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Abstract 

The conventional approach to routing in computer networks con- 
sists of using a heuristic to compute a single shortest path from 
a source to a destination. Single-path routing is very responsive 
to topological and link-cost changes; however, except under light 
traffic loads, the delays obtained with this type of routing are far 
from optimal. Furthermore, if link costs are associated with dc- 
lays, single-path routing exhibits oscillatory behavior and becomes 
unstable as traffic loads increase. On the other hand, minimum- 
delay routing approaches can minimize delays only when traffic is 
stationary or very slowly changing. 

We present a “near-optimal” routing framework that offers de- 
lays comparable to those of optimal routing and that is as flexible 
and responsive as single-path routing protocols proposed to date. 
First, an approximation to the Gallager’s minimum-delay routing 
problem is derived, and then algorithms that implement the ap- 
proximation scheme are presented and verified. We introduce the 
first routing algorithm based on link-state information that provides 
multiple paths of unequal cost to each destination that are loop-free 
at every instant. We show through simulations that the delays ob- 
tained in our framework are comparable to those obtained using the 
Gallager’s minimum-delay routing. Also, we show that our frame- 
work renders far smaller delays and makes better use of resources 
than traditional single-path routing. 

1 Introduction 

The standard approach to routing in computer networks today con- 
sists of computing a single shortest path from a source to each des- 
tination using some heuristic link-cost metric, which is typically 
not directly associated with the transmission and queueing delays 
over links and paths. A less common approach to routing is that 
of defining the routing problem as an optimization problem (e.g., 
multicommodity problem [5]) with a specific objective function, 
such as minimizing delays or maximizing throughput, and solving 
the problem using any of several known optimization techniques. 
These two traditional approaches to routing have inherent strengths 
and drawbacks. 

In order to provide minimum delays, all optimal routing algo- 
rithms require the input traffic and the network topology to be sta- 
tionary or very slowly changing (quasi-static), and require a pri- 
ori knowledge of global constants that guarantee convergence of 
the routing algorithm. This makes optimal routing algorithms im- 
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practical for real networks, because in real networks traffic is very 
bursty at any time scale and the network topology frequently expe- 
rience changes. Morcovcr, defining global constants that work for 
all input traffic patterns are impossible to determine. 

On the other hand, routing algorithms based on single shortest- 
path heuristics adapt very quickly to changing network conditions, 
making them far more preferable than optimal routing for imple- 
mentation in real networks. The main shortcoming of single shortest- 
path routing is that the delays achievable with such heuristics are 
far longer than those achievable using optimal routing algorithms. 
In addition, single-shortest-path routing becomes unstable under 
heavy loads or very bursty traffic when the link cost metric used in 
the routing algorithm is related to the delays or congestion experi- 
enced over the links [3]. 

The fact that shortest-path routing over single paths is far less 
efficient than optimal dynamic routing and the oscillatory behavior 
of shortest-path routing when link costs are tied to link delays has 
been known for many years. However, implementing optimal dy- 
namic routing in a computer network has simply been infeasible to 
date. The key contributions of this paper consist of: (a) introducing 
a new framework for near-optimum delay routing; (b) verifying, 
for the first time, a set of invariants that permit routing-algorithm 
designers to approximate Gallager’s necessary and sufficient condi- 
tions for minimum-delay routing with loop-free routing conditions 
that can be achieved using distributed routing algorithms that do 
not require any global variables or global synchronization; and (c) 
showing an example that provides end-to-end delays that are com- 
parable to the optimal, while being as fast as today’s shortest-path 
routing schemes. 

Section 2 presents the minimum-delay routing problem (MDRP) 
as described by Gallager, and Gallagcr’s minimum-delay routing 
algorithm [8]. Gallager’s algorithm is unsuitable for practical net- 
works and internetworks, because its speed of convergence to the 
optimal routes depends on a global constant, and because it requires 
that the input traffic and network topology be stationary or quasi- 
stationary. 

Several algorithms have been proposed to date that improve 
over Gallager’s minimum-delay routing algorithm 12, 6, 23, 241. 
Seeall and Sidi 123. 241 extended Gallager’s minimum-delay rout- 
ingalgorithm to handle topological changes using techniques de- 
veloped by Merlin and Segall [19]. Cassandras et al. [6] present 
a better technique for measuring marginal delays. Bertsekas and 
Gallager [2] used second derivatives to speed up convergence of 
Gallager’s algorithm. However, all these algorithms are still depen- 
dent on global constants and the requirement that network traffic he 
static or quasi-static. 

Because of its oscillatory behavior when link costs are related 
to delays, attempts to improving shortest-path routing have been 
restricted mainly to using better link cost metrics (e.g., [l8, 131) 
or using multiple-paths. To avoid undetected loops, OSPF per- 
mits multiple paths to a destination only when they have the same 
length [20]. More recently, Zaumen and Garcia-Luna-Aceves 1271 
oronosed an algorithm based on distance vectors that supports mut- 
tiplk paths of unequal costs to each destination; however, link costs 
are not tied to delavs. Wang and Crowcroft 1261 addressed the 
drawbacks of the shortest-path first (SPF) algoriihm by using alter- 
nate paths to detour traffic around points of congestion or network 
failures. However, the alternate paths in SPF-EE (for emergency 
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exits) are computed on a reactive basis, i.e., once congestion oc- 
curs, which is less effective in dealing with short bursts of traffic. 

Cain et al. [4] describe a routing algorithm for minimizing de- 
lays. However, this algorithm requires that the routing-table up- 
dates at all the routers be synchronized, otherwise looping occurs, 
which increases end-to-end delays. Because the synchronization 
intervals required by this algorithm must be known by all routers, 
this is akin to using a global constant as in Gallager’s algorithm. 
This approach is not scalable to very large networks, because the 
time needed for routing-table update synchronization becomes large, 
and this in turn limits its responsiveness to short-term traffic fluc- 
tuations. What is seriously lacking in this algorithm is a technique 
for asynchronous computation of multiple paths with instantaneous 
loop-freedom. 

Section 3 presents a new framework for approximate solutions 
to MDRP The novelty of this framework stems from partitioning 
the computation of minimum-delay paths in two parts. First, mul- 
tiple loop-free paths of unequal cost to a destination are first es- 
tablished using long-term link-cost information. This is followed 
by the allocat&n oPflows to destinations along the multiple loop- 
free paths available at each router; such an allocation is based on 
heuristics that attempt to minimize delays using short-term Iink- 
cost information. It is this partitioning of MDRP that permits us 
to implement routing algorithms that provide routers with near- 
optimum delays while keeping the routing algorithm as responsive 
to traffic or topology changes as the best of today’s shortest-path 
routing algorithms. A set of invariants is also presented that per- 
mits Gallager’s necessary and sufficient conditions for minimum- 
delay routing to be approximated with loop-free routing conditions 
achievable with simple distributed routing algorithms that do not 
require any global variables or global synchronization. 

Section 4 describes a specific routing algorithm based on our 
new routing framework. This algorithm consists of two key compo- 
nents: (a) the first link-state routing algorithm that provides multi- 
ple loop-free paths of arbitrary positive cost at every instant, and (b) 
flow allocation heuristics that approximate minimum delays along 
the predefined multiple loop-free paths available for each destina- 
tion. 

Section 5 presents results of simulation experiments designed 
to illustrate the effectiveness of our solution in static and dynamic 
networks. We compare our approach against the optimal routing 
approach and shortest-path routing based on Dijkstra’s shortest- 
path first (SPF) algorithm, because it is used widely in the Internet 
today. The simulation results illustrate that the routing delays ob- 
tained with our new algorithm are comparable to the optimal de- 
lays. Furthermore, the complexity of implementing our routing 
framework is similar to the complexity of routing protocols that 
provide single-path routing in the Internet today. 

