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Abstract 

A packer filter is a programmable selection criterion for classify- 
ing or selecting packets from a packet stream in a generic, reusable 
fashion. Previous work on packet filters falls roughly into two cate- 
gories, namely those efforts that investigate flexible and extensible 
filter abstractions but sacrifice performance, and those that focus 
on low-level, optimized filtering representations but sacrifice flex- 
ibility. Applications like network monitoring and intrusion detec- 
tion, however, require both high-level expressiveness and raw per- 
formance. In this paper, we propose a fully general packet filter 
framework that affords both a high degree of flexibility and good 
performance. In our framework, a packet filter is expressed in a 
high-level language that is compiled into a highly efficient native 
implementation. The optimization phase of the compiler uses a 
flowgraph set relation called edge dominators and the novel appli- 
cation of an optimization technique that we call “redundant predi- 
cate elimination,” in which we interleave partial redundancy elim- 
ination, predicate assertion propagation, and flowgraph edge elim- 
ination to carry out the filter predicate optimization. Our resulting 
packet-filtering framework, which we call BPF+, derives from the 
BSD packet filter (BPF), and includes a filter program translator, a 
byte code optimizer, a byte code safety verifier to allow code lo mi- 
grate across protection boundaries, and a just-in-time assembler to 
convert byte codes to efficient native code. Despite the high degree 
of flexibility afforded by our generalized framework, our perfor- 
mance measurements show that our system achieves performance 
comparable to state-of-the-art packet filter architectures and better 
than hand-coded filters written in C. 

1 Introduction 

Over the past decade, a number of innovative research efforts have 
built upon each other by iteratively refining the concept of a pucker 
filter. First proposed by Mogul, Rashid, and Accetta in 19874161, a 
packet filter in its simplest form is a programmable abstraction for 
a boolean predicate function applied to a stream of packets to select 
some specific subset of that stream. While this filtering model has 
been heavily exploited for network monitoring, traffic collection, 
performance measurement, and user-level protocol demultiplexing, 
more recently, filtering has been proposed for packet classification 
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in routers (e.g., for real-time services or layer-four switching) [ 14, 
201, firewall filtering, and intrusion detection [19]. 

The earliest representations for packet filters were based on 
an imperative execution model. In this form, a packet filter is 
represented as a sequence of instructions that conform to some 
abstract virtual machine, much as modern Java byte codes rep- 
resent programs that can be executed on a Java virtual machine. 
Mogul ef al.‘s original packet filter (known as the CMU/Stanford 
packet filter or CSPF) was based on a stack-oriented virtual ma- 
chine, where selected packet contents could be pushed on a stack 
and boolean and arithmetic operations could be performed over 
these stack operands. The BSD packet filter (BPF) modernized 
CSPF with a higher-performance register-model instruction set. Sub- 
sequent research introduced a number of further improvements: the 
Mach Packet Filter (MPF) extended BPF to efficiently support an 
arbitrary number of independent filters [24]; PathFinder provided 
a new virtual machine abstraction based on pattern-matching that 
achieved impressive performance enhancements and was amenable 
to hardware implementation [2]; and DPF enhanced Pathfinder’s 
core model with dynamic-code generation (DCG) to exploit run- 
time knowledge for even greater performance [7]. An alternative 
approach to the imperative style of packet filtering was explored by 
Jayaram and Cytron [ 131. A filter specification takes the form of a 
set of rules written as a context-free grammar. An LR parser then 
interprets the grammar on the fly for each processed packet. 

More recent work on packet ciassification for “layer four switch- 
ing” has focused on table-based representations of predicate tem- 
plates to yield very high filtering performance. Srinivasan ef al. [20] 
propose a special data structure that they call a “grid of tries” to re- 
duce the common case of source/destination classification to a few 
memory references, while Lakshman and Stiliadis [I41 elegantly 
cast packet classification as the multidimensional point location 
problem from computational geometry. 

None of the earlier work addresses the issue of compiling an 
abstract, declarative representation of a packet filter into an effi- 
cient low-level form. It also does not consider the minimization of 
computation by exploiting semantic redundancies across multiple, 
independent filters in a generalizable fashion. Work on such opti- 
mizations has not been forthcoming for good reason. If we model 
a packet filter program as a function of boolean predicates, we can 
reduce filter optimization to the “decision tree reduction” [lo] prob- 
Icm. Since this problem is “NP-complete”, we know that filter opti- 
mization is a hard problem. As a natural consequence, decision tree 
reduction methods have relied upon heuriskcs for optimization [5]. 

Fortunately, many packet filters have a regular structure that we 
can use to our advantage in our optimization framework. One way 
to exploit this structure is to account for it in the underlying filtering 
engine itself. Both PathFinder and MPF are based on this design 
principle: PathFinder utilizes a template-based matching scheme 

123 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F316188.316214&domain=pdf&date_stamp=1999-08-30


Protection 
Boundary 

I 

High-Level 0 Filter -.--.I, E$ FOptimirer &L ml---so< ; 
Specification 

Native 
I Assembler .. ’ Code 
I 

§4 §5 §6 97.1 57.2 

Figure I: System architecture diagram for BPF+. A filter, represented in a high-level language, is compiled and optimized into 
the BPF+ virtual machine intermediate representation. After traversing protection boundary, the protected domain verifies the 
filter code specification, and either interprets the byte codes or assembles them on-the-fly into native code. 

that is nicely amenable to the computation required for parsing 
packet headers, while MPF extends BPF with specific opcodes that 
provide a particular solution tuned to demultiplexing. 

Although these sorts of assumptions are an important compo- 
nent of any overall packet filter system, they fail to address what we 
believe is the ripest opportunity for packet filter optimization: the 
application of global optimizorion algorithms across the filter pred- 
icate flow graph to minimize the average path length through that 
graph. In contrast, the MPF extensions of BPF, PathFinder, and 
DPF all use pattern-matching heuristics that operate locally, e.g., 
they do not necessarily eliminate common subexpressions across 
the predicates, nor do they detect the equivalence of semantically 
equivalent boolean expressions. In fact, they either restrict the set 
of expressible filters to those with a regular structure that can be 
matched by simple patterns, or they require that the “filter pro- 
grammer” expresses the filter in a compact and already-optimized 
low-level representation. Although this may be a reasonable design 
assumption in “low level” environments (e.g., where an OS proto- 
col module creates a packet filter to match its signature traffic as 
in the x-kernel [9]), it is less applicable to “high level” domains 
(e.g., where a user specifies a filter in an expressive high-level lan- 
guage and a compiler generates the actual low-level filter code). In 
this latter case, the front end code generator would typically trans- 
late a complex filter expression into a number of redundant packet 
sub-predicates; thus, optimization becomes especially important to 
eliminate the redundant code. 

In this paper, we propose optimization techniques that exploit 
well-known data-flow optimization algorithms in a novel way for 
the generalized optimization of packet filters. Our data-flow al- 
gorithm, which we call “redundant predicate elimination,” inter- 
leaves partial redundancy elimination, predicate assertion propa- 
gation, and flowgraph edge elimination to effect predicate opti- 
mization. In particular, we employ a set relationship called edge 
dominators that extends the traditional node dominator relationship 
from Rowgraph nodes to edges and provides the key ingredient for 
our predicate optimizations. We also leverage the pattern-matching 
heuristic, developed in the PathFinder and DPF work, in our back 
end, as a lookup table optimization performed after the removal of 
redundant predicates. Armed with our global data-flow optimiza- 
tions, we can afford the flexibility of a high-level representation for 
packet filters since we can compile and optimize them into native 
implementations that achieve state-of-the-art performance from the 
resulting packet-filter code. 

