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We introduce Path-ZVA: an efficient simulation technique for estimating the probability of reaching a rare
goal state before a regeneration state in a (discrete-time) Markov chain. Standard Monte Carlo simulation
techniques do not work well for rare events, so we use importance sampling; i.e., we change the probability
measure governing the Markov chain such that transitions “towards” the goal state become more likely. To
do this, we need an idea of distance to the goal state, so some level of knowledge of the Markov chain is
required. In this article, we use graph analysis to obtain this knowledge. In particular, we focus on knowl-
edge of the shortest paths (in terms of “rare” transitions) to the goal state. We show that only a subset of
the (possibly huge) state space needs to be considered. This is effective when the high dependability of the
system is primarily due to high component reliability, but less so when it is due to high redundancies. For
several models, we compare our results to well-known importance sampling methods from the literature and
demonstrate the large potential gains of our method.
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1 INTRODUCTION

Critical systems and infrastructures are increasingly required to be highly reliable, which has im-
plications not only for the reliability of individual system components, but also for the accuracy of
model-based evaluation. Realistic models of highly reliable systems typically have very large state
spaces. Additionally, low component failure rates or a wide range of included system behaviours
mean that a model may exhibit multiple time scales, in which system failure is the unlikely result
of low-intensity state transitions (e.g., component failures) taking precedence over high-intensity
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transitions (e.g., component repairs). Numerical methods for evaluating system failure probabili-
ties such as those implemented in the model checking tool PRISM (Kwiatkowska et al. 2011)—e.g.,
the Gauss-Seidel method—typically prove to be computationally infeasible due to the size of state
space. Furthermore, state space reduction techniques that ignore low-intensity behaviour risk dis-
posing of unlikely but interesting events.

A common and generally applicable alternative is Monte Carlo simulation, which only requires
an implicit description of the state space and is therefore largely independent of its size. However,
if the interesting behaviour is unlikely, a prohibitively large number of simulation runs is typically
required before the rare event of interest is first observed. Hence, there is a need for hybrid tech-
niques that strike a compromise between numerical techniques and standard Monte Carlo, whilst
maintaining, to the largest possible extent, the general applicability of both methods.

In this article, we focus on Markovian systems in which individual components can fail and be
repaired, and system failure occurs when certain combinations of components have failed. Cru-
cially, we assume that the component failure rates have a (much) smaller order of magnitude than
the repair rates. This is formalised in the notion of highly reliable Markovian systems (HRMSs),
which include any Markov chain in which rates are parameterised by powers of some rarity pa-
rameter ϵ , where higher powers of ϵ correspond to component failures. Our (very small) probability
of interest is that of reaching a system failure state within one regeneration cycle, i.e., between
two visits to a given regeneration state. Once this quantity has been estimated, renewal theory
(Cox 1962) can be used to calculate many system performance measures of practical interest, such
as the mean time to failure, the unreliability, and the unavailability, without the need to estimate
any other quantities that involve rare events.

Our starting point will be a discrete time Markov chain (DTMC) with fixed state space size and
structure. When the HRMS is a Markov chain in continuous time (as is usually the case), we simply
consider the DTMC embedded at transition times (replacing the transition rates by normalised
transition probabilities). This is allowed since the probability of our interest does not depend on
the times spent in states, and hence is the same in the embedded DTMC as in the original system.

To estimate rare event probabilities in the DTMC, we use importance sampling—a simulation
method in which transitions that lead to the rare event are made more likely (Heidelberger 1995).
More precisely, we follow a so-called Zero Variance Approximation (ZVA) scheme, based on some
a priori approximation of the probability of interest. For this approximation we use path-based

measures for the distance from each state to the target state, which is why we call our method
“Path-ZVA.” Our distance measure is the number of “failure” transitions needed to get to the target
state, or, in general, the ϵ-power of the most likely path to get there, and during the simulation we
will “push” the system in a direction that minimises this distance. It turns out that in many cases
only a small part of the state space needs to be considered to find the relevant paths, making the
method computationally advantageous. Hence, our method consists of (i) a pre-processing step, in
which a graph-analysis algorithm finds the shortest paths on a subset of the state space, followed
by (ii) the actual simulations, using an importance sampling scheme (based on the shortest paths)
for efficiently estimating the probability of interest over the entire state space.

This Path-ZVA procedure is

(1) general, as the only requirements on the Markov model are that it is parameterised using
ϵ-orders and that the relevant subset is numerically better tractable than the state space
as a whole;

(2) efficient, as it provably has the desirable properties of either Bounded Relative Error and
Bounded Normal Approximation, or Vanishing Relative Error for small ϵ ; and

(3) automated, as the algorithm requires no user input apart from the model description. The
code is available on http://datashare.is.ed.ac.uk/handle/10283/2630.
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Fig. 1. Example of a HRMS with initial state s , goal state д, and regeneration state t .

The remainder of this article is as follows. After a formal description of the model setting and
of (ZVA) importance sampling simulation in Section 2, we describe our “Path-ZVA algorithm” in
detail in Section 3. Next, we prove in Section 4 that the resulting estimators have several desir-
able efficiency properties. We discuss a further variance reduction technique in Section 5, which
makes optimal use of the pre-processing step. Finally, we present an empirical evaluation of all the
discussed techniques in Section 6, including a comprehensive case study involving several bench-
mark models from the literature. Most of this article is based on Chapters 5 and 6 of Reijsbergen
(2013). For a list of symbols used in this article, see Table 1.

2 MODEL AND PRELIMINARIES

2.1 Model Setting

The model is given in terms of a DTMC with a (large, possibly infinite) state space X. (Note that
the timing behaviour of the system is not important to the method; in fact, the DTMCs of the mul-
ticomponent systems of Section 6 are the underlying DTMCs of continuous-time Markov chains.)
We assume that the system starts in a unique initial state s ∈ X, and that there is a single goal
state д ∈ X (potentially after merging all states from a bigger goal set into a single state). We also
assume that there is (again after a potential merge) a single taboo/regeneration state t ∈ X. Note
that it may not be clear a priori which states are to be merged into д and t ; since large DTMCs are
typically described using a high-level language (e.g., a stochastic Petri net), we determine which
states in the relevant part of the state space to collapse into д and t on-the-fly whilst running
the algorithm described in Section 3. In the following, we assume that s � д and s � t . We are no
longer interested in the behaviour of the system once the system hits д or t , so we assume that
these states are absorbing, i.e., have a self-loop with probability 1.

The complete transition probability structure in the DTMC is given by the probabilities pxz of
jumping from state x to state z, with x , z ∈ X. The probabilities pxz depend on ϵ , the time-scale
parameter that formalises the notion that there are fundamental differences between the transition
probabilities in the DTMC. To say more about the dependence on ϵ , we will write in the sequel,
with f ,h, fy ,дy : R→ R:

f (ϵ ) = Θ(h(ϵ )) iff 0 < limϵ↓0 f (ϵ )/h(ϵ ) < ∞,
f (ϵ ) = O (h(ϵ )) iff limϵ↓0 f (ϵ )/h(ϵ ) < ∞,
f (ϵ ) = o(h(ϵ )) iff limϵ↓0 f (ϵ )/h(ϵ ) = 0,
fy (ϵ ) = Θ(дy (ϵ )) uniformly in y iff ∃a,b > 0 such that ∀y : a < limϵ↓0 fy (ϵ )/дy (ϵ ) < b,

assuming these limits exist.
Throughout, our assumption is that for all non-zero transition probabilities pxz > 0, some rxz ∈

N ∪ {∞} exists such that pxz (ϵ ) = Θ(ϵrx z ). If pxz = 0, we set rxz equal to ∞. Note that rxz for
x , z ∈ X are fixed parameters of the model. An example of a DTMC parameterised in this way can
be found in Figure 1. (See Section 3.3 for a discussion on how these rxz are chosen in practice.)

Let a path ω be a sequence ω (0),ω (1), . . . ,ω (nω ) of states in X, with nω denoting the number
of steps in the path. Let Ω(x ) be the set of paths ω starting at ω (0) = x . We are interested in the
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Table 1. List of Symbols

X state space of the Markov chain
s , д, t initial state, goal state, and taboo/regeneration state, respectively
P, pxz original probability of the transition from state x to state z
Q, qxz new probability of the transition from state x to state z
rxz ϵ-order of the transition from state x to state z, i.e., pxz = Θ(ϵrx z )
ω a path, i.e., a sequence of states ω (0),ω (1), . . . ,ω (nω )
P(·) probability of a (set of) path(s) under pxz

Q(·) probability of a (set of) path(s) under qxz

Ω(x ) set of all paths ω starting at ω (0) = x
Φ(x ) set of all “successful” paths in Ω(x ), in which д is reached before t
π (x )

∑
ω ∈Φ(x ) P(ω) = P(Φ(x ))

d (x , z) shortest distance from x to z in terms of ϵ-orders
Λ all states x for which d (s,x ) ≤ d (s,д), including s and д
Γ all states z in X \ Λ such that ∃x ∈ Λ s.t. pxz > 0

p̄xz , P̄, d̄ pxz , P, d as before, but in the system in which states in Γ
have been given a transition with probability 1 to д

Δ(x ) “dominant” paths ω ∈ Φ(x ), for which P̄(ω) = Θ(ϵ d̄ (x,д) )
Φ, π , Δ shorthand notation for Φ(s ), π (s ), Δ(s )
vΔ(x )

∑
ω ∈Δ(x ) P̄(ω) = P̄(Δ(x )), approximation of π (x )

event that the system reaches д before t . To formalise this, let ∀x ∈ X

Φ(x ) � {
ω ∈ Ω(x ) : ω (nω ) = д, ∀k < nω : ω (k ) � {t ,д}}

be the set of all paths starting in x in which the event of interest occurs and which terminate as
soon as д is reached. For all x ∈ X, we define the probability that the rare event occurs, starting in
x , as

π (x ) �
∑

ω ∈Φ(x )

P(ω) = P(Φ(x )) where P(ω) �
nω∏
i=1

pω (i−1)ω (i ) . (1)

We are interested in π � π (s ) and estimate this probability using simulation, as described below.

