
BPF+: Exploiting Global Data-flow Optimization in a
Generalized Packet Filter Architecture

Andrew Begel, Steven McCanne, Susan L. Graham
University of California, Berkeley

{ abegel, mccanne, graham} @cs.berkeley.edu

Abstract

A packer filter is a programmable selection criterion for classify-
ing or selecting packets from a packet stream in a generic, reusable
fashion. Previous work on packet filters falls roughly into two cate-
gories, namely those efforts that investigate flexible and extensible
filter abstractions but sacrifice performance, and those that focus
on low-level, optimized filtering representations but sacrifice flex-
ibility. Applications like network monitoring and intrusion detec-
tion, however, require both high-level expressiveness and raw per-
formance. In this paper, we propose a fully general packet filter
framework that affords both a high degree of flexibility and good
performance. In our framework, a packet filter is expressed in a
high-level language that is compiled into a highly efficient native
implementation. The optimization phase of the compiler uses a
flowgraph set relation called edge dominators and the novel appli-
cation of an optimization technique that we call “redundant predi-
cate elimination,” in which we interleave partial redundancy elim-
ination, predicate assertion propagation, and flowgraph edge elim-
ination to carry out the filter predicate optimization. Our resulting
packet-filtering framework, which we call BPF+, derives from the
BSD packet filter (BPF), and includes a filter program translator, a
byte code optimizer, a byte code safety verifier to allow code lo mi-
grate across protection boundaries, and a just-in-time assembler to
convert byte codes to efficient native code. Despite the high degree
of flexibility afforded by our generalized framework, our perfor-
mance measurements show that our system achieves performance
comparable to state-of-the-art packet filter architectures and better
than hand-coded filters written in C.

1 Introduction

Over the past decade, a number of innovative research efforts have
built upon each other by iteratively refining the concept of a pucker
filter. First proposed by Mogul, Rashid, and Accetta in 19874161, a
packet filter in its simplest form is a programmable abstraction for
a boolean predicate function applied to a stream of packets to select
some specific subset of that stream. While this filtering model has
been heavily exploited for network monitoring, traffic collection,
performance measurement, and user-level protocol demultiplexing,
more recently, filtering has been proposed for packet classification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servars or to
redistribute to lists, requires prior specific permission andlor a fee.
SIGCOMM ‘99 8/99 Cambridge, MA, USA
0 1999 ACM 1-581 13.135~6/99/0008...$5.00

in routers (e.g., for real-time services or layer-four switching) [14,
201, firewall filtering, and intrusion detection [19].

The earliest representations for packet filters were based on
an imperative execution model. In this form, a packet filter is
represented as a sequence of instructions that conform to some
abstract virtual machine, much as modern Java byte codes rep-
resent programs that can be executed on a Java virtual machine.
Mogul ef al.‘s original packet filter (known as the CMU/Stanford
packet filter or CSPF) was based on a stack-oriented virtual ma-
chine, where selected packet contents could be pushed on a stack
and boolean and arithmetic operations could be performed over
these stack operands. The BSD packet filter (BPF) modernized
CSPF with a higher-performance register-model instruction set. Sub-
sequent research introduced a number of further improvements: the
Mach Packet Filter (MPF) extended BPF to efficiently support an
arbitrary number of independent filters [24]; PathFinder provided
a new virtual machine abstraction based on pattern-matching that
achieved impressive performance enhancements and was amenable
to hardware implementation [2]; and DPF enhanced Pathfinder’s
core model with dynamic-code generation (DCG) to exploit run-
time knowledge for even greater performance [7]. An alternative
approach to the imperative style of packet filtering was explored by
Jayaram and Cytron [131. A filter specification takes the form of a
set of rules written as a context-free grammar. An LR parser then
interprets the grammar on the fly for each processed packet.

More recent work on packet ciassification for “layer four switch-
ing” has focused on table-based representations of predicate tem-
plates to yield very high filtering performance. Srinivasan ef al. [20]
propose a special data structure that they call a “grid of tries” to re-
duce the common case of source/destination classification to a few
memory references, while Lakshman and Stiliadis [I41 elegantly
cast packet classification as the multidimensional point location
problem from computational geometry.

None of the earlier work addresses the issue of compiling an
abstract, declarative representation of a packet filter into an effi-
cient low-level form. It also does not consider the minimization of
computation by exploiting semantic redundancies across multiple,
independent filters in a generalizable fashion. Work on such opti-
mizations has not been forthcoming for good reason. If we model
a packet filter program as a function of boolean predicates, we can
reduce filter optimization to the “decision tree reduction” [lo] prob-
Icm. Since this problem is “NP-complete”, we know that filter opti-
mization is a hard problem. As a natural consequence, decision tree
reduction methods have relied upon heuriskcs for optimization [5].

Fortunately, many packet filters have a regular structure that we
can use to our advantage in our optimization framework. One way
to exploit this structure is to account for it in the underlying filtering
engine itself. Both PathFinder and MPF are based on this design
principle: PathFinder utilizes a template-based matching scheme

123

http://crossmark.crossref.org/dialog/?doi=10.1145%2F316188.316214&domain=pdf&date_stamp=1999-08-30

Protection
Boundary

I

High-Level 0 Filter -.--.I, E$ FOptimirer &L ml---so< ;
Specification

Native
I Assembler .. ’ Code
I

§4 §5 §6 97.1 57.2

Figure I: System architecture diagram for BPF+. A filter, represented in a high-level language, is compiled and optimized into
the BPF+ virtual machine intermediate representation. After traversing protection boundary, the protected domain verifies the
filter code specification, and either interprets the byte codes or assembles them on-the-fly into native code.

that is nicely amenable to the computation required for parsing
packet headers, while MPF extends BPF with specific opcodes that
provide a particular solution tuned to demultiplexing.

Although these sorts of assumptions are an important compo-
nent of any overall packet filter system, they fail to address what we
believe is the ripest opportunity for packet filter optimization: the
application of global optimizorion algorithms across the filter pred-
icate flow graph to minimize the average path length through that
graph. In contrast, the MPF extensions of BPF, PathFinder, and
DPF all use pattern-matching heuristics that operate locally, e.g.,
they do not necessarily eliminate common subexpressions across
the predicates, nor do they detect the equivalence of semantically
equivalent boolean expressions. In fact, they either restrict the set
of expressible filters to those with a regular structure that can be
matched by simple patterns, or they require that the “filter pro-
grammer” expresses the filter in a compact and already-optimized
low-level representation. Although this may be a reasonable design
assumption in “low level” environments (e.g., where an OS proto-
col module creates a packet filter to match its signature traffic as
in the x-kernel [9]), it is less applicable to “high level” domains
(e.g., where a user specifies a filter in an expressive high-level lan-
guage and a compiler generates the actual low-level filter code). In
this latter case, the front end code generator would typically trans-
late a complex filter expression into a number of redundant packet
sub-predicates; thus, optimization becomes especially important to
eliminate the redundant code.

In this paper, we propose optimization techniques that exploit
well-known data-flow optimization algorithms in a novel way for
the generalized optimization of packet filters. Our data-flow al-
gorithm, which we call “redundant predicate elimination,” inter-
leaves partial redundancy elimination, predicate assertion propa-
gation, and flowgraph edge elimination to effect predicate opti-
mization. In particular, we employ a set relationship called edge
dominators that extends the traditional node dominator relationship
from Rowgraph nodes to edges and provides the key ingredient for
our predicate optimizations. We also leverage the pattern-matching
heuristic, developed in the PathFinder and DPF work, in our back
end, as a lookup table optimization performed after the removal of
redundant predicates. Armed with our global data-flow optimiza-
tions, we can afford the flexibility of a high-level representation for
packet filters since we can compile and optimize them into native
implementations that achieve state-of-the-art performance from the
resulting packet-filter code.

