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Abstract
The idea of a context lemma spans a range of programming-

language models: from Milner’s original through the CIU

theorem to ‘CIU-like’ results for multiple language features.

Each shows that to prove observational equivalence between

program terms it is enough to test only some restricted class

of contexts: applicative, evaluation, reduction, etc.
We formally reconstruct a distinctive proof method for con-

text lemmas based on cyclic inclusion of three program ap-

proximations: by triangulating between ‘applicative’ and

‘logical’ relations we prove that both match the observa-

tional notion, while being simpler to compute. Moreover, the

observational component of the triangle condenses a series

of approximations covering variation in the literature around

what variable-capturing structure qualifies as a ‘context’.

Although entirely concrete, our approach involves no term

dissection or inspection of reduction sequences; instead we

draw on previous context lemmas using operational logical

relations and biorthogonality. We demonstrate the method

for a fine-grained call-by-value presentation of the simply-

typed lambda-calculus, and extend to a CIU result formulated

with frame stacks.

All this is formalised and proved in Agda: building on work

of Allais et al., we exploit dependent types to specify lambda-

calculus terms as well-typed and well-scoped by construc-

tion. By doing so, we seek to dispel any lingering anxieties

about the manipulation of concrete contexts when reasoning

about bound variables, capturing substitution, and observa-

tional equivalences.

Keywords Context lemma, CIU theorem, Agda, Dependent

types, Observational equivalence, Logical relations

1 Introduction
The problem of determining equivalence between programs

or program fragments (terms) is well-studied and a variety

of approaches have been developed [11–13, 15, 16, 19, 27–

30, 32]. Typically, the equivalence of interest is contextual or
observational equivalence. Roughly speaking, this relates two
terms if they behave equivalently in any program context.

The motivation for working with observational equivalence

is that it supports powerful equational reasoning about code,

PL’18, January 01–03, 2018, New York, NY, USA
2018.

such as rewriting via chains of equivalence proofs and the

substitution of equivalent sub-terms (‘equals for equals’) in

larger programs.

The exactmeaning of ‘program context’ and ‘behave equiv-

alently’ may vary: for example, program contexts often in-

volve some kind of free-variable capture; while for equiva-

lence it may be enough that two programs both terminate, or

that they return equal values at ground type. The quantifica-

tion over program contexts from the language itself turns out

to make observational equivalence robust — independent of

the class of available observations — and self-regulating, as a

language with more elaborate features has a correspondingly

larger collection of testing contexts.

Sadly, this quantification over all possible enclosing con-

texts can also make observational equivalence difficult to

prove directly. However, if it can be captured by some re-

stricted form of contexts then the proof burden is reduced

without sacrificing reasoning power. Such correspondence

results are known as context lemmas, following Milner’s pio-

neering article [20], where he proved a context lemma for a

typed combinatory logic with first-order function symbols.

Since then there have been many similar results published

for a variety of calculi. The particular approach used to obtain

the result varies, with many based on Howe’s coinductive

‘precongruence candidate’ method [12, 13]. In contrast, fol-

lowing earlier proofs for the nu-calculus [32] and ReFS [30],

we isolate a key part of their argument for independent study:

proving a context lemma by showing that a certain triangle

of relations coincide. We propose this triangulation proof

method as a general technique for proving context lemmas.

Observational

Logical Applicative

The triangle links three kinds of relation between terms:

Observational where terms are related by their behaviour

in some class of contexts;

Applicative where function terms are related if they take

equal arguments to related results;

Logical where function terms are related if they take related

arguments to related results.

Rather than equivalences, we in fact work with inclusions

between their associated approximation preorders; all results
immediately carry over to equivalences.
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While observational relations are defined by quantifica-

tion over contexts, both applicative and logical relations are

given by type structure. This structural character of these

lower relations shapes the proofs along all three sides — in

particular the implication from logical to observational arises

from the fundamental theorem of logical relations.

The base of the triangle also shares out the distinctive

properties of observational relations for powerful reasoning:

applicative approximation is easily shown to be transitive,

and logical approximation a congruence.

Observational relations require some chosen class of con-

texts, and in fact we see the triangle apex ramify into a chain

of relations from behaviour in all contexts down through

more restricted collections, with each relation naturally im-

plying the next as the set of testing contexts becomes smaller.

However, the triangulation result brackets all these observa-

tional relations between logical on the left and applicative

on the right, proving that they collapse into each other. This

collapse — that testing in all contexts is the same as testing

over some restricted class — is the context lemma.

In this paper, we formally construct this triangulation

proof method in a fine-grained call-by-value setting using

the Agda interactive theorem prover. Leveraging state-of-

the-art technology for dealing with well-typed and well-

scoped terms [2], we show that, contrary to popularly held

belief [15, 27], handling concrete contexts even in the for-

malised setting is straightforward, and moreover our method

does not require inspection of reduction sequences [19, 32].

