial set of documents is then re-ranked one or more times

using a learning-to-rank algorithm to produce a �nal output set of t
documents, where t ≤ k , and can be t � k in some con�gurations.

E�ciency ma�ers at all stages of the process. Kohavi et al. [31]

showed that every 100 ms boost in overall search speed increases

revenue by 0.6% at Bing. So, even small gains in overall performance

can translate to tangible bene�ts in commercial search engines.

E�ciency remain an important problem in multi-stage retrieval

with papers focused on cascaded ranking [43, 59], and early exit

optimizations [9, 17]. Recently, Wang et al. [57] proposed a fast

candidate generation framework which opts to build a two-layer

index. �e bo�om layer is the standard inverted index, and the

top layer is a single or dual-term auxillary structure which stores a

subset of the bo�om layer documents, sorted by impact score. At

query time, a pre�x of the top layer is accessed, which generates

a set of candidate documents. �en, the most promising of these

candidate documents has its partial scores updated by accessing

the lower layer of the index (to achieve a more accurate score).

Finally, the top-c candidates are selected and passed onto the next

stage of the cascade. We do not consider this generation framework

as it provides approximate results, but note that it can be directly

applied to our existing Bmw ISN to improve e�ciency (with some

small loss in e�ectiveness). We leave this as future work.

E�ectiveness Evaluation in Multi-Stage Retrieval. One obvi-

ous question arises when trying to measure trade-o�s in multi-stage

retrieval systems. �e simplest approach is to simply make changes

to the system, and re-compute a standard information retrieval

metric such as average precision (AP), expected reciprocal rank

(ERR), normalized discounted cummulative gain (NDCG), or rank

biased precision (RBP) on the last stage result [12, 42]. However,

this is unwieldy in practice, as it can be very di�cult to identify

exactly what changes are resulting in e�ectiveness di�erences.

A be�er approach is to compute intermediate results at di�erent

stages of re-ranking, and measure the di�erences between the two.

For example, in a simple two-stage system, we could generate the

top-k list for both stages and somehow measure the similarity or

di�erence between the two runs. We refer to this as a reference
list comparison. For example, we could just compute the overlap
between the two lists, and this methodology is still commonly

used in recent work [57]. But in practice, this approach does not

properly capture importance of rank position in the two lists. To

alleviate this problem, Webber et al. [58] proposed rank-biased

overlap (RBO). �is is a non-conjoint list comparison metric that

places more importance on the loss of higher ranking items in a

list than lower ranking ones.

�e goals of RBO were taken one step further by Tan and Clarke

[50] in the metric Maximized E�ectiveness Di�erence (MED) where

the exact gain function used to compute the di�erence can depend

on any utility-based evaluation metric, such as ERR, DCG, or RBP.

Furthermore, MED has the additional advantage that if partial judg-

ments are available for any of the queries, the information can

be used directly for the �nal comparison. Informally, MED an-

swers the following question: given an e�ectiveness metric and

two ranked lists, Da
and Db

, what is the maximum di�erence

in the e�ectiveness scores between the two lists? Tan and Clarke

[50] de�ne variants of MED for many standard retrieval metrics,

including average precision (MED-AP), expected reciprocal rank

(MED-ERR), normalized discounted cumulative gain (MED-NDCG),

and rank biased precision (MED-RBP). We refer the reader to the

3

work of Tan and Clarke for the formal de�nition of MED. In this pa-

per we employ MED-RBP with a decay value of 0.95 (MED-RBP0.95)

as our primary di�erence measure.

Other approaches to de�ning reference lists have been studied

recently by Shtok et al. [48]. �eir approach is orthogonal to the

one taken in this work. �e relationship between how best to

construct ground truth runs and measure the similarity between

two non-conjoint lists remains a fruitful area of future research in

the IR community, but is beyond the scope of this work.

3 METHODOLOGY

In order to build our prediction framework, we need to account for

several issues. First, we need a ground truth which represents an

idealized last stage run over a large corpus of queries. �is idealized

last stage represents the reference list for which all comparisons

can be made. In order to build a plausible reference list, we adopt

the methodology of Clarke et al. [13]. �e 2009 Million �ery

Track (MQ2009) query set was used to perform both training and

testing. We �ltered this query set by removing single term queries

(which can be answered extremely e�ciently by taking the �rst k
documents from the relevant postings list of the impact-ordered

ISN). Following Clarke et al., we use the uogTRMQdph40 run as a

reference list, as it was one of the highest performing runs across

the evaluated query set, and had results for all of the queries in the

collection. In addition, we �ltered out 905 queries which reported

a MED-RBP0.95 score greater than 0.5 when applying the �xed-k
early stage (with k = 10,000), as these results show a clear mismatch

between the early and late stages we are presenting. A�er �ltering,

we retain a set of 31,642 MQ2009 queries. �e �rst 50 queries

are held out for �nal e�ectiveness validation since these queries

correspond to the queries in the 2009 TREC Web Track, and a full

set of relevance judgments are available. For all predictions, queries

were randomly assigned to 10 folds, and standard 10 fold cross

validation was performed to produce the query predictions.

We use only MED-RBP0.95 with a small target threshold of ϵ =
0.001 for all experiments as we wish to aggressively minimize

e�ectiveness loss. Clarke et al. showed that other common utility-

based metrics could also easily be used such as ERR and DCG, and

achieve similar results in their experiments, but we do not explore

that option in this work.

Experimental Setup.All experiments were executed on an idle 24-

core Intel Xeon E5-2690 with 512 GB of RAM hosting RedHat RHEL

v7.2. ATIRE [54] was used to parse and index the ClueWeb09B

collection, which was stopped using the default Indri stoplist, and

stemmed using an s-stemmer. Timings were conducted on an appro-

priate Bmw
1

or Jass
2

index, which use QMX compression [53, 55]

and the BM25 scoring model. Each query is processed 5 times, and

the average of the 5 runs is reported.