The core of our optimization framework was developed, vali-
dated, and distilled a number of years ago within the BSD packet
filter (BPF) architecture. BPF has proven to be not only an inter-
esting research artifact, seeding a range of subsequent work, but
has been broadly adopted in practice: it is the cornerstone of the
widely used packet capture library libpcap [1 I] and the network

monitoring tool tcpdump [12] and provides the in-kernel filtering
facility in 4.4BSD-derived Unixes and Digital Unix. Because libp-
cap provides a flexible filtering framework and because it has been
ported to a wide variety of platforms, libpcap has become a de facto
standard for packet filtering and has thus become integrated into a
number of publicly available and commercial applications for net-
working monitoring, intrusion detection, and penetration testing.
Since their initial release, libpcap and tcpdump have been retrieved
over 100,000 times from the LBNL public distribution site.

Building on this earlier work, we describe herein a refined pa-
cket filter architecture that underlies yet is orthogonal to libpcap
and tcpdump’ . This new architecture, which we call BPF+, af-
fords a substantially refined, improved, and generalized design, an
extended optimization framework based on “static single assign-
ment” (SSA) [6], and a number of new optimization primitives. As
depicted in Figure 1, the BPF+ system consists of a serveral se-
quentially arranged components that transform a high-level filter
language specification into an low-level executable packet filter:

The input to the front end is a high-level language for filter
expressions based on the declarative predicate syntax used in
the original libpcap and tcpdump.

The BPF+ compiler translates the predicate language into an
imperative, control-flow graph representation with an SSA
intermediate. SSA is particularly well-suited for our opti-
mization algorithms.

The SSA intermediate representation is fed forward to the
code optimizer, which performs both global and local data-
flow optimizations over the control-flow graph form of the
intermediate code. The output of the optimizer is a byte
code representation that conforms to the BPF+ virtual ma-
chine model, which is a RISC-like register-based variant of
the accumulator-based virtual machine definition of the orig-
inal BPF pseudo-machine [151.

The BPF+ byte codes are then delivered to an execution envi-
ronment, e.g., across the user-kernel boundary to implement
user-defined protocol demultiplexing. or across the network
and into a switching element to implement an externally-
defined network service like policy-based traffic management.

‘This work proceeded in two mnjor stages: in 1990, Steven McCanne produced
the initial design and implementation at the Lawrence Berkeley National Laboratory
(LBNL) in collaboration with Van Jacobson and Susan Graham; in 1998. Andrew
Begel modularized the architecture and refined, improved, and extended the optimiza-
tion framework, in part by ntrotitring SSA into the intermediate representation, in col-
laboration with and Steven McCanne and Susan Graham at U.C. Berkeley and Vern

Paxson at the Lawrence Berkeley National Laboratory. The earlier work was published
only in part: the filtering engine was described in [IS], but the tilter language compiler

and optimization framework was never published.

124

.

.

Once received in the target protected domain, the safety ver-
ifier ensures the program’s integrity.

Finally, a “just in time” (JIT) assembler translates the op-
timized and safety-verified byte codes into native code and
performs optional machine-dependent optimization. This last
stage is omitted if the target environment is an interpreter
rather than native hardware, e.g., as with the BPF kernel im-
plementation, which interprets filters in the byte code form.

In the remainder of this paper, we motivate, describe and eval-
uate the components of the BPF+ architecture. We first outline
related packet filtering technologies and identify some of their lim-
itations We then present the BPF+ front end: its high-level filter-
ing language, the virtual machine model, and the compiler that
generates.the SSA intermediate form. Next, we describe our opti-
mization framework based on the set of local and global data-flow
algorithms and their interactions. Subsequently, we describe the
back end that verifies the integrity of the byte-code representation
and optionally transforms that representation into a native machine
code. To demonstrate the efficacy of our approach, we then present
measurements of our implementation that show that BPF+ perfor-
mance is comparable to existing packet filter implementations de-
spite its enhanced flexibility. Finally, we summarize our plans for
future work and conclude.

2 Background

In its widely used form, the BPF kernel sub-system represents each
user-specified filter as a separate entity. Each filter is run on every
incoming packet. Hence, if BPF were used to implement user-level
protocols, for instance, the demultiplexing overhead would scale
linearly with the number of filters, e.g., a busy server with many
simultaneous network connections would suffer linear slowdown
as each connection would independently run the packet filter on its
own stream.

To overcome this limitation, MPF enhanced the BPF virtual
machine with instructions for efficient protocol demultiplexing. Ra-
ther than represent each filter separately, MPFexploits the structure
of demultiplexing filter specifications to recognize that two filters
are similar up to, say, the transport header port fields, using simple
template-matching heuristics. Once MPF detects this similarity, it
merges the new predicate with the existing filter by expanding the
existing port checks to include the new port number, for example.

PathFinder generalizes the MPF heuristic with are-designed fil-
tering engine that is better matched to the pattern-matching trans-
formation. In this framework, templates called “cells” represent
packet field predicates, which are chained together in a “line”. This
line of cells represents a logical AND operation over the constituent
predicates. A collection of lines is arranged into a chain of predi-
cates, which represents the logical OR over all lines. As lines are
installed into this chain, PathFinder eliminates common prefixes.

For example, if process P requests TCP packets sent to port A
and process Q requests TCP packets sent to port B, then the result-
ing filter logic would have the following form:

if link layer type = IP and
IP fragment offset = 0 and
IP protocol = TCP and
TCP dest port = A

then deliver pkt to P
else if link layer type = IP and

IP fragment offset = 0 and
IP protocol = TCP and
TCP dest port = B

then deliver pkt to Q

Upon processing the second filter, PathFinder would recognize
the common prefix and simply extend the first if-clause as follows:

if link layer type = IP and
IP fragment offset = 0 and
IP protocol = TCP

then
if TCP dest port = A
then deliver pkt to P
else if TCP dest port = B
then deliver pkt to Q

Since the inner if-else statement is effectively a “switch” over
the destination port field, a jump table (perhaps using a perfect
hash over the target value set) could be used to implement an 0(1)
match, and PathFinder does precisely that.

DPF utilizes the same template-matching approach as Path-
Finder (templates are called “cells” in PathFinder and “atoms” in
DPF), but introduces a new low-level language and employs dy-
namic code generation to attain performance improvements over
other interpreter-based implementations. Its new language is based
on a “read window” which may be shifted and masked to match
words in the packet to various immediate constants. Given a fil-
ter specified in this language, DPF coalesces common prefixes into
lines, performs some additional local optimizations, and dynami-
cally generates native machine code to directly evaluate the filter.

The more recent works geared toward layer-four switching [14,
201 take the DPF and PathFinder approaches to an extreme, where
the entire model is based on a set of templates that are matched
against known constants (or known constant ranges).

While the template-matching model yields good performance,
there are a number of shortcomings associated with the technique.
For example, it is not possible to match fields in the packet header
against one another, for instance, to look for packets that origi-
nate and terminate in the same network (“source network = dest
network”). Nor is it possible to perform arbitrary mathematical op-
erations on header words before matching.

DPF and PathFinder resort to a set of ud hoc heuristics for pro-
ducing efficient filters by coalescing common prefixes. These op-
timizations are foiled in PathFinder when predicates are reordered.
DPF, however, enforces in-order packet header traversal, thus com-
mon prefixes will always appear in the same order. However, when
the filter itself does not conform to the same order as other already
installed filters, prefix compression fails.

To illustrate this pathology, consider the packet filter, “all of the
packets sent between host X and host Y”. In a boolean framework,
we would specify this filter as “(source host X and dest host Y)
or (source host Y and dest host X),‘, and in flowgraph form, the
expression would appear as in Figure 2. Here, basic blocks are
represented by nodes and boolean control transfers are depicted by
edges. By convention, false branches point to the left.