2 Minimum Delay Routing 

2.1 Problem formulation 

The minimum-delay routing problem (MDRP) was first formulated 
by Gallager [8], and we provide the same description in this sec- 
tion. A computer network G = (N, L) is made up of iV routers 
and L links between them. Each link is bidirectional with possibly 
different costs in each direction. 

Let r: 1 0 be the expected input traffic, measured in bits per 
second, entering the network at router i and destined for router j. 
Let tj be the sum of 3 and the traffic arriving from the neighbors 
of i for destination j. And let routing parameter 4jk be the fraction 
of traffic tf that leaves router i over link (i, k). Assuming that the 
network does not lose any packets, from conservation of traffic we 
have 

kCN’ 

where N’ is the set of neighbors of router i. 

(1) 

Let f;k be the expected traffic, measured in bits per second, on 
link (i, !c). Because tjq$k is the traffic destined for router j on link 
(i, k) we have the following equation to find fik. 

(2) 
jEN 

Note that 0 5 fib < Cik, where C;k is the capacity of link (i, k) 
in bits per second. 

Property 1 For each router i and destination j, the routing pa- 
rameters $jk must satisfy the following conditions: 

1. e$jk = 0 if (i, k) $ L or i = j. Clearly, if the link does not 
exist, there can be no trafic on it. 

2. $jk 2 0. This is true, because there can be no negative 
amount of trajfic allocated on a link. 

3’ I,,,; c#J~~ = 1. This is a consequence of the fact that all 
incoming trafJic must be allocated to outgoing links. 

Let Dik be defined as the expected number of messages or 
packets per second transmitted on link (i, k) times the expected 
delay per message or packet, including the queueing delays at the 
link. We assume that messages are delayed only by the links of 
the network and Die depends only on flow f;k through link (i, k) 
and link characteristics such as propagation delay and link capacity. 
Dik (fik) is a continuous and convex function that tends to infinity 
as fik approaches Cik. The total expected delay per message times 
the total expected number of message arrivals per second is given 
by 

DT = c Dik(fik) 

(i,k)EL 

(3) 

Note that the router traffic-flow set t = {tj} and link-flow set 
f = {fik} can be obtained from r = {ri} and 4 = {$jk}. There- 
fore, DT can be expressed as a function of r and 4 using Eqs. (1) 
and (2). The minimum-delay routing problem can now be stated as 
follows: 

MDRP: For a given fixed topology and input trafJicJlow set r = 
{r-j}. and delay function D;k(f;k) for each link (i, k), the mini- 
mization problem consists of computing the routing parameter set 
4 = {&i;.lc} such that the total expected delay DT is minimized. 

2.2 A Minimum Delay Routing Algorithm 

Gallager [8] derived the necessary and sufficient conditions that 
must be satisfied to solve MDRP. These conditions are summarized 
in Gallager’s Theorem stated below. 

The partial derivatives of the total delay, DT, of Eq.(3) with 
respect to T and 4 play a key role in the formulation and solution 
of the problem; these derivatives are: 

~DT 
i arj =c @jk [&(fik) + z] (4) 

kEN’ 3 

aDT aDT 

zg 
= $ [D:k(fik) +,=I 

3 

(5) 

where Dik(fik) = aDik(fik)/afik. and is called the marginal 
delay or incremental delay. 
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Similarly, aD~/arj is called the marginal distance from router 
i toj. 

Gallager’s Theorem [8]: The necessary condition for a minimum 
of & with respect to 4 for all i # j and (i, k) E L is 

(6) 

where Xij is some positive numbel; and the s@icient condition to 
minimize DT with respect to q5 is for all i # j and (i, k) E L is 

(7) 

Eq. (4) shows the relation between a router’s marginal distance 
to a particular destination and the marginal distances of its neigh- 
bors to the same destination. Eqs. (5)-(7) indicate the conditions 
for perfect loud balancing, i.e., when the routing parameter set C$ 
gives the minimum delay. 

The set of neighbors through which router i forwards traffic 
towards j is denoted by Sf and is called the successor set.’ 

Under perfect load balancing with respect to a particular desti- 
nation, the marginal distances through neighbors in the successor 
set are equal to the marginal distance of the router, and the marginal 
distances through neighbors not in the successor set are higher than 
the marginal distance of the router. 

Let 0: denote the marginal distance from i to j, i.e., a& / arj. 
Let the marginal delay Dik (f;k) from i to k be denoted by 1; which 
is also called the cost of the link from i to k. 

According to Gallager’s Theorem, the minimum delay routing 
problem now becomes one of determining, at each router i for each 
destination j: the routing parameters {&k), Sf and Df, such that 
the following five equations are satisfied: 

kEN’ 

s, = {kl(bjk > OAk E N”} 

(8) 

(9) 

Df 5 Dt+l; k E N’ (10) 

(Djp+l;) = (Dj4+1;) P,q E sf (11) 

(Dj”+Zf) < (Dj”+l;) p E sf q $! s, (12) 

This reformulation of MDRP is critical, because it is the first 
step in allowing us to approach the problem by looking at the next- 
hops and distances obtained at each router for each destination. 
Gallager [8] described a distributed routing algorithm for solving 
the above five equations. When the algorithm converges, the aggre- 
gate of the successor sets for a given destination j (Sj for every i) 
define a directed acyclic graph. In fact, in any implementation, Sf 
must be loop-free at every instant, because even temporary loops 
cause traffic to recirculate at some nodes and results in incorrect 
marginal delay computations, which in turn can prevent the algo- 
rithm from converging or obtaining minimum delays. 

Gallager’s distributed algorithm uses an interesting blocking 
technique to provide loop-freedom at every instant [8, 23, 241. We 
refer to this algorithm as OPT in the rest of the paper. Unfortu- 
nately, OPT cannot be used in real networks for several reasons. 
A major drawback of OPT is that a global step size 71 needs to be 
chosen and every router must use it to ensure convergence. Be- 
cause q depends on the input traffic pattern, it is impossible to de- 
termine one in practice that works for all input traffic patterns and 
for all possible topology modifications. The routing parameters 
are directly computed by OPT and the multiple loop-free paths are 

‘The term successor set was first introduced in [27]. 

simply implied by the routing parameters in Eq. (9). The computa- 
tion of routing parameters is, for all practical purposes, a very slow 
process as it is a destination-controlled process. The destination 
initiates every iteration that adjusts the routing parameters at every 
router; furthermore, each iteration takes a time proportional to the 
diameter of the network and number of messages proportional to 
number of links. This renders the algorithm slow converging and 
useful only when traffic and topology are stationary for times long 
enough for all routers to adjust their routing parameters between 
changes. Also, depending on the global constant 17, the destina- 
tion must initiate several iterations for the parameters to converge 
to their final values. The number of such iterations needed for con- 
vergence tends to be large for a small Q, and small for a large value 
of 6. Unfortunately, 71 &not be made arbitrarily large t6 reduce 
the number of iterations and to speed up convergence, because the 
algorithm may not converge at all for large values of 77. 

Hence, Gallager’s algorithm can be viewed only as a method 
for obtaining lower bounds under stationary traffic, rather than as 
an algorithm to be used in practice. The next section shows how 
the theory introduced in the Gallager’s method can bc adapted to 
practical networks. 