Prediction Framework. Recently, Culpepper et al. [16] described

an e�ective approach to dynamically predicting k while minimizing

the e�ectiveness loss. �eir key idea was to use the reference list

methodology described above to build ground truth labels to train a

1
h�p://github.com/JMMackenzie/�ant-BM-WAND

2
h�p://github.com/lintool/JASS/

0

1 × 10
−4

2 × 10
−4

3 × 10
−4

0 2,500 5,000 7,500 10,000
k

D
e
n
s
it
y
 o

f
q
u
e
ri

e
s

Predictor
Oracle

QR0.55

RF0.001

Figure 2: A comparison of the distributions of actual k versus

predicted k when using a Random Forest regression and a �antile

Regression in �rst stage retrieval for the 31,642 queries from the

MQ2009 TREC Task. Note that the Random Forest uses a training

value of ϵ = 0.001, whereas the best-�t distribution for the �antile

Regression was τ = 0.55 for k .

classi�er. However, their approach has a few drawbacks. First, the

cascade classi�er they described is interesting but unconventional

in that it requires multiple predictions to be made, depending on

the �nal k . Fewer predictions are required for small k , but up to

8 independent predictions are required for large k . Secondly, the

problem they describe is really a regression problem in practice.

Using regression allows an exact k to be predicted instead of an

approximate cuto�, which translates into fewer documents being

re-ranked in later stages of the retrieval system.

Commonly, regression methods estimate the conditional expec-

tation of a target dependent variable y given the independent vari-

ables (or features) x. �is implies that the method approximates the

average value of the dependent variable when the independent vari-

ables are �xed. Given training data of the form (x1,y1), . . . , (xn,yn)
methods based on least squares try to optimize the loss function

L(x,y) = 1

n
∑n
i=1

1

2
(xi − yi)2, which results in a good estimator for

the mean E[y |x].
So, the obvious way to reproduce their work is to use a similar

feature set, and compute the exact k needed for each query that

achieves a very small expected MED loss, say, ϵ < 0.001, and

use a random forest to produce the predictions. When we build

this training set, one immediate problem becomes apparent – the

ground truth labels do not follow a standard distribution, but an

out-of-the-box regression algorithm does. Figure 2 shows three

di�erent distributions – the true distribution of k in the ground

truth set (Oracle), the random forest prediction (RF0.001), and a

quantile regression prediction (QRτ), which is described now.

A pitfall of standard regression methods is that they may be-

come unstable under heavy-tailed distributions due to the dominant

e�ects of outliers, or more precisely, when samples from the tail

of the distribution have a strong in�uence on the mean. How to

cope with this problem has been studied in the context of robust
estimation. �ese estimators embody a family of methods designed

to be more resilient to the data generation process by not following

4

http://github.com/JMMackenzie/Quant-BM-WAND
http://github.com/lintool/JASS/

the underlying assumptions behind the regressor; in the context of

least squares, this would be errors being uncorrelated and having

the same variance.

One simple way of dealing with the outlier problem is quantile
regression which estimates either the conditional median or other

quantiles of the response variable. If y has a cumulative distribu-

tion of Fy (z) = p(y ≤ z) then the τ -th quantile of y is given by

Qy (τ) = F−1

y = inf{z : Fy (z) ≥ τ }. To learn a regressor that mini-

mizes a τ value, we de�ne the loss function ξτ (y) = y(τ −I{y < 0})
where I{·} is the indicator function. �erefore, τ -th quantile re-

gression estimates the conditional τ -th quantile F−1

y |x(τ), or we want

an estimate
ˆfτ such that p(y < ˆfτ (x)) = τ :

ˆfτ = argmin

f ∈Fτ

n∑
i=1

ξτ (yi − f (xi)) = (1)

argmin

f ∈Fτ

(1 − τ)
∑

yi<f (xi)
|yi − f (xi)| + τ

∑
yi ≥f (xi)

|yi − f (xi)|
 , (2)

where Fτ is a predetermined class of functions.

A robust regression method is random forests (RF) which build

several decision trees using a�ribute bagging. In a nutshell, the

algorithm samples with replacement the training data B times and

trains several decision trees fb using only each portion of the data.

�e �nal prediction for an incoming new query is averaged from

all the regressors
ˆf = 1

B
∑B
i=1

fB (x). Subsampling has the practical

e�ect of decreasing the variance of the model, without increasing

its complexity, given that even if the predictions of a single tree are

highly sensitive to noise, the average of many trees is not, as long

as the trees are not correlated. Bootstrapping achieves this e�ect

by training each tree with a di�erent randomized subsample.

When the individual trees fb are learned, the building procedure

has to create tree nodes that branch the data down the tree; in order

to reduce the model variance, only a few features are candidates for

spli�ing at each round. �is mitigates the e�ect that happens when,

if just a few features are very strong predictors for y, these features

will be selected in many of the B trees, which will become correlated.

Given their resilience to noise and outliers, random forest were

the best out-of-the-box regressors for the task of predicting cut-

o� values and query response times, surpassing in e�ectiveness

many other candidates such as kernel ridge regression, Gaussian

(regression) processes among others.

We deploy the quantile regression within the same tree frame-

work using gradient boosting regression trees (GBRT). In this case,

each tree re-�ts the training data using the residuals (gradients) of

the training data with respect to the ξτ loss function, and a pre-tree

weight is calculated using line search. �e �nal decision is a linear

combination of the weighted prediction of the tree ensemble.