The core of our optimization framework was developed, vali- 
dated, and distilled a number of years ago within the BSD packet 
filter (BPF) architecture. BPF has proven to be not only an inter- 
esting research artifact, seeding a range of subsequent work, but 
has been broadly adopted in practice: it is the cornerstone of the 
widely used packet capture library libpcap [ 1 I] and the network 

monitoring tool tcpdump [12] and provides the in-kernel filtering 
facility in 4.4BSD-derived Unixes and Digital Unix. Because libp- 
cap provides a flexible filtering framework and because it has been 
ported to a wide variety of platforms, libpcap has become a de facto 
standard for packet filtering and has thus become integrated into a 
number of publicly available and commercial applications for net- 
working monitoring, intrusion detection, and penetration testing. 
Since their initial release, libpcap and tcpdump have been retrieved 
over 100,000 times from the LBNL public distribution site. 

Building on this earlier work, we describe herein a refined pa- 
cket filter architecture that underlies yet is orthogonal to libpcap 
and tcpdump’ . This new architecture, which we call BPF+, af- 
fords a substantially refined, improved, and generalized design, an 
extended optimization framework based on “static single assign- 
ment” (SSA) [6], and a number of new optimization primitives. As 
depicted in Figure 1, the BPF+ system consists of a serveral se- 
quentially arranged components that transform a high-level filter 
language specification into an low-level executable packet filter: 

The input to the front end is a high-level language for filter 
expressions based on the declarative predicate syntax used in 
the original libpcap and tcpdump. 

The BPF+ compiler translates the predicate language into an 
imperative, control-flow graph representation with an SSA 
intermediate. SSA is particularly well-suited for our opti- 
mization algorithms. 

The SSA intermediate representation is fed forward to the 
code optimizer, which performs both global and local data- 
flow optimizations over the control-flow graph form of the 
intermediate code. The output of the optimizer is a byte 
code representation that conforms to the BPF+ virtual ma- 
chine model, which is a RISC-like register-based variant of 
the accumulator-based virtual machine definition of the orig- 
inal BPF pseudo-machine [ 151. 

The BPF+ byte codes are then delivered to an execution envi- 
ronment, e.g., across the user-kernel boundary to implement 
user-defined protocol demultiplexing. or across the network 
and into a switching element to implement an externally- 
defined network service like policy-based traffic management. 

‘This work proceeded in two mnjor stages: in 1990, Steven McCanne produced 
the initial design and implementation at the Lawrence Berkeley National Laboratory 
(LBNL) in collaboration with Van Jacobson and Susan Graham; in 1998. Andrew 
Begel modularized the architecture and refined, improved, and extended the optimiza- 
tion framework, in part by ntrotitring SSA into the intermediate representation, in col- 
laboration with and Steven McCanne and Susan Graham at U.C. Berkeley and Vern 

Paxson at the Lawrence Berkeley National Laboratory. The earlier work was published 
only in part: the filtering engine was described in [IS], but the tilter language compiler 

and optimization framework was never published. 
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Once received in the target protected domain, the safety ver- 
ifier ensures the program’s integrity. 

Finally, a “just in time” (JIT) assembler translates the op- 
timized and safety-verified byte codes into native code and 
performs optional machine-dependent optimization. This last 
stage is omitted if the target environment is an interpreter 
rather than native hardware, e.g., as with the BPF kernel im- 
plementation, which interprets filters in the byte code form. 

In the remainder of this paper, we motivate, describe and eval- 
uate the components of the BPF+ architecture. We first outline 
related packet filtering technologies and identify some of their lim- 
itations We then present the BPF+ front end: its high-level filter- 
ing language, the virtual machine model, and the compiler that 
generates.the SSA intermediate form. Next, we describe our opti- 
mization framework based on the set of local and global data-flow 
algorithms and their interactions. Subsequently, we describe the 
back end that verifies the integrity of the byte-code representation 
and optionally transforms that representation into a native machine 
code. To demonstrate the efficacy of our approach, we then present 
measurements of our implementation that show that BPF+ perfor- 
mance is comparable to existing packet filter implementations de- 
spite its enhanced flexibility. Finally, we summarize our plans for 
future work and conclude. 

2 Background 

In its widely used form, the BPF kernel sub-system represents each 
user-specified filter as a separate entity. Each filter is run on every 
incoming packet. Hence, if BPF were used to implement user-level 
protocols, for instance, the demultiplexing overhead would scale 
linearly with the number of filters, e.g., a busy server with many 
simultaneous network connections would suffer linear slowdown 
as each connection would independently run the packet filter on its 
own stream. 

To overcome this limitation, MPF enhanced the BPF virtual 
machine with instructions for efficient protocol demultiplexing. Ra- 
ther than represent each filter separately, MPFexploits the structure 
of demultiplexing filter specifications to recognize that two filters 
are similar up to, say, the transport header port fields, using simple 
template-matching heuristics. Once MPF detects this similarity, it 
merges the new predicate with the existing filter by expanding the 
existing port checks to include the new port number, for example. 

PathFinder generalizes the MPF heuristic with are-designed fil- 
tering engine that is better matched to the pattern-matching trans- 
formation. In this framework, templates called “cells” represent 
packet field predicates, which are chained together in a “line”. This 
line of cells represents a logical AND operation over the constituent 
predicates. A collection of lines is arranged into a chain of predi- 
cates, which represents the logical OR over all lines. As lines are 
installed into this chain, PathFinder eliminates common prefixes. 

For example, if process P requests TCP packets sent to port A 
and process Q requests TCP packets sent to port B, then the result- 
ing filter logic would have the following form: 

if link layer type = IP and 
IP fragment offset = 0 and 
IP protocol = TCP and 
TCP dest port = A 

then deliver pkt to P 
else if link layer type = IP and 

IP fragment offset = 0 and 
IP protocol = TCP and 
TCP dest port = B 

then deliver pkt to Q 

Upon processing the second filter, PathFinder would recognize 
the common prefix and simply extend the first if-clause as follows: 

if link layer type = IP and 
IP fragment offset = 0 and 
IP protocol = TCP 

then 
if TCP dest port = A 
then deliver pkt to P 
else if TCP dest port = B 
then deliver pkt to Q 

Since the inner if-else statement is effectively a “switch” over 
the destination port field, a jump table (perhaps using a perfect 
hash over the target value set) could be used to implement an 0( 1) 
match, and PathFinder does precisely that. 

DPF utilizes the same template-matching approach as Path- 
Finder (templates are called “cells” in PathFinder and “atoms” in 
DPF), but introduces a new low-level language and employs dy- 
namic code generation to attain performance improvements over 
other interpreter-based implementations. Its new language is based 
on a “read window” which may be shifted and masked to match 
words in the packet to various immediate constants. Given a fil- 
ter specified in this language, DPF coalesces common prefixes into 
lines, performs some additional local optimizations, and dynami- 
cally generates native machine code to directly evaluate the filter. 

The more recent works geared toward layer-four switching [ 14, 
201 take the DPF and PathFinder approaches to an extreme, where 
the entire model is based on a set of templates that are matched 
against known constants (or known constant ranges). 