2.2 Simulation

The basic means to evaluate π is through a point estimate; to obtain one, we draw N ∈ N sample
paths to obtain a sample set {ω1, . . . ,ωN }. To draw a sample path, we start in s and draw successor
states using P until we reach either t or д. (We assume that this happens in finite time with prob-
ability 1.) Let Φ � Φ(s ), and 1Φ(ω) denote an indicator function which equals 1 if ω is in Φ and 0
otherwise; this allows us to obtain an unbiased estimator of π , given by

π̂P =
1

N

N∑
k=1

1Φ(ωk ). (2)

An approximate 95%-confidence interval for π can be obtained using the Central Limit Theorem
(see, e.g., Law and Kelton (1991, §4.5))

As we discussed in the Introduction, we use importance sampling: we simulate using different
transition probabilities (qxz )x,z∈X under which paths in Φ are more likely. LetQ be the probability
measure on paths defined analogously to P but for qxz . We compensate for overestimation by
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weighting each outcome with the ratio of P and Q. Every time a transition is sampled using the
new probabilities, this weighting factor needs to be incorporated. Our new estimator—replacing
Equation (2)—then becomes

π̂Q =
1

N

N∑
k=1

LQ (ωk ) · 1Φ(ωk ), with LQ (ω) =
nω∏
i=1

pω (i−1)ω (i )

qω (i−1)ω (i )
. (3)

This estimator is unbiased for any new distribution that assigns positive probability to transitions
that have positive probability under the old distribution on paths in Φ(s ) (by the Radon-Nikodym
Theorem, see Chapter 7 of Capiński and Kopp (2004)). In the following, we will write π̂ = π̂Q for
brevity.

If Q is chosen carefully, the estimator based on Equation (3) will have a lower variance than
the standard estimator. The performance of an importance sampling method is measured by the
variance of π̂ under Q, given by

VarQ (π̂ ) = EQ
(
L2
Q
· 1Φ

)
− π 2.

UsingQ = P, we obtain the variance of the standard estimator: π (1 − π ). A particularly interesting
efficiency metric for an estimator is its relative error, given by√

VarQ (π̂ )

π
.

The relative error of the standard estimator is given by
√

(1 − π )/π , which goes to infinity when π
goes to zero. When the relative error of an estimator remains bounded when π goes to zero, we say
that our estimator has the desirable property of Bounded Relative Error (BRE). When it goes to zero,
we say that it has the even more desirable property of Vanishing Relative Error (VRE) (L’Ecuyer
et al. 2010).

We use the ZVA approach (cf. L’Ecuyer and Tuffin (2008)), and present the following probability
measure Q:

qxz � pxzv (z)∑
x ′ ∈X pxx ′v (x ′)

, (4)

where v (z) is some approximation for the true probability π (z). Clearly, if v (z) were exactly equal
to π (z), the denominator would be π (x ) and the estimator would have zero variance (de Boer et al.
2007), but of course we do not explicitly know π (·). If the simulation distributionQ associated with
the approximation v is good enough, then we have succeeded in overcoming the main problem
facing standard Monte Carlo simulation of rare events. The particular ZVA technique (choice ofv)
discussed in this article—namely, Path-ZVA—will be the subject of Section 3.

2.3 Related Work

In this section, we give a brief overview of papers on the use of importance sampling for Highly Re-
liable Markovian Systems that we consider to be particularly relevant to this article, either because
they discuss literature benchmarks or because they discuss recent advances. As a first remark, note
that our notion of an HRMS (namely, any Markov chain in which the transitions are given ϵ-orders)
is more general than what is typically considered in the literature. In the literature, an HRMS is
often restricted to what we call a multicomponent system, where only failure transitions have rates
of order ϵ , while we do not have this restriction.

The first application of an importance sampling method—namely, failure biasing—to HRMSs
goes back to Lewis and Böhm (1984). The general notion of failure biasing means that greater
probability is assigned to “failures,” i.e., transitions that are chosen with a probability that is O (ϵ ).
Shahabuddin (1994) studied the asymptotic properties of a refined version of failure biasing called
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balanced failure biasing (BFB), and showed the method to satisfy BRE in the absence of so-called
High Probability Cycles (HPCs). Nakayama (1996) derived general conditions for BRE in impor-
tance sampling schemes for HRMSs. Carrasco (1992) proposed a method called failure distance bi-

asing, in which the simulation measure is based on the distance from each state to the rare states.
This distance notion is similar to the function d discussed in Section 3.1—given d , the method ap-
plies a form of failure biasing (with the exception that if a failure does not lead to a decrease in
d , it is not treated as a failure). The function d in their setting is computed by finding the min-
imal cuts in the model’s corresponding fault tree, which means the setting is limited (namely,
multicomponent systems with independent component types, and no HPCs). Carrasco (2006) ex-
tended this approach to “unbalanced” systems. Alexopoulos and Shultes (2001) proposed a method
that is based on bounding the value of the likelihood ratios, and which has good performance for
both highly reliable and highly redundant systems. Juneja and Shahabuddin (2001) proposed a
scheme—the implementable general biasing scheme (IGBS)—to mitigate the effects of HPCs on the
performance of BFB.

We will use BFB and IGBS as literature benchmarks for the experiments of Section 6, so we
discuss them in more detail in the following. In particular, for each state x ∈ X, let nf (x ) be the
number of transitions leaving x with a positive ϵ-order (the “failures”) and let nr (x ) be the number
of transitions leaving x with ϵ-order 0 (the “repairs”). Given some p > 0, the simulation measure
Q of BFB is given by

qxz =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(nf (x ))−1 if nr (x ) = 0,
(nr (x ))−1 if nf (x ) = 0,
p (nf (x ))−1 if rxz > 0 and nr (x ) > 0,

(1 − p) (nr (x ))−1 if rxz = 0 and nf (x ) > 0.

The typical choice for p is 1
2 , and we make the same choice in this article. IGBS is similar to BFB,

with the exception that the degree of biasing is reduced when the current state is part of an HPC.
To avoid having to run a numerical procedure to detect HPCs, IGBS switches to low-intensity bias-
ing when the previous transition was a high-probability transition (resulting in a non-Markovian
simulation measure). In particular, with qxz |x ′ = Q(ω (i + 1) = z | ω (i ) = x , ω (i − 1) = x ′), IGBS
means

qxz |x ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(nf (x ))−1 if nr (x ) = 0,
(nr (x ))−1 if nf (x ) = 0,
p (nf (x ))−1 if rxz > 0, rx ′x > 0 and nr (x ) > 0,

(1 − p) (nr (x ))−1 if rxz = 0, rx ′x > 0 and nf (x ) > 0,
δ (nf (x ))−1 if rxz > 0, rx ′x = 0 and nr (x ) > 0,

(1 − δ ) (nr (x ))−1 if rxz = 0, rx ′x = 0 and nf (x ) > 0,

for some δ < p. In the initial state, p is used as a biasing constant. We choose δ = 1
100 in this article.

Note that the measure described above is more general than Shahabuddin (1994), who assumed
that ∀x ∈ X \ {s,д, t }, nf (x ) > 0, and nr (x ) > 0.

In addition to the papers on ZVA mentioned in Section 2.2, L’Ecuyer and Tuffin (2011) discusses
the particular application of ZVA to HRMSs. We use several of the ideas therein in Section 4. In par-
ticular, conditions are derived for a change of measure to satisfy VRE. In said paper, the analogues
of d and v were not obtained explicitly, but approximated using the structure of multicomponent
systems.

The basic idea underlying Section 5 is from Juneja (2007), who showed that for geometric sums
of heavy-tailed random variables, a separation of the estimator into the numerical computation of
a dominant component and the simulation of the small component yields an estimator with VRE.
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Other contributions involving generally applicable efficient simulation of HRMSs include Budde
et al. (2015), in which the notion of distance to the goal set used is the smallest possible number
of transitions needed (which is equivalent to the model setting of this article if all transitions have
ϵ-order 1). Another generic importance sampling technique is the cross-entropy method (see, e.g.,
Ridder (2010)), which we do not discuss further in this article because of its heuristic nature.

3 THE PATH-ZVA ALGORITHM

In this section, we describe the simulation method of this article—Path-ZVA. We discuss two ver-
sions, ZVA-d̄ and ZVA-Δ, which differ in the distance measure used. In the following, we first give
a formal description of these two methods and the underlying concepts. We then discuss their
implementation, with a particular focus on the routines of Algorithms 1, 2, and 3.

3.1 Path-Based ZVA

Our method for finding a suitable approximationv of π is to select only a subset of the paths used in
the summation of Equation (1), namely, the so-called dominant paths, as we discuss below. In order
to determine which paths to select, we will define two related measures—d̄ andvΔ—for the distance
between each state and the rare state д. Throughout this subsection, we assume that no so-called
HPC is present, where we define a HPC (see also Section 2.3) as a cyclic path ω with ω (nω ) = ω (0)
and P(ω) = Θ(ϵ0). For Markov chains that do have one or more HPCs, we explain in Section 3.2
how these are removed.

First, we define the function d : X2 → N as

d (x , z) = min{r : ∃ω ∈ Ω(x ) with ω (nω ) = z, ∀k < nω : ω (k ) � {t ,д} and P(ω) = Θ(ϵr )}.

Intuitively, d (x , z) is the shortest ϵ-distance of any path from x to z. Of particular interest are
d (x ,д), the shortest distance from each state x ∈ X to the goal state, and d (s,x ), the shortest dis-
tance from the initial state to each state x .

