B Universit
of Glasgovz

Maxwell, D. M., Bailey, P. and Hawking, D. (2017) Large-scale Generative
Query Autocompletion. In: 22nd Australasian Document Computing
Symposium, Brisbane, Australia, 7-8 Dec 2017, ISBN 9781450363914
(doi:10.1145/3166072.3166083)

This is the author’s final accepted version.

There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
it.

http://eprints.gla.ac.uk/153968/

Deposited on: 23 January 2018

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://dx.doi.org/10.1145/3166072.3166083
http://eprints.gla.ac.uk/153968/
http://eprints.gla.ac.uk/153968/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Large-scale Generative Query Autocompletion

David Maxwell*
School of Computing Science
University of Glasgow
Glasgow, Scotland
d.maxwell.1@research.gla.ac.uk

ABSTRACT

Query Autocompletion (QAC) systems are interactive tools that as-
sist a searcher in entering a query, given a partial query prefix.
Existing QAC research — with a number of notable exceptions —
relies upon large existing query logs from which to extract his-
torical queries. These queries are then ordered by some ranking
algorithm as candidate completions, given the query prefix. Given
the numerous search environments (e.g. enterprises, personal or
secured data repositories) in which large query logs are unavail-
able, the need for synthetic — or generative - QAC systems will
become increasingly important. Generative QAC systems may be
used to augment traditional query-based approaches, and/or en-
tirely replace them in certain privacy sensitive applications. Even
in commercial Web search engines, a significant proportion (up to
15%) of queries issued daily have never been seen previously, mean-
ing there will always be opportunity to assist users in formulating
queries which have not occurred historically. In this paper, we
describe a system that can construct generative QAC suggestions
within a user-acceptable timeframe (~58ms), and report on a series
of experiments over three publicly available, large-scale question
sets that investigate different aspects of the system’s performance.

ACM Reference format:

David Maxwell, Peter Bailey, and David Hawking. 2017. Large-scale Gen-
erative Query Autocompletion. In Proceedings of The 22nd Australasian
Document Computing Symposium, Brisbane, QLD, Australia, December 7-8,
2017 (ADCS 2017), 8 pages.

DOI: 10.1145/3166072.3166083

1 INTRODUCTION

The majority of existing research into Query Autocompletion (QAC)
has assumed access to substantial volumes of query logs, which
are mined in advance for a series of appropriate queries to suggest.
These historical queries can be ranked relative to a user’s given
query prefix, with the suggestions displayed in an interactive user
interface. These conventional QAC systems that rely upon historical
query logs for their suggestion candidates are referred to in this
paper as query-based QAC systems.

*Author was an intern at Microsoft when this work was undertaken.

Peter Bailey
Microsoft
Canberra, Australia
pbailey@microsoft.com

David Hawking
Microsoft
Canberra, Australia
dahawkin@microsoft.com

Despite the advances in query log-based QAC systems, there are
many information search environments (e.g. enterprises, personal
or secured data repositories) in which query logs are far less exten-
sive (than those of a commercial web search engine, for example),
or even not collected at all. Furthermore, the query and document
vocabulary associated with such restricted information domains
may diverge from public web information sources, as investigated
by Smyth et al. [31]. Thus it is unlikely that a commercial web
QAC system could successfully transfer to these other environ-
ments without major modifications. Even in major commercial web
search engines, ~15% of queries have never been seen previously.!
As people continue to engage more via natural language in their
information seeking interactions, search queries will more often be
expressed in natural language. Thus, unseen queries are likely to
increase due to the vocabulary problem [15] in human-computer
information system interactions. Indeed, the natural language ca-
pabilities exhibited by modern commercial web search engines will
likely increase the expectations of other search systems. QAC ap-
proaches based on query logs simply cannot make suggestions for
query completions which are not in their data.

To this end, in this paper we detail a generative QAC approach,
to which a small number of prior works have previously attempted.
One of the first to identify an approach to the problem, Bhatia
et al. [4] provided a compelling rationale for generative QAC, de-
veloped an algorithm using n-gram statistics from target document
collections, and carried out effectiveness analysis of the algorithm
over two document collections. They discuss many aspects of their
approach, and also discuss future work relating to efficiency im-
provements after acknowledging that “the target systems for our
approach typically have smaller scale datasets and so [...] the effi-
ciency of our algorithm is not critical”.

We concur with Bhatia et al’s premise of the importance of gen-
erative QAC, but we differ on the importance of efficiency - we
believe it is essential that QAC systems should be engineered to
deliver results at the speed of individual human keystrokes. As
such, we have sought to develop an efficient generative QAC ap-
proach that can target web-scale information sources. In our ex-
periments, we used three sets of queries (UQV100 [1], SQuAD [28],
and MS MARCO [26]), ranging from ~5, 765 to ~203, 000 queries
per collection, and the titles of the documents from the ClueWeb12
corpus (CW12) [27] as the generative document corpus for cre-
ating n-grams. We used the titles-only from CW12, rather than
the full document texts, to keep the scale tractable, but this re-
mains a substantial text base (~730 million titles). For every query,
we wish to examine all the possible word-boundary substrings as
query prefixes. For example, if the original (or target) query is

Uhttps://www.cnet.com/news/google-search-scratches-its-brain-500-million- times-a-day/
— accessed October 30th, 2017.

https://www.cnet.com/news/google-search-scratches-its-brain-500-million-times-a-day/

ADCS 2017, December 7-8, 2017, Brisbane, QLD, Australia

‘best computer to buy’, then the word-boundary substrings are
‘best’, ‘best computer’, and ‘best computer to’. Evaluation
involves assessing whether we can predict the target query given a
word-boundary query prefix, and measuring precision via MRR. For
UQV100, this expands from 5, 765 queries to a set of 24, 989 query
prefixes to consider. We then average performance over the query
dataset, for all the possible prefixes. Note that this is a slight simpli-
fication of many QAC evaluations, which consider every character
position within a prefix, which we do not do because of the large
scale query sets. More details of our experimental method and
evaluation are detailed in Section 3.