While the template-matching model yields good performance, 
there are a number of shortcomings associated with the technique. 
For example, it is not possible to match fields in the packet header 
against one another, for instance, to look for packets that origi- 
nate and terminate in the same network (“source network = dest 
network”). Nor is it possible to perform arbitrary mathematical op- 
erations on header words before matching. 

DPF and PathFinder resort to a set of ud hoc heuristics for pro- 
ducing efficient filters by coalescing common prefixes. These op- 
timizations are foiled in PathFinder when predicates are reordered. 
DPF, however, enforces in-order packet header traversal, thus com- 
mon prefixes will always appear in the same order. However, when 
the filter itself does not conform to the same order as other already 
installed filters, prefix compression fails. 

To illustrate this pathology, consider the packet filter, “all of the 
packets sent between host X and host Y”. In a boolean framework, 
we would specify this filter as “(source host X and dest host Y) 
or (source host Y and dest host X),‘, and in flowgraph form, the 
expression would appear as in Figure 2. Here, basic blocks are 
represented by nodes and boolean control transfers are depicted by 
edges. By convention, false branches point to the left. 

In this case, DPF, finding no common prefix and unable to re- 
order the checks to obtain a common prefix, would compile the 
condition into two separate filters that are sequentially invoked. 
However, there is opportunity for optimization, which DPF by ne- 
cessity must miss. If the thread of control during filter evaluation 
reaches the node “dest host Y,” then we necessarily know that the 
source host is X. Furthermore, from that vantage point, we know 
that the source host cannot be Y and that the node pointed to by 
the dashed edge is redundant. But, we cannot eliminate the “source 
host Y” node yet because there exists another path (from the root) 
for which the check is not statically known. Therefore, our recourse 
for optimization is to transform the dashed edge so that it points to 
the FALSE node, thus reducing the average path length through the 
Rowgraph (and in turn, enhancing filter execution performance). 

This is the sort of global data-flow optimization we want to ex- 
ploit in our packet filter optimizer. Having established this context, 
we can now present the core pieces of the overall system design, 
beginning in the next section with the BPF+ machine model. 
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Figure 2: Control-flow graph for “(src host X and dst host Y) 
or (src host Y and dst host X)“. The dashed edge points to 
a redundant predicate and may be redirected to the FALSE 
node. 

3 The BPF+ Machine Model 

Before presenting the details of the translation modules that map 
filter predicates to the BPF+ machine representation, we sketch in 
this section a high-level overview of the BPF+ machine model to 
establish context for the rest of the paper. This version of the BPF 
virtual machine represents a number of iterative refinements made 
over the past several years to the original BPF machine model. 

The BPF+ abstract machine is a RISC-like, 32-bit, load-store 
architecture consisting of a set of 32 general purpose registers, a 
program counter, read/write data memory, read-only packet mem- 
ory, a packet length register, and a pseudo-random register. A filter 
program is represented as an array of byte codes that conform to a 
well-defined instruction format. 

The BPF+ virtual machine supports five classes of operations: 

load instructions copy a value into a register. The source can 
be an immediate value, packet data at a fixed offset, packet 
data at a variable offset, the packet length constant, or the 
scratch memory store (a reference to data beyond the end of 
the packet results in a return value of 0); 

the store instruction copies a register into a fixed location in 
data memory; 

ALU instructions perform arithmetic or logic on a register us- 
ing a register or a constant as an operand and a register as the 
destination (division by zero causes the filter to immediately 
return a value of zero); 

branch instructions alter the flow of control, based on a com- 
parison test between a register and an immediate value or 
another register; and, 

return instructions terminate the filter and indicate the integer- 
valued result of evaluation. 

A filter is evaluated by initializing the packet memory to the 
packet in question and executing byte codes on the BPF+ machine 
until a return instruction is reached. The data memory is persis- 
tent and may be queried by agents external to the filter engine. The 
pseudo-random register is a read-only register that returns a uni- 
formly distributed random value each time read, which is a use- 
ful primitive for building filters that can perform probabilistic sam- 
pling. To facilitate safety verification, we require that all program 
branches be forward (thus forgoing loops) and that the last instruc- 
tion on each path be a “return”. In addition to the set of conditional 

branch instructions, we add a lookup table instruction to abstract 
multiway conditional branches for later just-in-time optimization. 

We omit the details of the instruction format and throughout the 
rest of this paper use an assembly language syntax that is relatively 
self-explanatory2. For example, a simple BPF+ byte-code program 
that matches TCP packets has the following form: 

Ih 1121, to 
jne 19, NETHERTYPEX’, LS 
lb WI, rl 
jne rl, NIPPROTO-TCP. LS 
ret #TRUE 

LS: ret #FALSE 

Presuming Ethernet encapsulation, this filter first checks that 
the packet is an IP packet. If so, it checks if the IP protocol type is 
TCP, in which case it branches to an instruction that returns true. In 
any other case, the program branches to line L5 and returns false. 

This form of representation is far too low-level for many appli- 
cations of packet filters. In the next section, we argue that high- 
level filtering languages are important for a number of problem do- 
mains and we sketch the characteristics of the high-level filtering 
language that BPF+ employs. 

4 The Predicate Language 

The input to our system is a high-level filter represented in a declar- 
ative predicate language. By employing a high-level language, we 
hide the complexity and details of the underlying, imperative ex- 
ecution model of the BPF+ virtual machine. This facilitates the 
expression of complex boolean relationships among many differ- 
ent predicates using natural logical expressions rather than awk- 
ward control structures. Unlike other high-performance packet fil- 
ter packages that have adopted more restrictive semantics for their 
packet filter abstractions (e.g., the template matching model), we 
retain the full generality of a programmable, control-flow graph 
model for our virtual flter machine. 

There are many reasons to support higher-level abstractions for 
packet filtering. To begin with, the system should hide the details 
of where particular fields are located in a packet and how variable- 
length headers must be parsed to locate those fields. For example, 
BPF+ refers to the IP destination address field in a packet as “IP dst 
host” rather than “packet[20:4]“. Additionally, a seemingly simple 
BPF+ expression like “TCP port HITP’ turns out to have a rela- 
tively complex low-level structure that should not be a burden to 
the filter programmer (i.e., in this case, the packet must be IP; if 
fragmented, it must be the first fragment so as to contain the IP 
header; there may be IP options which must be skipped over to find 
the TCP ports; and finally both the source and the destination TCP 
port field must be checked against the constant 80). 

This sort of high-level representation is crucial if a human user 
is specifying the packet filters. While a low-level pattern spcc- 
ification might have sufficient generality and simultaneously be 
amenable to an efficient implementation, a network administrator 
that is diagnosing network malfunctions on-the-fly or chasing down 
an intruder in real-time must have a flexible and easy-to-use syn- 
tax for specifying packet predicates. Thus, a high-level predicate 
syntax that allows one to look for, say, packets “between MIT and 
UCB” that are “HTTP connections” should be naturally and eas- 
ily specified. To this end, the user should be able to specify which 
fields of the packets they want to match and connect those predi- 
cates with boolean operators “and”, “or”, and “not”. In BPF+, the 
filter would look like this expression: 

?here are four types of load instructions: “Id” is load word. “lh” is load half word, 
“lb” is load byte, and “Ii” is load immediate. There are seven branch operations: “jeq” 
is jump if equal, ‘Tne” is jump if not equal, “jlt” is jump if less than, “jle” is jump if 

” less than or equal, ‘Tgt” is jump if greater than , ‘jge” is jump if greater than or equal, 

“ja” is an unconditional jump. 