As mentioned in the Introduction, we do not need to run the algorithm on the entire state
space, but only the states that are asymptotically at most as hard to reach from s as д, and their
neighbours. To formalise this, we introduce the following two sets:

Λ = {x ∈ X : d (s,x ) ≤ d (s,д)} and (5)

Γ = {x ∈ X \ Λ : ∃z ∈ Λ s.t. pzx > 0}.
In words: Λ is the relevant part of X, i.e., the set of states that are asymptotically not substantially
less likely to be reached from s than д. The set Γ contains the states “bordering” Λ, i.e., those states
to which the system can jump directly from Λ. By construction, d (s,x ) > d (s,д) for all x ∈ Γ. We
assume that both Λ and Γ are finite—if they are not, the numerical pre-processing phase will never
terminate. See Figure 2 for an illustration of the sets Lambda and Gamma.

The algorithm of this article calculates d (s,x ), d (x ,д), and v (x ) only for x ∈ Λ. This means
that Equation (4) cannot be applied when x ∈ Λ and z ∈ Γ. This is remedied by adapting P to an
alternative probability measure P̄with high-probability “shortcuts” from Γ toд, and its correspond-
ing distance measure d̄ . First, let p̄xz be defined as follows:

p̄xz =

⎧⎪⎪⎨⎪⎪⎩
pxz if x � Γ,
1 if x ∈ Γ and z = д,
0 otherwise.

(6)

Then we let P̄ and d̄ be defined as P and d under this new measure. Next, we define

Δ(x ) = {ω ∈ Φ(x ) : P̄(ω) = Θ(ϵ d̄ (x,д) )},
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Fig. 2. Illustration of the sets Λ and Γ within X.

the set of paths from x to the goal state д that have (under P̄) the minimal distance d̄ (x ,д). As
before, we compute d̄ (s,x ), d̄ (x ,д), and Δ(x ) only for state x if x ∈ Λ. (Note that, even though we
allow Ω(x ) and Φ(x ) to include “paths” that have probability zero under P, such paths are never
in Δ(x ), since either they include one or more transitions with probability zero under P̄, or they
traverse Γ and their ϵ-order exceeds d̄ (x ,д).) We call the paths in Δ(x ) the dominant paths from x
to the goal state. Finally, we define the function vΔ : X → R+ as the probability of the “dominant”
paths under P̄:

vΔ(x ) =
∑

ω ∈ Δ(x )

P̄(ω). (7)

The function vΔ can be substituted for v in Equation (4) to yield a well-performing simulation
measure. This approach will be called ZVA-Δ in this article. Alternatively, one can use v (x ) =

ϵ d̄ (x,д) , which is easier to compute and, as we will see in Section 4, still yields an estimator with
favourable properties. This approach will be called ZVA-d̄ in this article. Note that there are model
settings for which techniques exist that allow for ZVA-d̄ to be applied without the need to consider
each individual state in Λ: see, e.g., Reijsbergen et al. (2013) for an application to stochastic Petri
nets. In the approach of that paper, the full state space is partitioned into “zones” such that for
each zone it holds that d̄ in each state is given by the same affine function of the state vector. The
performances of ZVA-Δ and ZVA-d̄ will be compared in Section 6.

Regardless of the choice of v , when we leave Λ during the simulation we stop using importance

sampling and revert back to standard Monte Carlo until we reach either д or t . A consequence is
that the simulation measure Q is now non-Markovian: it is only Markovian as long as we stay in
Λ. Let

m(ω) = min{i ∈ N : ω (i ) � Λ or ω (i ) = д}. (8)

Then Q is as follows (replacing Equation (4)):

qω (i )ω (i+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p̄ω (i )ω (i+1)v (ω (i + 1))∑

z∈X
p̄ω (i )zv (z)

if i < m(ω)

pω (i )ω (i+1) if i ≥ m(ω).

(9)
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3.2 Pre-Processing: Graph Analysis Procedure for Finding d̄ andvΔ

The algorithm for determining d̄ and vΔ involves the search for a shortest path in a graph, and is
strongly inspired by Dijkstra’s method (Dijkstra 1959). The new algorithm can be broken down
into three main routines, namely, Algorithms 1, 2, and 3. Unlike Dijkstra’s algorithm, the algorithm
of this section consists of two phases: a forward phase and a backward phase. In the forward phase,
we generate the state space and remove HPCs until we have found д and Λ, and in the backward
phase we start in д and determine d̄ andvΔ by working back until we reach s . The forward phase is
described in Algorithm 1 and the backward phase is described in Algorithm 3. Algorithm 2 removes
a detected HPC and is called by Algorithm 1. The runtimes of all the algorithms are polynomial in
the size of Λ ∪ Γ.

3.2.1 Forward Phase. In the first phase, we use a procedure based on Dijkstra’s algorithm for
finding shortest paths in a graph in order to determine d̄ (s, ·), Λ, and to remove all HPCs. In par-
ticular, d̄ (s, ·) is used to detect the HPCs; it is denoted by d̄ ′(·) in Algorithm 1 for brevity.

ALGORITHM 1: Forward phase.

Require: Markov chain (X, P ) with P = (pxz )x,z∈X , source s , destination д.
1: Λ := ∅
2: d̄ ′(s ) := 0, ∀z ∈ X \ {s} : d̄ ′(z) := ∞
3: P ′ := P , x := s
4: while d̄ ′(x ) ≤ d̄ ′(д) do

5: Λ := Λ ∪ {x }
6: for all z ∈ X s.t. pxz > 0 do

7: d̄ ′(z) := min(d̄ ′(z), d̄ ′(x ) + rxz )
8: if z ∈ Λ and d̄ ′(z) = d̄ ′(x ) then

9: P ′ := loopDetect((X, P ′), z)
10: end if

11: end for

12: x := arg min{d̄ ′(z) : z ∈ X \ Λ} � if several states are possible
13: end while � in line 12, any can be chosen
14: return Λ, P ′

Whilst running the procedure, we iteratively update Λ—this allows us to use Λ to keep track of
the visited states. We initialise Λ = ∅ and d̄ ′(s ) = 0. We set the current state x equal to s . Then, we
carry out the following routine until x equals д: we add x to Λ, and set d̄ ′(z) = min(d̄ ′(z), d̄ ′(x ) +
rxz ) for each possible successor state z ofx— i.e., we let the new best value for d̄ ′(z) be the minimum
between the old best value and the new possible value. We then set x equal to the state z that has
not been considered before with the lowest value of d̄ ′, and start over. When we have reached д,
we complete the procedure for all states z with d̄ ′(z) = d̄ ′(д) before we terminate the first phase.
The set Λ then meets its definition given in Equation (5).

If, whilst running the procedure, we find that a state z has a successor state z ′ such that
d̄ ′(z) = d̄ ′(z ′), we trigger the loop-detection procedure of Algorithm 2. It essentially boils down
to removing all low-probability transitions from the relevant part of the DTMC and finding the
Strongly Connected Component (SCC) that contains the states z and z ′ that triggered the proce-
dure, using the algorithm from Barnat et al. (2011). Essentially, we determine A, the set of states
that can be reached from z using high-probability transitions, and B, the set of states from which
z can be reached using high-probability transitions. The relevant SCC is then A ∩ B.

In Algorithm 2, we find A through the set SA which contains those states added to A in each
step. After initialising SA = {x }, we iteratively find those states that can be reached from the states
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ALGORITHM 2: loopDetect((X, P ),x ′).

Require: Markov chain (X, P ), state x ′.
1: P ′ := P
2: A := ∅,B := ∅
3: SA := {x ′},SB := {x ′}
4: while SA � ∅ and SB � ∅ do

5: A := A ∪ SA,B := B ∪ SB

6: S ′
A

:= SA, SA := {z ∈ X \A : ∃x ∈ S ′
A

s.t. rxz = 0}
7: S ′

B
:= SB , SB := {z ∈ X \ B : ∃x ∈ S ′

B
s.t. rzx = 0}

8: end while

9: while SA � ∅ do

10: A := A ∪ SA

11: S ′
A

:= SA, SA := {z ∈ B \A : ∃x ∈ S ′
A

s.t. rxz = 0}
12: end while

13: while SB � ∅ do

14: B := B ∪ SB

15: S ′
B

:= SB , SB := {z ∈ A \ B : ∃x ∈ S ′
B

s.t. rzx = 0}
16: end while

17: L := A ∩ B
18: D := {x ∈ X\L : ∃z ∈ L s.t. p′zx > 0}

19: Solve

[
μxz = pxz +

∑
z′ ∈L pxz′μz′z , ∀x ∈ L, z ∈ D,

1 =
∑

z′ ∈D μxz′ , ∀x ∈ L

]
for μxz

20: p′xz := μxz ,∀x ∈ L, z ∈ D, p′xz := 0,∀x ∈ L, z ∈ L
21: return P ′.

in the previous iteration of SA (denoted by S ′A in the algorithm) using high-probability transitions.
We terminate when no more states can be added, i.e., when SA equals ∅. This is done in lines 9–12;
we do something similar for B, SB , and S ′B in lines 13–16. These lines are preceded by lines 4–8 in
which we combineA and B. The reason behind this combined phase is that B is potentially (much)
larger than Λ and Γ; it may even be infinite. In order to avoid the algorithm’s non-termination due
to this complication, we alternate between carrying out a step forA and a step for B in lines 4–8. If
we can no longer find new candidates for A, then A has been determined. Since states in the HPC
need to be both inA and B, we from then on only select candidates for B that are inA. We terminate
if we can no longer find candidates for B in A. The same is done for A and B interchanged. This
way, we always terminate in a finite amount of time because A ⊂ Λ and Λ is finite.