In our system, suggestion candidates returned to users are pro-
duced using an n-gram language model created in real time from
documents that match the prefix terms selected from the larger
document corpus. This approach dramatically cuts down the scale
of data to be considered, but does rely on a very fast query pro-
cessor. The described system is able to generate these suggestions
within a user-acceptable timeframe. Since both the prefix and the
n-grams used to construct completions are present in the matched
documents, our approach honours the implicit user contract of QAC
systems, in that any returned suggestion should yield a query that
returns results (of at least one document) from the larger corpus.
Further details of the various stages of the proposed system are
provided in Section 3.1.

We report on a series of experiments that investigate different
aspects of the system’s performance over three publicly available,
large-scale question sets, allowing reproducibility of our findings.
Unable to compare our approach to the Bhatia et al. [4] algorithm
for reasons discussed in section 3.3, we revert to using a simpler
“NextWord” n-gram prediction algorithm, using a web-scale n-gram
corpus, as the baseline. These experiments allow us to address the
following generative QAC focused research questions.

RQ1 How does retaining or dropping stopwords from the query
prefix when finding matching documents impact suggestion per-
formance?

RQ2 Does increasing the set of matched passages to generate the
language model increase the probability of creating a matching
QAC suggestion?

RQ3 Can performance of the generative QAC suggestions be im-
proved by re-ranking?

2 RELATED WORK

With early human-computer interfaces heavily recall-based — where
a user would have to remember a range of commands to enter pre-
cisely — early advancements in reducing the user’s cognitive load
led to the concept of tab completion, which we see today in shells
such as Bash. Term completion (or QAC) carried over to search with
Google Suggest?, with all major commercial web search engines
today offering some form of QAC functionality. QAC systems aim
to reduce the time taken by a searcher to enter a query, reduce the

Zhttps://googleblog.blogspot.com/2004/12/ive-got-suggestion.html - accessed October
30, 2017.

David Maxwell, Peter Bailey, and David Hawking

likelihood of spelling mistakes (10-15% of queries entered were mis-
spelt before the introduction of QAC [10]), discover relevant search
items, and even assist with potential query reformulation(s) [6, 20].

Literature in the area of QAC is diverse, with QAC often viewed
as a ranking problem [2, 6]. Works have focused upon improv-
ing QAC suggestion candidates with a variety of techniques (both
heuristic-based and learning-based [6]), as well as how such ap-
proaches are evaluated. Early QAC approaches ranked suggestion
candidates using the Most Popular Completion (MPC) [2] approach
— that is based upon the popularity of previously issued queries
in a query log matching the query prefix entered by the user. Di
Santo et al. [11] collate a series of other QAC models that are de-
fined in the literature. A variety of other approaches have been
since considered, including time-sensitive QAC [5, 7, 30, 32] and
contextual and demographic-based QAC [2, 19, 22, 23, 25, 29]. For
evaluation, Mean Reciprocal Rank (MRR) [8] has become the de facto
measure [6]. As cited by Cai and de Rijke [6] and Hofmann et al.
[17], other approaches — such as a keystroke-based measure [12],
for example — have also been considered. Use of anchor text in-
stead of historical queries was explored for the purpose of query
refinement by Kraft and Zien [21]. For a more detailed examination
of query log-based QAC literature refer to Cai and de Rijke [6] for
arecent and comprehensive survey of the area.

As a majority of prior QAC research is query log-based, we
address in this paper the issue of when query logs are not available.
How can QAC suggestions be generated — and ranked — if no such
prior examples exist, particularly as the size of the corpus becomes
increasingly large?

One approach is to use entries within structured data sources as
the basis for candidates. Hawking and Griffiths [16] mined n-grams
from structured enterprise data sources such as staff directories,
research grant databases, commercial sales offers, etc., and matched
them using both prefix and infix methods. Their aim was to con-
struct an extended QAC system which could also navigate directly
to targeted information resources, or execute callback operations
via JavaScript, in addition to suggesting search queries. They car-
ried out a user study to examine the keystroke savings and user
preferences when performing staff contact lookup tasks. The use of
staff directories for an enterprise QAC system was also investigated
previously by Ji et al. [18]. They used fuzzy matching techniques
to address the problem of mis-spelling or name abbreviations in
query prefixes.