((src network MIT and dst network UCB) or 
(src network UCB and dst network MIT)) and 

(TCP port HTTP) 

By contrast, the same expression written in DPF’s quite low- 
level SHIFT language would look like the following: 

(((12:16 == 0x8) && # IP? 
SHIFT(6 + 6 + 2) && # skip Ether header 
(9:s == 6) 6th X TCP? 
(12:s == 18) && # src network MIT? 
(16:16 == 0x8020) && X dst network UCB? 
SHIFT(20) && X skip IP header 

X (assume fixed length) 
to:16 == 80) && # src port SO? 

(2:16 == 80)) X dst port BO? 

I 
:(12:16 == 0x8) && # IP? 
SHIFT(6 + 6 + 2) && X skip Ether header 
(9:s == 6) && X TCP? 
(12:16 == 0x8020) && # src network IJCB? 
(16:S == 18) && # dst network MIT? 
SHIFT(20) && X skip IP header 

X (assume fixed length) 
(0:16 == 80) &L X src port SO? 
(2:16 =I 80)) X dst port SO? 

In the middle ground between a predicate language and a fully 
general pattern specification language, we interpose the ability to 
match various fields of the packet in relation to each other, and 
the ability to perform mathematical operations on the fields before 
matching them. Thus, for example, to track down a TCP protocol 
bug, we might need to extract all the packets from a trace that fall 
within a certain range of TCP sequence numbers. 

Finally, moving beyond the scope of BPF+, users may want to 
combine the aforementioned filter language approaches and com- 
pose them with a policy language that enables the runtime system 
to apply a filter at a particular time (e.g., for probabilistic sampling 
of packets meeting a particular predicate), add a filter (e.g., if the 
source address of an intruder has been identified), or remove a fil- 
ter from use (e.g., if a particular email adversary sends unsolicited 
mass email only at certain times of the day). 

Designing a language that meets these requirements is not dif- 
ficult. Several languages have been devised, for example, the fil- 
tering language in the Lawrence Berkeley National Laboratory’s 
packet capture library libpcap, Sun’s ethe@ad program, and Digi- 
tal’s snoop tool. Since the BPF+ design is built upon BPF, libpcap, 
and tcpdump, we naturally incorporated the libpcup language into 
our system. We omit the details of this well-known and widely used 
packet capture system, which is described elsewhere [ 11, 121. 

5 The Front End 

Given our high-level filter language and our low-level filter ma- 
chine model, we are faced with the problem of translating filter 
predicates into BPF+ byte codes. Rather than integrate translation 
and optimization into a monolithic framework, as PathFinder and 
DPF have done, we have deliberately separated the translation stage 
from the optimization stage. This has a number of advantages. 
First, it would allow us to create different front ends and high-level 
languages that can be optimized and carried by the same back end. 
Second, it allows us to evolve and develop the two stages indepen- 
dently. An improvement to the optimization framework need not 
require changes to the high-level language defined in the front end. 
Finally, this breakdown provides a framework for incrementally 
composing filters on the fly, e.g., as required by user-level proto- 
col demultiplexing where filters are installed and removed dynam- 
ically. More specifically, a set of active filters (each individually 
representing a given connection fingerprint) can be maintained in 
predicate form so that filters may be easily inserted and deleted. 

Each time the set changes (because a connection starts or stops), 
we can invoke the optimizer and back end on the altered form to 
produce our new aggregate filter program. 

Another advantage of the separation between the compiler and 
optimizer is that the code generator is greatly simplified. For ex- 
ample, consider the way we generate code for short-circuited log- 
ical predicates. In an expression like ‘pa and pr ,” pl is evaluated 
only if po is true. However, the second predicate might contain 
sub-predicates that have already been evaluated in the first predi- 
cate. For example, the expression may have a decomposition, in 
which another predicate p4 represents a common protocol check. 
e.g., “(~4 and po) and (~4 and ~1)“. Factoring out common pred- 
icates during code generation would be a complex task. The opti- 
mizer, on the other hand, is well suited to the elimination of this sort 
of redundancy. Thus, our code generator can be relatively simple 
and straightforward and rely on optimization to achieve efficiency. 

In short, we have adopted an approach where we transform the 
predicate language into an intermediate form through naive com- 
pilation, and then apply aggressive optimizations to transform the 
result into an optimized BPF+ byte-code program. 

The BPF+ compiler uses off-the-shelf lexical analysis and pars- 
ing tools as well as well-known compiler techniques to convert the 
filter specification into a control-flow graph in SSA intermediate 
form. SSA is a modern intermediate representation used in opti- 
mizing compilers, in which the abstract data values are separated 
from the locations in which they are stored. The key property of 
SSA is that any register is written exactly once, so we assume that 
we have an infinite supply of registers with which to work. In turn, 
we rely upon a register allocator to map this unbounded number of 
virtual registers into a finite set of physical registers. SSA is highly 
amenable to many simple but effective forms of global data-flow 
optimization, and we heavily exploit this property in our system. 

Each node in the control-flow graph generated by the BPF+ 
compiler is a basic block in SSA form that ends with a boolean 
predicate. There is one unique entry node, and flow moves through 
the graph until it reaches a “return” statement. At the end of each 
basic block, the flow may branch based on the value of the predi- 
cate. Flow may only move forward (downward through the graph); 
this property is enforced by the requirement that branch offsets 
must be positive. Thus, the entire graph is guaranteed to be acyclic.3 

6 The Optimizer 

The price that we pay for our naive SSA form code generation is 
many computational and logical redundancies. This results in an 
overabundance of code, conditional branches, and allocated regis- 
ters. Thus, optimization of the generated code is vitally important 
for improving its performance and justifying the cost of the high- 
level starting point. In this section, we describe the global data-flow 
optimizations and peephole optimizations that are performed on the 
intermediate code - which remove redundancies, rearrange non- 
optimal code sequences and identify potential lookup tables - in 
order to generate efficient code. 

In addition to incorporating many standard optimizations found 
in traditional compilers, the BPF+ optimizer introduces a novel ap- 
plication of redundant predicate elimination [ 17, 221. This opti- 
mization is rarely found in compilers for traditional languages like 
C or Java because redundant predicates do not occur very often 
and the optimization would not be very profitable. However, in the 
domain of packet filter compilation, BPF+‘s naive code generator 
produces decision trees with many redundant predicates, thereby 
making this optimization one of the most useful that can be applied. 

‘The fact that BPF+ flowgraphs are acyclic simplifies data-flow cnlculntions con+ 
sidcrably. Recause all information flows only up (or only down). B minimal tixed point 
solution can be reached with a single top-down (or bottom-up) level-order traversal of 
the control-flow graph. 
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The next four sections describe our optimizations in more de- 
tail. In the first section, we introduce the redundant predicate elim- 
ination and its composition from partial redundancy elimination, 
predicate assertion propagation, and redundant edge elimination. 
Then, we illustrate the peephole optimizations that are performed 
within the basic blocks. We also use constant folding and constant 
propagation to help identify and eliminate redundant computations 
in the global data flow phase of optimization. After the other op- 
timizations have completed, we enter a jump table encapsulation 
phase to optimize linear sequences of predicates. Finally, we do 
register allocation and assignment to map each remaining variable 
to an actual register in the BPF+ virtual machine. 