3 A New Framework for Minimum-Delay Routing 

We noted that in Gallager’s algorithm the computation of the rout- 
ing parameter set 4 is slow converging and works only in the case of 
stationary or quasi-stationary traffic. In the Jntemet, traffic is hardly 
stationary and perfect load balancing is neither possible nor neces- 
sary. Intuitively, an approximate load balancing scheme based on 
some heuristic which can quickly adapt to dynamic traffic should 
be sufficient to minimize delays substantially. 

The key idea in our approach is, in a sense, to reverse the way 
in which Gallager’s algorithm solves MDRP. The intuition behind 
our approach is that establishing paths from sources to destinations 
takes a much longer time than shifting loads from one set of neigh- 
bors to another, simply because of the propagation and processing 
delays incurred along the paths. Accordingly, it makes sense to first 
establish multiple loop-free paths using long-term (end-to-end) de- 
lay information, and then adjust routing parameters along the pre- 
defined multiple paths using short-term (local) delay information. 

This new approach allows us to attempt to use distributed algo- 
rithms to compute multiple loop-free paths from source to destina- 
tion that, hopefully, are as fast as today’s single-path routing algo- 
rithms, and local heuristics that can respond quickly to temporary 
traffic bursts using local short-term metrics alone. Thcrcfore, we 
map Eqs. (8)-( 12) derived in Gallager’s method into the following 
three equations: 

Dj = min{Df +Zilk E N’} (13) 

S; = {klDjk<D;AkEN’} (14) 

& = Q?(k,A;, B;) k eNi (15) 

where Af = (0; + 161~ E N’} and Bj = {&Ip E N”}. 
These equations simply state that, for an algorithm to approxi- 

mate minimum-delay routing, it must establish loop-free paths and 
use a function @ to allocate flows over those paths. We observe that 
Eq. (13) is the well-known Bellman-Ford (BF) equation for com- 
puting the shortest paths, and Eq. (14) is the successor set consist- 
ing of the neighbors that arc closer to the destination than the router 
itself. Note that the paths implied by the neighbors in the successor 
set of a router need not be of the same length. The function @ in 
Eq. (15) is a heuristic function that determines the routing parame- 
ters. Because changing the routing parameters effects the marginal 
delay of the links (hence link-costs), we use regular updates of the 
link costs. 

The main problem with attempting to solve MDRP using Eqs. 
(13) to (15) directly is that these equations assume that routing in- 
formation is consistent throughout the network. In practice, a node 
(router) must choose its distance and successor set using routing in- 
formation obtained through its neighbors, and this information may 



be outdated. At any time t, for a particular destination j, the succcs- 
sor sets of all nodes define a routing graph SGj (t) = {(m, n)ln E 
Sjm (t), m E N}. In single-path routing, Sj (t) has at most one 
neighbor: the neighbor that is on the shortest path to destination j. 
Accordingly, SGj (t) for single-path routing is a sink-tree rooted at 
j if loops are never created. The routing graph SGj (t) in our case 
should be a directed acyclic graph in order for minimum delays to 
be approached. 

The blocking technique used in Gallager’s algorithm ensures 
instantaneous loop-freedom. Likewise, to provide loop-free paths 
even when the network is in transient state within the context of our 
framework, additional constraints must be imposed on the choice of 
successors at each router, which essentially must preclude the use 
of neighbors that may lead to looping. 

Several algorithms have been proposed in the past to provide 
loop-free paths at every instant for the case of single-path routing 
(e.g., the Jaffe-Moss algorithm [ 151, DUAL [9], LPA [ 111, and the 
Merlin-Segall algorithm [19]) and one algorithm, DASM, has been 
proposed for the case of multiple paths per destination [27]. All 
these algorithms are based on the exchange of vectors of distances, 
together with some form of coordination among routers spanning 
one or multiple hops. The coordination among routers determines 
when the routers can update their routing tables. This coordina- 
tion is in turn guided by local conditions that depend on values of 
reported distances to destinations and that are sufficient to prevent 
loops from occurring. 

We generalize the work to date on loop-free routing over single 
paths or multiple paths by means of the following loop-free invari- 
ant (LPI) conditions, which are applicable to any type of routing 
algorithm. We adopt the same terminology and nomenclature first 
introduced for DUAL [9] to describe the LFI conditions. 

Loop-free Invariant (LFI) conditions: Any routing algorithm de- 
signed such that the following two equations are always satisjed, 
automatically provides loop-free paths at every instant, regardless 
of the &pe of routing algorithm being used: 

FD; 5 Djki k E Ni (16) 

Sj = {kIDjk<FD;AkENi} (17) 

where Dflc is the value of 0; reported to i by its neighbor k; and 
FDj is called the feasible distance of router i for destination j and 
is an estimate of Df , in the sense thut FD; equals Dj in steady 
state but is allowed to differ from it temporarily during periods of 
network transitions. 

In link-state algorithms, the values of Djk are determined lo- 
cally from the link-state information supplied by the router’s neigh- 
bors; in contrast, in distance-vector algorithms, the distances are 
directly communicated among neighbors. The following theorem 
verifies this key result of our framework. 

Theorem 1 If the LFI conditions are satisfied at any time t, the 
routing graph SGj (t) implied bs the successor sets Sj (t) is loop- 
free. 

Proof: Let k E S;(t) then from Eq. (17) we have 

Df,Jt) < FDf(t) (18) 

At router k, because router i is a neighbor, from Eq. (16) we 
have FDjk(t) 6 D,ik(t). Combining this result with Eq. (18) we 
obtain 

FDjk(t) < FD;(t) (19) 

Eq. (19) states that, if k is a successor of router i in a path to 
destination j, then k’s feasible distance to j is strictly less than the 
feasible distance of router i to j. Now, if the successor sets define a 

loop at time t with respect to j, then for some router p on the loop, 
we arrive at FDjP(t) < FDjP(t), an absurd relation. Therefore, the 
LFI conditions are sufficient for loop-freedom. 0 

With the result of Theorem 1, Eq. (14) can be approximated 
with the LFI conditions to render a routing approach that does not 
require routing information to be globally consistent, at the expense 
of rendering delays that may be longer than optimal. Accordingly, 
our framework for near-optimum-delay routing lies in finding the 
solution to the following equations using a distributed algorithm: 

0; = min(Df + ZiJk E N’} wo 
FDj 5 Dj” k E N” (21) 

57; = (kIDjI,<FDjAkENi} (22) 

4jlc = Q’(k, {D; + $1~ E N’}, {&lp E N’}) k E N’ (23) 

4 Implementing Near-Optimum-Delay Routing 

We present an approach based on link-state information, rather than 
distance information, because extending our results to minimum- 
delay routing with additional constraints can be done more effi- 
ciently by working with link parameters than path parameters, which 
are the combination of link parameters. Our approach consists of 
three components: computing multiple loop-free paths, distributing 
traffic over such paths, and computing link costs. 

4.1 Computing Multiple Loop-free Paths 

We describe the computation of multiple loop-free paths in two 
parts: computing Dj using a shortest-path algorithm based on link- 
state information, and computing Sj by extending that algorithm to 
support multiple successors along loop-free paths to each destina- 
tion. 

4.1.1 Computing 0: 

There are many distributed algorithms for computing shortest paths, 
and any of them can be extended to provide multiple paths of equal 
and unequal costs as long as the extension obeys the LFI conditions 
introduced in the previous section. 

The partial-topology dissemination algorithm (PDA) propagates 
enough link-state information in the network, so that each router 
has suficient link-state information to compute shortest paths to all 
destinations. In this respect, it is similar to other link-state algo- 
rithms (e.g., OSPF [20], SPTA [25], LVA [lo], ALP [12]). PDA 
combines the best features of LVA, ALP and SPTA. As in LVA and 
ALP, a router communicates to its neighbors information regarding 
only those links that are part of its minimum-cost routing tree, and 
liki SPT+, a router validates link information based on distances to 
heads of lmks and not on sequence numbers. 