First, we apply the method to show the classical result for our

simply-typed lambda calculus, namely that applicative con-

texts suffice (Section 3), using a big-step semantics. While

we are not the first to undertake such a formalisation ef-

fort [3, 21], we believe our concrete, first-order representation
to be more robust than previous attempts. To demonstrate

the extensibility of the formalism, we generalise the triangle

to the more powerful notion of CIU approximation (Sec-

tion 4) by using frame stacks. Our intention is to extend our

approach to more elaborate calculi involving effects, where

such fine-grained stack-based approaches seem a better fit

than big-step semantics. Demonstrating extensibility of our

approach is moreover in the spirit of other proposals for

mechanised metatheory developments [5]. In particular, we

aim in future to scale the development to support core calculi

with algebraic effects and handlers [6, 18]. The Agda source

code is available online at:

https://www.github.com/cmcl/triangulating-context-lemmas

2 A Fine-Grained Call-By-Value Calculus
The work carried out here is performed with respect to a

call-by-value calculus, λ→FG , inspired by fine-grained call-by-

value [17] (FGCBV) and a normal form for terms used by

Pitts [29]. Figure 1 gives an informal context-free grammar

Terms M ,N ::= V | if V thenM else N | V V
| let x = M in N

Values V ,U ::= x | tt | ff | n | () | λx : A.M
Types A,B ::= int | bool | unit | A→ B
Sugar M V ::= let f = M in f V (where f is fresh)

Figure 1. λ→FG types and terms.

for the calculus, with named λ and let bindings. The dis-

tinguishing features are the separation between the phrase

classes for values and terms (we systematically elide the

explicit lifting of values into terms) and the restriction to

one term constructor, let, to express sequencing. For conve-
nience, we introduce the syntactic sugarM V for application

of a term M to a value V , used in stating certain proper-

ties for λ→FG . We consider a simple type discipline, where τ
ranges over ground types (τ ∈ {bool,int,unit}). For val-
ues, x ranges over an infinite set of variables, b ranges over

{tt,ff}, and n over Z. In the definitions and proofs that fol-

low, = and ≜ denote equalities that hold definitionally, and

≡ denotes equalities which hold propositionally.

2.1 Formalising λ→FG
Henceforth, reflecting our Agda [25] formalisation, we give

λ→FG a de Bruijn presentation in a dependently-typed meta-

language. In particular, we emphasise the following view

on our representation and proofs about it: namely that it is

a formalisation in a dependently typed metalanguage, and

therefore implementable in any implementation of such a type
theory. For this paper, we used the Agda theorem prover to

check our constructions, but any system such as Coq [34] or

Idris [7] would do just as well, modulo pragmatics. Part of

our purpose in insisting on this point is to encourage read-

ers to develop similar representations in their own tool of

choice. In fact, at the cost of losing meta-language typing

guarantees, our development could be reprised in any other

implemented theory supporting sufficiently rich inductive

definitions, such as those of Isabelle/HOL [24]. However, our

conviction is that a dependently-typed meta-language is a

precision tool, acutely well-adapted to the demands of typed

object-language representation. For the sake of exposition,

we focus on the mathematics, rather than its rendering in

Agda concrete syntax; readers interested in the latter should

consult our source code. For their convenience, we provide

a Rosetta Stone in Table 1 at the end of the paper, mediating

between informal concepts, LaTeX rendering, and their Agda

formalisation.

We follow the discipline advocated by Allais et al. [2],
henceforth referred to as the ACMM framework, which al-

lows us to represent the informal syntax of Figure 1 in terms

of inductive families of types [10]. For each syntactic cate-

gory of the object language — variables, values, terms — we

2
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Environments Γ,∆ ::= · | Γ,A
Indices k ::= 0 | succk

zero

0 : (A ∈ Γ,A)

succ

k : (B ∈ Γ)

succk : (B ∈ Γ,A)

var

k : (A ∈ Γ)

Γ ⊢ vark : A

boolean

Γ ⊢ b : bool
(b = tt,ff)

int

Γ ⊢ n : int
(n ∈ Z)

unit

Γ ⊢ () : unit

fun

Γ,A ⊢ M : B

Γ ⊢ λAM : A→ B

ifThenElse

Γ ⊢ V : bool Γ ⊢ Ntt : A Γ ⊢ Nff : A

Γ ⊢ if V then Ntt else Nff : A

app

Γ ⊢ V : A→ B Γ ⊢ U : A

Γ ⊢ V U : B

let

Γ ⊢ M : A Γ,A ⊢ N : B

Γ ⊢ letA M N : B

Figure 2. λ→FG typing rules

define such a family indexed by object-language type A and

context Γ. Thus we express λ→FG directly via its typing rules,

as in Figure 2, so that values and terms are by construction

well-typed and well-scoped. As a consequence, we some-

times need to introduce a renaming, in particular the special

case of weakening, to ensure the type-and-scope correctness

of terms. For example, in the syntactic sugar for application,

the argument is applied in an environment extended with

the binding for the function:

...