Another approach is to generate completions from overlaps be-
tween the query prefix and a language model, even when the final
suggestion may not appear fully within the language model. Work
in this generative space is limited; we are aware of only a hand-
ful of examples [3, 4, 13, 24]. Recognising and responding to the
challenge of providing QAC without query logs, Bhatia et al. [4]
for example provided a compelling rationale for generative QAC.
They developed an algorithm using n-gram statistics from target
document collections, and carried out an effectiveness analysis of
the algorithm over two document collections. More recently, Mitra
and Craswell [24] developed neural embedding models of common
query completions (albeit mined from query logs), and demon-
strated how a generative QAC approach from these embedding
models can be tuned to assist users formulate rare queries in open
web search environments.

https://googleblog.blogspot.com/2004/12/ive-got-suggestion.html

Large-scale Generative Query Autocompletion

Is Query

Issue (Partial) Query Complete?

Complete

ADCS 2017, December 7-8, 2017, Brisbane, QLD, Australia

Partial

A 4

Query Dispatcher |« Select Index(es)

A

A 4 A 4

Language Modelling Query Index(es)

A 4
Suggestion Maker

SR

Indexes

v Optional
Re-Ranking

A

A

Answer/Suggestions

Format Response Corpus Search
(Presentation) System
A
A 4
Retrieve Save to

Persistence Store

Perform

A

Post Processing

Figure 1: Flow diagram illustrating the overall system architecture of the proposed combined query suggestion and query processing
systems. Users begin interaction by posing a (partial) query, after which the system delivers an answer or suggestion to the user. This, while
adhering to the principle of delivering a response within an acceptable timeframe. Refer to section 3.1 for more information.

In both these works, the authors identify that one of the problems
of generative QAC is to avoid completions that do not make sense
in the context of the query prefix. The Bhatia et al. [4] algorithm
seeks to minimise such completions by including a phrase-query
correlation component of their scoring method ([4], Equation 12)
to re-weight candidate completions which are unlikely to occur in
the corpus, given the prefix.

In contrast to the Bhatia et al. [4] algorithm, rather than pre-
computing a language model from a document collection, we only
start to construct a language model from those documents which
match the current query prefix as the user types it in real-time. This
language model is then used as the source of candidate n-grams for
use in generating plausible completions.

3 EXPERIMENTAL METHOD

In this section, we present the experimental system that we used
in order to address the three research questions as outlined in
Section 1.

3.1 Experimental System

Our system is built using a pipeline architecture, as depicted in
Figure 1. The system consists of eight main subsystems — each of
which is detailed here. First, a standard interactive user control
is present for intercepting keystrokes issued by the user. For ex-
perimental purposes however, this is replaced with a test harness
that takes query prefix terms from the question sets detailed in
Section 3.2. A query dispatcher then preprocesses the query pre-
fix, and sends the post-processed version to a high performance,
short text query processor, operating over the CW12 titles in-
dex. In other circumstances, multiple indexes might be used here,
where the index selected might be conditioned on the query prefix

length or other factors. Any standard search engine could be used
here, such as Indri. We however use a proprietary search engine
that is optimised for large-scale short text data, but in two simple
matching modes, where documents are returned if:

(i) a match exists for all terms; or

(ii) all terms match such that the last term of the query is
handled as a wildcard prefix match (e.g. if the termis ‘pi’,
terms are matched with ‘pix’).

The maximum number of matching documents to be returned
will affect the richness of the language model, but there is a tradeoff
with increased processing time. A language model generator
then produces a language model from the top N matching short
texts returned by the query processor. Any number of different
algorithms for computing the language model can be used to im-
plement this component. For the purposes of this study however,
we use a relatively simplistic approach — our starting algorithm
obtains all n-grams up to quad-grams from each returned document
(considering the titles only to reduce computation time), and the
score for the n-gram in the model is simply the count of its occur-
rences over all documents. A complete suggestion maker then
combines the query prefix and candidate completions, including in-
fix insertions of the candidate completion within the query prefix if
appropriate. The algorithm for determining insertions of an n-gram
into the current prefix is mildly complex, and given in pseudo-code
in Algorithm 1. An optional re-ranker can then reorder sugges-
tions based upon various rules, such as source diversification, or
additional ranking information. A truncation and formatting
component then takes the final suggestions, and prepares them
for sending to the interactive user control. As the user control is
absent from our experimental setup, we instead replace it with a
suggestion scorer component, which is discussed below.

ADCS 2017, December 7-8, 2017, Brisbane, QLD, Australia

David Maxwell, Peter Bailey, and David Hawking

Algorithm 1 Pseudo-code for n-gram insertion algorithm - part of the Suggestion Maker component (refer to Section 3.1).

Concepts:

Gram: the current n-gram from the (local) language model

Term: a complete word within a prefix or gram

Prefix: the query/question characters that have been entered to this point
Candidate: the suggestion which will be constructed (combining the prefix and the gram)

Pseudo-code:

1: if gram contains spaceCharacter then

> that is, gram is 2 or more terms in length

2 firstMatchingTerm « find first occurrence of any of the gram’s ordered terms within the prefix
> Variation : remove stop words from the gram before doing this match
> Also, there may be no matching terms between the prefix and the gram

> Find the position within the prefix to insert the gram

4 if no matching terms then > firstMatchingTerm is blank
5 insertionPoint « end of prefix
6: else
7: insertionPoint « position of firstMatchingTerm in prefix
> Place gram into prefix
8: candidatePre fix <« substring of prefix from starting character to insertionPoint
9: candidate « candidatePre fix + spaceCharacter + gram + spaceCharacter
10:
> If gram was not placed at end of prefix, then splice any terms that were omitted onto the end
1 droppedTerms « terms in prefix that are not in candidate
12: if count of droppedTerms < 0 then
13: candidate « candidate + droppedTerms
14: else
15: do nothing > we already have a complete candidate
16: else > gram is a unigram
17: if prefix contains spaceCharacter then > that is, prefix is at least 1 full term
18: if last term in prefix is incomplete AND is a substring of the gram then
19: candidate « (prefix — last term) + gram
20: else
21: candidate < prefix + gram
22: else > we ignore cases where the prefix is only a single partial term, since these
23: > are better solved by simple single word probability data structures
24: do nothing
25:

> Once this algorithm is complete, candidate is now our suggested query autocompletion.

