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ABSTRACT
In this paper, we present a method for estimating the lo-
cation of a WiFi transmitter by a receiver using the radio
resource and knowledge of the indoor room structure. We
derive a three-ray path propagation model for the received
radio signal in a known indoor environment. We show that
the position of the transmitter could be localized using the
received radio signal measurements. The likelihood under
this model exhibits multiple local peaks when only few fre-
quencies are used, which leads to the location ambiguities
under the Maximum Likelihood criterion. We observed in
simulation that the ambiguous locations under the MLE
vary with the WiFi radio frequency used but the ground
truth location is always presented as a peak. Therefore,
we use multiple WiFi frequency bands to resolve the local-
ization ambiguity. A subspace based method is applied in
combination with MLE utilizing the same measurements to
improve localization efficiency. Simulation using commercial
ray tracing software presents promising result.

Keywords
Maximum Likelihood, location ambiguity, WiFi frequency,
subspace

1. INTRODUCTION
WiFi-based indoor localization has drawn increasing at-

tention in recent years, due to its low cost, ease of imple-
mentation and pervasive practical application. Traditional
WiFi-based localization methods typically resort to signal
parameters such as time of flight based approach for range
estimation and then localize the target of interest by making
use of multiple access points and triangulation technique [1],
or utilize powerful receiver structure such as antenna array
for angle of arrival identification and angulation. However,
the accuracy and stability of the aforementioned methods
usually are affected by multipath interference in indoor en-
vironment. On the other hand, even though multipath fad-
ing effects can lead to non-neglectable signal variance, i.e.,
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constructive and destructive fading, with respect to differ-
ent operation frequencies and transceiver locations [2], this
channel frequency selective fading property may turn out to
be helpful in providing an unique mapping for localization
purpose.

As WiFi can operate at both 2.4GHZ and 5GHZ band,
we can exploit its multipath interference and frequency se-
lective fading property to localize the WiFi transmitter. We
consider a WiFi based localization scenario which involves
only one radio transmitter and receiver pair but with known
room structure and in the presence of direct path signal. A
three-ray path propagation model is derived and a Maximum
Likelihood estimation (MLE) based approach is proposed
to estimate the transmitter location using the available re-
ceived WiFi signal, which is a complex number in general.
To remove location ambiguity, measurements across all the
available WiFi frequency bands may be utilized. The use
of multiple bands for localization has appeared in recent
literature. For example, in [3], WiFi signals at 2.4 GHz and
5 GHz spanning almost one GHz of bandwidth with a total
number of 35 WiFi center frequency bands are used for time
of flight estimation. As indicated in [4], the multiple bands
WiFi measurements (complex number) can be conveniently
extracted from Channel State Information (CSI) in Intel
5300 cards.

This paper is organized as follows. Following the Intro-
duction, we first formulate the receive signal data model in
Section II. Then we describe the location ambiguity issue
in MLE due to multipath signal interference and briefly ex-
plain the idea of addressing ambiguity problem by utilizing
multiple WiFi frequency bands in Section III. In Section IV,
based on the measured multiple frequency signal, MLE is
derived, together with a subspace based method to improve
estimation efficiency. In Section V, simulation of MLE lo-
calization result using commercial software for scene setting
and measurement generation is demonstrated. Finally, con-
clusions are given in Section VI.

2. THE DATA MODEL
Consider the problem of localizing a radio transmitter in

a two dimensional space with known room structure and a
fixed receiver whose location is given, as shown in Fig. 1.
A radio frequency signal is transmitted by the transmitter
and multiple copies of the same signal with different time
delay and attenuation is superpositioned at the receiver due
to reflection. In order to account for this multipath interfer-
ence as well as reduce complexity, reflected signals that only
bounce less than two times are taken as effective components



in the receiving signal, owing to their relatively significant
decaying of amplitude during reflection, while the rest of
which are regarded as additional noise.

According to [5], the channel response for frequency fi
given the transmitter location ϕ = (x, y) can be modeled
as

hi(ϕ) =

P∑
p=0

ap(ϕ) exp−j2πfiτp(ϕ), i = 1, 2, · · ·N, (1)

where ap(ϕ) and τp(ϕ) are the amplitude and time delay
for the pth path, with p = 0 representing the direct path.
Recall that hi(ϕ) is provided as CSI in some available com-
mercial chips, based on the 802.11 standard, such as Intel
5300 NIC [4].
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Figure 1: Considered three ray propagation path
model: a fixed receiver (Rx) whose location is known
receives three components of superpositioned sinu-
soids emitted by a radio transmitter (Tx) with un-
known location in a given 5m×5m room. Each signal
path undergoes different attenuations and time de-
lays.