Having determined the SCC, we construct a new DTMC with the same state space and identical
rare event probabilities π (x ) ∀x ∈ X, but with the transition probabilities of the states in the HPC
redistributed. This can be done using a SCC-based state space reduction technique similar to the
one described by Ábrahám et al. (2010), implemented in line 19 of Algorithm 2. In our implemen-
tation, the system of equations in line 19 is approximately solved using Gauss-Seidel. Algorithm 2
is repeated each time a new HPC is detected.

3.2.2 Backward Phase. In this phase, we determine vΔ and d̄ (·,д); the latter is denoted by d̄∗ (·)
in Algorithm 3. We initiate the second phase in д (since д is given implicitly through a high-level
description, this would not have been possible without the first phase). We use a list Λ′ to keep track
of the states that have been considered, and initialise Λ′, vΔ, and d̄ as outlined in the beginning
of Algorithm 3. For each predecessor x of д that is in Λ ∪ Γ, we add x to Λ′ if this had not been
done already and if d̄ (x ) = rxд , we update vΔ(x ) := vΔ(x ) + p ′xд . We then choose the next state to
consider: this is the state x in (Λ ∪ Γ) \ Λ′ (i.e., the set of states that have not yet been considered)

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 3, Article 22. Publication date: July 2018.



Path-ZVA: General, Efficient, and Automated Importance Sampling 22:11

ALGORITHM 3: Backward phase.

Require: Markov chain (Λ, P ′), end node д.
1: ∀z ∈ Λ : vΔ(z) := 0, d̄∗ (z) := ∞
2: vΔ(д) := 1, d̄∗ (д) := 0
3: Λ′ := ∅, x := д
4: Γ := {x ∈ X \ Λ : ∃z ∈ Λ s.t. pzx > 0}
5: while Λ′ � Λ ∪ Γ do

6: x := arg min{d̄∗ (x ) : x ∈ (Λ ∪ Γ) \ Λ′ and �x ′ ∈ (Λ ∪ Γ) \ Λ′ s.t. rx ′x = 0}
7: for all z ∈ Λ ∪ Γ do � if several states are possible
8: if rzx + d̄

∗ (x ) < d̄∗ (z) then vΔ(z) := 0 � in line 6, any can be chosen.
9: d̄∗ (z) := min(d̄∗ (z), rzx + d̄

∗ (x ))
10: if d̄∗ (z) = d̄∗ (x ) + rzx then

11: vΔ(z) := vΔ(z) + p′zxv
Δ(x )

12: end if

13: end for

14: Λ′ := Λ′ ∪ {x }
15: end while

16: return d̄∗,vΔ, Γ.

for which d̄ is the lowest and for which no other state z in (Λ ∪ Γ) \ Λ′ exists for which rxz = 0.
The reason is that otherwise, the probability of the paths going from x to z is never added tovΔ(x ),
which has a cascading effect on the predecessors of x . Note that we can always find such a state
only if the HPCs have been removed. We continue performing the same procedure until we have
determined vΔ(x ) for all x ∈ Λ ∪ Γ.

3.3 Practical Aspects of the Path-ZVA Algorithm

Identifying ϵ in Practical Models. In principle, the algorithms described above can be applied to any
DTMC with transition probabilities that are parameterised by powers of some small parameter ϵ .
Usage of ϵ-powers for the purpose of analysing the efficiency of simulation algorithms goes back
to at least Shahabuddin (1994). However, in our case (and earlier; see de Boer et al. (2007)) the
change of measure itself depends on the ϵ-powers. This means that a practitioner who has a model
with given rates/probabilities will need to assign ϵ-powers to them, which can be done in infinitely
many ways.

There are a few trivial approaches that do not work well, but are illustrative. One is to simply
set the ϵ-power to 0 for all transitions, and represent the model entirely by the pre-factors λxz =

pxz/ϵ
rx z . Then our algorithm will treat the model as one large HPC, and the probability of interest

will be computed numerically if the state space is sufficiently small. The other extreme is to set
all pre-factors to 1, choose a value of ϵ just below 1, and represent the model entirely by (very
high) exponents rxz . Then the algorithm will focus the simulation effort on the single most likely
path, at the expense of paths which are only slightly (namely, by a factor of ϵ) less likely, causing
underestimation and/or high variance. A third approach is to set all ϵ-powers to 1, as is done by
Budde et al. (2015). Although this is a more natural approach than the other two, it still does not
distinguish between failures and repairs.

In typical reliability models, repair rates are several orders of magnitude higher than failure
rates. In such cases, giving component repairs ϵ-order 0 and failures ϵ-order 1 is typically a good
choice. If some failures are very much less likely than others (this is a feature of so-called “unbal-
anced” systems), higher ϵ-orders can be assigned to those to achieve further variance reduction

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 3, Article 22. Publication date: July 2018.



22:12 D. Reijsbergen et al.

Table 2. Total and Reduced State Space Sizes and the Pre-Processing Sets Λ for a Range of Models

Model Source |X| (total) |U | |Λ| |Γ |
2-node tandem queue, overflow level n (R) ∞ ∞ O (n2) O (n)
Distrib. Datab. Syst. (dedicated repair) many; (S) 421,875 514 48 84
Distributed Database System (FCFS) see (S) 2,123,047,371 >500,000 84 504
k-out-of-n system (homogeneous) (A) O (n) O (k ) O (k ) 0
k-out-of-n system (heterogeneous) O (2n ) O (2k ) O (2k ) 0
Fault-Tolerant Database System (C) 14,762,250,000 59,051 87 1,060
Fault-Tolerant Control System (C) 1,855,425,871,872 >500,000 116 2,928
Network with Redundancies (A) very large very large still very large

More information can be found in the following sources: (R) Reijsbergen et al. (2013), (S) Section 6.2.1, (A) Alexopoulos
and Shultes (2001), and (C) Carrasco (2006). The >500,000 entries for |U | are lower bounds established by 12 hours of
computation.

(see Shahabuddin (1994, Fig. 1)). This approach can be automated to a large extent by having the
practitioner specify only ϵ beforehand, and assigning the smallest integer ϵ-power to each tran-
sition such that its pre-factor is greater than ϵ . This is, in fact, what we have implemented and
applied in Section 6.2. Carrasco (2006) chooses ϵ as the ratio of the largest failure rate to the small-
est repair rate. Further experimentation to establish best practice with regard to choosing ϵ is an
interesting direction for further research.

Numerical Complexity. The numerical complexity of the phases of our algorithm is as follows.
Let D be the maximum number of successors of all states in Λ (this is |Λ ∪ Γ | at worst but usu-
ally much smaller). The loop in line 4 of Algorithm 1 has |Λ| iterations, and the nested loop in
line 6 has D iterations, so the total complexity is O (D |Λ|). Lines 4–16 of Algorithm 2 have com-
plexityO (max |L|), where max |L| denotes the size of the largest HPC plus direct predecessors and
successors. Line 19 of Algorithm 2 has a complexity of O ((max |L|)2) if implemented using the
approximative Gauss-Seidel algorithm. Line 5 of Algorithm 3 has |Λ ∪ Γ | iterations, and although
the nested loop in line 7 only has to be done for the number of predecessors in each state, these
two loops together will have total complexityO (D |Λ ∪ Γ |) since the total number of incoming and
outgoing transitions within Λ ∪ Γ is the same.

In summary, the complexity of our algorithm is typically O (D |Λ ∪ Γ |) or O ( |Λ ∪ Γ |2). This is
to be compared to the cost of computing the probability of interest without simulation, which is
typically O (D |U |) or O ( |U |2), whereU is what remains of the full state space X after collapsing
all goal states (and states that can only be reached via goal states) into a single state д. Hence, what
we gain is that we apply numerical analysis only to Λ ∪ Γ rather than toU . This is illustrated in
Table 2 for a range of models.

High Component Reliability versus High Redundancy. For models whose high reliability is mostly
due to high redundancy, the method tends to be less effective. One reason is that |Λ| is large in
such models; this is apparent in the last line, and potentially also the fifth line (depending on the
value of k), of Table 2 . The other reason is that when many “almost-dominant” paths exist, of or-
der ϵ d̄ (s,д)+1 or higher, their total contribution may dominate the (fewer) supposedly “dominant”
path(s) of order ϵd (s,д) , if ϵ is not small enough. This can easily happen in models of highly redun-
dant systems, with, e.g., many different possible sequences of failure and repair events on those
almost-dominant paths, and ϵ tending to be larger because of larger individual component failure
rates.
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Efficient Implementation. A crude way of implementing the method would involve constructing
the entire state space and keeping track of matrices giving the transition probabilities and ϵ powers
for each combination of states. However, this would be very memory-inefficient, or impossible in
the case of an infinite state space. Specification of a model in our implementation consists only
of three functions that determine, given a state, (1) whether it is a goal state, (2) whether it is a
taboo state, and (3) three arrays specifying its successors’ state indices, the probabilities of jumping
to these successors (typically implicitly through CTMC rates), and the corresponding ϵ-powers.
Our implementation also allows for the last array to be omitted and the ϵ-orders to be computed
using a given value ϵ in the manner discussed previously. There is no need to generate the entire
state space; states only need to be considered “on-the-fly,” as they are encountered during pre-
processing and the actual simulation.

4 ASYMPTOTIC PERFORMANCE OF THE ESTIMATOR

In this section, we consider the performance of the two versions of the estimator produced by the
algorithm of Section 3. If the estimator is based on vΔ, we show it has VRE (Theorem 4.6); if it is
based on d̄ (which is easier to compute), it does not necessarily have VRE, but it does have both
BRE (Theorem 4.5) and the “Bounded Normal Approximation” property (Theorem 4.7) We first
prove the technical Lemmas 4.1–4.4 before proving the main theorems.