PDA assumes that a rotiter detects the failure, recovery and 
link-cost change of an adjacent link within a finite amount of time. 
An underlying protocol ensures that messages .transmitted over an 
operational link are received correctly and in the proper sequence 
within a finite time and are processed by the router one at a time in 
the order received. These are the same assumptions made for simi- 
lar routing algorithms and can be easily satisfied in practice. Each 
router i running PDA maintains the following information: 

The main topology table, T’, stores the characteristics of 
each link known to router i. Each entry in Ti is a triplet 

h is the head, t is the tail and d is the cost of 

The neighbor topology table, TL, is associated with each 
neighbor k. The table stores the link-state information com- 
muiicated by the neighbor k. That is, Ti is a time-delayed 
version of T”. 
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procedure INIT-PDA 
(Invoked when the router comes up.} 
begin 

Initialize all tables; 
call PDA; 

end INIT-PDA 

procedure PDA 
(Executed at euch router i. Invoked when on event occurs} 
begin 

(1) call NTU; 
(2) call MTU; I* Updates T’ *I 
(3) if (them are changes to T’) then 

Compose an LSU message consisting of topology 
differences using add, delete 
and change link entries; 

endif 
(4) Within a finite amount time, send the 

LSU message to all neighbors; 
end PDA 

Figure 1: The Partial-topology Dissemination Algorithm 

3. The distance table stores the distances from router i to each 
destination based on the topology in T’ and the distances 
from each neighbor k to each destination based on the topolo- 
gies in Ti for each k. The distance of router i to node j in Ti 
is denoted by Dj; the distance from k to j in Tj is denoted 
by D;,. 

4. The routing table stores, for each destination j, the succes- 
sor set Sj and the feasible distance FDf , which is used by 
MPDA to enforce LFl conditions. 

5. The link table stores, for each neighbor k, the cost 1: of the 
adjacent link to the neighbor. 

The unit of information exchanged between routers is a link- 
state update (LSU) message. A router sends an LSU message con- 
taining one or more entries, with each entry specifying addition, 
deletion or change in cost of a link in the router’s main topology 
table T’. Each entry of an LSU consists of link information in the 
form of a triplet [h, t, d] where h is the head, t is the tail, and d is the 
cost of the link h + t. An LSU message contains an acknowledg- 
ment (ACK) flag for acknowledging the receipt of an LSU message 
from a neighbor (used only by MPDA). 

The INIT-PDA procedure in Fig. 1 initializes the tables of a 
router at startup time; all variables of type distance are initialized 
to infinity and those of tvne node are initialized to null. All suc- 
cessor sets are initialized io the empty set. PDA is executed each 
time an event occurs; an event can be either a receipt of an LSU 
message from a neighbor or the detection of an adjacent link-cost 
change. Procedure NTU (Neighbor Topology Table Update) shown 
in Fig. 2 is used to process the received message and update the nec- 
essary tables. Procedure MTU in Fig. 3 constructs the router’s own 
shortest path tree from the topologies reported by its neighbors. 
The new shortest-path tree obtained is compared with the previous 
version to determine the differences; only the differences are then 
reported to the neighbors. The router then waits for the next event 
and, when it occurs, the whole process is repeated. 

The algorithm MTU at router i merges the topologies TL and 
the adjacent links I; to obtain Ti. The merge process is straight- 
forward if all neighbor topologies contain disjoint sets of links, but 
when two or more neighbors report conflicting information regard- 
ing a particular link, the conflict has to be resolved. Sequence num- 
bers may be used to distinguish between old and new link infotma- 
tion as in OSPF, but PDA resolves the conflict as follows. If two or 
more neighbors report information of link (m, n) then the router i 
should update topology table T’ with link information reported by 

procedure NTU 
begin 

(1) if (LSU message is received from a neighbor k) then 
(la) Update neighbor table Ti. That is, add links, 

delete links or change links according to the 
specification of each entry in the LSU; 

(I b) Run Dijkstra’s shortest path algorithm 
on the resulting topology TL ; /*This results in 
finding minimum distances from k to all other 
nodes in TL . Note Ti is a tree*/ 

(Ic) Update Di, with new distances in Ti ; 
endif 

(2) if (adjacent link (i, k) is up) then 
Update 1; and send an LSU message to the 
neighbor k with link information of all links in 
its main topology table T’; 

endif 
(3) if (cost of an adjacent link (i, Ic) changed)tben 

Update Ii ; 
endif 

(4) if (adjacent link (i, k) failed)tben 
Update 1; and clear the table TL ; 

endif 
end NTU 

Figure 2: Neighbor Topology Table Update algorithm 

the neighbor that offers the shortest distance from the router i to the 
head node m of the link. Ties are broken in favor of neighbor with 
the lowest address. For adjacent links, router i itself is the head of 
the link and thus has the shortest distance. Therefore, any informa- 
tion about an adjacent link supplied by neighbors will be overridden 
by the most current information about the link available to router 
i. Dijkstra’s shortest path algorithm is run on T’ and only the links 
that constitute the shortest-path tree are retained. Note that, be- 
cause there are potentially many shortest-path trees, ties should be 
broken consistently during the run of Dijkstra’s algorithm. 

In what follows, we show that PDA works correctly by showing 
that the topology tables at all nodes converge to the shortest paths 
within a finite time after the last link cost change in the network. 
After convergence, because there are no more changes to the topol- 
ogy tables, no more LSU messages are generated. 

Dejnitions: The n-hop minimum distance of router i to node j 
in a network is the minimum distance possible using a path of n 
links or less. A path that offers the n-hop minimum distance is 
called n-hop minimum path. If there is no path with n hops or less 
from router i to j then the n-hop minimum distance from i to j is 
undefined. An n-hop minimum tree of a node i is a tree in which 
router i is the root and all paths of n hops or less from the root to 
any other node is an n-hop minimum path. Note that there could 
be more than one n-hop minimum tree. 

Let G denote the final topology of the network after all link 
changes occurred as seen by an omniscient observer; we use bold 
font to refer to all quantities in G. Let HL denote an n-hop min- 
imum tree rooted at router i in G and let v$ be the set of nodes 
that are within n hops from i in HL. Let DhJ denote the distance 
of i to j in Hh. Let dtj be the cost of the link i + j. The notation 
i - j indicates a path from i to j of zero or more links. 

Property 2 From the principle of optimality (a sub-path of a short- 
est path between two nodes is also a shortest path between the end 
nodes of the sub-path), if H and H’ are two n-hop minimum trees 
rooted at router i and M and M’ are sets of nodes that are within 
n hops from i in H and H’ respectively, then M = M’ = ML. 
Also, for each j E Mh the length of path i - j in both H and H’ 
is equal to Dy. Also, Dy 5 DLd if h 2 n. 
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procedure MTU at router i 
begin 

(1) oldT’ t T’ ;I* Save copy *I 
(2) if (node j occurs in at least one of T,$ then 

add j to the main topology table T* ; 
endif 

(3) foreach node j in T’ do 
MIN +- min{Djk + lL\k E Ni}; 
let p be such that MIN = (Dj, + 16); 
/* Neighbor p is the preferred neighbor for 
destination j. Ties are broken in favor of 
lower address neighbor *I 

done 
(4) foreach j in T’ and its preferred neighbor p do 

Copy all links (j, n) from Tj to T’; 
I* i.e., copy all links in Tj for which 
j is the head node */ 

done 
(5) Update T’ with information of each Ii; 
(6) Run Dijkstra’s shortest path algorithm on T’ 

and remove those links in T’ that are not 
part of the shortest path tree; 

(7) Update Dj with new distances in Ti; 
(8) Compare 01dT’ with T’ and note all differences; 

end MTU 

Figure 3: Main Topology Table Update Algorithm 

We say a router i knows at feast the n-hop minimum tree, if the 
tree represented by its main topology table 2” is at least an n-hop 
minimum tree rooted at i in G and there are at least 12 nodes in Ti 
that are reachable from the root i. Note that the links in T’ that are 
more than n hops may have costs that do not agree with the link 
costs in G. 