As the value of ap and τp are both functions of the trans-
mitter location ϕ, the channel response hi is directly depen-
dent on the transmitter location.

To model the change of amplitude with respect to the
transmitter location, we use free space path-loss model and
add a reflection decaying factor to account for the additional
power loss during reflection. Note that ap(ϕ) represents
the attenuation in the electrical field of the receiving signal.
Therefore, ap(ϕ) can be expressed as

ap(ϕ) =
rp

dp(ϕ)
, (2)

where dp(ϕ) represents the pth path travelling distance and
rp is the reflection delaying factor for the pth path. Ob-
viously, there is no reflection delaying for direct path, i.e.
r0 = 1. Because in the free space path-loss model, the
receiving power is inversely proportional to the distance
square, the electrical magnitude is therefore inversely related
to distance, as shown in (2).

The received signal h̃i for frequency fi given the trans-

mitter location is modeled as a noisy complex value, i.e.

h̃i(ϕ) = hi(ϕ) + wi, |wi| ∼ N(0, σ2
i ), (3)

where wi represents the noise and is assumed as complex
Gaussian distributed, i.e.,the magnitude of wi is zero mean
Gaussian distribution and the phase of wi is uniform dis-
tributed.

Hence, the probability density function of a measurement
h̃i given ϕ as the location of transmitter is

p(h̃i;ϕ) =
1√

2πσ2
i

exp

{
− 1

2σ2
i

(h̃i − hi(ϕ))(h̃i − hi(ϕ))∗
}
.

(4)

3. LOCATION AMBIGUITY ISSUE
Due to the constructive and deconstructive interference of

multipath signals, the likelihood function exhibits multiple
local maximums with respect to different transmitter loca-
tions. Therefore, MLE based localization approach is very
sensitive to noise, as likelihood magnitudes of several local
maximums are quite close to each other for a single frequen-
cy, leading to multiple unresolvable candidate transmitter
locations, i.e., location ambiguities.
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Figure 2: Likelihood map demonstrating ambiguous
transmitter locations when a single frequency is used

To illustrate this, consider the scenario in Fig. 1 where
the true transmitter’s location is at (1,1) and the likelihood
value is evaluated around its true location, with a step size
of 2 centimeters. As (it) can be seen in Fig. 2, multiple
locations have very close likelihood value compared with the
true location, leading to unresolvable ambiguities.

In order to tackle the ambiguity issue, we leverage the fact
that the WiFi signals span over multiple frequency bands
and naturally exploit the diversity of the receiving signal
for different frequencies. The key idea is that for each indi-
vidual frequency, even though its corresponding ambitious
location during likelihood evaluation varies, the true location
shall always contributes to a local maximum. Therefore,
by combining multiple frequency measurements, transmitter
location ambiguity can be possibly removed. See Fig. 3 for
an explanation. It can be seen that the signal to noise ratio
is dramatically improved compared to the single frequency
result in Fig. 2. Hence location ambiguity could be greatly



mitigated by exploiting WiFi signal at multiple frequency
bands.
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Figure 3: Remove transmitter location ambiguity by
using multiple frequencies: as shown by the likeli-
hood map, the true location at (1,1) contributes to
the largest likelihood compared to its neighbouring
locations.

To further evaluate the ability of ambiguity suppressing
by applying multiple WiFi frequency signal, we calculate the
Fisher information matrix I(ϕ) as [6]

[I(ϕ)]m,n = −E

[
N∑
i=1

∂2

∂ϕm∂ϕn
log p(h̃i;ϕ)

]
, (5)

where N is the total number of frequencies and E[·] rep-
resents expectation operator with respect to the measure-
ments.
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Figure 4: Determinant of Fisher information matrix
using 35 frequencies.

To evaluate how much information we can get by applying
MLE, we compute I(ϕ) with respect to all possible trans-
mitter locations using (5) and take the corresponding deter-
minant. Fig. 4 demonstrates the determinant value of Fisher
information matrix when the receiver is placed at (2.5, 5).
In this special case, Fisher information exhibits symmetry
property as the receiver is positioned in symmetry with the

room structure. No information can be acquired along the
vertical line at x = 2.5m as Fisher information matrix is
singular.