In this case, DPF, finding no common prefix and unable to re-
order the checks to obtain a common prefix, would compile the
condition into two separate filters that are sequentially invoked.
However, there is opportunity for optimization, which DPF by ne-
cessity must miss. If the thread of control during filter evaluation
reaches the node “dest host Y,” then we necessarily know that the
source host is X. Furthermore, from that vantage point, we know
that the source host cannot be Y and that the node pointed to by
the dashed edge is redundant. But, we cannot eliminate the “source
host Y” node yet because there exists another path (from the root)
for which the check is not statically known. Therefore, our recourse
for optimization is to transform the dashed edge so that it points to
the FALSE node, thus reducing the average path length through the
Rowgraph (and in turn, enhancing filter execution performance).

This is the sort of global data-flow optimization we want to ex-
ploit in our packet filter optimizer. Having established this context,
we can now present the core pieces of the overall system design,
beginning in the next section with the BPF+ machine model.

125

Figure 2: Control-flow graph for “(src host X and dst host Y)
or (src host Y and dst host X)“. The dashed edge points to
a redundant predicate and may be redirected to the FALSE
node.

3 The BPF+ Machine Model

Before presenting the details of the translation modules that map
filter predicates to the BPF+ machine representation, we sketch in
this section a high-level overview of the BPF+ machine model to
establish context for the rest of the paper. This version of the BPF
virtual machine represents a number of iterative refinements made
over the past several years to the original BPF machine model.

The BPF+ abstract machine is a RISC-like, 32-bit, load-store
architecture consisting of a set of 32 general purpose registers, a
program counter, read/write data memory, read-only packet mem-
ory, a packet length register, and a pseudo-random register. A filter
program is represented as an array of byte codes that conform to a
well-defined instruction format.

The BPF+ virtual machine supports five classes of operations:

load instructions copy a value into a register. The source can
be an immediate value, packet data at a fixed offset, packet
data at a variable offset, the packet length constant, or the
scratch memory store (a reference to data beyond the end of
the packet results in a return value of 0);

the store instruction copies a register into a fixed location in
data memory;

ALU instructions perform arithmetic or logic on a register us-
ing a register or a constant as an operand and a register as the
destination (division by zero causes the filter to immediately
return a value of zero);

branch instructions alter the flow of control, based on a com-
parison test between a register and an immediate value or
another register; and,

return instructions terminate the filter and indicate the integer-
valued result of evaluation.

A filter is evaluated by initializing the packet memory to the
packet in question and executing byte codes on the BPF+ machine
until a return instruction is reached. The data memory is persis-
tent and may be queried by agents external to the filter engine. The
pseudo-random register is a read-only register that returns a uni-
formly distributed random value each time read, which is a use-
ful primitive for building filters that can perform probabilistic sam-
pling. To facilitate safety verification, we require that all program
branches be forward (thus forgoing loops) and that the last instruc-
tion on each path be a “return”. In addition to the set of conditional

branch instructions, we add a lookup table instruction to abstract
multiway conditional branches for later just-in-time optimization.

We omit the details of the instruction format and throughout the
rest of this paper use an assembly language syntax that is relatively
self-explanatory2. For example, a simple BPF+ byte-code program
that matches TCP packets has the following form:

Ih 1121, to
jne 19, NETHERTYPEX’, LS
lb WI, rl
jne rl, NIPPROTO-TCP. LS
ret #TRUE

LS: ret #FALSE

Presuming Ethernet encapsulation, this filter first checks that
the packet is an IP packet. If so, it checks if the IP protocol type is
TCP, in which case it branches to an instruction that returns true. In
any other case, the program branches to line L5 and returns false.

This form of representation is far too low-level for many appli-
cations of packet filters. In the next section, we argue that high-
level filtering languages are important for a number of problem do-
mains and we sketch the characteristics of the high-level filtering
language that BPF+ employs.

4 The Predicate Language

The input to our system is a high-level filter represented in a declar-
ative predicate language. By employing a high-level language, we
hide the complexity and details of the underlying, imperative ex-
ecution model of the BPF+ virtual machine. This facilitates the
expression of complex boolean relationships among many differ-
ent predicates using natural logical expressions rather than awk-
ward control structures. Unlike other high-performance packet fil-
ter packages that have adopted more restrictive semantics for their
packet filter abstractions (e.g., the template matching model), we
retain the full generality of a programmable, control-flow graph
model for our virtual flter machine.

There are many reasons to support higher-level abstractions for
packet filtering. To begin with, the system should hide the details
of where particular fields are located in a packet and how variable-
length headers must be parsed to locate those fields. For example,
BPF+ refers to the IP destination address field in a packet as “IP dst
host” rather than “packet[20:4]“. Additionally, a seemingly simple
BPF+ expression like “TCP port HITP’ turns out to have a rela-
tively complex low-level structure that should not be a burden to
the filter programmer (i.e., in this case, the packet must be IP; if
fragmented, it must be the first fragment so as to contain the IP
header; there may be IP options which must be skipped over to find
the TCP ports; and finally both the source and the destination TCP
port field must be checked against the constant 80).

This sort of high-level representation is crucial if a human user
is specifying the packet filters. While a low-level pattern spcc-
ification might have sufficient generality and simultaneously be
amenable to an efficient implementation, a network administrator
that is diagnosing network malfunctions on-the-fly or chasing down
an intruder in real-time must have a flexible and easy-to-use syn-
tax for specifying packet predicates. Thus, a high-level predicate
syntax that allows one to look for, say, packets “between MIT and
UCB” that are “HTTP connections” should be naturally and eas-
ily specified. To this end, the user should be able to specify which
fields of the packets they want to match and connect those predi-
cates with boolean operators “and”, “or”, and “not”. In BPF+, the
filter would look like this expression:

?here are four types of load instructions: “Id” is load word. “lh” is load half word,
“lb” is load byte, and “Ii” is load immediate. There are seven branch operations: “jeq”
is jump if equal, ‘Tne” is jump if not equal, “jlt” is jump if less than, “jle” is jump if

” less than or equal, ‘Tgt” is jump if greater than , ‘jge” is jump if greater than or equal,

“ja” is an unconditional jump.

((src network MIT and dst network UCB) or
(src network UCB and dst network MIT)) and

(TCP port HTTP)

By contrast, the same expression written in DPF’s quite low-
level SHIFT language would look like the following:

(((12:16 == 0x8) && # IP?
SHIFT(6 + 6 + 2) && # skip Ether header
(9:s == 6) 6th X TCP?
(12:s == 18) && # src network MIT?
(16:16 == 0x8020) && X dst network UCB?
SHIFT(20) && X skip IP header

X (assume fixed length)
to:16 == 80) && # src port SO?

(2:16 == 80)) X dst port BO?

I
:(12:16 == 0x8) && # IP?
SHIFT(6 + 6 + 2) && X skip Ether header
(9:s == 6) && X TCP?
(12:16 == 0x8020) && # src network IJCB?
(16:S == 18) && # dst network MIT?
SHIFT(20) && X skip IP header

X (assume fixed length)
(0:16 == 80) &L X src port SO?
(2:16 =I 80)) X dst port SO?

In the middle ground between a predicate language and a fully
general pattern specification language, we interpose the ability to
match various fields of the packet in relation to each other, and
the ability to perform mathematical operations on the fields before
matching them. Thus, for example, to track down a TCP protocol
bug, we might need to extract all the packets from a trace that fall
within a certain range of TCP sequence numbers.