We used a similar set of features as Culpepper et al. [16]. �ese

features are based on a aggregating statistics for each postings

list (such as maximum scores, harmonic/arithmetic mean/median

scores, and so on) from a range of similarity functions, along with

query speci�c features such as query length, max score of query

terms, and many more. In addition to the TF·IDF, BM25 and query

likelihood used in [16], we also build features using Bose-Einstein,

0.1

1

10

100

1,000

2,000 5,000 10,000
k

Ti
m

e
[m

s]

System
Bᴍᴡ1.0

Bᴍᴡ1.2

Jᴀꜱꜱ1b

Jᴀꜱꜱ5m

Figure 3: E�ciency comparison of the 31,642 queries from the

MQ2009 TREC Task using both aggressive and exact versions of

Bmw and Jass. Subscripts denote the aggression parameters (θ for

Bmw and ρ for Jass).

DPH, and DFR similarity functions [1]. We also added the geo-

metric mean as an aggregation statistic for each of these similarity

functions. We use a total of 147 features in this work.

Tail-Latency�eries in DaaT Traversal Algorithms. �is im-

proved approach to predictingk in �rst stage retrieval is a promising

�rst step to achieving for e�cient results without sacri�cing e�ec-

tiveness. However, assuming that the performance of Wand-based

algorithms in the �rst stage is a function of k may not be correct in

practice, and other recent work [14] provides persuasive evidence

that this assumption is not true in practice. Crane et al. showed

that when using Wand and Bmw, tail-latency queries can occur at

any k cuto�, making performance guarantees hard to enforce in

production systems.

�e alternative to using Wand or Bmw in the �rst stage retrieval

is to use a SaaT algorithm such as Jass. Unfortunately, this is not

an entirely satisfactory answer either as most of the performance

gains in Jass come from using aggressive early termination, which

can hurt e�ectiveness when the number of documents that must be

passed into the next stage must also be minimized. So rank safety

is yet another confounding factor. DaaT and SaaT processing

algorithms can sacri�ce e�ectiveness for e�ciency by relaxing the

rank-safety constraint. For example, Jass allows a parameter ρ to

be set which bounds the maximum number of postings to score per

query, and variants of Wand can use a parameter θ (or sometimes

F) which induces more aggressive skipping during postings list

traversal. So, there is a trade-o� between retrieval depth k and rank

safety in a pure e�ciency sense. �is relationship was previously

explored by Tonello�o et al. [52], who also used a query di�culty

prediction framework to solve the problem. We build on this idea

in this work, but also account for the fact that using only Wand

based algorithms can still result in poorly performing tail-latency

queries. We can see that boosting θ alone does indeed make Bmw

faster in Figure 3, but the tail-latency queries remain.

5

Bmw1.1 Bmw1.2 Bmw1.3 Jass
1b Jass5m

Bmw1.0 86.0 61.7 46.6 56.2 16.7

Bmw1.1 - 67.4 49.7 53.1 18.3

Bmw1.2 - - 68.6 42.3 24.2

Bmw1.3 - - - 31.4 26.7

Jass
1b - - - - 8.0

Table 1: �e percentage overlap of queries that fall in 95th per-

centile e�ciency band for k = 2,000. Clearly, making Bmw more

aggressive may improve timings, but the tail queries are generally

similar regardless of the aggression parameter θ . On the other hand,

it is less common for Jass and Bmw to have overlapping tail queries,

especially when a non-exhaustive ρ value is used.

So, our next task is to explore the likelihood of tail-latency

queries when using the MQ2009 topic set. Crane et al. [14] re-

cently did a comparative analysis using the UQV [6] query set and

the ClueWeb12B document collection with �xed values of k . We

reproduce their work here across our own query set and �xed k
values. Figure 3 shows the breakdown of all 31,642 queries across a

number of �xed values of k , selected as appropriate sizes for an LtR

system [38]. Similar to Crane et al., we observe that the exhaustive

Bmw algorithm is superior to the exhaustive Jass algorithm, but

the heuristic Jass traversal (with the recommended 10% heuristic)

eliminates all tail-latency queries. On the other hand, the aggres-

sive Bmw traversal does improve the mean and median times, but

does not reduce the likelihood of tail-latency queries. Note that

we selected the value for the heuristic, θ = 1.2, based on other

work that shows that more aggressive approaches result in reduced

e�ectiveness [13, 40]. It is also noteworthy that the exhaustive

Bmw traversal has a faster median time than the aggressive Jass

traversal when k ≤ 5,000.

Additionally, we do a simple overlap analysis on the 95th per-

centile tail-latency for each algorithm to determine whether each

system has similar tail-latency queries. Table 1 shows the percent-

age of the tail-latency queries that overlap between each system,

where k = 2,000. Exact Jass, exact Bmw and aggressive Bmw tend

to share similar tail-latency queries. However, we note that the

aggressive Jass traversal tends to share only a small percentage

of the tail-latency queries that occur in the other systems. �is

provides further motivation for our proposed hybrid ISN index

con�guration.

In light of this new evidence, a pragmatic hypothesis emerges:

Can we somehow combine the best properties of Jass and Bmw to

create a hybrid approach that captures the best of both worlds?

4 APPROACH

Problem De�nition. First, we de�ne the problem. Given a query

q, a series of re-ranking stages R, and a target evaluation metric

Algorithm 1: Candidate generation pipeline based on predict-

ing k

Input :A query q, a regressor Rk that predicts the required

k for q, a regressor Rρ that predicts the required ρ
for Jass up to a maximum ρ value ρmax, and a

k-threshold Tk
Output :A set of candidate documents, C
C ← �
Pk ← Rk (q)
if Pk > Tk then

Pρ ← Rρ (q)
C ← ISNJass(q, Pk , Pρ)

else

C ← ISNBmw(q, Pk)
end

return C

M for the �nal stage, how can we select both k and the process-

ing algorithm A for the initial (bag-of-words) stage such that k ,

processing time t , and e�ectiveness loss L are minimized?