3.2 Corpus and Question Sets

To promote reproducibility of our experimental findings, we used a
series of publicly available datasets for this study. The first is the
ClueWeb12 (CW12) [27] document corpus, from which we sepa-
rately extracted the titles of individual documents. CW12 consists
of a total of 733 million documents; we extracted 728, 893, 907 doc-
ument titles only (with some documents having invalid titles) to be
the corpus for our proprietary indexing and search technology. This
decision was taken to keep the scale of our experiments tractable,
yet still possessing a substantial text base. This document titles
corpus has a vocabulary size of ~6.12 million words, with ~233 mil-
lion bi-grams, and ~556 million tri-grams. This data is substantially
greater than the TREC corpus as used by Bhatia et al. [4]: 32 times
as many unigrams; 21 times as many tri-grams.

Overall, our indexed version of the CW12 index measured ap-
proximately 59 GB in size. Using our proprietary indexing software,
this index fit comfortably within the 512GB of system RAM avail-
able in our high performance server. Ensuring the index fit within
available system RAM was crucial to reduce I/O latency with back-
ing storage, allowing us to be sure that responses to (partial) queries
could be responded to within an acceptable timeframe.

Three question sets were used, again all publicly available. These
were: the UQV100 query variation test collection (crowdsourced
web queries) [1]; the MS MARCO machine reading comprehen-
sion set (a series of Bing search engine web queries) [26]; and the
SQuAD natural language question set (crowdsourced passage com-
prehension questions) [28]. In each case, all queries/questions were
normalised by converting to lowercase, dropping punctuation, and
removing duplicates. The total number of queries for each question

Large-scale Generative Query Autocompletion

c [best deal raspberry pi computer

best
best deal
best deal raspberry

best deal raspberry pi

Qo Prefixes

Figure 2: An example query Qyp, along with its four “unrolled”
query prefixes, Qo Prefixes.

set after this pre-processing were: 5764 for UQV100; 202, 768 for
MS MARCO; and 98, 169 for SQUAD.

For each query in the three question sets, we “unrolled” all the
partial query prefixes of the full query on word boundaries, as
illustrated in Figure 2. The goal in all cases was to predict the full
query, given just the partial query prefix. Each partial query prefix
was processed in two ways and then combined: first, as if the user
had stopped typing at the last character of the prefix (in which case
the QAC system has to assume the word is incomplete, and the
completions may commence with it); and second, as if the user has
typed a space character (in which case the QAC system can assume
the word is complete). From the last prefix of Figure 2, ‘pi’ may
match both ‘pi’ and ‘pie’, ‘pillow’, ‘pit’, ‘pitlochry’ and
so on; whereas in the second scenario, it would only match to ‘pi’.
For some of our experiments where stopwords were removed, we
used Fox’s stopwords list [14]. The total number of unrolled query
prefixes for each question set after this preprocessing were: 24, 989
for UQV100; 1, 128, 913 for MS MARCO; and 890, 293 for SQuAD.

3.3 Baselines

We considered two key baselines for this study. Both are detailed
below, where we explain the strengths and weaknesses for each of
the different approaches.

Bhatia et al. [4] We attempted to benchmark the effectiveness of
our approach against the algorithm described by Bhatia et al. [4].
In this, however, sadly we failed — not because the algorithm is
not implementable, or even that web-scale representations of the
required data structures are too large (although we did use a server
with half a terabyte of RAM), but because the algorithm’s time
complexity is prohibitively slow.

One example query (from the UQV100 test collection) suffices
to illustrate the problem: “best deal raspberry pi computer”. The
substring prefixes for this query include: ‘best’; ‘best deal’;
‘best deal raspberry’;and ‘best deal raspberry pi’. Con-
sidering just this last query prefix, the last term of that prefix is
‘pi’. Equation (9) of [4] requires that we find all possible word
completions of this term, and then find all n-gram phrases which in-
clude any of these word completions. There are 82, 774 words in the
CW 12Titles vocabulary that begin with the characters ‘pi’ (for ex-
ample, ‘pillows’), and approximately 5.54 million n-gram phrases
containing at least one of these words (for example, ‘contour
pillows on alibaba’). Each of these, when combined with the
query prefix, becomes a candidate query completion (for example,

ADCS 2017, December 7-8, 2017, Brisbane, QLD, Australia

‘best deal raspberry contour pillows on alibaba’). Find-
ing all of these candidates and various ordered list and hashtable
and hashset data structures for the n-grams and vocabulary data
took approximately 2 minutes running on a single core of our high
performance server.