Γ ⊢ M : A→ B

Γ ⊢ V : A

Γ,A→ B ⊢ weak(V ) : A

Γ ⊢ M V : B

where weak takes Γ-terms to Γ,A-terms for any type A by

shifting de Bruijn indices. From now on, for readability, we

elide any explicit weakening in terms. The principal ACMM

features we exploit are as follows.

• ACMM uses first-order abstract syntax (FOAS) in its

term representation (rather than weak higher-order

abstract syntax (HOAS), as used, for example, by De-

speyroux et al. in [9]), specifically a de Bruijn index [8]

variable representation: so α-convertibility is syntac-

tic equality; variables vark are declared in terms of

offsetsk (generated by zero and successor) into an envi-

ronment Γ consisting of a list of types; function values

λAM comprise a type label A and a well-scoped term

bodyM ; and similarly for let-expressions letA M N .

In each case, we suppress object-language type labels

where they are unambiguous in context.

• Whereas, for operations and proofs defined over terms,

ACMMdoes use (weak) HOAS: thus renaming, capture-

avoiding substitution, etc. are all instances of a generic
Kripke-style traversal over the phrase classes of the

language. Such traversals are specified by supplying

type familiesV ,MV ,MT to interpret respectively

each of variables, values, and terms, subject to suit-

able closure conditions. That for the λ constructor is

(somewhat simplified) as follows:

□ (V A ∆ −→MT B ∆)

MV (A⇒ B) Γ

where the modality □ quantifies over all context ex-

tensions Γ ⊆ ∆ by renamings. A particular practical

consequence is that, by design, only value substitu-
tions are expressible in the formalism — which in fact

accords with usual informal practice when presenting

fine-grained call-by-value.

Our choice of ACMM can be seen as contributing to a now

decades-old debate on object-language representations, par-

ticularly with respect to binding structures. There is not

space to do justice to all the issues here (for an interesting

discussion, see for example [31]), nor is it the main focus of

the paper. Nevertheless, some comments may be in order.

• Adequacy for a FOAS representation, by contrast with

varieties of HOAS, is straightforward — even trivial

— as part of grounds for belief in the formalisation.

We view this as particularly effective in the case of

formalising object-language contexts (in Section 2.2)

in defining varieties of observational approximation,

where the informal treatment of variables and binding

is a potential minefield.

• There is no doubting the convenience of HOAS in terms

of definability of operations such as substitution; nor,

as the ACMM authors point out, in terms of flexibility

of ‘logical relations’ arguments about the behaviour

of such operations: we make heavy use of such results.

Arguably, given our use of ‘logical’ definitions of re-

lations such as in Section 3.2, we could perhaps have

done more to leverage this aspect of ACMM. We leave

this to future work.

Definition 2.1 (Simultaneous Substitution). For typing en-

vironments Γ and ∆ let θ : Γ ⊨ ∆ denote a simultaneous sub-

stitution θ of variables in environment Γ by λ→FG values

in environment ∆. Informally, θ takes Γ-terms to ∆-terms:

given Γ ⊢ M : A we may apply the substitution to M and

obtain ∆ ⊢ θ (M ) : A. In the special case of θ : Γ,A ⊨ Γ given

3
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ifThenElse

if b then Ntt else Nff { Nb

appBeta

(λAM ) V { M[V ]

Figure 3. λ→FG primitive reduction semantics

primRed

M { M ′

M ⇒ M ′

letValue

letA V M ⇒ M[V ]

letRed

M ⇒ M ′

letA M N ⇒ letA M ′ N

Figure 4. λ→FG small-step operational semantics

value

· ⊢ V : A

V ⇓A V

if

Nb ⇓A V

if b then Ntt else Nff ⇓A V

app

M[V ] ⇓B U

(λAM ) V ⇓B U

let

M ⇓A V N [V ] ⇓B U

letA M N ⇓B U

Figure 5. λ→FG big-step operational semantics

at var0 by value Γ ⊢ V : A and everywhere else the identity

we write θ (M ) as M[V ] in the usual way. For the special

case of θ : Γ ⊨ · we say that θ is a Γ-closing substitution. If

θ : Γ ⊨ ∆ and θ ′ : ∆ ⊨ Θ then θ ′ ◦ θ : Γ ⊨ Θ denotes the com-

position of the simultaneous substitutions.