Remarks:

• Although it is evident employing multiple frequen-
cies can help remove location ambiguity, the minimum
number of the required frequency along with how to
select them among the available frequency bands in
an optimal sense remains to be an ongoing research.
Obviously, the more frequency employed, the less am-
biguity can be achieved. Based on simulation result,
frequencies selected across 2.4GHz band and 5GHz
band can provide better ambiguity suppressing per-
formance than those selected from either the 2.4GHz
band or the 5GHz band only.

• Due to the fact that high frequency WiFi signal has
a short wavelength (centimeter level), the likelihood
function changes over distance on the order of sever-
al centimeters. Therefore how to identify the global
maximum can be very challenging in practice. Similar
problem has also been mentioned in [7] using MLE
for parameter estimation. We propose to meet the
computation requirement for global maximum identi-
fication in combination with a subspace approach for
time delay offset estimation, using the same set of mea-
surements, which will be discussed in the Section IV.

4. TRANSMITTER LOCALIZATION
In this section, we turn to the practical procedures on

how to employ MLE to find the radio transmitter location.
First the maximum likelihood function is reformulated with
respect to multiple WiFi frequency and multiple samples for
each frequency. Second, in order to reduce the computation
time, a subspace based approach is used in combination with
MLE to improve computation efficiency.

4.1 Maximum Likelihood Approach
As discussed above, transmitter location can’t be iden-

tified by MLE with a single frequency due to ambiguity.
Hence, we utilize multiple frequencies in CSI and formu-
late the location problem as follows: denote the kth mea-
surement set of all the available N frequencies as h̃k =
[h̃1k, h̃2k, · · · , h̃Nk]T , whose distribution is modeled as joint
Gaussian

p(h̃k;ϕ)) =
exp

{
− 1

2
(h̃k − hk(ϕ))∗Σ−1

k (h̃k − hk(ϕ))
}

(2π)
N
2 |Σk|

1
2

,

(6)
where(·)T and (·)∗ represents transpose and Hermitian con-
jugate transpose respectively, and Σk = σ2IN is the covari-
ance matrix of noise.

In practice, for all the available frequencies, we might be
able to take multiple measurement samples. Assume K
samples are taken for each frequency. Then all the mea-
surements can be stacked as a N ×K measurement matrix
H̃ = [h̃1, h̃2, · · · , h̃K ]. Therefore, drop the constant value,

the log likelihood of H̃ can be written as

log p(H̃;ϕ) =

K∑
k=1

−1

2
(H̃k −Hk(ϕ))∗Σ−1

k (H̃k −Hk(ϕ)).

(7)



The MLE criterion is to find a location point ϕ = (x, y)
that leads to the largest likelihood value. It is worth noting
that under the Gaussian white noise assumption, MLE is
equivalent to a nonlinear least-square error minimization
problem.

4.2 Path Delay Offset Estimation
To find the highest peak in the global sense can be ex-

tremely time consuming in general, since the distance be-
tween any two closest local maximums is in the order of half
the wavelength, which is about six centimeters for 2.4GHz
WiFi signal. The magnitude of likelihood function varies
rapidly with respect to the transmitter location due to the
interference between multipath WiFi signal components,
which have relatively short wavelengths. In other words, a
slight change of the transmitter location can make a signifi-
cant change in the corresponding receiving signal. This will
pose a challenge for the MLE global maximum identification.

To improve computation efficiency, we further utilize CSI
and exploit time delay information contained therein. We
rewrite the N frequency channel response in (3) by a matrix
form,


h̃1

h̃2

...

h̃N

 =
[
F (τ1) F (τ2) · · · F (τP )

]

a1
a2
...
aP

+


w1

w2

...
wN

 (8)

with F (τp) = [exp−j2πf1τp , exp−j2πf2τp , · · · , exp−j2πfNτp ]T .
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Figure 5: Transmitter location area estimation by
using relative time delay offset: the transmitter’s
location area is decided by the intersection region
of three ray path dependent circles. r is circle ra-
dius. d1 = c ∗ (τ̃1 − τ̃0), and d2 = c ∗ (τ̃2 − τ̃0), where
τ̃p represents the estimated time delay for the pth

path, d represents the unknown distance between
transmitter and receiver, and c is the light speed.