To get a feel for the potential of the redundant predicate elimi- 
nation optimization, consider the following filter: 

IP src host A or IP src host B 

Without optimization, this expression is compiled into the fol- 
lowing code:4 

Ih 
Ll: kq 

ja 
L3: Id 

jeq 
L5: Ih 
L6: jeq 

ja 
L8: Id 

LIO: ‘2 
LII: ret 

1121, ro 
10, STHERTYPEJP, L3 

&, rl 
rl. #A, Lll 
V21, I.2 
12, %ETHERTYPEJP, LE 
LIO 
LWr3 
r3. XB, Ll I 
#FALSE 
#TRUE 

Note that both predicates test whether the packet is IF? Since 
the first test (line Ll) always occurs before the second (line L6), 
the second test is redundant and may be eliminated. The problem 
is better visualized by analyzing the program in flow graph form. 
Figure 3 shows the basic blocks and control edges that correspond 
to the filter above. By convention, false branches are to the left of 
true branches. The nodes are numbered for reference. The dashed 
boxes indicate the two predicates, IP stc host A and IP SK host B. 

Figure 3: Unoptimized version of “IP src host A or B”. 

Since control must pass through N15 before reaching Ns, and 
since Nl and Ns perform equivalent tests, Ns is redundant. How- 
ever, at Ns. it is not known whether the result is true or false, since 

4Logic is inverted in several places to make the conditional branch code more 
straightforward to read. The compiler back end optimizes the order of the basic blocks 
to minimize the need for absolute jumps. 

‘Let Ni denote node i. 

either edge could have been taken on exit from NI . On the other 
hand, we know the result of Ns from the vantage point of the in- 
bound edges. Therefore, our approach is to find edges that point to 
redundant nodes, and point them past the redundancy. 

For instance, along edge E23’ we know that NI is true; and 
since Nl and Ns perform equivalent tests, Ns must be true from 
this vantage point. Thus, edge E23 can be deleted, and edge E24 

inserted. Similarly, if flow passes along E13, then Ns will be false; 
hence, El3 can be replaced by Els. The resulting flow graph is 
shown in Figure 4. A reachability analysis will discover that Ns is 
now unreachable and eliminate the dead code from the graph. 

Figure 4: Moving the edges. 

As is often the case in optimization algorithms, one class of op- 
timizations will expose opportunities for others. Here, the edge 
movements have caused a load operation to become redundant. 
Since the in-degree of N4 is reduced to one after the dead code 
at Ns is eliminated, we know that N4 and Nz load the same value. 
Thus, the second load at N4 can be removed. Figure 5 shows the 
flow graph in its final form. 

Figure 5: The optimized filter. 

6.1 Redundant Predicate Elimination 

Redundant predicate elimination is an optimization used to deter- 
mine, at compile-time, which predicates found in the control-flow 

‘Let Eij denote the directed edge from Ni to Nj. 
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graph may be bypassed by particular flow edges. This optimiza- 
tion is composed of three pieces: partial redundancy elimination, 
used to eliminate redundant computation within the nodes of the 
control-flow graph; predicate assertion propagation, a data-flow 
analysis used to flow the values of determinable predicates through 
the control-flow graph; and static predicate prediction, which uses 
the assertion information to identify statically determinable condi- 
tional branches and bypass them whenever possible. 

6.1.1 Partial Redundancy Elimination 

Our use of SSA form, combined with BPF+‘s acyclic control-flow 
graph, enables the optimizer to identify and eliminate a significant 
amount of redundant computation. In the code from our simple 
code generator, most redundancies are loads from packet memory 
and oft-repeated ALU operations. 

In order to determine which computations are redundant, we 
first establish a metric of value equivalence. We use a value num- 
bering scheme for each register to indicate its source definition. 
Each definition, which can be a defining computation, a load from 
memory, or a register-to-register copy, is identified by a unique ID 
which can be used to indicate whether two variables have the same 
definition. 

We compute the node dominator relation over the control-flow 
graph and look over every register’s definition. This relation iden- 
tifies which nodes must be traversed in order to go from the entry 
node to each node in the control-flow graph. If at a given node, the 
value assigned to a register has already been computed in a domi- 
nating node, the second definition is redundant.’ We then replace 
the redundant computation with a register-to-register copy from the 
dominating defining register. Afterwards, using copy propagation, 
we replace all later uses of the second register with the first. A sub- 
sequent dead store elimination phase will remove the now useless 
register and the corresponding register-to-register copy. 

This implementation only achieves partial redundancy elimina- 
tion, however, since redundancies may only be identified and elided 
when found in dominating relationships. We shall see how the next 
two phases of redundant predicate elimination can improve the ef- 
fectiveness of this optimization if we apply them one after another. 

6.1.2 Predicate Assertion Propagation 

The example shown at the beginning of Section 6 assumes a priori 
that we can make certain edge movements without compromising 
the semantics of the program. In actuality, we must be analytically 
precise that such transformations are legitimate. This problem can 
be solved through a global data-flow analysis. 

The traditional approach to global data-flow problems typically 
involves computing set relations over the nodes of a flowgraph. 
However, as first seen in Cocke and Schwartz [4] and later exploited 
by Graham and Wegman [8], applying the data-flow functions to 
edges rather than nodes can have substantial advantages. This is 
indeed the case for BPF+ Row graphs. 

First, we extend some standard node terminology to edges: An 
edge Eij (defined by a predecessor node pred(Eij) and a successor 
node sacc(Eij )) dominates another edge Ekl, written Eij dom Ekt, 
if every possible execution path from the entry node to Ekr includes 
Eij. In addition, an edge Eij immediately dominates another edge 
Ekl, if Eij dominates Ekr and there is no edge E9h such that Eij 
dominates E9h and Esh dominates Ekl. 

Since every basic block ends with a predicate, an edge Eij rep- 
resents the truth value sense(Eij) of a predicate predicate(pred(Eij )) 
- a true edge trae(pred(Eij )) is traversed if the!predecessor node 

‘Since our SSA form control-Row graph is acyclic, and each register is only delined 
once, we do not have to check whether the register’s value might have been changed 
before the second deli&ion is reached. 

evaluated a true condition, otherwise the false edge false(pred(Eij) 
is traversed. Suppose an edge Eij dominates an edge Ekt. If the 
edge predicate of Eij is equivalent to the predicate of the successor 
node Nr of Ekt, then we know the outcome of Nl, when traversed 
from Ekt. Hence, we can delete Ekl and insert a new edge from 
Nk, the predecessor of Ekl, to the appropriate child of Ni , provided 
no conflicting inter-block data dependencies exist. 

We use a simple data-flow algorithm to abstractly define the 
value of each predicate in the control-flow graph. If a predicate 
ends up with a statically determinable value, we may bypass the 
predicate with a new control-flow edge. First, we compute the edge 
dominator relationships in a fashion similar to the node dominators 
algorithm given by Aho, Sethi, and Ullman [I]. The set relation, 
which we call edom, is given by the following equation: 

edom(E) = {E} U { n edom(P)} 
PEpred 

We then use edom to calculate idom; 

VE E edges, 
idom(E) = edom(E) - {E}, 

VE E edges, 
VF E idom(E), 

VG E idom(E) - {F}, 
if G E idom(F) 

idom(E) = idom(E) - {G} 

The immediate dominator relation forms a forest of trees, where 
each edge in the control-flow graph is a node in a tree. The prede- 
cessor of each node is its immediate dominator and its successors 
are those nodes which it immediately dominates. We use this tree 
in the next phase of predicate assertion propagation. 