Definition 2.2. Given θ : Γ ⊨ ∆, define θk to be the value

∆ ⊢ V : A specified for the variable Γ ⊢ vark : A. Then, θ0 de-
notes the value specified for var0. For θ : Γ,A ⊨ ∆, define the
simultaneous substitution (succθ ) : Γ ⊨ ∆ by its behaviour

on variables Γ ⊢ vark : A, for all indices k :

(succθ )k = θ (succk ) .

Moreover, any θ : Γ,A ⊨ ∆ is extensionally equal to that of

the substitution obtained by extending succθ by θ0.

We define a small-step operational semantics for λ→FG via

a primitive reduction on closed terms, in Figure 3, which is

then contained within the general reductions of Figure 4. The

separation of these two relations is inspired by Pitts [29] and

is used when we define frame stack evaluation in Section 4.

Both relations are type-correct by construction; the proof of

type preservation is immediate.

Figure 5 presents λ→FG evaluation semantics as a type-

indexed relation between closed terms and values. We omit

typing annotations where unambiguous. Evaluation is closed

vccHole

Γ ⊢ ⟨⟨−⟩⟩ : ⟨⟨Γ ⊢ A⟩⟩VCCA

vccTrm

∆ ⊢ M : B

∆ ⊢ trmM : ⟨⟨Γ ⊢ A⟩⟩VCCB

vccFun

∆,B ⊢ D : ⟨⟨Γ ⊢ A⟩⟩VCCC

∆ ⊢ λB D : ⟨⟨Γ ⊢ A⟩⟩VCC (B → C )

vccIfThenElse

∆ ⊢ V : ⟨⟨Γ ⊢ A⟩⟩VCCbool
∆ ⊢ Ctt : ⟨⟨Γ ⊢ A⟩⟩

VCCB ∆ ⊢ Cff : ⟨⟨Γ ⊢ A⟩⟩
VCCB

∆ ⊢ ifV then Ctt else Cff : ⟨⟨Γ ⊢ A⟩⟩
VCCB

vccApp

∆ ⊢ V : ⟨⟨Γ ⊢ A⟩⟩VCC (B → C ) ∆ ⊢ W : ⟨⟨Γ ⊢ A⟩⟩VCCB

∆ ⊢ V W : ⟨⟨Γ ⊢ A⟩⟩VCCB

vccLet

∆ ⊢ D : ⟨⟨Γ ⊢ A⟩⟩VCCB ∆,B ⊢ E : ⟨⟨Γ ⊢ A⟩⟩VCCC

∆ ⊢ letB D E : ⟨⟨Γ ⊢ A⟩⟩VCCC

Figure 6. λ→FG typing rules for variable-capturing contexts

under the reduction relations: proof is straightforward by

induction over derivations.

Lemma 2.3 (Reduction Respects Evaluation).
IfM { M ′ orM ⇒ M ′ thenM ⇓ V if and only ifM ′ ⇓ V .

2.2 Formalising Contexts
As a step towards formalising observational approximation,

we treat contexts as an extension of λ→FG syntax; and thanks

to ACMM the grammar of these concrete contexts is directly

expressible as an inductive definition. A term context C is

a possibly-open term of arbitrary type containing zero or

more occurrences of a well-typed and well-scoped hole. Anal-

ogously, a value context V is a possibly-open value of ar-

bitrary type containing zero or more occurrences of such

a hole. Naturally enough our formalisation enforces well-

typed and well-scoped contexts, by construction, in the same

way it does for terms and values.

The usual notion of a variable-capturing context (VCC)

allows a context to capture variables occurring free in the

term that fills the hole. In Figure 6 we define VCCs for λ→FG ,
with C,D, E ranging over term contexts and V ,W over

value contexts. The form of a well-typed and well-scoped

context C is ∆ ⊢ C : ⟨⟨Γ ⊢ A⟩⟩VCCB, which says that term con-

text C has type B in environment ∆ and contains zero or

more occurrences of a hole of type A in an environment Γ.
For such a well-typed term context C, there is an operation,

instantiation, denoted by C⟨⟨M⟩⟩VCC which fills the holes in

the term context C with M . We make a customary abuse

4
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of notation in overloading chevrons ‘⟨⟨⟩⟩’ to represent both

the occurrence of a hole in a context and the operation of

instantiation. Instantiation is (yet) another structural traver-

sal, where the only (base) case of interest is that of the hole

constructor, replacing the hole withM :

⟨⟨−⟩⟩⟨⟨M⟩⟩VCC = M .

By virtue of our de Bruijn encoding, we avoid traditional

concerns (as in [15, 27, for example]) associated with α-
equivalence of VCCs. However, VCCs are still a little in-

convenient to work with because they force holes to match

exactly the enclosing scope of their context, even up to the

ordering of the variables captured (see the vccHole rule in

Figure 6).