Lemma 4.1. If v (x ) = Θ(ϵ d̄ (x,д) ) uniformly in x , then for all x ∈ Λ we have that

∑
z∈X

p̄xzv (z) =
∑

z∈Λ∪Γ

p̄xzΘ(ϵ d̄ (z,д) ) = Θ(ϵ d̄ (x,д) )

uniformly in x .

Proof. Since p̄xz = 0 for z � Λ ∪ Γ and since Λ ∪ Γ is finite, the ϵ-order of the sum equals the
ϵ-order of its largest element. Let z ′ be a state such that p̄xz′Θ(ϵ d̄ (z′,д) ) has the lowest ϵ-order in
the sum. Suppose that its ϵ-order is smaller than d̄ (x ,д), then there exists a path from x via z ′ to
д with cost lower than d̄ (x ,д), which contradicts the definition of d̄ (x ,д). The uniformity follows
trivially from the finiteness of Λ ∪ Γ. �

Lemma 4.2.

d (s,д) = d̄ (s,д).

Proof. By the definition of Λ, any state x � Λ has d (s,x ) > d (s,д) and d̄ (s,x ) > d (s,д), so any
path leaving Λ has length > d (s,д), both under P and P̄. Therefore, the shortest path from s to д
under Pmust lie entirely inside Λ, and its length under P̄ is d (s,д) too. Finally, any other path from
s to д under P̄ cannot be shorter than d (s,д): if it does not leave Λ, its length is the same under P̄
and P, while if it leaves Λ, its length exceeds d (s,д). �

Lemma 4.3. If v (x ) = Θ(ϵ d̄ (x,д) ) uniformly in x , then for any path ω starting in s and ending in д
or Γ before leaving Λ ∪ Γ, we have

P(ω)

Q(ω)
= Θ(ϵd (s,д) ) and, more specifically,

P(ω)

Q(ω)
≤ cr

0ϵ
d (s,д)

for some positive c0, independent of ω, and with r the epsilon-order of ω.
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Proof. Observe that

P(ω)

Q(ω)
=

nω∏
i=1

p̄ω (i−1)ω (i )

qω (i−1)ω (i )
=

nω∏
i=1

∑
z∈X p̄ω (i−1)zv (z)

v (ω (i ))

=

nω∏
i=1

Θ(ϵ d̄ (ω (i−1),д) )

Θ(ϵ d̄ (ω (i ),д) )
=

Θ(ϵ d̄ (s,д) )

Θ(ϵ d̄ (ω (nω ),д) )
= Θ(ϵd (s,д) ).

The second equality follows directly from Equation (9), the third equality from the lemma’s as-
sumption and Lemma 4.1, and the last equality from Lemma 4.2.

The second more specific result follows by observing that since the set Λ is finite and contains no
high-probability cycles, there is an upper bound on how much likelihood ratio can be accumulated
between two transitions of ϵ-order ≥ 1. �

Lemma 4.4. Ifv (x ) = Θ(ϵ d̄ (x,д) ) uniformly in x , then withQ(ω) according to Equation (9), we have

for any real-valued k ≥ 1

EQ (Lk
Q
· 1Φ) = Θ(ϵkd (s,д) ).

Proof. Start by calculating an upper bound on the k’th moment (see below for explanation):

EQ (Lk
Q
· 1Φ) =

∑
ω ∈Φ(s )

Q(ω)

(
P(ω)

Q(ω)

)k

=

∞∑
r=d (s,д)

∑
ω ∈Φr (s )

P(ω)

(
P(ω)

Q(ω)

)k−1

≤
∞∑

r=d (s,д)

∑
ω ∈Φ̄r (s )

P(ω)

(
P(ω)

Q(ω)

)k−1

≤
∞∑

r=d (s,д)

∑
ω ∈Φ̄r (s )

P(ω)
(
cr

0ϵ
d (s,д)

)k−1

= ϵd (s,д) ·(k−1)
∞∑

r=d (s,д)

P(Φ̄r )
(
cr

0
)k−1 ≤ c1ϵ

kd (s,д),

(10)

where c0 and c1 are positive constants, and Φ̄r is like Φr , but with paths ending at their first
visit to {д} ∪ Γ rather than at д. Since paths reaching or passing through Γ have at least ϵ-
order d (s,д) + 1 by definition of Γ, it follows that for any path ω ∈ ∪r ≥d (s,д)+1Φr (s ), the path
ω ′ = (ω0,ω1, . . . ,ωm (ω ) ) is in ∪r ≥d (s,д)+1Φ̄r (s ), withm(ω) as defined in Equation (8); and together
with P/Q = 1 for steps on a path beyond Γ, this motivates the first inequality. The second inequal-
ity follows from Lemma 4.3. The third inequality is established by observing that P(Φ̄r (s )) = Θ(ϵr ),
which is not trivial, since an infinite number of subdominant paths could conceivably contribute
more than something that is Θ(ϵr ), but the bound follows from the finiteness of and the absence
of HPCs in Λ ∪ Γ, and a geometric series argument as used in the proof of Theorem 1 of L’Ecuyer
and Tuffin (2011) (and in Lemma 5.6 of Reijsbergen (2013)).

A lower bound on the k’th moment is found by restricting the summation to only the dominant
paths:

EQ (Lk
Q
· 1Φ) ≥

∑
ω ∈Δ(s )

Q(ω)

(
P(ω)

Q(ω)

)k

≥ c2ϵ
kd (s,д)

∑
ω ∈Δ(s )

Q(ω) ≥ c3ϵ
kd (s,д), (11)

where the last equality uses Lemma 4.3, in essence saying that under Q, the dominant paths have
total probability Θ(1). In Equation (11), c2 and c3 are positive constants. �
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Theorem 4.5. If v (x ) = Θ(ϵ d̄ (x,д) ) uniformly in x , then the estimator based on v and Q according

to Equation (9) has BRE:
VarQ (LQ · 1Φ)

E2
Q

(LQ · 1Φ)
= O (1).

Proof. Immediate by using Var(X ) = EX 2 − E2X and applying Lemma 4.4. �

Theorem 4.6. If v (x ) =
∑

ω ∈Δ(x ) P̄(ω), then the estimator based on v and Q according to Equa-

tion (9) has VRE:

lim
ϵ↓0

VarQ (LQ · 1Φ)

E2
Q

(LQ · 1Φ)
= 0.

Proof. By the same argument as in Equation (10), we compute, for some positive c4 and any
real-valued k ≥ 1,

EQ (Lk
Q
· 1Φ\Δ) =

∞∑
r=1+d (s,д)

∑
ω ∈Φr (s )

Q(ω)

(
P(ω)

Q(ω)

)k

≤ c4ϵ
1+kd (s,д) = O (ϵ1+kd (s,д) ) = ϵ ·O (vk (s )).

Furthermore,

EQ (Lk
Q
· 1Δ) =

∑
ω ∈Δ(s )

P(ω)

(
P(ω)

Q(ω)

)k−1

=
∑

ω ∈Δ(s )

P(ω) �	
nω∏
i=1

∑
z∈X p̄ω (i−1)zv (z)

v (ω (i ))

�

k−1

=
∑

ω ∈Δ(s )

P(ω) �	
nω∏
i=1

v (ω (i − 1))

v (ω (i ))
(1 +O (ϵ ))nω 
�

k−1

=
∑

ω ∈Δ(s )

P(ω)

(
v (s )

v (д)

)k−1

· (1 +O (ϵ )) = vk (s ) · (1 +O (ϵ )).

The second equality uses Equation (9), noting that for dominant paths nω =m(ω); the third
equality uses the fact that v (z) is the sum of the dominant paths; and in the fourth equality
(1 +O (ϵ ))nω = 1 +O (ϵ ) is justified because nω is finite, as it is bounded from above by the maxi-
mum length of a dominant path through the finite set of states Λ. Comparing the above two results,
we see that the contribution of the dominant paths dominates for all moments of the estimator.
Hence,

VarQ (LQ · 1Φ)

E2
Q

(LQ · 1Φ)
=
EQ (L2

Q
· 1Φ)

E2
Q

(LQ · 1Φ)
− 1 = O (ϵ ).

Note that we cannot simply invoke Theorem 1 from L’Ecuyer and Tuffin (2011), because we have
changed the model outside Λ. �

Theorem 4.7. Ifv (x ) = Θ(ϵ d̄ (x,д) ) uniformly in x and if the estimator based onv andQ according

to Equation (9) does not have vanishing relative error, then it has the Bounded Normal Approximation

(BNA) property:
EQ ( |LQ · 1Φ − EQ (LQ · 1Φ) |3)

(VarQ (LQ · 1Φ))
3
2

= O (1).

Proof. Observe that, in general, for any positive a and b, it holds that |a − b |3 ≤ (a + b)3 =

a3 + 3a2b + 3ab2 + b3. Applying this to the numerator, we find it is upper-bounded by the sum of
four expectation terms, each of which is of order O (ϵ3d (s,д) ) by Lemma 4.4, so the same holds for
the numerator as a whole.
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For the denominator we find, again using Lemma 4.4,

VarQ (LQ · 1Φ) = EQ (L2
Q
· 1Φ) − E2

Q
(LQ · 1Φ) = O (ϵ2d (s,д) ).

If the variance does not vanish (condition of the theorem), the latter O can be replaced by Θ,
completing the proof. �

Corollary 4.8. ZVA-Δ has VRE and ZVA-d̄ has BRE.

Proof. ZVA-Δ uses v (x ) = vΔ(x ) from Equation (7), which by definition (and by construction
in the algorithms of Section 3.2) satisfies the requirement of Theorem 4.6. Similarly, ZVA-d̄ uses
v (x ) = ϵ d̄ (x ) , which clearly satisfies the requirement of Theorem 4.5. �

5 VARIANCE REDUCTION FOR FREE?

As part of the Path-ZVA algorithm we compute vΔ(s ), the probability of the dominant paths from
s to д after HPC removal. When we run the simulation, we implicitly estimate this probability
again through the sampling of dominant paths, which affects the estimator variance. Hence, we
will explore the possibility of achieving further variance reduction for the estimator π̂ by using
this by-product of the numerical part of the algorithm. As before, let Φ = Φ(s ), and let Δ = Δ(s ),
Ψ = Φ \ Δ, and P the probability measure after HPC removal. In words, Ψ is the set of paths that
are not dominant but which still contribute to the probability of interest. We will discuss two
variations: one in which P(Δ) is used, and one in which we also compute Q(Δ).