Finally, moving beyond the scope of BPF+, users may want to
combine the aforementioned filter language approaches and com-
pose them with a policy language that enables the runtime system
to apply a filter at a particular time (e.g., for probabilistic sampling
of packets meeting a particular predicate), add a filter (e.g., if the
source address of an intruder has been identified), or remove a fil-
ter from use (e.g., if a particular email adversary sends unsolicited
mass email only at certain times of the day).

Designing a language that meets these requirements is not dif-
ficult. Several languages have been devised, for example, the fil-
tering language in the Lawrence Berkeley National Laboratory’s
packet capture library libpcap, Sun’s ethe@ad program, and Digi-
tal’s snoop tool. Since the BPF+ design is built upon BPF, libpcap,
and tcpdump, we naturally incorporated the libpcup language into
our system. We omit the details of this well-known and widely used
packet capture system, which is described elsewhere [11, 121.

5 The Front End

Given our high-level filter language and our low-level filter ma-
chine model, we are faced with the problem of translating filter
predicates into BPF+ byte codes. Rather than integrate translation
and optimization into a monolithic framework, as PathFinder and
DPF have done, we have deliberately separated the translation stage
from the optimization stage. This has a number of advantages.
First, it would allow us to create different front ends and high-level
languages that can be optimized and carried by the same back end.
Second, it allows us to evolve and develop the two stages indepen-
dently. An improvement to the optimization framework need not
require changes to the high-level language defined in the front end.
Finally, this breakdown provides a framework for incrementally
composing filters on the fly, e.g., as required by user-level proto-
col demultiplexing where filters are installed and removed dynam-
ically. More specifically, a set of active filters (each individually
representing a given connection fingerprint) can be maintained in
predicate form so that filters may be easily inserted and deleted.

Each time the set changes (because a connection starts or stops),
we can invoke the optimizer and back end on the altered form to
produce our new aggregate filter program.

Another advantage of the separation between the compiler and
optimizer is that the code generator is greatly simplified. For ex-
ample, consider the way we generate code for short-circuited log-
ical predicates. In an expression like ‘pa and pr ,” pl is evaluated
only if po is true. However, the second predicate might contain
sub-predicates that have already been evaluated in the first predi-
cate. For example, the expression may have a decomposition, in
which another predicate p4 represents a common protocol check.
e.g., “(~4 and po) and (~4 and ~1)“. Factoring out common pred-
icates during code generation would be a complex task. The opti-
mizer, on the other hand, is well suited to the elimination of this sort
of redundancy. Thus, our code generator can be relatively simple
and straightforward and rely on optimization to achieve efficiency.

In short, we have adopted an approach where we transform the
predicate language into an intermediate form through naive com-
pilation, and then apply aggressive optimizations to transform the
result into an optimized BPF+ byte-code program.

The BPF+ compiler uses off-the-shelf lexical analysis and pars-
ing tools as well as well-known compiler techniques to convert the
filter specification into a control-flow graph in SSA intermediate
form. SSA is a modern intermediate representation used in opti-
mizing compilers, in which the abstract data values are separated
from the locations in which they are stored. The key property of
SSA is that any register is written exactly once, so we assume that
we have an infinite supply of registers with which to work. In turn,
we rely upon a register allocator to map this unbounded number of
virtual registers into a finite set of physical registers. SSA is highly
amenable to many simple but effective forms of global data-flow
optimization, and we heavily exploit this property in our system.

Each node in the control-flow graph generated by the BPF+
compiler is a basic block in SSA form that ends with a boolean
predicate. There is one unique entry node, and flow moves through
the graph until it reaches a “return” statement. At the end of each
basic block, the flow may branch based on the value of the predi-
cate. Flow may only move forward (downward through the graph);
this property is enforced by the requirement that branch offsets
must be positive. Thus, the entire graph is guaranteed to be acyclic.3

6 The Optimizer

The price that we pay for our naive SSA form code generation is
many computational and logical redundancies. This results in an
overabundance of code, conditional branches, and allocated regis-
ters. Thus, optimization of the generated code is vitally important
for improving its performance and justifying the cost of the high-
level starting point. In this section, we describe the global data-flow
optimizations and peephole optimizations that are performed on the
intermediate code - which remove redundancies, rearrange non-
optimal code sequences and identify potential lookup tables - in
order to generate efficient code.

In addition to incorporating many standard optimizations found
in traditional compilers, the BPF+ optimizer introduces a novel ap-
plication of redundant predicate elimination [17, 221. This opti-
mization is rarely found in compilers for traditional languages like
C or Java because redundant predicates do not occur very often
and the optimization would not be very profitable. However, in the
domain of packet filter compilation, BPF+‘s naive code generator
produces decision trees with many redundant predicates, thereby
making this optimization one of the most useful that can be applied.

‘The fact that BPF+ flowgraphs are acyclic simplifies data-flow cnlculntions con+
sidcrably. Recause all information flows only up (or only down). B minimal tixed point
solution can be reached with a single top-down (or bottom-up) level-order traversal of
the control-flow graph.

127

The next four sections describe our optimizations in more de-
tail. In the first section, we introduce the redundant predicate elim-
ination and its composition from partial redundancy elimination,
predicate assertion propagation, and redundant edge elimination.
Then, we illustrate the peephole optimizations that are performed
within the basic blocks. We also use constant folding and constant
propagation to help identify and eliminate redundant computations
in the global data flow phase of optimization. After the other op-
timizations have completed, we enter a jump table encapsulation
phase to optimize linear sequences of predicates. Finally, we do
register allocation and assignment to map each remaining variable
to an actual register in the BPF+ virtual machine.

To get a feel for the potential of the redundant predicate elimi-
nation optimization, consider the following filter:

IP src host A or IP src host B

Without optimization, this expression is compiled into the fol-
lowing code:4

Ih
Ll: kq

ja
L3: Id

jeq
L5: Ih
L6: jeq

ja
L8: Id

LIO: ‘2
LII: ret

1121, ro
10, STHERTYPEJP, L3

&, rl
rl. #A, Lll
V21, I.2
12, %ETHERTYPEJP, LE
LIO
LWr3
r3. XB, Ll I
#FALSE
#TRUE

Note that both predicates test whether the packet is IF? Since
the first test (line Ll) always occurs before the second (line L6),
the second test is redundant and may be eliminated. The problem
is better visualized by analyzing the program in flow graph form.
Figure 3 shows the basic blocks and control edges that correspond
to the filter above. By convention, false branches are to the left of
true branches. The nodes are numbered for reference. The dashed
boxes indicate the two predicates, IP stc host A and IP SK host B.

Figure 3: Unoptimized version of “IP src host A or B”.

Since control must pass through N15 before reaching Ns, and
since Nl and Ns perform equivalent tests, Ns is redundant. How-
ever, at Ns. it is not known whether the result is true or false, since

4Logic is inverted in several places to make the conditional branch code more
straightforward to read. The compiler back end optimizes the order of the basic blocks
to minimize the need for absolute jumps.

‘Let Ni denote node i.

either edge could have been taken on exit from NI . On the other
hand, we know the result of Ns from the vantage point of the in-
bound edges. Therefore, our approach is to find edges that point to
redundant nodes, and point them past the redundancy.

For instance, along edge E23’ we know that NI is true; and
since Nl and Ns perform equivalent tests, Ns must be true from
this vantage point. Thus, edge E23 can be deleted, and edge E24

inserted. Similarly, if flow passes along E13, then Ns will be false;
hence, El3 can be replaced by Els. The resulting flow graph is
shown in Figure 4. A reachability analysis will discover that Ns is
now unreachable and eliminate the dead code from the graph.

Figure 4: Moving the edges.

As is often the case in optimization algorithms, one class of op-
timizations will expose opportunities for others. Here, the edge
movements have caused a load operation to become redundant.
Since the in-degree of N4 is reduced to one after the dead code
at Ns is eliminated, we know that N4 and Nz load the same value.
Thus, the second load at N4 can be removed. Figure 5 shows the
flow graph in its final form.