To manage such concerns we employ a different notion of

value-substituting contexts (VSCs), where each occurrence

of a hole carries an appropriate (well-typed) substitution, as

in rule vscHole below. This ensures that the instantiation

operation C⟨⟨M⟩⟩VSC is itself well-typed and well-scoped, and

again definable by a simple traversal. Typing judgements

for VSCs are the same as for VCCs except we replace the

vccHole rule with the following.

vscHole

θ : Γ ⊨ ∆

∆ ⊢ ⟨⟨θ−⟩⟩ : ⟨⟨Γ ⊢ A⟩⟩VSCA

Instantiation for VSCs is as with VCCs except for the base

case, where a hole is filled by applying the substitution pro-

vided.

⟨⟨θ−⟩⟩⟨⟨M⟩⟩VSC = θ (M )

Every VCC is trivially a VSC, by annotating each hole with

an identity substitution. For the rest of the paper we use

unadorned chevrons for instantiation when it is clear from

the context which version of contexts is being used.

Lassen defines a notion of variable-capturing context [16]

that is slightly different to ours, equivalent to each hole car-

rying a renaming rather than a general value substitution.

This lies strictly between our VCCs and VSCs, as any re-

naming is naturally a substitution. Later, we shall see that

relations based on either VCCs or VSCs coincide, and so also

with ones based on Lassen’s variant.

2.3 Observational Approximation
This section formally defines the notion of observational

approximation, alluded to in the introduction, for λ→FG . Its
definition can be traced back to Morris [23] and builds on the

account of term contexts and substitutions in the previous

section.

We begin with a relation transformer lifting any relation

on values to a relation on terms.

Definition 2.4. For closed terms M , N of type A and R a

binary relation on closed values of type A,

M [R]
T N ≜ ∀V . M ⇓A V =⇒ ∃U . N ⇓A U ∧V R U

This relation transformer is closed under primitive reduc-

tion and expansion. We state and sketch a proof for left-

closure under { .

Lemma 2.5 ([ ]
T
left-closed under { ). For all closed terms

M , N of type A and R a binary relation on closed values of
type A, the following properties hold.

1. IfM { P andM [R]
T N then P [R]

T N
2. IfM { P and P [R]

T N thenM [R]
T N

Proof. By the definition of [ ]
T
and Lemma 2.3. □

We next define a basic relation that drives all our other

notions of approximation. This aims to capture what values

can be directly distinguished, without further context or

evaluation.

Definition 2.6 (Ground equivalence). Let ≊A be the equiv-

alence relation defined on closed values of type A by:

• V ≊τ U ≜ V = U , for all V ,U : τ ,
• λAM ≊A→B λA N for allM ,N

One reason to factor this out in our development is the po-

tential for incorporating non-trivial equivalences on ground

values (such as for adding primitive operations and their

definitions) in a similar fashion to Johann et al. [14] (see

Section 5 for more on this).

Although this particular relation is symmetric, the def-

initions we build on it are biased to give approximation

preorders. In particular this anticipates calculi with nonter-

mination, where termination is a basic observable.

Now we are in a position to define observational approxi-

mation in terms of ground equivalence. First, we have a defi-

nition of approximation parametric in the notion of contexts

we consider (VSCs, VCCs,. . .). Let K range over these no-

tions of contexts. A program is a closed term of arbitrary type.

A programK -context is a closed termK -context ranged over

by P,Q, i.e. · ⊢ P : ⟨⟨Γ ⊢ A⟩⟩KB; where for convenience we
usually omit the empty environment.

Definition 2.7 (K Approximation). If M , N are terms of

type A in context Γ then

Γ ⊢ M ⪍KA N

asserts that for all program contexts P : ⟨⟨Γ ⊢ A⟩⟩KB,

P⟨⟨M⟩⟩K [≊B]
T
P⟨⟨N ⟩⟩K .

From all K -contextual approximations, we choose as pri-

mary the one with the largest class of contexts — thereby

able to make the finest discrimination between terms.

Definition 2.8 (Observational Approximation). Let obser-
vational approximation, written ⪍VSC

, be Definition 2.7

instantiated with K = VSC.

Now we can establish our first inclusion of approxima-

tions.

5
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Lemma 2.9. If Γ ⊢ M ⪍VSC
A N then Γ ⊢ M ⪍VCC

A N .

Proof. Assume given terms Γ ⊢ M ,N : Awith Γ ⊢ M ⪍VSC

A N

and VCC P : ⟨⟨Γ ⊢ A⟩⟩VCCB. From P we can build matching

VSC Q where each hole carries the identity substitution.