In the first variation, we use the fact that we already know P(Δ) by ignoring all runs in which
a dominant path is sampled. To see how this is done, note that

P(Φ) = P(Δ) + P(Ψ) = P(Δ) + EQ (LQ · 1Ψ). (12)

If we only estimate the final expectation in Equation (12), we obtain the following estimator:

π̂+ � P(Δ) +
1

N

N∑
i=1

LQ (ωi ) · 1Ψ(ωi ). (13)

This is equivalent to setting to zero all likelihood ratios obtained from the sampling of dominant
paths, and adding P(Δ) to the final result.

In the second variation, we also compute Q(Δ) by running the same procedure that we used for
P(Δ), but under the new measure. We then use the fact that

P(Φ) = P(Δ) + EQ (LQ · 1Ψ)

= P(Δ) + EQ (LQ |Ψ) · Q(Ψ).
(14)

Although we have not explicitly computedQ(Ψ), it holds under ZVA thatQ(Φ) = 1 because transi-
tions to t are given probability zero. Hence, Q(Ψ) = 1 − Q(Δ). In practice, we again generate sam-
ples ω1, . . . ,ωN , but if ωi is not in Ψ we discard it, giving rise to the alternative sample ω ′1, . . . ,ω

′
M

where M is the number of samples that are not in Δ. The resulting estimator is given by

π̂++ � P(Δ) + Q(Ψ)Y with Y =

{
1
M

∑M
i=1 LQ (ω ′i ) if M > 0

0 if M = 0.
(15)

The separate treatment of M = 0 is needed to avoid division by zero, but does not affect the consis-
tency of the estimator. Note that we do not need to multiply LQ (ω ′i ) by 1Φ(ω ′i ) because Q(Φ) = 1.
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Next, let us calculate the variance of π̂++:

VarQ (π̂++) = VarQ (P(Δ) + Q(Ψ)Y ) = Q(Ψ)2VarQY

= Q(Ψ)2 (EQVarQ (Y |M ) + VarQEQ (Y |M ))

= Q(Ψ)2EQ

{
1
M

VarQ (LQ |Ψ) if M > 0
0 if M = 0

}
+ Q(Ψ)2VarQ

{
EQ (LQ |Ψ) if M > 0
0 if M = 0

}

≈ Q(Ψ)2 VarQ (LQ |Ψ)

NQ(Ψ)
=
Q(Ψ)

N
VarQ (LQ |Ψ),

where the second line uses the law of total variance, and the approximation in the fourth line is
the limit for N → ∞. This limit is motivated by observing that M has a binomial distribution with
parameters N and Q(Ψ), which becomes increasingly peaked around its mean NQ(Ψ) as N → ∞.

Next, decompose the variance of the original importance sampling estimator π̂ :

VarQ (π̂ ) =
1

N
VarQ (LQ · 1Φ)

=
1

N

(
EQ[VarQ (LQ · 1Φ |1Δ)] + VarQ[EQ (LQ · 1Φ |1Δ)]

)

=
1

N
Q(Ψ) · VarQ (LQ · 1Φ |Ψ) +

1

N
Q(Δ) · VarQ (LQ · 1Φ |Δ) +

1

N
VarQ[EQ (LQ · 1Φ |1Δ)],

≈ VarQ (π̂++) +
1

N
Q(Δ) · VarQ (LQ · 1Φ |Δ) +

1

N
VarQ[EQ (LQ · 1Φ |1Δ)].

The latter two terms in this equation are variances and, hence, positive, meaning that π̂ will (for
large N ) have larger variance than π̂++. This will be demonstrated using a case study in Sec-
tion 6.1.3.

6 EXPERIMENTAL RESULTS

In this section, we present the results of simulation experiments with the Path-ZVA method. The
aim of the experiments is twofold. In Sections 6.1, we focus on illustrative examples meant to
demonstrate theoretical results and elucidate core concepts, namely, the BRE and VRE proper-
ties (Section 6.1.1), the nature of Λ and Γ in a practical example (Section 6.1.1), HPC removal
(Section 6.1.2), and the performance of π̂+ and π̂++ (Section 6.1.3). In Section 6.2, we demon-
strate the good performance of the new method using several realistic models from the litera-
ture. We compare it to the BFB and IGBS methods discussed in Section 2.3, and to the results for
two case studies presented by Carrasco (2006). All of the experiments were conducted using a
general framework written in Java, and the code needed to run the experiments is available on
http://datashare.is.ed.ac.uk/handle/10283/2630. All experiments involve a particular class of mod-
els, namely, highly reliable multicomponent systems. Although this is already a very broad class of
models, we emphasise that our procedure works for any HRMS (see the sample models included
with the algorithm’s code for several other applications, such as a 2-node tandem queue).

The simulation methods that we consider are standard Monte Carlo (MC), BFB and IGBS from
the literature, and two variations of our ZVA method, namely, ZVA-d̄ and ZVA-Δ as defined in
Section 3.1.

6.1 Illustrative Examples

6.1.1 A Basic Example. Our first example is a multicomponent system with two component
types, and k1 and k2 components of types 1 and 2, respectively. The system states are denoted
by (x1,x2), in which xi , i ∈ {1, 2}, is the number of components of type i that have failed. For
each component type, one component is active at each time, with the other components acting
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Fig. 3. Example of the case study of Section 6.1.1, with k1 = k2 = 4. The blue state is t , the pink states
(marked д) are to be merged into a single state д, the yellow states (2,3) and (3,2) form Γ, the states in
Λ \ {д, t } are white, and X \ (Λ ∪ Γ) in this case contains only state (3,3), coloured orange.

Table 3. Confidence Intervals (95%) for π as Functions of ϵ for the Different
Simulation Methods, for the Model of Figure 3

ϵ MC BFB ZVA-d̄ ZVA-Δ
0.1 1.038·10−3 ± 6.08% 9.955·10−4 ± 1.00% 9.994·10−4 ± 0.12% 9.999·10−4 ± 0.10%
0.01 — 1.010·10−6 ± 1.46% 1.000·10−6 ± 0.04% 1.000·10−6 ± 0.03%
0.001 — 9.940·10−10 ± 1.55% 1.000·10−9 ± 0.01% 1.000·10−9 ± 0.01%
1.0E-4 — 1.014·10−12 ± 1.54% 1.000·10−12 ± 0.00% 1.000·10−12 ± 0.00%

Sample size: 10,000 runs.

as spares. The rate at which the active component of type 1 fails equals cϵ , c ∈ (0,∞), while the
active component of type 2 fails with rate ϵ . Each component type has a dedicated repair unit
which begins work immediately after the first component has failed, and which repairs a single
component with a rate of 1. The system as a whole fails if all components of at least one of the
two types have failed. Both the initial state s and regeneration state t are (0,0); as usual, we are
interested in the probability of reaching a failure state д before returning to (0,0).

A DTMC is created for this model (and all other models in this section) by assigning to transi-
tions from x to z, with x , z ∈ X, a probability equal to the rate of transitions from x to z divided
by the total exit rate of state x . A graphical representation of such a DTMC is given in Figure 3 for
k1 = k2 = 4. The model has no HPCs, and, depending on k1 and k2, the dominant paths are given
by the two straight paths from (0, 0) to (k1, 0) and (0,k2). If k1 = k2, both paths are dominant,
otherwise the shortest path is the unique dominant path. It holds that d (s,д) = min(k1,k2), and a
state (x1,x2) is in Λ iff x1 + x2 ≤ min(k1,k2).

In Table 3, we present a summary of a basic simulation experiment with different values of ϵ
for each of the main simulation methods discussed in this article, performed on the model with
k1 = k2 = 4. It can be seen that ZVA does much better than the other methods for sufficiently
small values of ϵ . We expect VRE for ZVA-Δ and BRE for ZVA-d̄ by Corollary 4.8, which is indeed
confirmed by the table.
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Fig. 4. Same system as in Figure 3, except with k1 = 5 and k2 = 2. Also, component type 1 is subject to
deferred group repair, meaning that repair starts when two components have failed, and all components are
repaired at the same time. The colouring is the same as in Figure 3.

6.1.2 Group/Deferred Repair. We now discuss the impact of HPCs on the performance of the
various importance sampling methods. HPCs can emerge naturally in a multicomponent system
if repair strategies are used that cause repairs to be slow or inactive in certain states of the system.
It is known that BFB does not do well when HPCs are present; to remedy this, a more intricate
version of BFB has been proposed, called IGBS (Juneja and Shahabuddin 2001); see Section 2.3 for
more details. In this section, we will see that BFB will not do well in this setting, and IGBS only in
some cases depending on the choice of parameters.

The setting that we consider first is depicted as a DTMC in Figure 4. Here, k1 = 5 and k2 = 2, and
the repair strategy for component type 1 includes both deferred and group repair. Deferred repair
means that the repair unit for component type 1 will not begin work until a minimum number of
components have broken down—two in this case. Group repair means that when repair has begun,
all components are repaired at the same time. The DTMC contains an HPC between states (1, 0)
and (1, 1). This has a large impact on the dominant paths. Specifically, one dominant path is the
path ((0, 0), (0, 1), (0, 2)), which occurs with probability 1

c+1ϵ . The other dominant paths are those
that jump from (0, 0) to (1, 0), then cycle between (1, 0) and (1, 1) k times, k ∈ {0, 1, . . .}, and then
jump to (1, 2). These paths have a total probability contribution of

c

(c + 1)2
·
∞∑

i=0

(
1

c + 1
· 1

1 + (c + 1)ϵ

) i

· ϵ = 1

c + 1
ϵ + o(ϵ ),

so for small ϵ , roughly one half of the total probability mass is contributed by the path going to
(0, 2) and the other half by the ones going to (1, 2).