Then in order to compute equation (12) of the Bhatia et al. [4]
algorithm, which ensures that completion phrases make sense in
the context of the query prefix, we need to find the document
counts for both these 5.54 million phrases and the combined query
prefix and candidate phrase terms (which effectively doubles the
number to 11.08 million phrases). As the authors remark, this
can be approximated by simply finding the count of documents
which contain all the terms of the phrase (or the combined prefix
plus phrase), which can be done efficiently treating the phrases
as queries and using the postings lists of a search engine index.
This operation, running on 10 cores of the same server, such that
the CW12 titles index was entirely memory resident, and using a
commercial state-of-the-art search processing engine with a custom
document-count-only operation scanning the postings lists, took on
average 17 milliseconds per phrase. For the 11.08 million phrases,
this equates to over 5 hours of processing time for this step alone,
dwarfing the time for the first phase of the algorithm.

The final phase of the algorithm is to combine the various score
components to produce a final score for the candidate (noting that
any combined query prefix plus completion which has no occur-
rences in the CW12 titles index scores zero immediately), and rank
the set of non-zero candidates by this score. This step can be done
relatively efficiently. Nevertheless, the total time for making sug-
gestions for one query prefix only exceeds 5 hours.

At over 5 hours per query — and even considering just a single
query prefix per query in the UQV100 collection of 5, 675 queries —
this would require over 1200 days of processing time. For the full set
of 24, 989 unrolled query prefixes for UQV100, this expands to more
than 14 years of processing time. If we added the query prefixes for
SQuAD and MARCO, our total evaluation time would be more than
1000 years. Clearly, the Bhatia et al. [4] algorithm is not practical
either as an evaluation baseline to compare against our approach
or for making suggestions to users at they type since no one would
wait 5 hours for a suggestion - a typical QAC system in production is
expected to show suggestions in a time of 100ms — 150ms. We leave
a big-O analysis of the data structure and algorithmic complexity
of the Bhatia et al. algorithm to motivated readers.

NextWord A simpler baseline involves predicting just a single
next word given the last part of the current prefix. We used an
existing large n-gram corpus and probability statistics derived from
the titles of web documents crawled in 2013 by the Bing search
engine. (Similar probability statistics could be obtained from the
CW12 corpus — we used the one available from Bing solely as a
matter of convenience.) The last two words of the current prefix
(or one word if the prefix was only a single term) was provided as
the search key over this corpus and the most probable single term
completions then calculated from the n-gram probabilities. The
top ten completions from these were amalgamated as suffixes to
the current prefix as the suggestions. We refer to this algorithm as
NextWord, it is akin to a simple smartphone keyboard suggestion
service.

ADCS 2017, December 7-8, 2017, Brisbane, QLD, Australia

Since we only provide two words as the n-gram search key, for
prefixes that are three or more terms long, there is no guarantee
that the suggestions will make sense in the full context of the
prefix. Equally, there is no guarantee that the suggestions would
actually lead to documents being retrieved for the suggestion. Both
of these are strong requirements in a production QAC setting; we
did not impose these on the NextWord baseline on the grounds of
simplicity.

3.4 Suggestion Evaluation Process

As per other QAC works, we adopt the MRR evaluation process. This
is applied for each unrolled query up to 10 suggestions per query, ap-
proximating current commercial QAC suggestion list lengths. Then,
if the complete query Qy is suggested, our approach is awarded
1/rank, where rank is the position of the suggestion in the list
of suggestions; and 0 if the target query Qp is not present as a
suggestion. These are known as complete suggestions.

Since many of the questions in the evaluation sets are much
longer than conventional web queries, we provided a second evalu-
ation process where a system is also rewarded for a partial advance
from the current query prefix — a partial suggestion. For example, if
the query prefix is ‘best deal’, and suggestions provided include
‘best deal raspberry pi’, then it will be awarded for a partial
match if there is no complete query suggestion for ‘best deal
raspberry pi computer’. We report on both the combined total
of partial and complete suggestions, and the complete suggestions
separately. For short prefixes and long target queries, it is often
not possible to generate a complete suggestion since we restrict the
language model to a maximum of quad-grams.

4 EXPERIMENTS AND RESULTS

Our results are presented to address each research question outlined
in Section 1. Unless explicitly stated, our results are averaged
over all questions in a question set, at all partial prefixes from the
unrolled question. On our high performance server, over the CW12
titles index and the UQV100 question set with up to 24 documents,
we achieve average elapsed times of 58 milliseconds per prefix
to complete all parts of the generation and ranking activities for
a set of suggestions. While not optimised, this still leaves time
available for roundtrip user interface-to-server network latencies,
suggesting that a production system could be built successfully.
We provide only NextWord as a baseline for comparison due to
the complexities of the other algorithm proposed by Bhatia et al.
[4]. We acknowledge that other state-of-the-art query log-based
QAC approaches do exist; however, we argue that these are not
applicable for generating suggestions for target queries where such
queries are unavailable (as is assumed here).

4.1 The Impact of Stopwords

RQ1: How does retaining or dropping stopwords from the
query prefix when finding matching documents impact sug-
gestion performance? While the majority of queries have rela-
tively few stopwords, both longer queries and natural language
questions have more stopwords present. Our first investigation
examined the effect of removing stopwords from the query prefix,

David Maxwell, Peter Bailey, and David Hawking

Table 1: Average MRR for combined partial and complete sugges-
tion performance over the three different question sets, varying
by stopword retention, dropping, and combined. (Parenthesised)
values are the average MRR for complete suggestions only.