The result follows by using our VSC approximation with

M and N , and the property that for all terms Γ ⊢ M ′ : A,
P⟨⟨M ′⟩⟩VCC ≡ Q⟨⟨M ′⟩⟩VSC (proved by induction on the struc-

ture of P). □

Definition 2.7 can readily be extended to an equivalence,

denoted by ≃K :

Γ ⊢ M ≃KA N ≜ Γ ⊢ M ⪍KA N ∧ Γ ⊢ N ⪍KA M .

In the remainder of this paper results will be stated for the

approximations only but can be straightforwardly lifted to

equivalences [30, 32].

3 Big Steps for a Context Lemma
In this section we define three approximation relations and

prove a triangle of implications which together lead to a

context lemma inspired by Milner’s original for combinatory

logic [20].

As noted in the introduction, proving observational ap-

proximation directly can be arduous owing to the require-

ment to consider all possible program contexts. Happily,

Milner [20] showed that for typed combinatory logic it is

enough to consider only contexts where the hole occurs in

function position applied to some arguments. The following

definition captures such contexts in our setting.

Definition 3.1 (Applicative Substituting Contexts). The ap-
plicative substituting contexts (ASCs) are the restricted class

of contexts defined by the following inference rules:

ascHole

θ : Γ ⊨ ∆

∆ ⊢ ⟨⟨θ−⟩⟩ : ⟨⟨Γ ⊢ A⟩⟩ASCA

ascApp

∆ ⊢ D : ⟨⟨Γ ⊢ A⟩⟩ASC (B → C ) ∆ ⊢ V : B

∆ ⊢ D V : ⟨⟨Γ ⊢ A⟩⟩ASCC

Definition 3.2 (ASC Approximation). Let ASC approxima-

tion be Definition 2.7 with K = ASC.

Having introduced the required notation we may now for-

mally state the context lemmawe aim to prove in this section.

Firstly, in our setting, Milner’s original context lemma states

that for all open λ→FG terms Γ ⊢ M ,N : A,

Γ ⊢ M ⪍ASC

A N ⇐⇒ Γ ⊢ M ⪍VCC

A N .

However, we have taken our notion of VSCs as primary, so

our context lemma becomes

Γ ⊢ M ⪍ASC

A N ⇐⇒ Γ ⊢ M ⪍VSC

A N .

Before proving the above result we define some auxiliary

notions.

betaV-Refl

M {βV M

betaV-Step

M {βV (λA N ) V

M {βV N [V ]

beta-βV

M {βV N

M {β N

beta-Let

M {β M ′

letA M N {β letA M ′ N

Figure 7. λ→FG iterated beta-reduction with respect to se-

quencing

Definition 3.3 (Beta-Redexes from Substitution). Let θ be a

∆-closing substitution. For ∆ ⊢ D : ⟨⟨Γ ⊢ A⟩⟩VCCB, defineDθ

by induction on the size of ∆:

Dθ =

{
D ∆ = ·
((λC D) θ0)

(succ θ ) ∆ = ∆′,C

Dθ
represents a new (closed) VCC obtained from D by con-

structing a sequence of beta-redexes on the outside of D

from the substitution θ . For ∆ ⊢ M : A, let Mθ
denote the

analogous operation for constructing a closed term fromM
and θ .

Figure 7 defines iterated beta-reduction with respect to

term sequencing. Both relations satisfy analogous properties

to Lemmas 2.3 and 2.5. Then we have the obvious result

Lemma3.4. For∆ ⊢ M : A, and∆-closing substitutionθ , then
we have

Mθ {βV θ (M )

Definition 3.5. Define the operation ⋆ : ASC → VCC ,
which transforms a closed ASC into a closed VCC, by in-

duction on the structure of the ASC:

⋆(⟨⟨θ−⟩⟩) = ⟨⟨−⟩⟩θ

⋆ (P V ) = ⋆(P) V

where the ascApp case uses our syntactic sugar, extended to

K contexts.

Lemma 3.6. For all Γ ⊢ M : A, ∆ ⊢ C : ⟨⟨Γ ⊢ A⟩⟩VCCB, and ∆-
closing substitutions, θ , we have

(Cθ )⟨⟨M⟩⟩ ≡ (C⟨⟨M⟩⟩)θ

Proof. By induction on the size of the environment ∆. □

Lemma 3.7. If Γ ⊢ M ⪍VCC
A N then Γ ⊢ M ⪍ASC

A N .

Proof. Assume given terms Γ ⊢ M ,N : A, Γ ⊢ M ⪍VCC

A N and

ASC P : ⟨⟨Γ ⊢ A⟩⟩ASCB. The proof proceeds by induction on

the structure of P.