During the pre-processing step, the HPC is detected by Algorithm 1 when the transition from
state (1, 1) to state (1, 0) is considered. At that point, state (1, 0) has already been determined to
be in Λ, whilst the “cost” of reaching these states in terms of ϵ-orders is the same. Hence, the
condition in line 8 is satisfied, which triggers the HPC removal procedure of Algorithm 2. Note
that for the model of Figure 3, a HPC is (correctly) not detected because the “cost” to reach states
(1, 0) and (1, 1) is different. The set of states in the HPC in Figure 4 (i.e., the set L of line 17) equals
{(1, 0), (1, 1)}. This means that all transitions within L are removed and the probabilities of ending
up in states (2, 0), (2, 1), and (1.2) from the two states in L are determined via line 19. For example,
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Table 4. Confidence Intervals (95%) for π as a Function of ϵ for the Model of Figure 4, with c = 1
50

ϵ MC BFB IGBS ZVA-d̄ ZVA-Δ
0.1 1.133·10−1 ± 5.48% 9.865·10−2 ± 6.63% 8.933·10−2 ± 26.5% 1.065·10−1 ± 1.92% 1.063·10−1 ± 0.01%

0.001 1.300·10−3 ± 54.3% 1.166·10−3 ± 19.9% 2.241·10−3 ± 20.5% 1.892·10−3 ± 6.61% 1.912·10−3 ± 0.00%
1.0E-5 — 1.180·10−5 ± 19.7% 1.718·10−5 ± 23.9% 2.038·10−5 ± 6.78% 1.960·10−5 ± 0.00%
1.0E-7 — 1.140·10−7 ± 6.96% 1.921·10−7 ± 23.5% 2.019·10−7 ± 6.79% 1.961·10−7 ± 0.00%

Here, π ≈ 100/51 · ϵ ≈ 1.96ϵ . Sample size: 10,000 runs. A “—” means that the rare event was not observed at all.

Table 5. Confidence Intervals (95%) for π as a Function of ϵ for the Model of Figure 4 with Two Changes:
(k1,k2) = (5, 3), and for Components of Type 1, the First Fails with Rate ϵ and the Others with Rate ϵ2

ϵ BFB IGBS ZVA-d̄ ZVA-Δ
0.1 2.692·10−2 ± 46.0% 9.391·10−2 ± 128% 4.651·10−2 ± 1.30% 4.644·10−2 ± 1.02%
0.01 3.440·10−4 ± 47.0% 6.125·10−3 ± 62.4% 4.939·10−3 ± 0.44% 4.961·10−3 ± 0.33%
0.001 2.933·10−6 ± 57.1% 1.348·10−4 ± 29.2% 4.995·10−4 ± 0.14% 4.987·10−4 ± 0.13%
1.0E-4 6.664·10−8 ± 99.9% 1.797·10−6 ± 41.2% 4.998·10−5 ± 0.05% 5.000·10−5 ± 0.03%
1.0E-5 4.093·10−10 ± 57.9% 3.654·10−8 ± 79.9% 4.999·10−6 ± 0.02% 5.000·10−6 ± —

Sample size: 10,000 runs. Note that ZVA-d̄ has VRE because of the specific simple structure of vΔ in this model. A
confidence interval width of “—” means that no variance was observed.

for ϵ = 1
100 , this leads to probabilities of roughly 66%, 0.6%, and 33% of reaching states (2, 0), (2, 1),

and (1, 2), respectively, from state (1, 0).
BFB will not do well for small values of c; a cycle occurs with a probability of roughly 1/(c + 1)

under P, which is close to one if c is close to zero, but BFB will only assign probability 1
4 to these

cycles. This means that the dominant paths that contain many cycles will be sampled infrequently,
resulting either in underestimation (see Devetsikiotis and Townsend (1993)) when these paths are
not sampled in a simulation experiment, or high relative errors if they are sampled as each cycle
blows up the likelihood ratio roughly by a factor 4/(c + 1) ≈ 4. IGBS mitigates the impact of this
phenomenon by setting the probability of each HPC to δ 2 instead of 1

4 , with δ 2 < 1
4 . Still, “good”

choices of δ depend on c , so this requires a non-trivial knowledge of the system. This is illustrated
in Table 4, in which BFB can be seen to suffer from underestimation (as witnessed by, e.g., its
confidence interval not containing the true value of approximately 1.960 · 10−5 for ϵ = 10−5). Note
that the confidence interval bounds in the first columns do not seem trustworthy, probably because
we have too few samples and/or very large fourth moments. By contrast IGBS (with δ = 1

100 ) is
accurate in the sense that its confidence interval contains the true value, although it does not
perform as well as ZVA.

As the value of c , and therefore the probability of leaving the HPC, is decreased, the performance
of IGBS will worsen. In the extreme case where the probability of leaving the HPC decreases pro-
portionally with ϵ , this is particularly visible. Consider the following modifications to the previous
example: k1 now equals 3, and the failure rate for components of type 1 is ϵ for the first component
and ϵ2 for the spare components. In Table 5, we have displayed the results for this setting. Here,
IGBS does not contain the true value of approximately 1

2ϵ for smaller values of ϵ . We have not
included standard MC because of the very large amount of time it takes to sample runs.

6.1.3 Variance Reduction for Free. Table 6 shows a comparison of the different estimators dis-
cussed in Section 5, using the model of Figure 4. We see that π̂++ has notably better performance
than the standard estimator, whereas π̂+ is worse. The difference between π̂++ and π̂ varies be-
tween models—e.g., for the model of Figure 3 their performance is roughly the same, and in some
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Table 6. Confidence Intervals (95%) for π as Functions of ϵ for the Different Simulation
Methods Discussed in Section 5, for the Model of Figure 4

ϵ π̂ π̂+ π̂++ N M NQ(Δ)
0.1 1.063·10−1 ± 0.0092% 1.063·10−1 ± 0.2327% 1.063·10−1 ± 0.0018% 10,000 141 143
0.01 1.622·10−2 ± 0.0060% 1.621·10−2 ± 0.1161% 1.622·10−2 ± 0.0001% 10,000 35 42
0.001 1.912·10−3 ± 0.0009% 1.912·10−3 ± 0.0392% 1.912·10−3 ± — 10,000 4 5
1.0E-4 1.956·10−4 ± 0.0001% 1.956·10−4 ± — 1.9556·10−4 ± — 10,000 0 1

models we have even observed π̂++ performing worse than π̂+. However, as is evident from Ta-
ble 6, the potentially minor cost of performing the numerical pre-processing step a second time
can lead to a reduction in confidence interval width of over 75% (e.g., see the row for ϵ = 0.01). We
will consider the pre-processing runtimes in more detail in the next section. Note that when no
non-dominant paths are drawn (i.e., M = 0), π̂++ is no longer able to produce an estimate of the
estimator variance and π̂ is to be preferred.

6.2 Realistic Examples

In this section, we demonstrate the good performance of the Path-ZVA approach using two models
from the literature. The first is the Distributed Database System, a classic literature benchmark that
has been studied since the 1970s (Rosenkrantz et al. 1978), but which remains relevant today. In
Section 6.2.1, we study the variation from Boudali et al. (2008) and Reijsbergen et al. (2010), and
use Path-ZVA to compare the performance of different repair strategies. In Section 6.2.2, we study
the variation from Carrasco (2006), and the fault-tolerant computing system of the same paper.

Instead of π , the probability of reaching the goal set during a regeneration cycle (i.e., before
returning to the taboo state), the probability of interest in Carrasco (2006) is the system unavail-

ability, denoted here by v. It is defined as the steady-state probability of being in the goal set. We
will also consider this measure in this section in order to compare results. We use v = E(Z )/E(D),
where D is the total duration of a regeneration cycle (i.e., time between two visits to the taboo
state) and Z is the amount of time spent in the goal set during a regeneration cycle. Typically,
we estimate E(D) using standard MC, while E(Z ) is estimated based on an estimate of π . For a
more elaborate discussion, see, e.g., Reijsbergen et al. (2010). Note that HPC removal does have
non-trivial consequences for state sojourn times and hence estimates for v, although this does not
affect the case studies because they do not have HPCs.

Additionally, each table now also displays the runtimes and Work-Normalized Variance Ratios
(WNVRs) with respect to standard MC. We use the following WNVR definition: For a method m,
let wm be its confidence interval half-width and ρm the total time needed to produce the result.
Then, the WNVR for this method is given by (wMC/wm )2 · ρMC/ρm . The WNVR represents the
fact that to reduce the confidence interval width by a factor c , one would need to draw c2 as many
samples. It allows for easy comparison between methods with different runtimes; higher values of
the WNVR indicate better performance.