Untangling the objectives. Our �rst goal is to untangle the ob-

jectives, and describe a uni�ed methodology to satisfy all of the

constraints in a principled way. We draw inspiration from all of

these recent studies. We still want to minimize k as the performance

of later stage re-ranking algorithms is sensitive to the number of

documents, and we also want to provide performance guarantees

on the running time of the �rst stage ranker. �e key observation

that pulls these seemingly di�erent objectives together is that the

classi�cation approach described by Culpepper et al. actually used

classic query hardness features for the learning model [10, 40, 52].

Furthermore, the MED approach allows many more queries to be

used for training than methods which require a full set of relevance

judgments to be available in order to minimize e�ectiveness loss.

So, we explore the possibility of using a single predictive framework

to minimize all three constraints in a uni�ed way.

System Architecture. �e �rst major di�erence in our approach

is that we opt to build a hybrid architecture. Work on distributed

IR has shown that an e�ective approach to scaling is to replicate

popular ISNs [18, 23, 29, 30]. Here, we assume that we can build

ISNs that are optimized for di�erent types of queries. In other words,

when we build replicas, we may opt to build a document-ordered

index (appropriate for DaaT traversal), or an impact-ordered index

(appropriate for SaaT traversal). �is idea is key to our novel

framework: Selecting algorithm a ∈ A actually refers to selecting

an ISN to process the query which is con�gured to run algorithm a,

and ISN selection is already a common problem in distributed search

architectures [7, 28]. In practice, our “Stage-0” predictions would

be performed by the resource selection process in a large-scale

distributed IR system.

Hybrid Approaches. Based on several observations about the

relative performance of Jass and Bmw, we are now in a position

to describe a few di�erent hybrid approaches to query processing.

Our goal is to limit the disadvantages of each traversal algorithm,

6

Algorithm 2: Candidate generation pipeline based on predict-

ing both k and run time

Input :A query q, a regressor Rk that predicts the required

k for q, a regressor Rρ that predicts the required ρ
for Jass up to a maximum ρ value ρmax, a k-threshold

Tk , a regressor Rt that predicts the running time of q,

and run-time threshold Tt
Output :A set of candidate documents, C
C ← �
Pk ← Rk (q)
if k > Tk then

Pρ ← Rρ (q)
C ← ISNJass(q, Pk , Pρ)

else

Pt ← Rt (q)
if Pt > Tt then

Pρ ← Rρ (q)
C ← ISNJass(q, Pk , Pρ)

else

C ← ISNBmw(q, Pk)
end

end

return C

and exploit the desirable properties. Several di�erent variations

were used in our preliminary experiments, and the two best are

shown here. In both algorithms, the �rst step is to predict the k
cuto�. If k is greater than the threshold Tk , then proceed to the

Jass pipeline as in Algorithm 1, or make a second query di�culty

prediction as in Algorithm 2. If Jass is used, a prediction for ρ is

made, but capped at ρmax, which allows us to achieve the desired

performance guarantees. In our experiments, ρmax = 10 million

postings as this requires less than 200ms on our current hardware

con�guration. �e remaining queries are processed using Bmw

with rank-safety.

5 EXPERIMENTS

We now look at the various predictions that are necessary to achieve

our performance requirements. Our performance requirements for

e�ectiveness are to achieve a target MED that is low enough to

result in no measurable e�ectiveness di�erence for the target metric.

Our performance requirements for e�ciency are no queries over

200 ms with a 99.99% response time guarantee. �at is, we can

a�ord at most 3 over-budget queries for our entire query trace.

Predicting k . First, we validate that our new approach to k predic-

tion using quantile regression is e�ective. Using our newly devised

regression technique, we can compare the e�ciency and e�ective-

ness trade-o�s between the size of the candidate retrieval set k , and

the expected e�ectiveness loss MEDRBP. Figure 4 shows the predic-

tive power of the random forest (RFε) and quantile regression (QRτ)

when compared to the oracle results for ϵ target between 0.001 and

0.10, and to using a �xed cuto� for all queries. Note that the graph

on the le� presents results as the median k result in contrast to

the right graph which shows the results for the mean k results as

done in previous work. Since the distribution of the true k values is

System RMSE Precision Recall F M-Precision M-Recall M-F AUC

QR 0.76 0.73 0.52 0.62 0.87 0.76 0.81 0.98

RF 0.77 0.71 0.54 0.61 0.84 0.76 0.80 0.97

LR 0.84 0.73 0.49 0.58 0.85 0.74 0.79 0.96

Table 2: Regression and tail query classi�cation (τ = 0.95) perfor-

mance for �antile Regression, Random Forests and Linear Regres-

sion, best values bold (di�erence may be on the third decimal)

skewed for the queries as shown in Figure 2, presenting the results

using the median more accurately captures the trade-o�s.

Predicting ρ. Based on the lessons learned when a�empting to

build a robust predictive framework for k , we now turn our a�en-

tion to the aggressiveness parameter ρ in Jass. Previous work has

shown that using an exhaustive ρ results in e�ective top-k retrieval,

however, using a heuristic ρ can give similar e�ectiveness, yet much

more e�cient retrieval [33, 34]. �e recommended heuristic value

of ρ is 10% of the size of the collection [34], which is around 5 mil-

lion for the ClueWeb09B collection. Figure 5 shows the distribution

of ρ values required to when targeting a MED-RBP0.95 < 0.001, or

essentially, no measureable di�erence in the results lists between

exhaustive and aggressive Jass traversals. Clearly, the majority of

the distribution lies well to the lower side of the 10% heuristic value.

�is motivates us to predict ρ on a query-by-query basis. Again, we

deploy both a Random Forest and a Gradient �antile Regression

method as the distribution of ρ is skewed.