For each edge in the control-flow graph, there are a set of as- 
sertions that we can make about the values of the predicates. For 
instance, the false edge coming out of a node that tested the pred- 
icate a = 6 would contain the assertion that a # 6. In addition, 
the assertions for all of the edge dominators of a particular edge 
also hold true for that edge, since those edge dominators must be 
traversed in order to reach it. The assertion set relation is given by: 

assertion(E) ={ <predicate(pred(E)),sense(E)>} 
U assertion(idom(E)) 

Each element of the assertion set is a tuple of the predicate 
tested assertion(E).predicate and the value of the proven answer 
assertion(E).sense. 

6.1.3 Static Predicate Prediction 

Now that we have the assertion set for each edge, we are ready to 
use this information to predict statically determinable predicates. 
In general, the problem of proving that a set of assertions implies 
a certain result is NP-complete, however, there is a small set of 
rules that we can use in practice to prove many assertions about the 
predicates typically found in packet filters. The rules used by BPF+ 
are shown in Table 1. 

Beyond these few entries, a generalized theorem prover would 
be necessary to make more involved implications from the given set 
of assertions. However, it turns out that the most-used implications 
come from the j eq and j ne entries of the table. 

For a particular edge E, if the assertions in assertion(E) stati- 
cally prove predicate(succ(E)) to be true or false, then on this path, 
edge E may bypass the redundant predicate and we may remap the 

‘The fact that BPF+ Rowgraphs are acyclic allows us to compute this Row equation 

in O(IEI)time. 
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j8e #IVd #WI TRUE ke #Ival #Wal TRUE 
& #Ival #rval TRUE jlt #Ival #krval FALSE 

ke #IWl #NiIl FALSE jge #Ival #kVdl FALSE 
ke #Ivul #WI FALSE jlt #Ivnl Nrval TRUE 

All other inputs return “undelined” 

Table 1: Lookup Table for Predicate Algebra. 

edge’s successor to the predicted child of succ(E). We may do this 
only with the guarantee that the edge movement does not violate 
data dependencies that occur later on in the flow graph. Specifi- 
cally, if any registers defined in the node to be bypassed are used 
by any other node on the predicted path, we must forbid the move- 
ment. More formally, the algorithm looks like this: 

VE E edges, 
V(pred, sense) E assertion(E), 

let N = succ(E), 
P = predicate(N), 

in 
ijtable(pred, sense, P) = TRUE 

succ(E) = succ(true(N)) 
iftable(pred, sense, P) = FALSE 

succ(E) = succ(false(N)) 

The combination of partial redundancy elimination, predicate 
assertion propagation, and static predicate prediction is repeated 
until there are no new changes. Each data-flow phase removes its 
own redundancies, and in doing so, exposes new redundancies to 
be removed by the next phase. Partial redundancy elimination re- 
moves data dependencies that might inhibit edge removal, whereas 
static predicate prediction exposes newly redundant computation. 

6.2 Peephole Optimizations 

During each round of the redundant predicate optimization, we per- 
form peephole optimizations on code within each basic block. For 
example, an ALU operation with an identity may be removed. A 
load from a scratch memory location preceded by a store to the 
same location may be changed into a copy operation. An add or 
subtract immediate instruction followed by an indirect load may be 
merged with the built-in index calculation. 

Next, we use copy propagation to track computations on con- 
stants as they move through the control-flow graph. When we have 
register-register operations in which one of the registers is a known 
constant, we can transform the operation into its equivalent register- 
immediate form (provided that either the operation is commutative 
or the transformation does not change the order of the arguments). 
When both values (either both registers or the register in a register- 
immediate instruction) are known, we may perform constant fold- 
ing to turn the instruction into a load immediate of a constant value. 

These optimizations play an important role in minimizing the 
computation performed. Consider the following example of unop- 
timized BPF+ code for the filter “tcp[ 131 & 7 != 0”: 

Ih lIZI. to 
jne r0. #ETHERTYPElP, L19 
lb 1231. rl 
jne rl. (IIPPROTO-TCP, L19 
Ih 1201, r2 
und r2, Oxlfff, 13 
jne r3.ox0, Ll9 

Ll: Ii #l3. r4 
lb 1141, r5 
and r5, Oxf, 16 
Ish 60x2. r7 

Lll: add r4, r7. r8 
L12: lb [r8 + 141.19 
L13: Ii #l, r10 

and 19. r10. rl I 
LIS: 
L16: :uh 

#o, rl2 
rll,rl2, r13 

h r13,OxO. L19 
ret #TRUE 

L19: ret #FALSE 

Line L7 shows a load immediare instruction that is used in line 
Ll 1 to load the 13th byte of the TCP header. Since add is a com- 
mutative operator, we can replace the reference to r4 with the im- 
mediate value 13 and change the instruction to an add immediate. 
Since line Ll 1 is followed by a load byte indirect instruction on 
line L12, we can fold in the immediate 13 into the index of the loud 
byte indirect (to get 27) and remove line Ll 1 from the code. 

On line L13, we notice another load immediate that is used on 
the next line. Since and is a commutative operator, we can perform 
constant propagation again and replace the reference to r10 with 
the immediate 7. On line L15, there is a load immediate that may 
be removed by constant propagation. But after its substitution, line 
L16 becomes a subtract immediate instruction - subtracting the 
constant #IO from ~11. We notice that this is an ALU operation by 
an identity, and therefore can be removed completely. Here is the 
code after all of these peephole optimizations have been performed: 

Ih II21, I.0 
jne r0, #ETHERTYPEJP, Ll4 
lb [231. rl 
jne rl. IIPPROTO~TCP, L14 
Ih 1201, r2 
and 12. Oxlfff, r3 
jne r3.0~0, Ll4 
lb 1141, r5 
and r5, Oxf, 16 
Ish r6,OxZ. r7 
lb [r7 + 27],19 
and 19.0~7, rll 
h rll. 0x0. L14 
ret #TRUE 

Ll4: ret #FALSE 

6.3 Lookup Table Encapsulation 

The example above showed how redundant loads can be removed. 
These opportunities arise often in expressions that check a packet 
field against a set of possibilities, as in ip SK host A or B or C. The 
code generator output for this expression is: 
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Ih 1121, IO 
jne 19. KTHERTYPEJP, L4 
Id 1261. rl 
je4 rl. #A, L13 

1A: Ih 1121. R 
jne r2, #ETHERTYPElP, LiI 
Id 1261. r3 
h r3. #B. L13 

L8: Ih i12I.r4 
jne 14, #ETHERTYPEJP, L12 
Id 1261, r5 
jes r5, #C. L13 

Ll2: ret #FALSE 
L13: ret #TRUE 

After peephole optimization and redundancy elimination phases 
have completed, the filter has been reduced to the following: 