6.2.1 The Distributed Database System. In this variant, the system consists of 9 component
types: one set of 2 processors, two sets of 2 controllers each, and 6 disk clusters, with 6 disks each
(see Figure 5). The failure rates for individual components are ϵ2/2 for processors and disk con-
trollers, and ϵ2/6 for disks. The rates of component repairs are 1 for processors and disk controllers,
and ϵ for disks. Note that the ϵ-orders are not part of the benchmark setting: the disk repairs being
asymptotically slower than the other repairs is specific to this article. An interpretation would be
that the data on the disks needs to be replicated, whereas the processors and the disk controllers
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Fig. 5. Distributed database system.

only require hardware replacement. If we had assigned the same ϵ-order to the repairs of each of
the types, then the four repair strategies would have the exact same asymptotic performance. The
total failure rate for each component type depends linearly on the number of working components
of that type; e.g., four working disks in disk set 1 means a total failure rate of 2ϵ2/3 for disk set 1.
The system as a whole is down if both processors are down, if both disk controllers in one of the
controller sets are down, or if four disks are down in a single cluster. Both s and t are the state
where all components are up. We consider four repair strategies:

(1) A dedicated repair unit for each of the nine component types.
(2) One repair unit, with priority given to high component type indices (i.e., disks first, then

controllers, then processors).
(3) One repair unit, with priority given to low component type indices (i.e., processors first,

then controllers, then disks).
(4) One repair unit, with a First Come First Served (FCFS) policy.

From a modelling point of view, Strategy 4 is the least tractable; to keep track of the order in
which the components failed, a vector representing the number of failed components of each type
is not sufficient. Specifically, if k components are down, then there are k! ways in which this could
have happened chronologically. This poses two problems. First, the size of the state space blows
up dramatically, from 421,875 to 2,123,047,371 states. Second, if a modelling language is used that
does not support lists (e.g., PRISM’s reactive modules language), even a high-level description of
the model can be hard to give. However, in the Java framework that we use for the experiments,
states that contain lists are not conceptually harder to implement than vectors. The sizes of the
sets Λ and Γ for the four strategies are as follows: 155 and 399 for dedicated repair, 561 and 448 for
disk priority, 175 and 463 for processor priority, and 578 and 4,428 for FCFS. In all cases, Λ ∪ Γ is
much smaller than the full state space.

In Table 7, we compare the four repair strategies in terms of their performance. Disk priority
and FCFS are much more failure prone than the other strategies, because system failure due to two
processors or disk controllers breaking becomes more likely if the repair unit is working on a disk.
Apart from ZVA-Δ, we also present results obtained using the model checking tool PRISM, which
approximates the probability of interest using numerical techniques (e.g., Gauss-Seidel) applied to
the transition probability matrix. We see that our methods are accurate, albeit less efficient than
PRISM, which was typically able to find the probability of interest within a second.

6.2.2 Fault-Tolerant Control/Database Systems. Two models are presented by Carrasco (2006,
Section VI): the Fault-Tolerant Database System (FTD) and the Fault-Tolerant Control System
(FTC). The FTD is a variation of the Distributed Database System discussed in the previous
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Table 7. Confidence Intervals (95%) as a Function of ϵ , Generated Using Path-ZVA; Comparison
of Repair Strategies for the DDS with Slow Disk Repairs

Model ϵ Estimate (π ) N
Runtime (ms)

PRISM
Num. Sim.

DDS, ded. rep.

0.1 2.997·10−3 ± 6.81% 69,272 1,663 10,000 3.441·10−3

0.03 1.802·10−4 ± 1.71% 815,322 1,501 10,000 1.859·10−4

0.01 1.786·10−5 ± 1.43% 1,522,273 1,420 10,000 1.790·10−5

0.003 1.543·10−6 ± 1.71% 1,495,413 1,440 10,000 1.532·10−6

DDS, disk prior.

0.1 4.466·10−2 ± 16.6% 4,361 1,117 10,003 4.925·10−2

0.03 1.634·10−3 ± 6.92% 14,205 1,041 10,000 1.704·10−3

0.01 1.356·10−4 ± 2.54% 33,536 1,042 10,002 1.367·10−4

0.003 1.099·10−5 ± 0.66% 103,258 1,056 10,000 1.101·10−5

DDS, proc. prior.

0.1 8.642·10−3 ± 13.4% 3,292 790 10,007 8.419·10−3

0.03 1.944·10−4 ± 6.18% 19,236 783 10,000 1.954·10−4

0.01 1.797·10−5 ± 2.51% 54,301 787 10,001 1.798·10−5

0.003 1.520·10−6 ± 0.87% 1,61,383 789 10,000 1.533·10−6

DDS, FCFS

0.1 3.058·10−2 ± 22.1% 1,278 38,116 10,007 —
0.03 1.384·10−3 ± 16.9% 3,512 40,400 10,004 —
0.01 1.304·10−4 ± 6.14% 5,068 41,954 10,002 —
0.003 1.066·10−5 ± 2.50% 7,483 38,669 10,000 —

section—the goal and taboo sets are the same. The FTD has 10 component types; however, there
are two types of failures so the state is represented using a 20-dimensional vector. Additionally,
the model has failure propagation: a failure of a processor of the first type may trigger a failure of
a processor of the second type. There are two parameter settings (I and II). In setting I the system
is “balanced” in the sense that the ϵ-orders of all failure transitions equals 1, whereas in setting II
some failures have ϵ-order 1 and others ϵ-order 2. The second model, the FTC, consists of 39 com-
ponent types, and system failure is a non-trivial function of the state. Because of space constraints,
we refer the reader to Carrasco (1992) or our programming code for a full description of the model.
We only consider the first out of four possible parameter settings for the FTC. The technique pro-
posed in the paper, called Balanced Failure Transition Distance Biasing (BFTDB), is a refinement
of the method proposed by Carrasco (1992) to ensure good performance for unbalanced systems.

As we can see from Table 8, Path-ZVA has a roughly similar performance to BFTDB, which
is to be expected since they are based on the same principles. BFTDB does slightly better than
Path-ZVA for the FTC because of the relatively large probability contribution of paths that leave
Λ—the numerical procedure behind BFTDB determines d̄ for all states, which means that it is able
to perform better in this specific setting. (Note that their numerical approach cannot be applied to
general HRMSs, e.g., those that include HPCs). BFB does not perform well in our implementation
because it draws much fewer samples per second than the other schemes. This is because we use
the default biasing probability of 0.5 for failures, which means that a typical sample path will be
considerably longer than under the other schemes. For example, under MC the sample path will
typically reach the taboo state very quickly, whereas under Path-ZVA the system quickly reaches
the goal state or a state outside Λ after which IS is turned off.

Note that in all models the transition rates are fixed, so the choice of ϵ is arbitrary. As we
discussed in Section 3.3, our approach is to fix a value ϵ and choose the ϵ-orders of the transitions
as the smallest order such that the pre-factor pxz/ϵ

rx z is still greater than ϵ . The ϵ-values chosen
by Carrasco (2006) were 0.00072 for both settings of the FTD and 0.00028 for setting A of the FTC.
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Table 8. Comparison with Three Reliability Models from the Literature; BFTDB
is the Simulation Method Proposed in Carrasco (2006)

Model Method Estimate (v) N
Runtime (ms)

WNVR
Num. Sim.

FTD (I)

MC 1.827·10−8 ± 8.10% 32,184,109 0 120,294 1.00
BFB 1.931·10−8 ± 14.9% 27,396 0 120,026 0.30

ZVA-d̄ 1.827·10−8 ± 0.23% 2,554,961 5,994 120,005 1,178.93
ZVA-Δ 1.829·10−8 ± 0.19% 2,726,637 4,755 120,001 1,847.67
BFTDB 1.814·10−8 ± 0.23% 2,999,000 0 112,000 268.22

FTD (II)

MC 1.728·10−8 ± 6.51% 42,956,445 0 120,001 1.00
BFB 1.636·10−8 ± 12.5% 28,372 0 120,005 0.27

ZVA-d̄ 1.622·10−8 ± 0.20% 3,110,348 522 120,001 1,011.29
ZVA-Δ 1.621·10−8 ± 0.22% 2,756,305 527 120,001 888.40
BFTDB 1.621·10−8 ± 0.15% 3,999,000 0 150,000 284.54

FTC (A)

MC 3.232·10−10 ± 50.7% 20,827,971 0 120,001 1.00
BFB 1.908·10−10 ± 77.8% 3,008 0 120,052 0.43

ZVA-d̄ 2.682·10−10 ± 0.94% 827,848 448,936 120,048 609.53
ZVA-Δ 2.696·10−10 ± 0.38% 937,337 478,349 120,054 3,627.10
BFTDB 2.694·10−10 ± 0.15% 1,204,000 0 319,000 8,112.75

For the FTD we used ϵ = 0.001, and for the FTC we used ϵ = 0.00072. We use a confidence level of 95%, whereas Car-
rasco (2006) uses 99%; the results have been rescaled accordingly. Runtimes for BFTDB are from Carrasco (2006), while
the other runtimes are from our tool; because of software implementation and hardware differences, the comparison is
at best indicative. For our experiments, we chose the simulation runtime in each case to be around 2 minutes, leading
to different numbers of runs for the different methods.

We have observed that using an ϵ-value of 0.001 for the FTD led to a large reduction in terms of
the size of Λ ∪ Γ and hence the duration of the pre-processing step, without adversely affecting
the performance of Path-ZVA to a notable extent. This is what we have used for Table 8.

7 CONCLUSIONS

We have introduced a rare event simulation method that is generally applicable to HRMSs, pro-
vided that the relevant subset Λ is numerically tractable. This is often the case, but not always, e.g.,
when the reliability of the system is due to high component redundancy. We have mathematically
proved its efficiency and discussed an automated implementation. We have demonstrated its good
performance across a range of case studies, including a realistic benchmark model. For one repair
strategy (FCFS), the new method was able to compute probabilities that cannot be obtained us-
ing either standard Monte Carlo or the numerical approximation techniques used in, e.g., PRISM.
We also discussed a further variance reduction technique and demonstrated its good performance.
The code for the experiments is available on http://datashare.is.ed.ac.uk/handle/10283/2630 for
download.

There are several directions for future work. The simulation code has not been optimised for
performance, so improving it is future work. The variance reduction technique of Section 5 could
be studied in more detail, and across a wider range of models. Finally, we could compare the
performance of our method to a wider range of other IS techniques, e.g., the cross-entropy method.
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