Figure 5: The optimized filter.

6.1 Redundant Predicate Elimination

Redundant predicate elimination is an optimization used to deter-
mine, at compile-time, which predicates found in the control-flow

‘Let Eij denote the directed edge from Ni to Nj.

128

graph may be bypassed by particular flow edges. This optimiza-
tion is composed of three pieces: partial redundancy elimination,
used to eliminate redundant computation within the nodes of the
control-flow graph; predicate assertion propagation, a data-flow
analysis used to flow the values of determinable predicates through
the control-flow graph; and static predicate prediction, which uses
the assertion information to identify statically determinable condi-
tional branches and bypass them whenever possible.

6.1.1 Partial Redundancy Elimination

Our use of SSA form, combined with BPF+‘s acyclic control-flow
graph, enables the optimizer to identify and eliminate a significant
amount of redundant computation. In the code from our simple
code generator, most redundancies are loads from packet memory
and oft-repeated ALU operations.

In order to determine which computations are redundant, we
first establish a metric of value equivalence. We use a value num-
bering scheme for each register to indicate its source definition.
Each definition, which can be a defining computation, a load from
memory, or a register-to-register copy, is identified by a unique ID
which can be used to indicate whether two variables have the same
definition.

We compute the node dominator relation over the control-flow
graph and look over every register’s definition. This relation iden-
tifies which nodes must be traversed in order to go from the entry
node to each node in the control-flow graph. If at a given node, the
value assigned to a register has already been computed in a domi-
nating node, the second definition is redundant.’ We then replace
the redundant computation with a register-to-register copy from the
dominating defining register. Afterwards, using copy propagation,
we replace all later uses of the second register with the first. A sub-
sequent dead store elimination phase will remove the now useless
register and the corresponding register-to-register copy.

This implementation only achieves partial redundancy elimina-
tion, however, since redundancies may only be identified and elided
when found in dominating relationships. We shall see how the next
two phases of redundant predicate elimination can improve the ef-
fectiveness of this optimization if we apply them one after another.

6.1.2 Predicate Assertion Propagation

The example shown at the beginning of Section 6 assumes a priori
that we can make certain edge movements without compromising
the semantics of the program. In actuality, we must be analytically
precise that such transformations are legitimate. This problem can
be solved through a global data-flow analysis.

The traditional approach to global data-flow problems typically
involves computing set relations over the nodes of a flowgraph.
However, as first seen in Cocke and Schwartz [4] and later exploited
by Graham and Wegman [8], applying the data-flow functions to
edges rather than nodes can have substantial advantages. This is
indeed the case for BPF+ Row graphs.

First, we extend some standard node terminology to edges: An
edge Eij (defined by a predecessor node pred(Eij) and a successor
node sacc(Eij)) dominates another edge Ekl, written Eij dom Ekt,
if every possible execution path from the entry node to Ekr includes
Eij. In addition, an edge Eij immediately dominates another edge
Ekl, if Eij dominates Ekr and there is no edge E9h such that Eij
dominates E9h and Esh dominates Ekl.

Since every basic block ends with a predicate, an edge Eij rep-
resents the truth value sense(Eij) of a predicate predicate(pred(Eij))
- a true edge trae(pred(Eij)) is traversed if the!predecessor node

‘Since our SSA form control-Row graph is acyclic, and each register is only delined
once, we do not have to check whether the register’s value might have been changed
before the second deli&ion is reached.

evaluated a true condition, otherwise the false edge false(pred(Eij)
is traversed. Suppose an edge Eij dominates an edge Ekt. If the
edge predicate of Eij is equivalent to the predicate of the successor
node Nr of Ekt, then we know the outcome of Nl, when traversed
from Ekt. Hence, we can delete Ekl and insert a new edge from
Nk, the predecessor of Ekl, to the appropriate child of Ni , provided
no conflicting inter-block data dependencies exist.

We use a simple data-flow algorithm to abstractly define the
value of each predicate in the control-flow graph. If a predicate
ends up with a statically determinable value, we may bypass the
predicate with a new control-flow edge. First, we compute the edge
dominator relationships in a fashion similar to the node dominators
algorithm given by Aho, Sethi, and Ullman [I]. The set relation,
which we call edom, is given by the following equation:

edom(E) = {E} U { n edom(P)}
PEpred

We then use edom to calculate idom;

VE E edges,
idom(E) = edom(E) - {E},

VE E edges,
VF E idom(E),

VG E idom(E) - {F},
if G E idom(F)

idom(E) = idom(E) - {G}

The immediate dominator relation forms a forest of trees, where
each edge in the control-flow graph is a node in a tree. The prede-
cessor of each node is its immediate dominator and its successors
are those nodes which it immediately dominates. We use this tree
in the next phase of predicate assertion propagation.

For each edge in the control-flow graph, there are a set of as-
sertions that we can make about the values of the predicates. For
instance, the false edge coming out of a node that tested the pred-
icate a = 6 would contain the assertion that a # 6. In addition,
the assertions for all of the edge dominators of a particular edge
also hold true for that edge, since those edge dominators must be
traversed in order to reach it. The assertion set relation is given by:

assertion(E) ={ <predicate(pred(E)),sense(E)>}
U assertion(idom(E))

Each element of the assertion set is a tuple of the predicate
tested assertion(E).predicate and the value of the proven answer
assertion(E).sense.

6.1.3 Static Predicate Prediction

Now that we have the assertion set for each edge, we are ready to
use this information to predict statically determinable predicates.
In general, the problem of proving that a set of assertions implies
a certain result is NP-complete, however, there is a small set of
rules that we can use in practice to prove many assertions about the
predicates typically found in packet filters. The rules used by BPF+
are shown in Table 1.

Beyond these few entries, a generalized theorem prover would
be necessary to make more involved implications from the given set
of assertions. However, it turns out that the most-used implications
come from the j eq and j ne entries of the table.

For a particular edge E, if the assertions in assertion(E) stati-
cally prove predicate(succ(E)) to be true or false, then on this path,
edge E may bypass the redundant predicate and we may remap the

‘The fact that BPF+ Rowgraphs are acyclic allows us to compute this Row equation

in O(IEI)time.

129

j8e #IVd #WI TRUE ke #Ival #Wal TRUE
& #Ival #rval TRUE jlt #Ival #krval FALSE

ke #IWl #NiIl FALSE jge #Ival #kVdl FALSE
ke #Ivul #WI FALSE jlt #Ivnl Nrval TRUE

All other inputs return “undelined”

Table 1: Lookup Table for Predicate Algebra.

edge’s successor to the predicted child of succ(E). We may do this
only with the guarantee that the edge movement does not violate
data dependencies that occur later on in the flow graph. Specifi-
cally, if any registers defined in the node to be bypassed are used
by any other node on the predicted path, we must forbid the move-
ment. More formally, the algorithm looks like this:

VE E edges,
V(pred, sense) E assertion(E),

let N = succ(E),
P = predicate(N),

in
ijtable(pred, sense, P) = TRUE

succ(E) = succ(true(N))
iftable(pred, sense, P) = FALSE

succ(E) = succ(false(N))

The combination of partial redundancy elimination, predicate
assertion propagation, and static predicate prediction is repeated
until there are no new changes. Each data-flow phase removes its
own redundancies, and in doing so, exposes new redundancies to
be removed by the next phase. Partial redundancy elimination re-
moves data dependencies that might inhibit edge removal, whereas
static predicate prediction exposes newly redundant computation.

6.2 Peephole Optimizations

During each round of the redundant predicate optimization, we per-
form peephole optimizations on code within each basic block. For
example, an ALU operation with an identity may be removed. A
load from a scratch memory location preceded by a store to the
same location may be changed into a copy operation. An add or
subtract immediate instruction followed by an indirect load may be
merged with the built-in index calculation.