Lemma 1 If a router i has the jnal correct costs of the adjacent 
links andfor each neighbor k the topology Ti is an n-hop minimum 
tree, then the topology T’ is (n + l)-hop minimum tree after the 
‘execution of MTU. 

Proof: The proof is presented in the Appendix. q 

Theorem 2 At each router i, the main topology T’ gives the cor- 
rect shortest paths to all known destinations a finite time after the 
last change in the network 

Proofi The proof is by induction on t,, the global time when 
for each router i, Ti is at least n-hop minimum tree. Because the 
longest loop-free path in the network has at most N - 1 links where 
N is number of nodes in the network, tlv- 1 is the time when every 
router has the shortest path to every other node. We need to show 
that tN-1 is finite. The base case is tl, the time when every node 
has l-hop minimum distance and because the adiacent link changes 
are notified within finite time, tl < co. Let i,, < co for some 
n < N. Given that the propagation delays are finite each router 
will have each of its neighbors n-hop minimum tree in finite time 
after tn. From Theorem 1 we can see that the router will have 
at least the (n + l)-hop minimum tree within a finite time after 
t,. Therefore, tn+l < co. From induction, we can conclude that 
tlv-1 < co. 0 

4.1.2 Computing Sj 

The LFI conditions introduced in Section 3 suggest a technique for 
computing Sj such that the implied routing graph SGj is loop- 
free at every instant. To determine FDj in Eq.( 16), router i needs 
to know 0:;. the distance from i to node j in the topology table 

procedure MPDA at router i 
{invoked when an event occurs} 
begin 

(I) call NTU; 
(2) if (node is in PASSIVE state) then 

(2a) call MTU; /* update Ti and Di *I 
(2b) FD: t min{FDj, Dj}; 

endif 
(3) if (node is in ACTIVE state and the 

last ACK is received) then 
(3a) tempj t Dj ; Set node to PASSIVE state; 
(3b) call MTU to update T’; 
(3~) FD: t min{tempj, Dj} 

endif 
(4) Sf t {“ID& < FD;:}; 
(5) if (changes occur in T*)then 

Set node to ACTIVE state; 
endif 
if (no changes occur in Ti and the event is 

the last ACK) then 
Set node to PASSIVE state; 

endif 
(6) if (there are changes to T’) then 

Compose a new LSU with the topology 
changes expressed as udd link, 
delete link and clrccnge link; 

endif 
(7) if (input event received is an LSU message)then 

Add the ACK entry to newly composed LSU; 
endif 

(8) Send the new LSU message. 
end MPDA 

Figure 4: Multiple-path Partial-topology Dissemination Algorithm 
(MPDA) 

T/. Because of propagation delays, there may be discrepancies 
between the main topology table Ti at router i and its copy Tt 
at the neighbor k. However, at time t, the topology table TF is a 
copy of the main topology table Ti at some earlier time t’ < t. 
Logically, if a copy of 0: is saved each time an LSU is sent, a 
feasible distance FDj that satisfies the LFI conditions can be found 
in the history of values of Dj that have been saved! 

The multiple-path partial-topology dissemination algorithm, or 
MPDA, shown in Fig. 4 is a modification of PDA that enforces the 
LFI conditions by synchronizing the exchange of LSUs between 
neighbors. In MPDA, each LSU message sent by a router is ac- 
knowledged by all its neighbors before the router sends the next 
LSU. The inter-neighbor synchronization used in MPDA spans only 
a single hop, unlike the synchronization in diffusing computations 
[7] which potentially spans the whole network. A router is said 
to be in ACTIVE state when it is waiting for its neighbors to ac- 
knowledge the LSU message it sent; otherwise, it is in PASSIVE 
state. 

Assume that, initially, all routers are in PASSIVE state with 
all routers having the correct distances to all destinations. Then a 
series of link co; changes occurs in the network resulting in some 
or all routers to go through a sequence of PASSIVE-to-ACTIVE 
and ACTIVE-to-PASSIVE state transitions, until all routers be- 
come PASSIVE with correct distances to destinations. 

If a router in a PASSIVE state receives an event that does not 
change its topology T’, then the router has nothing to report and 
remains in PASSIVE state. However, if a router in PASSIVE 
state receives an event that affects a change in its topology, the 
router sends those changes to its neighbors, goes into ACTIVE 
state and waits for ACKs. Events that occur during the ACTIVE 
period are processed to update TL and 1: but not Ti; the updating 
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Figure 5: Active-passive phase transitions in MPDA. 

of T’ by MTU is deferred until the end of the ACTIVE phase. 
At the end of the ACTIVE phase, when ACKs from all neighbors 
are received, router i updates T’ with changes that may have oc- 
curred in TL due to events received during the ACTIVE phase. If 
no changes occurred in T’ that need reporting, then the router be- 
comes PASSIVE; otherwise, as shown in Fig. 5, there are changes 
in T” that may have resulted due to events and the neighbors need 
to be notified. This results in a new LSU, and the router immedi- 
ately becoming ACTIVE again. In this case, there is an implicit 
PASSIVE period, of zero length of time, between two back-to- 
back ACTIVE periods, as illustrated in Fig. 5. A router i receiving 
an LSU message from L must send back an LSU with the ACK bit 
set after updating Ti. If the router does not have any updates to 
send, either because it is in ACTIVE state or because it does not 
have any changes to report, it sends back an empty LSU with just 
the ACK flar! set. When a router detects that an adiacent link failed. 
any pendin;ACKs from the neighbor at the othkr end of the link 
are treated as received. Because all LSUs are acknowledged within 
a finite time, no deadlocks can occur. 

The following theorem proves that MPDA provides loop-free 
multipaths at every instant. 

Theorem 3 (Safety property) At any time t, the directed graph 
SGj (t) implied by the successor sets Sj (t) computed by MPDA 
at each router is loop-free. 

Pro08 The proof is presented in the Appendix, and is based on 
showing that FDj and Sj, as computed by MPDA, satisfy the LFI 
conditions. 0 

Theorem 4 (Liveness property) A finite time after the last change 
in the network, Dj gives the correct shortest distance and 

5’; = {klDjk < Dj, k E N’} at each router i 

Proof: The convergence of MPDA follows directly from the 
convergence of PDA, because the update messages in MPDA are 
only delayed a finite time as allowed in line 4 in algorithm PDA. 
Therefore, the distances 0: in MPDA also converge to shortest dis- 
tances. Because changes to Ti are always reported to the neighbors 
and are incorporated by the neighbors in their tables in finite time, 
Djk = 0: for k E N’ after convergence. From line 3c in MPDA, 
we observe that when router i becomes PASSIVE, and FD; = 0: 
holds true. Because all routers are PASSIVE at convergence time 
it follows that the set {klDjk < FDf , k E Ni} is the same as the 
set {klDj” < Dj, k E N’}. 0 

4.2 Distributing Traffic over Multiple Paths 

In general, the function Q can be any function that satisfies Prop- 
erty 1, but our objective is to obtain a function \k that performs 
load balancing that is as close as possible to perfect load balancing 
(Eqs.(lO)-(12)). 

procedure IH 
begin 

(1)Vk~Sj,~~,tO; 
(2) if (IS; 1 = 1) then 

Vk E Sj,q5& t 1; 
endif 

Vk E S;; 

cndif 
end IH 

Figure 6: Heuristic for initial load assignment. 

procedure AH 
begin 

(1) Dzi, e min{Dfk + 1; Ik E Sf}; 

(2) let D$, = (Djk, + Ii,); 
//That is, ko be the neighbor 
that offers this minimum) 

(3) foreach k E Sj do 
ai, .+ Di + 1” - D”i 

don: Ic 
jk k mm’ 

(4) A t amin{ $lk E 5’; A afk # 0); 

(4) foreach k # ko A k E Si do 
4j,tc$j,-Axa;,; 

(5) for k = k. do 
d;k +- $k +&S; A X a;,; 

2 
done 

end AH 

Figure 7: Heuristic for incremental load adjustment. 