Figure 6 shows the median predicted ρ values compared with the

�xed and oracle. Both the QR and RF regression methods manage

to improve on the �xed ρ median. Note that when measuring the

MED-RBP0.95 for this experiment (and subsequently, training the

value of ρ), the k utilized was the optimal value of k from the

previous experiment. �e reason for using this k is that we must

�x k , otherwise our e�ectiveness scores may change as a result

of k , not just ρ. Indeed, this se�ing of k also allows us to �nd the

true optimal MED-RBP0.95 for Jass, denoted by the oracle point in

Figure 6.

Predicting response time. Given that our entire framework is

built using query performance prediction features, and we want

to minimize tail-latency queries, we explore the accuracy of query

performance prediction within the framework.

Table 2 shows the performance of three di�erent regression

methods for regressed query times and for predicting whether a

query time will fall into the last percentile of the distribution, i.e.,

if it will be a tail-latency or not. We replicate the previous set-

up by using exactly the same features as before and 10-fold cross

validation. We learn a regressor based on Random Forest, Gradient

�antile Regression, and a Linear Regression, which was employed

previously by Macdonald et al. [40] for the same task, although

with a smaller set of features.

We report on regression performance using root mean squared

error (RMSE) and on a number of binary classi�cation metrics

for the tail-latency prediction task. To predict tail-latency queries

for the 99th percentile, we learn a threshold in the training set

by selecting the minimum running time of all the queries in the

95th percentile. We report on the area under the curve (AUC),

7

0

1,000

2,000

3,000

4,000

5,000

0.00 0.05 0.10 0.15 0.20

MED − RBP0.95

M
e
d
ia

n
 k

Predictor

Fixed

Oracle

QR
τ

RF
ε

0

1,000

2,000

3,000

4,000

5,000

0.00 0.05 0.10 0.15 0.20

MED − RBP0.95

M
e
a
n
 k

Predictor

Fixed

Oracle

QR
τ

RF
ε

Figure 4: MEDRBP versus median k (le�) and mean k (right) for all ϵ thresholds between 0.001 and 0.200 when using a Random Forest

regression, and for all τ values between 0.10 and 0.75 with ϵ = 0.001 for �antile Regression, in �rst stage retrieval for the 31,642 queries

from the MQ2009 TREC Task. Note that the �antile Regression clearly improves the median k (compared with Random Forests) without

negatively a�ecting the mean k .

0

1 × 10
−7

2 × 10
−7

3 × 10
−7

4 × 10
−7

5 × 10
−7

0 2.5 × 10
6

5.0 × 10
6

7.5 × 10
6

1.0 × 10
7

ρ

D
e
n
s
it
y
 o

f
q
u
e
ri

e
s

Predictor
Oracle

QR0.45

RF0.001

Figure 5: A comparison of the distributions the actual ρ vs the

predicted ρ when using a Random Forest regression and a �antile

Regression in �rst stage retrieval for the 31,642 queries from the

MQ2009 TREC Task. Note that the Random Forest uses a training

value of ϵ = 0.001, whereas the best-�t distribution for the �antile

Regression was τ = 0.45 for ρ.

precision/recall/F measure for the positive class (the query was a

tail-latency query) and class-average (macro) precision/Recall/F-

measure.

Results show that our predictors are extremely e�ective for re-

gressing timings, with random forests and quantile regression hav-

ing a clear edge over linear regression, both in terms of raw regres-

sion error (RMSE) and true positive classi�cation. QR has some

advantage over RF given that the distribution of timings is skewed

(Figure 3). One discussion point is that we did not a�empt to deploy

any dynamic features, such as those seen in the DDS prediction

framework [28]. We leave this for future work.

Putting it all together. Here, we show that by combining all of

our predictions into hybrid �rst-stage retrieval systems, outlined

●

1 × 10
6

2 × 10
6

3 × 10
6

0.00 0.05 0.10 0.15 0.20

MED − RBP0.95

M
e

d
ia

n
 ρ

Predictor

●

Fixed

Oracle

QRτ

RF0.001

Figure 6: MEDRBP versus median ρ for ϵ = 0.001 when using

the RF regression, and for all τ values between 0.10 and 0.75 with

ϵ = 0.001 for QR, in �rst stage retrieval for all 31,642 queries. �an-

tile Regression and Random Forests behave similarly with respect

to the median ρ, but QR is still preferred as the �nal predicted

ρ distribution �ts be�er with the idealized results as shown in

Figure 5.

in Algorithms 1 and 2, we can achieve e�ectiveness equal to a �xed

parameter system, while simultaneously reducing the number of

documents that must be passed on to the next stage of the multi-

stage retrieval system. Additionally, we show that we can use our

framework to mitigate tail-latency queries e�ectively.

Figure 7 shows the performance for 2 di�erent MED-RBP0.95

cut-o�s: 0.05 and 0.10. We also show the performance of the oracle

selectors, which all had MED-RBP0.95 scores below 0.02. As before,

Jass
1b , Jass5m and Bmw1.0 refer to using a �xed k – the k was

selected such that the mean MED value was equivalent to the

target. We also report the results of the two hybrid systems based

on Algorithm 1 (Hybridk) and Algorithm 2 (Hybridh), which use

quantile regression for their predictions. Additionally, Table 3

8

0.1

1

10

100

1,000

 Oracle 0.05 0.10
MED threshold

Ti
m

e
[m

s]

System
Jᴀꜱꜱ1b

Jᴀꜱꜱ5m

Bᴍᴡ1.0

Hybridh

Hybridk

Oracleh

Oraclek

Oraclet

Figure 7: �e response time for each system for di�erent bands of

MED-RBP0.95. Both Hybridk and Hybridh systems, which predict

k and ρ, and k , ρ and time respectively, show a clear improvement

over the �xed baselines. Although aggressive Jass has fewer tail

latency queries, the k required to a�ain the given MED values is

larger than the exhaustive and hybrid systems, which has impli-

cations in the e�ciency of the late stage feature extraction and

re-ranking. �e horizontal line denotes the 200ms budget.