Next, we use copy propagation to track computations on con-
stants as they move through the control-flow graph. When we have
register-register operations in which one of the registers is a known
constant, we can transform the operation into its equivalent register-
immediate form (provided that either the operation is commutative
or the transformation does not change the order of the arguments).
When both values (either both registers or the register in a register-
immediate instruction) are known, we may perform constant fold-
ing to turn the instruction into a load immediate of a constant value.

These optimizations play an important role in minimizing the
computation performed. Consider the following example of unop-
timized BPF+ code for the filter “tcp[131 & 7 != 0”:

Ih lIZI. to
jne r0. #ETHERTYPElP, L19
lb 1231. rl
jne rl. (IIPPROTO-TCP, L19
Ih 1201, r2
und r2, Oxlfff, 13
jne r3.ox0, Ll9

Ll: Ii #l3. r4
lb 1141, r5
and r5, Oxf, 16
Ish 60x2. r7

Lll: add r4, r7. r8
L12: lb [r8 + 141.19
L13: Ii #l, r10

and 19. r10. rl I
LIS:
L16: :uh

#o, rl2
rll,rl2, r13

h r13,OxO. L19
ret #TRUE

L19: ret #FALSE

Line L7 shows a load immediare instruction that is used in line
Ll 1 to load the 13th byte of the TCP header. Since add is a com-
mutative operator, we can replace the reference to r4 with the im-
mediate value 13 and change the instruction to an add immediate.
Since line Ll 1 is followed by a load byte indirect instruction on
line L12, we can fold in the immediate 13 into the index of the loud
byte indirect (to get 27) and remove line Ll 1 from the code.

On line L13, we notice another load immediate that is used on
the next line. Since and is a commutative operator, we can perform
constant propagation again and replace the reference to r10 with
the immediate 7. On line L15, there is a load immediate that may
be removed by constant propagation. But after its substitution, line
L16 becomes a subtract immediate instruction - subtracting the
constant #IO from ~11. We notice that this is an ALU operation by
an identity, and therefore can be removed completely. Here is the
code after all of these peephole optimizations have been performed:

Ih II21, I.0
jne r0, #ETHERTYPEJP, Ll4
lb [231. rl
jne rl. IIPPROTO~TCP, L14
Ih 1201, r2
and 12. Oxlfff, r3
jne r3.0~0, Ll4
lb 1141, r5
and r5, Oxf, 16
Ish r6,OxZ. r7
lb [r7 + 27],19
and 19.0~7, rll
h rll. 0x0. L14
ret #TRUE

Ll4: ret #FALSE

6.3 Lookup Table Encapsulation

The example above showed how redundant loads can be removed.
These opportunities arise often in expressions that check a packet
field against a set of possibilities, as in ip SK host A or B or C. The
code generator output for this expression is:

130

Ih 1121, IO
jne 19. KTHERTYPEJP, L4
Id 1261. rl
je4 rl. #A, L13

1A: Ih 1121. R
jne r2, #ETHERTYPElP, LiI
Id 1261. r3
h r3. #B. L13

L8: Ih i12I.r4
jne 14, #ETHERTYPEJP, L12
Id 1261, r5
jes r5, #C. L13

Ll2: ret #FALSE
L13: ret #TRUE

After peephole optimization and redundancy elimination phases
have completed, the filter has been reduced to the following:

Ih 1121, I0
jne 10, #ETHERTYPEJP, L6
Id WI, rl

L3: jeq rl , WA. Ll

jeq rl, #B, L7
h rl, NC, L7

L6: ret #FALSE
L7: ret #TRUE

Note the contiguous sequence of conditional branches start-
ing at line L3. We can optimize this linear chain of conditional
branches, especially when the chain is long, by arranging it into a
lookup table instruction. In general, to identify potential lookup
tables, we traverse the control-flow graph looking for chains of
blocks containing only conditional branches. Lookup table chains
have the following properties: the chain’s backbone is linked by
all false or all true branches; all of the other branches point to the
same exit node; each element of the chain dominates the rest of the
chain; and all of the conditional branches in the chain test the same
value. The example code after lookup table enscapulation is shown
below:

Ih 1121, ro
jne IQ, #ETHERTY PElP. L4
Id 1261. rl
or table rl, #A, #B, #C. L5

L4: ret #FALSE
L5: ret #TRUE

While this approach finds most of the lookup tables, we can ex-
pose more lookup table chains by reordering the constituent nodes
of a more general chain. However, we may only reorder a node if
there are no data dependencies that would be altered. We can re-
quire that the block to be moved be empty of all computation, save
the final conditional branch. This is not as restrictive as it sounds,
due to the effectiveness of our partial redundancy elimination.

Once the lookup tables have been abstracted, heuristics (de-
scribed later) can turn them into combinations of linear search, bi-
nary search and hashtable lookup. Thus, we incorporate the core
design structure and optimizations of PathFinder and DPF as a low-
level optimization at the tail end of our optimization framework.

6.4 Register Allocation and Assignment

Before we run our intermediate code on the BPF+ virtual machine,
we must map the virtual registers that remain in the optimized code
into the 32 real registers available in the virtual machine.

We use a graph-building algorithm to perform this task. Each
register is represented by a node in a graph. For each register, we
compute a liveness range (i.e., a lifetime), which is the list of ba-
sic blocks between a register’s definition and its last use. When
two registers have overlapping lifetimes, we place an edge between
them. This results in an inretjkence graph. The registers in a con-
nected subgraph of the interference graph have lifetimes that in-
terfere with one another, although they might not all be live at the
same time.

Each subgraph’s virtual registers may be mapped to physical
registers independently of the other subgraphs because their life-
times do not intersect. T.vo virtual registers in a subgraph may
be assigned to the same physical register if there is no edge be-
tween them. We use a graph coloring scheme to perform this as-
signment [3].

We have little worry that we will run out of virtual machine
registers because the size of each subgraph is typically small and is
generally bounded by the size of the largest predicate. In addition,
registers often have short lifetimes because after optimization, their
predicates are computed and used only once. In fact, most registers
are live in only one basic block. Those that live longer tend to
occur in OR and AND chains which have already been collapsed
into lookup tables by the lookup table encapsulation phase.

7 The Back End

7.1 Safety Verifier

Since the BPF+ filter code interpreter is run in a protected domain,
the validity of the program must be checked. A user task must be
prevented from installing a program that would execute an infinite
loop, or would cause memory faults by reading, writing, or jumping
out of bounds.

In a program, a loop is represented as a jump to a previously
executed piece of code. In most correct programs, each iteration of
the loop will check a predicate to determine whether to continue or
exit out of the loop. However, in general, the value of this predicate
cannot be predicted at compile-time, and is often dependent on the
inputs to the program. Since any program that runs in a protected
domain must terminate, and since the protected domain should not
trust user code, we must be able to identify which programs will
loop forever and which will terminate. Consequently, the protected
domain must solve the halting problem when accepting a filter pro-
gram. In general, this is intractable, but by adopting fairly benign
restrictions, verification can be made trivial. Namely, filter pro-
grams must be acyclic, with all branches forwardly directed.’

Further verification entails checking that all opcodes are valid,
that all jumps are forward and within bounds, that the terminating
operation is a return instruction, and that all reads and writes to
memory are within bounds. If a malicious filter program were al-
lowed to indiscriminantly read or write data, it could corrupt the
protected memory space. In BPF+, loads and stores to scratch
memory are indexed by an immediate, thus, we can verify their
validity during this phase. However, since we cannot prove what
the bounds on an indirect load from packet memory will be, we
employ runtime bounds checks on each load to ensure safety. If
any load tries to read out-of-bounds memory, the filter is stopped
and the packet is discarded.