Ih 1121, I0 
jne 10, #ETHERTYPEJP, L6 
Id WI, rl 

L3: jeq rl , WA. Ll 

jeq rl, #B, L7 
h rl, NC, L7 

L6: ret #FALSE 
L7: ret #TRUE 

Note the contiguous sequence of conditional branches start- 
ing at line L3. We can optimize this linear chain of conditional 
branches, especially when the chain is long, by arranging it into a 
lookup table instruction. In general, to identify potential lookup 
tables, we traverse the control-flow graph looking for chains of 
blocks containing only conditional branches. Lookup table chains 
have the following properties: the chain’s backbone is linked by 
all false or all true branches; all of the other branches point to the 
same exit node; each element of the chain dominates the rest of the 
chain; and all of the conditional branches in the chain test the same 
value. The example code after lookup table enscapulation is shown 
below: 

Ih 1121, ro 
jne IQ, #ETHERTY PElP. L4 
Id 1261. rl 
or table rl, #A, #B, #C. L5 

L4: ret #FALSE 
L5: ret #TRUE 

While this approach finds most of the lookup tables, we can ex- 
pose more lookup table chains by reordering the constituent nodes 
of a more general chain. However, we may only reorder a node if 
there are no data dependencies that would be altered. We can re- 
quire that the block to be moved be empty of all computation, save 
the final conditional branch. This is not as restrictive as it sounds, 
due to the effectiveness of our partial redundancy elimination. 

Once the lookup tables have been abstracted, heuristics (de- 
scribed later) can turn them into combinations of linear search, bi- 
nary search and hashtable lookup. Thus, we incorporate the core 
design structure and optimizations of PathFinder and DPF as a low- 
level optimization at the tail end of our optimization framework. 

6.4 Register Allocation and Assignment 

Before we run our intermediate code on the BPF+ virtual machine, 
we must map the virtual registers that remain in the optimized code 
into the 32 real registers available in the virtual machine. 

We use a graph-building algorithm to perform this task. Each 
register is represented by a node in a graph. For each register, we 
compute a liveness range (i.e., a lifetime), which is the list of ba- 
sic blocks between a register’s definition and its last use. When 
two registers have overlapping lifetimes, we place an edge between 
them. This results in an inretjkence graph. The registers in a con- 
nected subgraph of the interference graph have lifetimes that in- 
terfere with one another, although they might not all be live at the 
same time. 

Each subgraph’s virtual registers may be mapped to physical 
registers independently of the other subgraphs because their life- 
times do not intersect. T.vo virtual registers in a subgraph may 
be assigned to the same physical register if there is no edge be- 
tween them. We use a graph coloring scheme to perform this as- 
signment [3]. 

We have little worry that we will run out of virtual machine 
registers because the size of each subgraph is typically small and is 
generally bounded by the size of the largest predicate. In addition, 
registers often have short lifetimes because after optimization, their 
predicates are computed and used only once. In fact, most registers 
are live in only one basic block. Those that live longer tend to 
occur in OR and AND chains which have already been collapsed 
into lookup tables by the lookup table encapsulation phase. 

7 The Back End 

7.1 Safety Verifier 

Since the BPF+ filter code interpreter is run in a protected domain, 
the validity of the program must be checked. A user task must be 
prevented from installing a program that would execute an infinite 
loop, or would cause memory faults by reading, writing, or jumping 
out of bounds. 

In a program, a loop is represented as a jump to a previously 
executed piece of code. In most correct programs, each iteration of 
the loop will check a predicate to determine whether to continue or 
exit out of the loop. However, in general, the value of this predicate 
cannot be predicted at compile-time, and is often dependent on the 
inputs to the program. Since any program that runs in a protected 
domain must terminate, and since the protected domain should not 
trust user code, we must be able to identify which programs will 
loop forever and which will terminate. Consequently, the protected 
domain must solve the halting problem when accepting a filter pro- 
gram. In general, this is intractable, but by adopting fairly benign 
restrictions, verification can be made trivial. Namely, filter pro- 
grams must be acyclic, with all branches forwardly directed.’ 

Further verification entails checking that all opcodes are valid, 
that all jumps are forward and within bounds, that the terminating 
operation is a return instruction, and that all reads and writes to 
memory are within bounds. If a malicious filter program were al- 
lowed to indiscriminantly read or write data, it could corrupt the 
protected memory space. In BPF+, loads and stores to scratch 
memory are indexed by an immediate, thus, we can verify their 
validity during this phase. However, since we cannot prove what 
the bounds on an indirect load from packet memory will be, we 
employ runtime bounds checks on each load to ensure safety. If 
any load tries to read out-of-bounds memory, the filter is stopped 
and the packet is discarded. 

7.2 JIT Assembler 

Once the filter program has passed the safety verifier, it may be run 
in the BPF+ virtual machine or may be JIT assembled into native 
code. The speed advantages of an assembled filter program should 
be clear, and indeed, our results show that assembled programs run 
up to 6 times faster than their interpreted counterparts on an Ultra- 
SPARC Iii processor. 

There are two phases of JIT assembly. First, we translate the 
lookup tables into an optimized sequence of linear, binary or hash 
checks of the values inside. Then, since the target machine often 
has tighter register availability constraints than the BPF+ virtual 
machine, we perform another phase of register assignment. 

‘Any acyclic program can be expressed using only forward jumps 
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7.2.1 Lookup Table Translation 

The first stage of the BPF+ assembler translates each lookup table 
instruction into an optimized sequence of native code instructions. 
A naive approach might just translate the table into a linear se- 
quence of predicates, but this is no better than what we started with. 
When there are more than several predicates, the overhead causes 
the lookup to slow down linearly with the number of predicates. 

Consequently, we may turn the table into a balanced binary tree. 
This would have the effect of making the average case lookup equal 
to the worst case lookup. The overhead of the lookup would slow 
down as the log of the number of predicates. 

As a third alternative. we can turn this table into a hashtable 
with a perfect hash function (since we know all of the entries at 
compile-time) and get constant time access. For small numbers of 
predicates, the overhead involved in computing the hash function 
may be too great, but for larger tables, this approach works well. 

How do we know which one to pick? Currently, we use a static 
heuristic based on an evaluation of how each representation per- 
forms as a function of the number of predicates. Recent papers by 
Yang, Uh, and Whalley [21,23] suggest the use of a profile-driven 
approach to determine whether to implement multiway branches 
using hash lookup, or to simply reorder the branches in a sequen- 
tial lookup to reduce the dynamic number of branches encountered 
during program execution. 

7.2.2 Register Assignment 

The native code phase of register assignment is somewhat more 
delicate than the first phase, due to the greater register pressure 
found in most architectures. In an UltraSPARC with register win- 
dows, our simple assignment scheme is constricted to the use of 20 
registers. An assembler for an x86 is constrained to only six. 

If there are enough registers in the native code to run a partic- 
ular filter directly, we skip this second register assignment phase. 
However, when we must compress a filter’s use of registers, we re- 
run the register assignment algorithm used before with one change. 
Instead of using liveness ranges that are sets of basic blocks, we 
construct a register’s lifetime as the set of pseudo instructions be- 
tween its definition and last use. This finer granularity lets us reuse 
registers within a basic block, thereby minimizing our use of regis- 
ters subject only to data dependencies. 

If we still cannot fit the filter in the specified smaller number 
of registers, we must take the drastic step of spilling extra values 
to memory. We use a graph coloring algorithm to identify where 
spills must take place and add in the auxiliary code for spilling and 
restoring the data values. 