Oracles: MED-RBP0.95 < 0.02

System Mean k Median k Mean time Median time % queries > 200 ms

Oraclek 3334 1735 47.2 27.6 3.1

Oraclet 3334 1735 40.0 23.5 2.2

Oracleh 3334 1735 41.6 23.6 2.6

MED-RBP0.95 = 0.05

System Mean k Median k Mean time Median time % queries > 200 ms

Bmw1.0 2600 2600 60.9 38.1 4.4

Jass
1b 2600 2600 97.9 71.4 11.8

Jass5m 3100 3100 63.1 70.3 0

Hybridk 2232 1667 40.9 29.2 0.006

Hybridh 2232 1667 40.9 29.2 0.006

MED-RBP0.95 = 0.10

System Mean k Median k Mean time Median time % queries > 200 ms

Bmw1.0 800 800 45.3 26.1 2.4

Jass
1b 800 800 103.2 74.9 13.2

Jass5m 900 900 59.2 65.7 0

Hybridk 648 441 36.4 24.9 0.003

Hybridh 648 441 36.4 24.9 0.003

Table 3: Summary statistics for k , time and the % of queries with

response times above 200 ms. Each sub-table corresponds to a

section of Figure 7, and the best values are bold. Not only do

the hybrid systems require less documents in the �rst stage, they

also run more e�ciently across the ISNs, and generally reduce

tail latencies compared to �xed systems. In particular, the hybrid

methods both have only 1 query > 200ms in the MED 0.10 case,

and 2 queries > 200ms in the MED 0.05 case.

shows the average and median k , as well as the time characteristics

for the systems presented in Figure 7.

Our results show that our hybrid systems both outperform the

equivalent �xed Bmw or Jass traversals for the given MED targets.

For example, with a target of MED-RBP0.95 = 0.05, our hybrid

systems can achieve a mean and median query response time 20 ms

System NDCG@10 ERR@10 RBP p = 0.80

uog-ideal 0.3578 0.4346 0.4357 (0.1366)

Hybridk 0.3464 0.4174 0.4231 (0.1523)

Hybridh 0.3464 0.4174 0.4231 (0.1523)

Jass5m 0.3554 0.4354 0.4297 (0.1517)

Table 4: E�ectiveness measurements taken across the held-out

query set. No statistical signi�cance was measured between the

hybrid systems with respect to the ideal system, using the two

one-sided test with p < 0.05.

and 8.9 ms below the best �xed system, respectively. �e hybrid

systems return, on average, 368 less candidate documents to the

next stage of the retrieval architecture, resulting in further e�ciency

gains along the cascade without loss in e�ectiveness. Finally, our

hybrid systems managed to each have only 2 queries that ran longer

than our target e�ciency of 200 ms, with run times of 232.4 ms

and 294.1 ms respectively. Similar outcomes are observed when the

MED target is relaxed to 0.10. Although the Jass5m �xed system

outperforms our hybrids in reducing tail latencies, it must retrieve

a larger number of documents to achieve the same e�ectiveness

target, which has negative implications on the e�ciency of the

following stages. We note that we do not consider the time required

to make our predictions. Recent work using similar models show

a prediction overhead of < 0.75 ms per prediction [25]. So, in the

worst case, we are likely to only add 2 − 3ms per query.

Validating Robustness. As a �nal test of robustness, we run both

of our hybrid systems across the 50 (unseen) TREC 2009 Web

Track queries. �ese queries were held out from the train and

test procedures reported in earlier sections. Since these queries

have judgements to depth 12, we report NDCG@10, ERR@10 and

RBPp=0.80 [35]. For the hybrid systems, we used the same predic-

tion con�guration that was used in the MED-RBP0.95 = 0.05 task

from Figure 7 and Table 3.

Table 4 shows the e�ectiveness measurements. Clearly, our

hybrid systems have a small loss in e�ectiveness compared to the

ideal end-stage run. In order to test whether the uog-ideal run

was signi�cantly be�er than our hybrid runs, we ran the two one-

sided test [47] of equivalence (TOST). For each TOST test, we set

the ϵ parameter as ϵ = 0.1 · µ, where µ is the mean e�ectiveness

score of the ideal run for the desired metric. We found that the

ideal system was not statistically signi�cantly di�erent than our

hybrid systems, with p < 0.05.

6 CONCLUSION

We presented and validated a uni�ed framework to predict a wide

range of performance-sensitive parameters for early-stage candi-

date retrieval systems using MED and reference lists as guides

for training (RQ1). Preliminary experiments show that the DaaT

Bmw approach is e�cient but su�ers from the occasional tail query,

which the SaaT Jass algorithm does not. Hybrid systems based on

this framework were shown to minimize e�ectiveness loss while

also minimizing query-latency across all stages of a multi-stage

search architecture. Given a �xed budget of 200ms for a �rst-stage

9

response time, we can achieve this budget 99.99% of the time with

the hybrid systems, across an index of 50 million documents and a

trace of over 30,000 queries, thus answering RQ2 in the a�rmative.

In particular, we �nd that using quantile regression (GBRT) for

predicting k , ρ and response time allows us to minimize the late

stage e�ectiveness loss while simultaneously minimizing the size

of the initial candidate set, thus answering RQ3.

REFERENCES

[1] G. Amati and C. J. Van Rijsbergen. 2002. Probabilistic Models of Information

Retrieval Based on Measuring the Divergence from Randomness. 20, 4 (2002),

357–389.

[2] V. N. Anh, O. de Kretser, and A. Mo�at. 2001. Vector-space ranking with e�ective

early termination. In Proc. SIGIR. 35–42.