If P = ⟨⟨θ−⟩⟩, for some Γ-closing substitution θ , then the

result follows from Lemmas 3.6 and 3.4, using [ ]
T
’s left- and

right-closure under {βV
.
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Otherwise, P = Q V , for some Q : ⟨⟨Γ ⊢ A⟩⟩ASC (B → C )
andV : B. The result follows by applying the approximation

assumption to⋆(P) (Definition 3.5) and using [ ]T ’s left- and
right-closure under {β

. □

Lemmas 2.9 and 3.7 give one direction of our context

lemma for λ→FG . Not surprisingly, the other direction is more

challenging. This is where we adopt the triangulation proof

method described in the introduction. That is, we concern

ourselves with establishing the following cycle of implica-

tions.

⪍VSC ⪍VCC ⪍ASC

≲⪅

The contextual approximations for VSCs, VCCs and ASCs

form the apex of the triangle, while ≲ is applicative ap-
proximation and ⪅ is logical approximation, both to be

defined shortly. We have already shown the implications

within the dotted ellipse (Lemmas 2.9 and 3.7), and the next

two sections will address those forming the triangle.

3.1 Applicative Approximation
The definition of applicative approximation roughly follows

Stark’s definition [32].

Definition 3.8 (Applicative Approximation). We define ap-

plicative approximation ≲ using two mutually recursive

definitions, one for values and one for terms.

Define the relation V1 ≲
val
A V2 for closed values V1,V2 induc-

tively on the structure of type A:

AppGndApx

V1 ≊τ V2

V1 ≲
val
τ V2

AppAbsApx

∀V :A. M1[V ] ≲trmB M2[V ]

λAM1 ≲
val
A→B λAM2

Define the relationM1 ≲
trm
A M2 for closed termsM1,M2 of

type A by the following definition:

M1 ≲
trm
A M2 ≜ M1

[
≲valA

]T
M2

Just like for observational approximation, applicative ap-

proximation can be stated for open terms. We employ simul-

taneous substitutions to close over the environment.

Definition 3.9 (Open Applicative Approximation). Given
Γ ⊢ M1 : A and Γ ⊢ M2 : A, we say that M1 applicatively ap-
proximates M2, written Γ ⊢ M1 ≲A M2, if and only if for all

Γ-closing substitutions θ we have θ (M1) ≲A θ (M2).

A relationship between ASC approximation and applica-

tive approximation can be established from which we obtain

one side of the triangle.

Theorem 3.10. Γ ⊢ M ⪍ASC
A N =⇒ Γ ⊢ M ≲trmA N

Proof. By induction on the type A. □

Lemma 3.11. Observational approximation implies applica-
tive approximation:

Γ ⊢ M ⪍VSC
A N =⇒ Γ ⊢ M ≲trmA N

Proof. By Lemmas 2.9 and 3.7 with Theorem 3.10. □

3.2 Logical Approximation
Logical approximation differs with respect to applicative

approximation only in its handling of functions.

Definition 3.12 (Logical Approximation). Define logical

approximation by the mutually recursive relations ⪅val and
⪅trm . The relation V1 ⪅

val
A V2 for closed values V1,V2 is

defined recursively on the structure of type A:

LogGndApx

V1 ≊τ V2

V1 ⪅
val
τ V2

LogAbsApx

∀V1,V2. V1 ⪅
val
A V2 =⇒ M1[V1] ⪅

trm
B M2[V2]

λAM1 ⪅
val
A→B λAM2

The relationM1 ⪅
trm
A M2 for closed termsM1,M2 of type A

is defined using [ ]
T
and ⪅val :

M1 ⪅
trm
A M2 ≜ M1

[
⪅valA

]T
M2

To extend logical approximation to open terms we define

the notion of logical approximation of substitutions.

Definition 3.13 (Logical Approximation of Substitutions).
For Γ-closing substitutions, θ ,θ ′, θ ⪅Γ θ

′
holds if and only

if, for all k : (A ∈ Γ), θk ⪅A θ ′k . For θ ,θ
′
: Γ ⊨ ∆, ∆ ⊢ θ ⪅Γ θ

′

holds if and only if, for all ∆-closing substitutions, θ1,θ2 such
that θ1 ⪅∆ θ2 holds then θ1 ◦ θ ⪅Γ θ2 ◦ θ

′
holds.

Definition 3.14 (Open Logical Approximation). Assume

given Γ ⊢ M1 : A and Γ ⊢ M2 : A, then M1 logically approx-

imates M2, written Γ ⊢ M1 ⪅A M2, if and only if, for all Γ-
closing substitutionsθ1,θ2 ifθ1 ⪅Γ θ2 thenθ1 (M1) ⪅A θ2 (M2).

Logical approximation is closed under primitive reduction,

and expansion.

Lemma 3.15 (⪅trm left-closed under { ). If M { P and
M ⪅trmA N then P ⪅trmA N , and if M { P and P ⪅trmA N
thenM ⪅trmA N .