Stopwords|| UQV100 MARCO SQuAD
Retained || 0.0145 (0.0026) | 0.0093 (0.0005) | 0.0010 (0.0001)
Dropped || 0.0138 (0.0035) |0.0055% (0.0013) | 0.0015% (0.0001)

Combined || 0.0174% (0.0038) | 0.0122% (0.0014) | 0.0022% (0.0001)

before sending to the query processor for matching. This experi-
ment involved the modification of our system’s query dispatcher
pipeline component (refer to Section 3.1) to allow for the selective
dropping of stopwords. The results comparing stopword-retained
and stopword-dropped approaches are shown in the first two rows
of Table 1, across the three question sets used. The maximum
number of matching documents was set to 24.

Our second stopword investigation concerns the idea of combin-
ing the dropped stopwords versus retained stopwords approaches,
to examine if the combination yielded a performance improvement.
Effectively, this requires two queries to be sent to the index for each
prefix (unless the stopword-dropped prefix is an empty string), and
so doubles the processing effort by the query processor. For each
of the two unique queries issued (stopword-dropped and stopword-
retained), the query processor was again set to return a maximum
of 24 documents. This resulted in two lists of passages, one for each
query. The lists were merged, removing duplicate entries appearing
in the second of the lists. Note that this approach might lead to
merged lists that were longer than the 24 document maximum for
an individual query. The results from this approach are shown in
the third row of Table 1. From this, we can see that by average MRR,
performance is best when stopwords are retained for the Web query
sets (UQV100 and MARCO), but that it is better to drop stopwords
for the SQuAD question set. We do not have a convincing explana-
tion for these differences, but do observe that the SQUAD question
set consists of well-formed natural language questions (with many
more function words on average), while UQV100 and MARCO are
less well formed in a linguistic sense (aimed at search engine use).
Despite this however, if we combine the two approaches together,
the system performs better than either individual approach. Statis-
tical significance between the partial plus complete scores across
all prefixes is compared using two-tailed independent samples Stu-
dent’s t-tests, and shown with for p < 0.5, and } for p < 0.01
relative to the row above.

If we look instead at the percentage of unrolled query prefixes
for which we have at least one correct partial or complete sugges-
tion at any position, we see something different. Figure 3 plots the
results of our three different experimental setups over the UQV100
question set, with prefix term counts on the x-axis, and the per-
centage of unrolled query prefixes of that count for which there
was at least one correct partial or complete suggestion. The plot
shows a notable improvement for the combined approach in prefix
term counts from 2 until 7, and that at prefix term counts less than

Large-scale Generative Query Autocompletion

30%-
- Combined
- Dropped
-®- Retained

20%-

10%-

% of Correct Suggestions

0%-

1 3 5 7 9 11 13 15
Term Position

Figure 3: Plot of percentages of at least one correct partial or com-
plete suggestion for prefixes of a given length (x-axis) by different
stopword approaches over the UQV100 question set.

5, the Retained approach outperforms the Dropped approach. Drop-
ping stopwords starts to have better performance than Retained for
prefix term counts of 5 or greater, and from prefix term counts of 9
or more, the Retained approach finds no correct suggestions, so the
Combined and Dropped approaches are identical from thereon.

4.2 Changing the Number of Matched Passages

RQ2: Does increasing the set of matched passages to gener-
ate the language model increase the probability of creating
a matching QAC suggestion? To address this research question,
we ran a series of experiments where we varied the maximum num-
ber of matching results returned by the query processor, given a
query. We used values of: 8, 16, and 24. Table 2 details the maximum
performance attained over each configuration, for each question
set. For all questions sets, as we increase the number of documents
to form the language model, the overall performance continues to
improve. For UQV100, we also considered 100 and 1000 documents,
and performance continues to improve still further, but the rate of
improvement slows down. As before, maximum performance is
achieved where the prefix is in the range 2 — 4 terms, peaking at 3,
regardless of the number of documents being used.

4.3 Re-Ranking Candidates

RQ3: Can performance of the generative QAC suggestions
be improved by re-ranking? To investigate the final research
question, we obtained the neural embedding scoring model from
the authors of [24]. These authors had access to large scale web
search engine query log data and we used their model without
modifications. Refer to Mitra and Craswell [24] for a detailed ex-
planation of how the model was produced. We should also note
that in a organizations where query logs were unavailable, using
this approach would be impossible. Our goal in using the model
was to establish if any re-ranking would offer potential gains to
effectiveness.

Rather than considering all possible suffixes of a prefix as ex-
plored by Mitra and Craswell [24] — which like the approach by Bha-
tia et al. [4] would be prohibitively expensive over large-scale cor-
pora — we instead supplied only the candidate completions from
our generative model. We then used their neural model to score the

ADCS 2017, December 7-8, 2017, Brisbane, QLD, Australia

Table 2: Average MRR for combined partial and complete sugges-
tion performance over the three different question sets, varying the
maximum number of matched documents. (Parenthesised) values

denote the average MRR for complete suggestions only.