The function @ should also be suitable for use in dynamic net- 
works, where the flows over links are continuously changing, caus- 
ing continuous link-cost changes. To respond to these changes, 
queueing delays at the links must be measured periodically and 
routing paths must be recomputed. However, re-computing paths 
frequently consumes excessive bandwidth and may also cause os- 
cillations. Therefore, routing-path changes should only be done 
at sufficiently long intervals. Unfortunately, a network cannot be 
responsive to short-term traffic bursts if only long-term updates 
are performed. For this reason, we use link costs measured over 
two different intervals; link costs measured over short intervals 
of length T, are used ior routing-parameter computation and link 
costs measured over longer intervals of length Tl are used for routing 
path computation [ 171. In general, Tl must be several times longer 
than T,. Long-term updates are designed to handle long-term traf- 
fic changes and are used by the routing protocol to update the suc- 
cessor sets at each router, so that the new routing paths are the short- 
est paths under the new traffic conditions. The short-term updates 
made every T, seconds are designed to handle short-term traffic 
fluctuations that occur between long-term routing path updates and 
are used to compute the routing parameters +jfk in Eq. (15) lo- 
cally at each router. Accordingly, our traffic distribution heuristics 
assume a constant successor set and successor graph. 

When ,I$ is computed for the first time or recomputed again due 
to long-term route changes, traffic should be freshly distributed. In 
this case, the allocation heuristic function @ is a function of only 
the marginal distances through the successor set. That is, Eq. (15) 
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reduces to the form {4jk} = rk(k, {Dj” + lk]p E N”}). When a 
new successor set Sj is computed, algorithm IH in Fig. 6 is first 
used to distribute traffic over the successor set [17]. Note that 
{$jk}, computed in IH, satisfy Property 1. Furthermore, when 
more than one successor is present, if Djp + 16 > D;,, + 16 for 
successors p and q, then & < &. The heuristic makes sense be- 
cause the greater the marginal d&y through a particular neighbor 
becomes. the smaller the fraction of traffic that is forwarded to that 
neighbor. 

After the first flow assignment is made over a newly computed 
successor set using algorithm IH, a different flow allocation heuris- 
tic algorithm AH shown in Fig. 7 is used to adjust the routing pa- 
rameters every T, seconds until the successor set changes again. 
The heuristic function \k computed in AH is incremental and, un- 
like IH, is a function of current flow allocation on the successor 
sets and the marginal distances through the successors. AH also 
preserves Property 1 at every instant.- In AH traffic is incremen- 
tally moved from the links with large marginal delays to links with 
the least marginal delay. The amount of traffic moved away from 
a link is proportional to how large the marginal delay of the link 
is compared to the best successor link. The heuristic tends to dis- 
tribute traffic in such a way that Eqs. (lo)-(12) hold true. This 
is important, because the initial distribution obtained by IH is far 
from being balanced. The computation complexity of the heuristic 
allocation algorithms is O(iV’). Because the heuristics are run for 
each active destination, the whole load-balancing activity is O(N). 

Unlike 7 in Gallager’s algorithm, Tl and T, are local constants 
that are set independently at each router. Convergence of our al- 
gorithm does not critically depend on these constants like optimal 
routing does on q. Also, Tl and T, need not be static constants 
and can be made to vary according to congestion at the router. The 
value of Tt. however. should be such that it is sufficientlv longer 
than the time it takes-for computing the shortest paths. The loig- 
term update periods should be phased randomly at each router, be- 
cause of the problems that would result due to synchronization of 
updates [3]. 

4.3 Computing Link Costs 

As mentioned earlier, the cost of a link is the marginal delay over 
the link D’(fik). 

If the links are assumed to behave like M/M/I queues, then the 
marginal delay D’ (f;k ) can be obtained in a closed form expression 
by differentiating the following equation [ 161. 

where fik is the flow through the link (i, !c), and cik and r;k 
are the capacity and propagation delay of the link. Because the 
M/M/l assumption does not hold in practice in the presence of 
very bursty traffic, and because Eq. (24) becomes unstable when 
$zi;E[;aches cik, an on-line estimation of the marginal delays is 

There are several techniques for computing marginal delays 
that are currentlv available (e.g.. 123. 22. 61). For the ourooses 
of simulations, we borrow a‘te&nIquk introduced by Caisandras, 
Abidi and Towsley [6] for on-line estimation of the marginal de- 
lay D’( fik). The technique uses perturbation analysis (PA) for the 
on-line estimation and is shown to perform better than the M/M/l 
estimation. In addition, the PA estimation does not require a priori 
knowledge of the link capacities. This is very significant, because 
the capacity available to best-effort traffic in real networks varies 
according to the capacity allocated to other types of traffic, such as 
real-time traffic. We must emphasize that our approach does not 
depend on which specific technique is used for marginal-delay es- 
timation, although some methods may be better than others. The 
convergence or stability of our routing algorithm does not depend 
on the specific technique used for marginal-delay estimation. 

Figure 8: Topologies used in simulations 

5 Simulations 

The simulations discussed in this section illustrate the effectiveness 
of our near-optimal framework, and demonstrate the significant im- 
provements achieved by our approach over single-path routing in 
static and dynamic environments. The delays obtained by opti- 
mal routing, single-path routing and our approximation scheme are 
compared under identical topological and traffic environments. The 
results show that the average delays achieved via our approxima- 
tion scheme are comparable (within a small percentage difference 
rather than several times difference) to the optimal routing under 
quasi-static environment and the same are significantly better than 
single-path routing in a dynamic environment. 

For optimal routing, we implemented the algorithm described 
by Gallager [8], and label it with ‘OPT’. The plots of our approx- 
imation scheme are labeled with ‘MP’. To obtain representative 
delays for single-path routing algorithms, we opted to restrict our 
multipath routing algorithm to USC only the best successor for packet 
forwarding, instead of simulating any specific shortest-path algo- 
rithm. Because of the instantaneous loop-freedom property that 
MPDA exhibits, the shortest-path delays obtained this way are bet- 
ter than or similar to the delays obtained with either EIGRP [I], 
which is based on DUAL and requires much more intemodal syn- 
chronization than our scheme, rendering longer delays, and RIP [ 141 
or OSPF [20], which do not prevent temporary loops. We use the 
label ‘SP’ for single-path routing in the graphs. 