8 Evaluation 

To demonstrate the efficacy of our compiler and optimization frame- 
work, we have built all of the components described herein, culmi- 
nating in a comprehensive implementation of the BPF+ architec- 
ture. We measured the performance characteristics of the BPF+ 
compiler - its ability to generate and optimize BPF+ byte codes, 
and the speedup in filter execution attained from JIT assembly. We 
also compared the effectiveness of our global data-flow optimiza- 
tion against the optimizations performed by an optimizing C com- 
piler. We show that for the packet filter application, our optimiza- 
tions are far more effective than those utilized by the C compiler. 

Our experiments illustrate several performance measures that 
we think have not been addressed in earlier work. In particular, we 
draw a distinction between measurements of filters that use inde- 
pendent high-level predicates and measurements of filters that use 
predicates which may be coalesced into a lookup table. 

Our experiments were run on a Sun Ultra 10 workstation with a 
300 Mhz UltraSPARC Iii processor. 100,000 packets were filtered 
in each experiment, .I0 the running time for each filter was measured 
with the CPU tick register, enabling us to get accurate cycle counts 
of the time spent on each individual filter. 

Figure 6: Average times to recognize packets with optimized 
JIT assembled filters having various numbers of independent 
predicates. Lower numbers are better. 

In Figure 6, we show the speed of filtering various numbers of 
independent predicates - TCP, src A, dst B, port C, and network 
D connected in a chain by either “and” or “or”. There are six mea- 
surements of the optimized JIT assembled filters, three showing 
the average, accept and reject times for the chains linked together 
by “and’, and three showing the same results for the same chains 
linked together by “or”. As expected, the time to reject an OR chain 
has the same upward trend as the time to accept an AND chain.” 

In contrast, the time to accept an OR chain stays low because 
the earlier predicates, if matched, halt the filter and return TRUE 
immediately. The average time reported for both AND and OR 
chains are similar and hover between 200 ns and 300 ns. This is 
comparable to filter speeds reported in the literature. 

In Figure 7, we show, for non-independent predicates, the speed 
of filtering when a lookup table is implemented by a linear se- 
quence of conditional branches, an 0( 1) perfect hash function (each 
hash table entry has one conditional branch to ensure a match), and 
the equivalent filter coded in C and run through the GCC (egcs- 
2.91.60) optimizer at its highest optimization level.” BPF+ per- 
forms better than C in both cases, primarily due to BPF+‘s redun- 
dant predicate elimination. Since redundant predicates do not often 
occur in user-level C code, CCC does not perform the elimination 
optimization that BPF+ does. In addition, the translation of filter 
code into native machine code has lowered the penalty that we pay 
for increased numbers of conditional branches in the final filter. 

In addition to these measures, we examine the speedup attained 
using the optimizations found in BPF+. In Figures 8 and 9, we 
show the filter times for unoptimized interpreted, optimized inter- 
preted, unoptimized JIT assembled, and optimized JIT assembled 
packet filters for both independent and non-independent predicates. 

For independent predicates, the speedup improves significantly 
(from 3.5x to 9x) as the number of filters increases, which shows 

“The packets tote from normnl network tmffic in the UCB computer science domain. 

“The last “‘Accept AND chain” measurement is left off the graph bccwse the pur- 
ticulu expression was never accepted. 

“Since there is no modem implementation of the original 1993 version of BPF, we 
do not include it in these measurements. 
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Figure 7: Average times to recognize TCP packets with vari- 
ous numbers of source hosts. Lower numbers are better. 

Figure 8: Average times to recognize TCP packets with vari- 
ous numbers of independent predicates. Lower numbers are 
better. 

the effectiveness of our optimization algorithms and JIT assembler. 
The speedup due to optimization alone varies from 1.3x to 2x for 
unoptimized code, and from zero to 1.4x for optimized code. The 
speedup due to the JIT assembly by itself varies from 3.9x to 6.6x 
for unoptimized code, and from 3.3x to 5x for optimized code. 

When we look at the non-independent predicates, we see a more 
dramatic story. The unoptimized, interpreted filter shows striking 
evidence of the naive code generation’s production of redundant 
predicates. The optimized, interpreted filter strips out almost all 
of these redundancies. The trends for both assembled filters are 
the same as the interpreted filters, but the overall running time is 
much improved. The speedup due to optimization varies from 1. lx 
to 8.6x for interpreted code, and from 1.2x to 5.2x for assembled 
code, while the speedup due to assembly runs from 4. lx to 5.5x for 
unoptimized code, and from 2.6x to 4.9x for optimized code. 

Even though the improvement for non-independent predicates 
is more dramatic than for independent predicates, their use in com- 
bination more accurately reflects the type of filters used by the net- 
work community. For example, on two large (27 and 29 predicates) 
filters used daily by Vern Paxson at Lawrence Berkeley National 
Laboratory, we see speedups of 32x and 36x between unoptimized, 

Figure 9: Average times to recognize TCP packets with vari- 
ous numbers of source hosts. Lower numbers are better. 

interpreted code and optimized, assembled code. 
Overall, our measurements indicate that optimization is an im- 

portant factor in packet filter performance, especially when com- 
piled from a high-level source language such as the one for BPF+. 
The template-matching heuristics that PathFinder and DPF use are 
effective in discovering lookup tables when filters are written in a 
low-level way, but they will not work for more general filters. We 
had hoped to compare our results to those reported by the current 
state-of-the-art, DPF, but did not have access to their experimental 
data or their platform. However, if we account for differences in 
processor speed, our data suggests that the performance is similar. 

9 Future Work and Summary 

There are several different directions to explore in future develop- 
ment of BPF+. We have chosen to use a high-level functional pred- 
icate language based on tc@mp; we could add primitives that side 
effect the store to implement user-level state variables and enable 
user-level demultiplexing. We might also add the ability to specify 
large tables of packet information to be matched in a filter. We did 
not optimize our implementation for fast compilation; thus, BPF+‘s 
support of online updates to packet filters is limited. 

In the BPF+ virtual machine instruction set, we would like to 
add the ability to use backward branches, in order to allow loops in 
the code. This would provide the ability to parse IPv6 “extension 
headers” as well as the ability to implement other, more general 
control structures. Not only would this change have an impact on 
the implementation of our optimization algorithms, but it would 
also impact the ability of the safety verifier to ensure that code mi- 
grated across the protection boundary does not enter into an infinite 
loop. Necula’s proof-carrying code work [ 181 appears to be a suit- 
able framework in which to define and enforce a semantics for the 
protected execution of more general packet filters. 

BPF+ packet filters currently return a boolean true or false value. 
Some users have expressed interest in a more complicated return 
result that indicates which of the predicates in the filter matched 
the packet. This is a hard problem because the code generator cre- 
ates many more predicates than are specified by the user. After 
passing through the optimizer, there may not even be a mapping 
from the resulting predicate expression back to the user-specified 
expression. However, for many purposes, just knowing selected in- 
formation about the packet may suffice, e.g. in an intrusion detector 
that uses many different ways to detect intruders, if a packet source 
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matches the source found in a large intruder table, we might just 
want to know the packet’s source address, and not care about any 
of the other predicates that may have matched. 

Our experience with BPF+ has shown that you can start with 
a high-level language and can compile and optimize packet filters 
into an efficient implementation. Through the novel application of 
the “redundant predicate elimination” global data-flow optimiza- 
tion, our high-level boolean predicate language can be compiled, 
optimized, and JIT assembled into code that performs as well or 
better than the current state-of-the-art packet filter packages. 
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