7.2 JIT Assembler

Once the filter program has passed the safety verifier, it may be run
in the BPF+ virtual machine or may be JIT assembled into native
code. The speed advantages of an assembled filter program should
be clear, and indeed, our results show that assembled programs run
up to 6 times faster than their interpreted counterparts on an Ultra-
SPARC Iii processor.

There are two phases of JIT assembly. First, we translate the
lookup tables into an optimized sequence of linear, binary or hash
checks of the values inside. Then, since the target machine often
has tighter register availability constraints than the BPF+ virtual
machine, we perform another phase of register assignment.

‘Any acyclic program can be expressed using only forward jumps

131

7.2.1 Lookup Table Translation

The first stage of the BPF+ assembler translates each lookup table
instruction into an optimized sequence of native code instructions.
A naive approach might just translate the table into a linear se-
quence of predicates, but this is no better than what we started with.
When there are more than several predicates, the overhead causes
the lookup to slow down linearly with the number of predicates.

Consequently, we may turn the table into a balanced binary tree.
This would have the effect of making the average case lookup equal
to the worst case lookup. The overhead of the lookup would slow
down as the log of the number of predicates.

As a third alternative. we can turn this table into a hashtable
with a perfect hash function (since we know all of the entries at
compile-time) and get constant time access. For small numbers of
predicates, the overhead involved in computing the hash function
may be too great, but for larger tables, this approach works well.

How do we know which one to pick? Currently, we use a static
heuristic based on an evaluation of how each representation per-
forms as a function of the number of predicates. Recent papers by
Yang, Uh, and Whalley [21,23] suggest the use of a profile-driven
approach to determine whether to implement multiway branches
using hash lookup, or to simply reorder the branches in a sequen-
tial lookup to reduce the dynamic number of branches encountered
during program execution.

7.2.2 Register Assignment

The native code phase of register assignment is somewhat more
delicate than the first phase, due to the greater register pressure
found in most architectures. In an UltraSPARC with register win-
dows, our simple assignment scheme is constricted to the use of 20
registers. An assembler for an x86 is constrained to only six.

If there are enough registers in the native code to run a partic-
ular filter directly, we skip this second register assignment phase.
However, when we must compress a filter’s use of registers, we re-
run the register assignment algorithm used before with one change.
Instead of using liveness ranges that are sets of basic blocks, we
construct a register’s lifetime as the set of pseudo instructions be-
tween its definition and last use. This finer granularity lets us reuse
registers within a basic block, thereby minimizing our use of regis-
ters subject only to data dependencies.

If we still cannot fit the filter in the specified smaller number
of registers, we must take the drastic step of spilling extra values
to memory. We use a graph coloring algorithm to identify where
spills must take place and add in the auxiliary code for spilling and
restoring the data values.

8 Evaluation

To demonstrate the efficacy of our compiler and optimization frame-
work, we have built all of the components described herein, culmi-
nating in a comprehensive implementation of the BPF+ architec-
ture. We measured the performance characteristics of the BPF+
compiler - its ability to generate and optimize BPF+ byte codes,
and the speedup in filter execution attained from JIT assembly. We
also compared the effectiveness of our global data-flow optimiza-
tion against the optimizations performed by an optimizing C com-
piler. We show that for the packet filter application, our optimiza-
tions are far more effective than those utilized by the C compiler.

Our experiments illustrate several performance measures that
we think have not been addressed in earlier work. In particular, we
draw a distinction between measurements of filters that use inde-
pendent high-level predicates and measurements of filters that use
predicates which may be coalesced into a lookup table.

Our experiments were run on a Sun Ultra 10 workstation with a
300 Mhz UltraSPARC Iii processor. 100,000 packets were filtered
in each experiment, .I0 the running time for each filter was measured
with the CPU tick register, enabling us to get accurate cycle counts
of the time spent on each individual filter.

Figure 6: Average times to recognize packets with optimized
JIT assembled filters having various numbers of independent
predicates. Lower numbers are better.

In Figure 6, we show the speed of filtering various numbers of
independent predicates - TCP, src A, dst B, port C, and network
D connected in a chain by either “and” or “or”. There are six mea-
surements of the optimized JIT assembled filters, three showing
the average, accept and reject times for the chains linked together
by “and’, and three showing the same results for the same chains
linked together by “or”. As expected, the time to reject an OR chain
has the same upward trend as the time to accept an AND chain.”

In contrast, the time to accept an OR chain stays low because
the earlier predicates, if matched, halt the filter and return TRUE
immediately. The average time reported for both AND and OR
chains are similar and hover between 200 ns and 300 ns. This is
comparable to filter speeds reported in the literature.

In Figure 7, we show, for non-independent predicates, the speed
of filtering when a lookup table is implemented by a linear se-
quence of conditional branches, an 0(1) perfect hash function (each
hash table entry has one conditional branch to ensure a match), and
the equivalent filter coded in C and run through the GCC (egcs-
2.91.60) optimizer at its highest optimization level.” BPF+ per-
forms better than C in both cases, primarily due to BPF+‘s redun-
dant predicate elimination. Since redundant predicates do not often
occur in user-level C code, CCC does not perform the elimination
optimization that BPF+ does. In addition, the translation of filter
code into native machine code has lowered the penalty that we pay
for increased numbers of conditional branches in the final filter.

In addition to these measures, we examine the speedup attained
using the optimizations found in BPF+. In Figures 8 and 9, we
show the filter times for unoptimized interpreted, optimized inter-
preted, unoptimized JIT assembled, and optimized JIT assembled
packet filters for both independent and non-independent predicates.

For independent predicates, the speedup improves significantly
(from 3.5x to 9x) as the number of filters increases, which shows

“The packets tote from normnl network tmffic in the UCB computer science domain.

“The last “‘Accept AND chain” measurement is left off the graph bccwse the pur-
ticulu expression was never accepted.

“Since there is no modem implementation of the original 1993 version of BPF, we
do not include it in these measurements.

132

Figure 7: Average times to recognize TCP packets with vari-
ous numbers of source hosts. Lower numbers are better.

Figure 8: Average times to recognize TCP packets with vari-
ous numbers of independent predicates. Lower numbers are
better.

the effectiveness of our optimization algorithms and JIT assembler.
The speedup due to optimization alone varies from 1.3x to 2x for
unoptimized code, and from zero to 1.4x for optimized code. The
speedup due to the JIT assembly by itself varies from 3.9x to 6.6x
for unoptimized code, and from 3.3x to 5x for optimized code.

When we look at the non-independent predicates, we see a more
dramatic story. The unoptimized, interpreted filter shows striking
evidence of the naive code generation’s production of redundant
predicates. The optimized, interpreted filter strips out almost all
of these redundancies. The trends for both assembled filters are
the same as the interpreted filters, but the overall running time is
much improved. The speedup due to optimization varies from 1. lx
to 8.6x for interpreted code, and from 1.2x to 5.2x for assembled
code, while the speedup due to assembly runs from 4. lx to 5.5x for
unoptimized code, and from 2.6x to 4.9x for optimized code.

Even though the improvement for non-independent predicates
is more dramatic than for independent predicates, their use in com-
bination more accurately reflects the type of filters used by the net-
work community. For example, on two large (27 and 29 predicates)
filters used daily by Vern Paxson at Lawrence Berkeley National
Laboratory, we see speedups of 32x and 36x between unoptimized,

Figure 9: Average times to recognize TCP packets with vari-
ous numbers of source hosts. Lower numbers are better.

interpreted code and optimized, assembled code.
Overall, our measurements indicate that optimization is an im-

portant factor in packet filter performance, especially when com-
piled from a high-level source language such as the one for BPF+.
The template-matching heuristics that PathFinder and DPF use are
effective in discovering lookup tables when filters are written in a
low-level way, but they will not work for more general filters. We
had hoped to compare our results to those reported by the current
state-of-the-art, DPF, but did not have access to their experimental
data or their platform. However, if we account for differences in
processor speed, our data suggests that the performance is similar.