We oerformed simulations on the tonolonies shown in Fig. 8. 
CAIRN’ (www.cairn.net) is a real network andNET is a con&ved 
network. We are only interested in the connectivity of CAIRN, 
and its topology as used differs from the real network in the ca- 
pacities and propagation delays assumed in the simulation experi- 
ments. We restricted the link capacities to a maximum of lOMbs, 
so that it becomes easy to sufficiently load the networks. NET1 
has a connectivity that is high enough to ensure the existence of 
multiple paths, and small enough to prevent a large number of one- 
hop paths. The diameter of NET1 is four and the nodes have de- 
grees between 3 and 5. In each network we setup flows between 
several source-destination pairs and measure the average delays of 
each flow. The flows in CAIRN are setup between these source- 
destination pairs: (lbl, mci-r),(netstar, isie), (isi, darpa), (part, sdsc), 
(sri, mit) ,(tioc, sdsc),(mit, sri),(isie, netstar), (sdsc, parc),(mci-r, 
tioc),(darpa, isi). For NET], the source-destination pairs are: (9,2), 
(8,3), (7,0), (61) (5,f99 (4?1), (3.,8). (2,9), (I&), (0,7). 

The flows have bandwidths m the range 0.2-1.0 Mbs. For sim- 
plicity, we used a stable topology (links or nodes do not fail) in 
all the simulations. In the presence of link failures, MP can only 
perform better than SP, because of availability of alternate paths. 
Furthermore, OPT is not fast enough to resuond to drastic topology 
changes. Because MP is parameteszed by the Tl and T, update iii- 
tervals. its delav olots are reoresented bv MP-TL-XX-TS-vv. where 
XX is the Tr update interval and yy is the T, update in&al mea- 
sured in seconds. Similarly, the delays of shortest-path routing are 
represented by SP-TL-XX, where xr is the Tl update period. 
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Figure 9: Delays of OPT and MP in CAIRN. 

Figure 10: Delays of OPT and MP in NETI, 

5.1 Performance under Stationary Traffic 

Fig. 9 shows the average delays of flows in CAIRN for OPT and 
MP routing. The flow IDS are plotted on the x-axis and average de- 
lays of the flows are plotted on the y-axis. Plot OPT-25 represents 
the 25% ‘envelope’, that is, the delays of OPT are increased by 
25% to obtain the OPT-25 plot. As can be seen, the average delays 
of flows under MP routing are within the OPT-25 envelope. Sim- 
ilarly, in Fig. 10, the delays obtained using MP routing for NET1 
are within 28% envelopes of delays obtained using OPT routing. 
We say delays of MP are ‘comparable’ to OPT if the delays of MP 
are within a small percent of those of OPT. 

Fig. 11 compares the average delays of MP and SP for CAIRN. 
We observe that the delays of SP for some flows are two to four 
times those of MP In Fig. 12, for NETl, MP routing performs 
even better; average delays of SP are as much as five to six times 
those of MP routing which is due to higher connectivity available 
in NETl. Also observe that, because of load-balancing used in MP, 
the plots of MP are less jagged than those of SP. MP routing per- 
forms much better than SP under high-connectivity and high-load 
environments. When connectivity is low or network load is light, 
MP routing cannot offer any advantage over SP 

Figure 11: Delays of MP and SP in CAIRN. 

Figure 12: Delays of MP and SP in NETl. 

5.2 Effect of Tuning Parameters Z’l and T, 

The performance of MP depends on the update intervals TI and 
T,. The setting of Tl and T,, however, is simple. They are local 
and can be set independently at each node without affecting con- 
vergence, unlike the global constant n which is critical for conver- 
gence of OPT. For CAIRN, Fig. 13 show the effect of increasing 
Ti when T, and the input traffic is fixed. Observe that when Tl is 
increased from 10 to 20 seconds, the delays in SP have more than 
doubled, while the delays of MP remain relatively unchanged. This 
effect indicates that Tl can be made longer in MP without signifi- 
cantly effecting performance. This is significant, because sending 
frequent update messages consume bandwidth and can also cause 
oscillations under high loads. Similarly, for NETl, delays for SP 
increased significantly while there is negligible change in delays of 
MP as can be observed in Fig. 14, respectively. Our new rout- 
ing framework provides the means for a trade-off between update 
messages and local load-balancing. 

At T, intervals, the load-balancing heuristics are executed, which 
are strictly local computations and require no communication. There- 
fore, T, can be set according to the processing power available at 
the router. Tl can be made from a few times to orders of mag- 
nitude greater than T,. In the simplest case, T, can be set to the 
same value of Tl and still gain significant performance as shown 
in Figs. 11 and 12. In the figures, we observe that MP-TL-IO-TS- 
10 is much closer to OPT than SP-TL-10. Just the long-term routes 
with load-balancing, without short-term routing parameter updates, 
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Figure 13: Delays when T, is kept constant and Ti is increased in 
CAIRN. 

Figure 14: Delays when T, is kept constant and Tl is increased in 
NETl. 

seem to give significant gains; the major gains here are due to the 
mere presence of multiple successors and load-balancing. Our ex- 
perience from simulations indicates that a Tl that is only a few 
times of longer than T, suffices to gain significant benefits. This 
is great news, because it means that fine tuning of Tl and T, is not 
important for our approach to be efficient. 

5.3 Performance under Dynamic Traffic 

It was stated earlier that OPT has very poor response to traffic fluc- 
tuations. This becomes evident in Fig. 15, which shows a typical 
response in NET1 when the flow rate is a step function (i.e.., the 
flow rate is increased from 0 to a finite amount at time 0). The 
dampened response of the network using MP indicates the fast re- 
sponsiveness of MP, making it suitable for dynamic environments. 
Because OPT cannot respond fast enough to traffic fluctuations, it is 
impossible to find the optimal delays for dynamic traffic. However, 
we can find a reasonable lower bound if the input traffic pattern 
is predictable like the pattern shown in Fig 16, which shows only 
one cycle of the input pattern. To obtain a lower bound for this 
traffic pattern that represents ‘ideal’ OPT (the one that has instan- 
taneous response) we first obtain the lower bound for each interval 
during which traffic is steady by running a separate off-line simula- 
tion with traffic rate that corresponds to that interval, and combine 
the results to obtain the lower bound. It is with this lower bound 

Figure 15: Step response in NET1 using OPT and MP routing. 

Figure 16: Variable input traffic pattern 

that we compare delays of MP. Fig. 17 shows the average delays 
of the flows for OPT, MP and SP routing. The results indicate that 
delays of MP routing are again in the comparable range of delays 
of an ‘ideal’ optimal-routing algorithm. 

Ultimately, MP will be used in real networks where traffic is 
bursty at any time-scale; therefore, it is important to see how MP 
performs in that environment. We extracted IO flows from the In- 
ternet traffic traces obtained from LBL [21] and used them as input 
for the 10 flows in the CAIRN. Fig. 18 shows the delays for SP and 
MP. We do not perform this simulation with OPT because Internet 
traffic is too bursty for OPT to converge. Observe that, except for 
flows 4, 6 and 8, delays of MP are much better than those of SP 
The reason SP delays of these flows are better than those of MP 
is because of uneven distribution of load in the network and low 
loads in some sections of the network -in low-load environments 
SP can perform slightly better than MP. This can be easily rectified 
by modifying IH to use a small threshold cost for the best link, the 
crossing of which actually triggers the load-balancing scheme. 

6 Conclusions 

We have presented a practical approach to near-optimal delay rout- 
ing in computer networks. To overcome the limitations of opti- 
mal routing algorithms, we proposed an approximation scheme and 
suggested algorithms that implement various components of the ap- 
proximation. The resulting framework is both implementable in 
real networks and also provides delays that are close to those ob- 
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Figure 17: Delays under variable traffic in CAIRN. 
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Figure 18: Delays under Internet traffic in CAIRN. 

tainable using the Gallager’s method. An important element of our 
framework is our generalization of sufficient conditions for loop- 
free routing, which are applicable to any type of routing algorithm. 