Therefore, F (τp) can be regarded as a steering vector con-
taining the unknown parameter of the pth path time delay
τp. Without resorting to any other hardware or precise
measurements, a subspace based approach such as [8],[9]
can be employed for path delay estimation using the same

WiFi measurements, with which a transmitter location re-
gion can be roughly provided. In this scenario, we don’t
assume synchronization between transmitter and receiver,
which is difficult in practical application. Moreover, there
exists time offset in signal detection at the physical layer.
Therefore, even though subspace approach can be used for
propagation time estimation, the path delay can’t be accu-
rately acquired. However, the delay offset between any two
paths can be exploited for distance difference estimation. As
illustrated in Fig. 5, together with the prior knowledge of the
room structure, we can make use of triangulation technique
to either estimate the transmitter location in the minimum
square error criterion or roughly estimate transmitter loca-
tion region. The triangulation technique is expressed by the
following equation set


(x− x0)2 + (y − y0)2 = d2

(x− x1)2 + (y − y1)2 = (d+ d1)2

(x− x2)2 + (y − y2)2 = (d+ d2)2

(9)

where (x0, y0) is the receiver coordinate and (x1, y1), (x2, y2)
represent coordinates of imaginary receivers for reflected
path signals that are received by the true receiver.

Based on the above discussion, we propose a combined
approach to fuse the results of both the MLE and the sub-
space method using the same measurement set. A two step
procedure can be conducted practically. First, a subspace
based method is utilized for transmitter location area es-
timation, followed by maximum likelihood peak searching
in this confined area based on MLE at the second stage.
This can help avoid searching for global maximum across
the whole region, hence computation time can be reduced.

5. SIMULATION
In this simulation, we consider a two dimensional space

with known structure and three main path signal compo-
nents in the receiving signal. As shown in Fig. 6, the re-
ceiver’s location is given as (3, 5). A transmitter grid set
with a large number of transmitters spaced by 5 centimeters
between each other is placed to evaluate how the signal
changes with location. For the sake of clear illustration,
we randomly pick up one of the transmitter among the grid
and demonstrate its three main signal propagation paths
that are considered in the model.

Figure 6: Scenario Setting using ray tracing software



The ray tracing software [10] can provide the receiving
signal power (in dBm) and phase (in degree) with respect
to different transmitter location. To simulate CSI data, a
postprocessing of the software output is needed to convert
the receiving signal into the complex form as shown in (1).
This can be done either by making use of the complex im-
pulse response output or the receiving power output. Then
a Gaussian complex noise is added to each measurement to
account for the measurement uncertainty in CSI.

In order to evaluate the effectiveness of the MLE approach
for radio transmitter location estimation, we randomly pick
up a transmitter (location coordinate is (1.53, 0.96)) in the
transmitter grid set in Fig. 6 and extract its corresponding
signal measurements of all the available frequencies for MLE
based localization.

When we make use of all the available 35 frequencies span-
ning from 2.4GHz to 5GHz band, ambiguity can be removed
and the true target location can be identified. Fig. 7 shows
the result for one simulation. As the subspace method can
provide with transmitter’s location area (rectangular drew
by dashed line), efficiency can be improved during the MLE
procedure as multiple local maximum location outside of
this location area can be avoided for likelihood evaluation.
This demonstrates that the MLE is able to find the global
maximum and hence localize the transmitter.
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Figure 7: Simulation result using 35 frequencies

Please note that the subspace method can only help to
narrow down the searching area for the global maximum
point in MLE estimation. To account for uncertainty and
avoid risky decision making for transmitter location, a rel-
atively large searching area needs to be defined. So there
is a tradeoff in practice. A more sophisticated approach
should be developed for global maximum identification in
the future.

6. CONCLUSION
The WiFi based radio transmitter localization using max-

imum likelihood approach contributes in the following ways.
First, instead of using multiple receivers, only one receiver
is employed for transmitter location estimation, which is
more practical in today’s mobile application and is immune
from multiple receivers deployment difficulty. Second, we

naturally exploit the CSI which is available in commercial
chips and make use of multiple WiFi frequencies to remove
location ambiguity. Third, by making use of the same set
of measurements, a subspace based method is utilized for
transmitter location area estimation, which can be combined
with MLE to improve localization efficiently. Future work
will focus on radio transmitter localization in the unknown
and time variant environment.
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