9 Future Work and Summary

There are several different directions to explore in future develop-
ment of BPF+. We have chosen to use a high-level functional pred-
icate language based on tc@mp; we could add primitives that side
effect the store to implement user-level state variables and enable
user-level demultiplexing. We might also add the ability to specify
large tables of packet information to be matched in a filter. We did
not optimize our implementation for fast compilation; thus, BPF+‘s
support of online updates to packet filters is limited.

In the BPF+ virtual machine instruction set, we would like to
add the ability to use backward branches, in order to allow loops in
the code. This would provide the ability to parse IPv6 “extension
headers” as well as the ability to implement other, more general
control structures. Not only would this change have an impact on
the implementation of our optimization algorithms, but it would
also impact the ability of the safety verifier to ensure that code mi-
grated across the protection boundary does not enter into an infinite
loop. Necula’s proof-carrying code work [181 appears to be a suit-
able framework in which to define and enforce a semantics for the
protected execution of more general packet filters.

BPF+ packet filters currently return a boolean true or false value.
Some users have expressed interest in a more complicated return
result that indicates which of the predicates in the filter matched
the packet. This is a hard problem because the code generator cre-
ates many more predicates than are specified by the user. After
passing through the optimizer, there may not even be a mapping
from the resulting predicate expression back to the user-specified
expression. However, for many purposes, just knowing selected in-
formation about the packet may suffice, e.g. in an intrusion detector
that uses many different ways to detect intruders, if a packet source

133

matches the source found in a large intruder table, we might just
want to know the packet’s source address, and not care about any
of the other predicates that may have matched.

Our experience with BPF+ has shown that you can start with
a high-level language and can compile and optimize packet filters
into an efficient implementation. Through the novel application of
the “redundant predicate elimination” global data-flow optimiza-
tion, our high-level boolean predicate language can be compiled,
optimized, and JIT assembled into code that performs as well or
better than the current state-of-the-art packet filter packages.

10 Acknowledgements

The authors thank Jeff Mogul and our anonymous reviewers for
their detailed and insightful feedback. The original BPF archi-
tecture and optimization framework benefited from many fruitful
design discussions with Van Jacobson, Vern Paxson, and Craig
Leres. This early work, conducted at the Lawrence Berkeley Na-
tional Laboratory, was supported by the Director, Office of Energy
Research, Scientific Computing Staff, of the U.S. Department of
Energy under Contract No. DE-AC03-76SFOOO98. The later work
was supported in part by DARPA contract no. F30602-95-C-0136,
by NSF Infrastructure Grant Nos.CDA-9401156 and EIA-9802069,
and by a grant from Intel. The information presented here does not
necessarily reflect the position or the policy of the Government and
no official endorsement should be inferred.

References

111

PI

131

[41

[51

if51

171

[81

[91

Alfred Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, Reading,’
MA, 1986.

Mary L. Bailey, Burra Gopal, Michael A. Pagels, and Larry L.
Peterson. PATHFINDER: A pattern-based packet classifier. In
Proceedings of the First USENIX Symposium on Operating
Systems Design and Implementation, pages 1 15-l 23, Mon-
terey, CA, November 1994.

G. J. Chaitin. Register allocation and spilling via graph col-
oring. In Proceedings of the ACM SIGPLAN ‘82 Symposium
on Compiler Construction, pages 98-105, 1982.

J. Cocke and J. Schwartz. Programming Languages and Their
Compilers. NYU, Courant Inst., TR., Second Revised Ver-
sion, April 1970.

J. R. B. Cockett and J. A. Herrera. Decision tree reduction.
Journal of the ACM, 37(4):815-842, October 1990.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark K. Weg-
man, and F. Kenneth Zadeck. An efficient method of com-
puting static single assignment form. In 16th Annual ACM
Symposium on Principles of Programming Languages, pages
25-35, 1989.

Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, flex-
ible message demultiplexing using dynamic code generation.
In Proceedings of ACM SIGCOMM ‘96, pages 53-59, Stan-
ford, CA, August 1996.

Susan L. Graham and Mark Wegman. A fast and usually lin-
ear algorithm for global flow analysis. Journal of the ACM,
23(1): 172-202. January 1976.

Norman C. Hutchinson and Larry L. Peterson. The x-Kernel:
An architecture for implementing network protocols. IEEE
Transactions on Sof+ware Engineering, 17(1)&l-76, January
1991.

[lOI

1111

1121

iI31

1141

u51

[I61

[I71

[ISI

1191

PO1

WI

WI

P31

v41

L. Hyafil and R. L. Rivest. Constructing optimal binary de-
cision trees is NP-complete. Information Processing Letters,
5(1):15-17, May 1976.

Van Jacobson, Craig Leres, and Steven McCanne. pcap(3).
Available via ftp from f tp . ee . lb1 . gov, June 1989.

Van Jacobson, Craig Leres, and Steven McCanne. tcp-
dump(I). Available via ftp from f tp. ee . lb1 . gov, June
1989.

Mahesh Jayaram and Ron K. Cytron. Efficient demultiplex-
ing of network packets by automatic parsing. In Proceedings
of the Workshop on Compiler Support for System Sofrware
(WCSSS), Tucson, AZ, February 1996.

T.V. Lakshman and D. Stiliadis. High speed policy-based
packet forwarding using efficient multi-dimensional range
matching. In Proceedings of SIGCOMM ‘98, September
1998.

Steven McCanne and Van Jacobson. The BSD packet filter:
A new architecture for user-level packet capture. In Proceed-
ings of the 1993 Winter USENIX Technical Conference, pages
259-269, San Diego, CA, January 1993.

Jeffrey C. Mogul, Richard F. Rashid, and Michael J. Accetta.
The packet filter: An efficient mechanism for user-level net-
work code. In Proceedings of I Ith ACM Symposium on Oper-
ating Systems Principles, pages 39-51, Austin, TX, Novem-
ber 1987.

Frank Mueller and David B. Whalley. Avoiding unconditional
jumps by code replication. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
322-330, June 1992.

George C. Necula and Peter Lee. Safe kernel extensions with-
out run-time checking. In Proceedings of the Second Sympo-
sium on Operating System Design and Implementation, Seat-
tle, Wa., October 1996.

Vem Paxson. Bro: A system for detecting network intruders
in real-time. In Proceedings of the Seventh USENIX Securio
Symposium, San Antonio, TX, January 1998.

V. Srinivasan, George Varghese, Subash Suri, and Marcel
Waldvogel. Fast scalable algorithms for level four switching.
In Proceedings of SIGCOMM ‘98, September 1998.

G.R. Uh and D. B. Whalley. Coalescing conditional branches
into efficient indirect jumps. In Proceedings of the Interna-
tional Static Analysis Symposium, pages 315-329, September
1997.

Mark N. Wegman and Kenneth Zadeck. Constant propagation
with conditional branches. ACM Transactions on Program-
ming Languages and Systems, 13(2):181-210, April 1991.

Minghui Yang, Gang-Ryung Uh, and David B. Whalley. Im-
proving performance by branch reordering. In Proceedings
of the ACM SIGPLAN’98 Conference on Programming km-
guage Design and Implementation (PLDI), pages 130-141,
Montreal, Canada, June 1998.

Masanobu Yuhara, Brian Bershad, Chris Maeda, and
J. Eliot B. Moss. Efficient packet demultiplexing for multi-
ple endpoints and large messages. In Proceedings of the 1994
Winter USENIX Technical Conference, pages 153-165, San
Francisco, CA, January 1994.

134