[3] N. Asadi and J. Lin. 2013. Document Vector Representations for Feature Extrac-

tion in Multi-Stage Document Ranking. Inf. Retr. 16, 6 (2013), 747–768.

[4] N. Asadi and J. Lin. 2013. E�ectiveness/E�ciency Tradeo�s for Candidate

Generation in Multi-Stage Retrieval Architectures. In Proc. SIGIR. 997–1000.

[5] N. Asadi, J. Lin, and A. P. De Vries. 2014. Runtime optimizations for tree-based

machine learning models. Trans. on Know. and Data Eng. 26, 9 (2014), 2281–2292.

[6] P. Bailey, A. Mo�at, F. Scholer, and P. �omas. 2016. UQV100: A Test Collection

with �ery Variability. In Proc. SIGIR. 725–728.

[7] D. Broccolo, C. Macdonald, O. Salvatore, I. Ounis, R. Perego, F. Silvestri, and N.

Tonello�o. 2013. Load-sensitive Selective Pruning for Distributed Search. In Proc.
CIKM. 379–388.

[8] A. Z. Broder, D. Carmel, M. Herscovici, A. So�er, and J. Y. Zien. 2003. E�cient

query evaluation using a two-level retrieval process. In Proc. CIKM. 426–434.

[9] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and

J. Degenhardt. 2010. Early Exit Optimizations for Additive Machine Learned

Ranking Systems.. In Proc. WSDM. 411–420.

[10] D. Carmel and E. Yom-Tov. 2010. Estimating the �ery Di�culty for Information
Retrieval. Morgan & Claypool.

[11] K. Chakrabarti, S. Chaudhuri, and V. Ganti. 2011. Interval-based pruning for

top-k processing over compressed lists. In Proc. ICDE. 709–720.

[12] O. Chapelle, D. Metzler, Y. Zhang, and P. Grinspan. 2009. Expected reciprocal

rank for graded relevance. In Proc. CIKM. 621–630.

[13] C. L. A. Clarke, J. S. Culpepper, and A. Mo�at. 2016. Assessing e�ciency–

e�ectiveness tradeo�s in multi-stage retrieval systems without using relevance

judgments. Inf. Retr. 19, 4 (2016), 351–377.

[14] M. Crane, J. S. Culpepper, J. Lin, J. Mackenzie, and A. Trotman. 2017. A Com-

parison of Document-at-a-Time and Score-at-a-Time �ery Evaluation. In Proc.
WSDM. To appear.

[15] M. Crane, A. Trotman, and R. O’Keefe. 2013. Maintaining discriminatory power

in quantized indexes. In Proc. CIKM. 1221–1224.

[16] J. S. Culpepper, C. L. A. Clarke, and J. Lin. 2016. Dynamic Cuto� Prediction in

Multi-Stage Retrieval Systems. In Proc. ADCS. 17–24.

[17] V. Dang, M. Bendersky, and W. B. Cro�. 2013. Two-stage learning to rank for

information retrieval. In Proc. ECIR. 423–434.

[18] J. Dean and L. A. Barroso. 2013. �e Tail at Scale. Comm. ACM 56, 2 (2013),

74–80.

[19] C. Dimopoulos, S. Nepomnyachiy, and T. Suel. 2013. Optimizing Top-k Document

Retrieval Strategies for Block-Max Indexes. In Proc. WSDM. 113–122.

[20] S. Ding, J. A�enberg, and T. Suel. 2010. Scalable Techniques for Document

Identi�er Assignment in Inverted Indexes. In Proc. WWW. 311–320.

[21] S. Ding and T. Suel. 2016. Faster Top-k Document Retrieval Using Block-Max

Indexes. In Proc. SIGIR. 993–1002.

[22] M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu, and J. Zien. 2011. Evalu-

ation strategies for top-k queries over memory-resident inverted indexes. Proc.
VLDB 4, 12 (2011), 1213–1224.

[23] G. Francès, X. Bai, B. B. Cambazoglu, and R. Baeza-Yates. 2014. Improving the

E�ciency of Multi-site Web Search Engines. In Proc. WSDM. 3–12.

[24] S.-W. Hwang, K. Saehoon, Y. He, S. Elnikety, and S. Choi. 2016. Prediction and

Predictability for Search �ery Acceleration. ACM Trans. Web 10, 3 (Aug. 2016),

19:1–19:28.

[25] M. Jeon, S. Kim, S.-W. Hwang, Y. He, S. Elnikety, A.L. Cox, and S. Rixner. 2014.

Predictive Parallelization: Taming Tail Latencies in Web Search. In Proc. SIGIR.

253–262.

[26] X. Jin, T. Yang, and X. Tang. 2016. A Comparison of Cache Blocking Methods for

Fast Execution of Ensemble-based Score Computation. In Proc. SIGIR. 629–638.

[27] A. Kane and F. Wm. Tompa. 2014. Distribution by Document Size. In LSDS-IR.

[28] S. Kim, Y. He, S.-W. Hwang, S. Elnikety, and S. Choi. 2015. Delayed-Dynamic-

Selective (DDS) Prediction for Reducing Extreme Tail Latency in Web Search. In

Proc. WSDM. 7–16.

[29] Y. Kim, J. Callan, J. S. Culpepper, and A. Mo�at. 2016. E�cient distributed

selective search. Inf. Retr. (2016), 1–32.

[30] Y. Kim, J. Callan, J. S. Culpepper, and A. Mo�at. 2016. Load-Balancing in Dis-

tributed Selective Search. In Proc. SIGIR. 905–908.

[31] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann. 2013. Online

controlled experiments at large scale. In Proc. KDD. 1168–1176.

[32] D. Lemire and L. Boytsov. 2015. Decoding billions of integers per second through

vectorization. So�. Prac. & Exp. 45, 1 (2015), 1–29.