Matches H UQV100 MARCO SQuAD

8 0.0089 (0.0029) | 0.0052 (0.0010) | 0.0014 (0.0001)
16 0.0144% (0.0036) | 0.00923 (0.0013) | 0.00193 (0.0001)
24 0.0174% (0.0038) | 0.0122% (0.0014) | 0.0022: (0.0001)
100 0.0243% (0.0048) — -

1000 0.02617 (0.0050) — -
ReRank24 || 0.0509% (0.0101) | 0.0313% (0.0030) | 0.0047% (0.0003)
NextWord || 0.0879% (0.0299) | 0.0586% (0.0149) | 0.0274% (0.0054)

pair of query prefix and candidate completion, and used that to re-
rank our candidates. The average MRR numbers for the combined
suggestion performance for 24 matching documents over the three
question sets are shown in the ReRank24 row of Table 2. These
results, almost three times better than our existing base model,
demonstrate a significant possibility for improving the average
MRR score of our candidate completions using a re-ranking model.
In an enterprise corpus absent of large query logs, a neural model
of the form described in [24] might be trained instead on anchor
text or document titles, to establish the common completions. The
mean execution time of ReRank24 using our pipeline was 120ms,
which would still be acceptable for modern QAC systems.

As a strong baseline, the final row (NextWord) in Table 2 reports
performance of a simple next word algorithm (like a predictive
keyboard on a mobile phone) from a Web-derived n-gram model.
Effectively, it predicts the next word that might be typed, given the
previous two words as context. Unlike our approach, there is no
guarantee that a suggestion will lead to a query that can surface
matching documents from the corpus. It is also limited to predicting
just a single word; our approach produces successful partial or
complete suggestions that are two or more words longer than the
current prefix in 10% of successful cases. However, the performance
of the NextWord algorithm is impressively strong. In an enterprise
environment, the Web n-grams may perform less well; however, it
indicates that in the absence of suggestions from our prefix-specific
language model approach, the global Web background model could
successfully be used as backfill.

5 DISCUSSION AND CONCLUSIONS

In this paper, we have described and explained an approach to QAC
that is generative; that is, it does not rely on existing query log data.
Unlike the algorithm described by Bhatia et al, our method is able
to respond in a timeframe that would be acceptable in interactive
user interfaces as required by QAC systems, while operating over
large scale data. The key to achieving this performance was using
a search index to drastically pre-prune the candidate texts used in
populating the n-gram language model. The short text document
search index was AND-matched against all complete and partial
terms of the query prefix, rather than the Bhatia et al approach of

ADCS 2017, December 7-8, 2017, Brisbane, QLD, Australia

considering all possible completions of the partial term and post-
pruning candidates that do not match the other prefix terms.

We found (RQ1) that dropping stopwords from query prefixes
can assist in situations where natural language queries are being
used; and that combining both dropped and retained approaches
improves performance regardless of query type. This outcome may
be due to an interplay between natural language queries and that
dropping stopwords in (partial) queries may lead to a language
model that is less ‘noisy’ than its stopword-retained counterpart,
but we do not have perfect understanding of these factors.

As we increase the number of matching documents used to con-
struct the language model from which to generate suggestions,
performance also increases (RQ2); this is an intuitive result. A
greater number of documents will undoubtedly present the sys-
tem with more terms from which to generate potential suggestion
completions, yielding greater effectiveness.

While efficient, our naive algorithm for ranking candidates from
this single-phase method does not lead to great MRR results. Ad-
dressing RQ3, a two-phase method — where the candidates are
first generated, and then re-ranked using a more expensive model —
improves effectiveness over a single-phase approach, costs more
in time, but remains within acceptable performance limits. Even
so, the improved effectiveness of the two-phase method still fails
to beat the much simpler NextWord baseline as measured by MRR
over the three query sets. Other methods to improve calculating
the quality of the generated completions, such as those described
by Chen and Goodman [9] and/or using the web n-gram corpus
probabilities could also be investigated as future work.

The dramatic difference (often a factor of 5 to 10 times) in partial
and complete suggestion performance indicates that the use of
predicting complete suggestions as the sole success measure for
long or natural language queries may be inappropriate. MRR also
fails to measure factors like making nonsensical recommendations
(e.g. ‘best deal raspberry pillows’).

Efficient, generative QAC could be highly beneficial in search en-
vironments where query logs are unavailable or limited. At present,
our recommendation would be to use a simple NextWord-style algo-
rithm using a large scale n-gram corpus, possibly supplemented by
personal n-grams at the client-side or enterprise-specific n-grams
if deployed within an enterprise.

Acknowledgments David (lead author) would like to express his
gratitude to Peter, Dave, Paul and Nick for his time as an intern at
Microsoft Australia in Canberra, ACT. He learnt heaps, and realised
just how amazing Australia is. “You beauty, mate!” We also grate-
fully thank Bhaskar Mitra and Nick Craswell for providing us with
their query completion neural model for re-ranking experiments,
and Ricky Loynd and Yongen Gong for providing us with the web
n-gram prediction model for effective simple baselines. Finally, we
thank the anonymous reviewers for their helpful feedback.

REFERENCES

[1] P. Bailey, A. Moffat, F. Scholer, and P. Thomas. 2016. UQV100: A test collection
with query variability. In Proc. SIGIR. 725-728.