We presented one of many possible implementations of the new 
routing framework. In doing so, we introduced the first link-state 
routing algorithm that provides multiple paths that are loop-free 
at every instant and that need not be of equal cost. We have shown 
through simulations that our implementation of the proposed frame- 
work performs significantly better than single-path routing, and 
that it offers delays that are within a small percentage of the lower 
bound delays under stationary traffic. The simulations are by no 
means exhaustive, but the results clearly indicate that the frame- 
work does offer potential for obtaining delays that compare with 
the optimal routing. 

Additional work is needed to study flow allocation heuristics 
that are better suited for specific end-to-end services, e.g., trying 
to avoid out-of order packets for certain flows. Furthermore, our 
new routing framework opens up many interested research oppor- 
tunities for quality-of-service (QoS) routing, because the loop-free 
invariant conditions on which it is based can be further constrained 
to satisfy different types of service. Similarly, because the traffic 
allocation heuristics depend on local rather than global parameters 
and, new heuristics can be defined to account for QoS constraints. 
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Appendix 

Proof of Lemma 1: Let A’ = UkENi Ai where A; is the 
set of nodes in Ti. Since TL is at least a (n - 1)-hop minimum 
tree and node i can appear at most once in each of A;, each Ai 
has at least n - 1 unique elements. Therefore A’ has at least n - 1 
elements. 

Let MA be the set of n - 1 nearest elements to node i in A”. 
That is i14: E A” and Iii@,) = n - 1 and for each j E MA and 21 E 
Ai - MA, min{D& + l;lk E Ni} 5 min{Dte + lilk E N’}. 

The theorem is proved in the following two parts: 

I. Let Gk represent the graph constructed by MTU on line 4 
and 5. (i.e., before applying Dijkstra on line 6). For each 
j E MA there is a path i u j in Gh such that its length is at 
most D$. 

2. After running Dijkstra on Gi on line 6 in MTU, the resulting 
tree is at least an n-hop minimum tree. 

Let us first assume Part I is true and prove Part 2, and then 
proceed to prove Part 1. From the statement in Part 1. for each 
node j E M,!, there is a path i u j in Gb with length at most DLd. 
After running Dijkstra’s algorithm, in the resulting graph, we can 
infer that there is a path i ?rf j with length at most DLi. Because 
there are n - 1 nodes in Mi, the tree constructed has at least n 
nodes with node i included. &cordingly. it follows from Property 
I that the tree constructed is at least ann-hop minimum tree. - - 

Now we prove Part 1. Order the nodes in MA in non-decreasing 
order. The proof is by induction on the sequence of elements in M,!, 
as they are added to Gi. The base case is when Gb contains just 
one link &, = min{liIk E N’} and ml is the first element of 
&I’ and lk, = Dtml. Let the statement hold for the first m - 1 
elements of Mk and consider the m-th element j E Mi. Let K be 
the highest priority neighbor for which DjK + I’;,- = min{Djs + 
Ihlk E I@}. At Most m - 2 nodes in Tk can have a smaller or 
equal distance than j, which implies path K Q j exists with at 
most m - 1 hops. Let v be the neighbor of j in Tk. Then the path 
K ?rt ‘II + j has at most m - 1 hops. Because Ti is at least a 
(n - 1)-hop minimum tree, the cost of link v --t j must agree with 
G. Since DbK + & < Djx- + 1;. from our inductive hypothesis 

’ 
there is a path i ‘u v in Gb such that the length is at most DL’. 

Now we need to show that the preferred neighbor for II is also 
K, so that the link 71 + j will be included in the construction 
of GA, thus ensuring the existence of the path i * j in Gh. If 
some other neighbor .K’ instead of K is the preferred neighbor for 
v, then one of the following two cases should have occurred: (a) 
D&, + l$ < DbK + lx or, (b) DbK, + l$ = D;,K + lx and 
priority of K’ is greater than priority of K. 

Case (a): If D& + li, < DiK + Ii, then given that DfK + 
lk 5 DjK, + lk, it follows that the path v u j in T,&, is greater 
than cost v + j in G which implies that T$ is not a (n - 1) 
hop minimum tree - a contradiction to our assumption! Therefore, 
Dk,< + lk = min{Dik + lj,.lk E N’}. 

Case (b): Let Qj be the set of neighbors that give the minimum 
distance to j, i.e., for each k E Qj, D& + 1: = min{Djk + 
lilk E Ni}. Similarly, let Qv be such that for each k E Qv, 
Dbk + 1: = min{Dik + lilk E N”}. If k E Qv and k 4 Qj, 
then it follows from the same argument used in case (a) that v - j 
in Ti is greater than v + j in G, which implies that TL is not 
a (n - 1)-hop minimum tree - a contradiction to our assumption 
again. Therefore, Qu E Qj. Also, from the same argument used 
in case (a) above it can be inferred that K E Qv. Because K has 
the highest priority among all members of Qj and Qv c Qj , and 
because k E Q,,, K must also have the highest priority among all 

members of Qv. This proves that v + j will bc included in the 
construction of GL. Because Di” + dvj = Dt;’ in G, where dvj 
is the final cost of link v + j, and the length of i - 11 in GL is 
less than Di’ from our inductive hypothesis, we obtained that the 
theorem q - j in Gi less than Dz. This proves Part I of the length of i 

Proof of Theorem 3: Let t, be the time when FD$ is updated 
for the n-th time. The proof is by induction on the time intervals 
[tn, &+I]. As inductive hypothesis assume that 

FD;(t) 5 D;;(t) 

We show that 

k E N’,t 5 t, (25) 

FD;(t) 5 Dj”i(t) t E [tn, tn+11 (26) 

WC observe from the description of MPDA in Fig. 4 that, when 
FDf is updated at lines 2b and 3c, 0; is also updated at lines 2a 
and 3b respectively. We also observed that FD; is updated only 
during state transitions, and regardless of whether the transition is 
from PASSIVE-to-ACTIVEor from ACTIVE-to-PASSIVE, the 
Eq. (27) below is true. Note that there is an implicit PASSIVE 
state between two back-to-back ACTIVE states. 

FDj(t,) 5 min{Dj(t,-I), D:(L)} (27) 

Let t’ be the time when LSU sent by i at t, is received and pro- 
cessed by neighbor k. Because of the non-zero propagation delay 
across any link, t’ is such that t, < t’ < &+I. We then have 

Dti(t’) = Dj (tn) (28) 

Because FDf is modified at t, and then remains unchanged 
within (tn, &,+I), we obtain from Eq. (25) that 

FD;(t) 5 D;;(t) t E [&I, t’) 

From Eqs. (27) and (28) WC obtain the following. 

(29) 

FDj(t) 5 Dfi(t) t E [t’, tn+l) (30) 

From Eq. (29) and (30) we have 

FD~(t) I Djki(t) t E [tn,tn+l) 

At &+I, again from the design of MPDA we have, 

(31) 

FDj(t,+l) I min{Dj(t,), Dj(L+l)} (32) 

Also, because propagation delays are positive, node k at t,,+l 
cannot yet have the value Dj (&+I). So, we have 

Djki(tn+l) = D;(L) 

Combining Eq. (33) and (32) for time t,,+l, WC get 

(33) 

FDj(tn+l) I Djki(tn+l) (34) 

and Eq. (26) follows from combining Eqs. (31) and (34). 
Because FD: (to) 5 Dj”i (to) at initialization, from induction 

we have that FD: (t) 5 Djk(t) for all t. Given that the successor 
sets are computed based on FDj, it follows that the LFI conditions 
are always satisfied. According to Theorem 1, this implies that the 
successor graph SGj is always loop-free. 0 
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