[33] J. Lin, M. Crane, A. Trotman, J. Callan, I. Cha�opadhyaya, J. Foley, G. Ingersoll, C.

Macdonald, and S. Vigna. 2016. Toward Reproducible Baselines: �e Open-Source

IR Reproducibility Challenge. (2016).

[34] J. Lin and A. Trotman. 2015. Anytime Ranking for Impact-Ordered Indexes. In

Proc. ICTIR. 301–304.

[35] X. Lu, A. Mo�at, and J. S. Culpepper. 2016. �e E�ect of Pooling and Evaluation

Depth on IR Metrics. Inf. Retr. 19, 4 (2016), 416–445.

[36] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonello�o, and R. Ven-

turini. 2015. �ickScorer: A Fast Algorithm to Rank Documents with Additive

Ensembles of Regression Trees. In Proc. SIGIR. 73–82.

[37] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonello�o, and R. Venturini.

2016. Exploiting CPU SIMD extensions to speed-up document scoring with tree

ensembles. In Proc. SIGIR. 833–836.

[38] C. Macdonald, R. L. T. Santos, and I. Ounis. 2013. �e whens and hows of learning

to rank for web search. Inf. Retr. 16, 5 (2013), 584–628.

[39] C. Macdonald, R. L. T. Santos, I. Ounis, and B. He. 2013. About learning models

with multiple query-dependent features. ACM Trans. Information Systems 31, 3

(2013), 11.

[40] C. Macdonald, N. Tonello�o, and I. Ounis. 2012. Learning to Predict Response

Times for Online �ery Scheduling. In Proc. SIGIR. 621–630.

[41] J. Mackenzie, F. M. Choudhury, and J. S. Culpepper. 2015. E�cient location-aware

web search. In Proc. ADCS. 4.1–4.8.

[42] A. Mo�at and J. Zobel. 2008. Rank-Biased Precision for Measurement of Retrieval

E�ectiveness. ACM Trans. Information Systems 27, 1 (2008), 2.1–2.27.

[43] J. Pedersen. 2010. �ery understanding at Bing. Invited talk, SIGIR (2010).

[44] M. Petri, J. S. Culpepper, and A. Mo�at. 2013. Exploring the Magic of WAND. In

Proc. ADCS. 58–65.

[45] M. Petri, A. Mo�at, and J. S. Culpepper. 2014. Score-safe term dependency

processing with hybrid indexes. In Proc. SIGIR. 899–902.

[46] C. Rossi, E.S. de Moura, A.L. Carvalho, and A.S. da Silva. 2013. Fast Document-

at-a-time �ery Processing Using Two-tier Indexes. In Proc. SIGIR. 183–192.

[47] D. J. Schuirmann. 1987. A comparison of the Two One-Sided Tests Procedure

and the Power Approach for assessing the equivalence of average bioavailability.

J. Pharmacokinetics and Biopharmaceutics 15, 6 (1987), 657–680.

[48] A. Shtok, O. Kurland, and D. Carmel. 2016. �ery Performance Prediction Using

Reference Lists. ACM Trans. Information Systems 34, 4 (2016), 19.1–19.34.

[49] F. Silvestri. 2007. Sorting Out the Document Identi�er Assignment Problem. In

Proc. ECIR. 101–112.

[50] L. Tan and C. L. A. Clarke. 2015. A Family of Rank Similarity Measures Based on

Maximized E�ectiveness Di�erence. Trans. on Know. and Data Eng. 27, 11 (2015),

2865–2877.

[51] N. Tonello�o, C. Macdonald, and I. Ounis. 2011. E�ect of Di�erent Docid Order-

ings on Dynamic Pruning Retrieval Strategies. In Proc. SIGIR. 1179–1180.

[52] N. Tonello�o, C. Macdonald, and I. Ounis. 2013. E�cient and e�ective retrieval

using selective pruning. In Proc. WSDM. 63–72.

[53] A. Trotman. 2014. Compression, SIMD, and Postings Lists. In Proc. ADCS. 50:50–

50:57.

[54] A. Trotman, X.-F. Jia, and M. Crane. 2012. Towards an e�cient and e�ective

search engine. In Wkshp. Open Source IR. 40–47.

[55] A. Trotman and J. Lin. 2016. In Vacuo and In Situ Evaluation of SIMD Codecs. In

Proc. ADCS. 1–8.

[56] L. Wang, J. Lin, and D. Metzler. 2011. A Cascade Ranking Model for E�cient

Ranked Retrieval. In Proc. SIGIR. 105–114.

[57] Q. Wang, C. Dimpoloulos, and T. Suel. 2016. Fast First-Phase Candidate Genera-

tion for Cascading Rankers. In Proc. SIGIR. 295–304.

10

[58] W. Webber, A. Mo�at, and J. Zobel. 2010. A Similarity Measure for Inde�nite

Rankings. ACM Trans. Information Systems 28, 4 (Nov. 2010), 20.1–20.38.

[59] Z. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle. 2014. Classi�er

cascades and trees for minimizing feature evaluation cost. J. of Machine Learning
Research 15 (2014), 2113–2144.

[60] J.-M. Yun, Y. He, S. Elnikety, and S. Ren. 2015. Optimal Aggregation Policy for

Reducing Tail Latency of Web Search. In Proc. SIGIR. 63–72.

[61] J. Zhang, X. Long, and T. Suel. 2008. Performance of Compressed Inverted List

Caching in Search Engines. In Proc. WWW. 387–396.

[62] J. Zobel and A. Mo�at. 2006. Inverted Files for Text Search Engines. ACM Comp.
Surv. 38, 2 (2006), 6.1–6.56.

11

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	4 Approach
	5 Experiments
	6 Conclusion
	References