—
)

David Maxwell, Peter Bailey, and David Hawking

Z. Bar-Yossef and N. Kraus. 2011. Context-sensitive Query Auto-completion. In
Proc. WWW. 107-116.

H. Bast and I. Weber. 2006. Type Less, Find More: Fast Autocompletion Search
with a Succinct Index. In Proc. SIGIR. 364-371.

S. Bhatia, D. Majumdar, and P. Mitra. 2011. Query Suggestions in the Absence of
Query Logs. In Proc. SIGIR. 795-804.

F. Cai and M. de Rijke. 2016. Learning from homologous queries and semantically
related terms for query auto completion. IP&M 52, 4 (2016), 628—643.

F. Cai and M. de Rijke. 2016. A Survey of Query Auto Completion in Information
Retrieval. Foundations and Trends in Information Retrieval 10, 4 (2016), 273-363.
F. Cai, S. Liang, and M. de Rijke. 2014. Time-sensitive Personalized Query
Auto-Completion. In Proc. CIKM. 1599-1608.

J. Carbonell and J. Goldstein. 1998. The Use of MMR, Diversity-based Reranking
for Reordering Documents and Producing Summaries. In Proc. SIGIR. 335-336.
Stanley F. Chen and Joshua Goodman. 1996. An Empirical Study of Smoothing
Techniques for Language Modeling. In Proc. ACL. 310-318.

S. Cucerzan and E. Brill. 2004. Spelling Correction as an Iterative Process that
Exploits the Collective Knowledge of Web Users. In Proc. EMINLP. 293-300.

G. Di Santo, R. McCreadie, C. Macdonald, and I. Ounis. 2015. Comparing Ap-
proaches for Query Autocompletion. In Proc. SIGIR. 775-778.

H. Duan and B-J. Hsu. 2011. Online Spelling Correction for Query Completion.
In Proc. WWW. 117-126.

A.Feuer, S. Savev, and J.A. Aslam. 2007. Evaluation of Phrasal Query Suggestions.
In Proc. CIKM. 841-848.

C. Fox. 1989. A Stop List for General Text. SIGIR Forum 24, 1-2 (1989), 19-21.
G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. 1987. The Vocabulary
Problem in Human-system Communication. CACM 30, 11 (1987), 964-971.
David Hawking and Kathy Griffiths. 2013. An Enterprise Search Paradigm Based
on Extended Query Auto-completion: Do We Still Need Search and Navigation?.
In Proc. ADCS. 18-25.

K. Hofmann, B. Mitra, F. Radlinski, and M. Shokouhi. 2014. An Eye-tracking
Study of User Interactions with Query Auto Completion. In Proc. CIKM. 549-558.
Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. 2009. Efficient interactive
fuzzy keyword search. In Proc. WWW. ACM, 371-380.

J-Y. Jiang, Y-Y. Ke, P-Y. Chien, and P-J. Cheng. 2014. Learning User Reformulation
Behavior for Query Auto-completion. In Proc. SIGIR. 445-454.

M. Kamvar and S. Baluja. 2007. The Role of Context in Query Input: Using
Contextual Signals to Complete Queries on Mobile Devices. In Proc. MobileHCIL
405-412.

R. Kraft and J. Zien. 2004. Mining Anchor Text for Query Refinement. In Proc.
WWW. 666-674.

L. Li, H. Deng, A. Dong, Y. Chang, H. Zha, and R. Baeza-Yates. 2015. Analyzing
User’s Sequential Behavior in Query Auto-Completion via Markov Processes. In
Proc. SIGIR. 123-132.

B. Mitra. 2015. Exploring Session Context Using Distributed Representations of
Queries and Reformulations. In Proc. SIGIR. 3-12.

B. Mitra and N. Craswell. 2015. Query Auto-Completion for Rare Prefixes. In
Proc. CIKM. 1755-1758.

B. Mitra, M. Shokouhi, F. Radlinski, and K. Hofmann. 2014. On User Interactions
with Query Auto-completion. In Proc. SIGIR. 1055-1058.

T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng.
2016. MS MARCO: A Human Generated MAchine Reading COmprehension
Dataset. In Proc. Cognitive Computation workshop, NIPS.

The Lemur Project. 2012.
clueweb12.php

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proc. EMNLP. 2383-2392.

M. Shokouhi. 2013. Learning to Personalize Query Auto-completion. In Proc.
SIGIR. 103-112.

M. Shokouhi and K. Radinsky. 2012. Time-sensitive Query Auto-completion. In
Proc. SIGIR. 601-610.

B. Smyth, E. Balfe, J. Freyne, P. Briggs, M. Coyle, and O. Boydell. 2004. Exploiting
query repetition and regularity in an adaptive community-based web search
engine. User Modeling and User-Adapted Interaction 14, 5 (2004), 383-423.

S. Whiting and J. Jose. 2014. Recent and Robust Query Auto-completion. In Proc.
WWW. 971-982.

The ClueWeb12 Dataset. www.lemurproject.org/

www.lemurproject.org/clueweb12.php
www.lemurproject.org/clueweb12.php

	Abstract
	1 Introduction
	2 Related Work
	3 Experimental Method
	3.1 Experimental System
	3.2 Corpus and Question Sets
	3.3 Baselines
	3.4 Suggestion Evaluation Process

	4 Experiments and Results
	4.1 The Impact of Stopwords
	4.2 Changing the Number of Matched Passages
	4.3 Re-Ranking Candidates

	5 Discussion and Conclusions
	References