Lemma 3.16 (⪅trm right-closed under { ). If N { P and
M ⪅trmA N then M ⪅trmA P , and if N { P and M ⪅trmA P
thenM ⪅trmA N

The following lemma follows directly from the above def-

inition of open logical approximation.

7
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LogApxIfThenElse

B ⪅valbool B
′ L ⪅trmA L′ R ⪅trmA R′

if B then L else R ⪅trmA if B′ then L′ else R′

LogApxApp

F ⪅valA→B G U ⪅valA V

F U ⪅trmB G V

LogApxLet

M ⪅trmA M ′ x : A ⊢ N ⪅trmB N ′

letA M N ⪅trmB letA M ′ N ′

Figure 8. ⪅ is closed under the compound term formers

Lemma 3.17. If Γ ⊢ M1 ⪅
trm
A M2 and ∆ ⊢ θ1 ⪅Γ θ2 then

∆ ⊢ θ1 (M1) ⪅
trm
A θ2 (M2).

Lemma 3.18 (Logical Apx. Term Closure). Logical approxi-
mation is closed under the compound term formers (Figure 8).

Proof. By Lemmas 3.15 and 3.16, and the let rule for big-step

evaluation. □

Lemma 3.19 (Fundamental Theorem of Logical Relations).
Logical approximation is reflexive:

1. Γ ⊢ V ⪅valA V
2. Γ ⊢ M ⪅trmA M

Proof. Perform simultaneous induction on the typing deriva-

tions Γ ⊢ V : A and Γ ⊢ M : A using Lemma 3.18. □

3.3 Completing the Triangle
It remains to establish the other two implications of the

triangle. First, we link applicative and logical approximation

with the following generalised transitivity property [29, 30]:

Lemma 3.20. The following transitivity properties hold:
1. IfU ≲valA V and V ⪅valA W thenU ⪅valA W
2. IfM ≲trmA N and N ⪅trmA P thenM ⪅trmA P

Proof. By simultaneous induction on the structure of type A.
□

Using the Fundamental Theorem of Logical Relations and

Lemma 3.20, we obtain the base implication of our triangle.

Lemma 3.21. Applicative approximation implies logical ap-
proximation:

Γ ⊢ M ≲trmA N =⇒ Γ ⊢ M ⪅trmA N

Now we establish a relationship between observational

and logical approximations by first showing that logical ap-

proximation is closed under all VSCs.

Lemma3.22. If Γ ⊢ M1 ⪅
trm
A M2 and∆ ⊢ C : ⟨⟨Γ ⊢ A⟩⟩B then,

∆ ⊢ C⟨⟨M1⟩⟩ ⪅
trm
B C⟨⟨M2⟩⟩

Proof. By induction on the derivation of ∆ ⊢ C : ⟨⟨Γ ⊢ A⟩⟩B
using Lemma 3.18 for the compound term formers, Lemma 3.17

for the vscHole case, and Lemma 3.19 for the case where

there is no hole in C. □

Lemma 3.23. Logical approximation implies observational
approximation:

Γ ⊢ M1 ⪅
trm
A M2 =⇒ Γ ⊢ M1 ⪍VSC

A M2

Proof. Instantiate the context C of Lemma 3.22 with pro-

gram context · ⊢ P : ⟨⟨Γ ⊢ A⟩⟩B from the definition of VSC

approximation. □

We can now complete the cycle, which in turn yields the

desired context lemma: that applicative contexts are suffi-

cient to characterise observational approximation.

Theorem 3.24 (Big-Step Triangulation). Observational, ap-
plicative, and logical approximation coincide.

Proof. Using Lemmas 3.11, 3.21 and 3.23. □

Corollary 3.25 (Context Lemma). For all open λ→FG terms
Γ ⊢ M ,N : A, Γ ⊢ M ⪍ASC

A N if and only if Γ ⊢ M ⪍VSC
A N .

4 Extension to Frame Stacks
Since Milner’s original context lemma, a number of similar

results have appeared for more complex calculi. In partic-

ular, for calculi with effects (such as state) applicative con-

texts are not sufficient and one requires a more powerful

notion known as Closed Instantiations of Uses (CIU) approxi-
mation [19].

In this section we consider a different triangle of approx-

imations involving frame stacks [29]. We parallel the ReFS

proofs of Pitts and Stark [30] recasting the applicative and

logical approximations described in Section 3 in terms of

frame stack evaluation. First though, we define CIU contexts

and relate them to VCCs just like that for ASCs. We omit

some proofs since they follow similar reasoning. For an al-

ternative account of a similar development, the reader may

wish to consult the chapter by Pitts [29] in Pierce’s book [26].

Definition 4.1 (CIU Contexts). Let CIU contexts be the re-
stricted class of contexts defined by the following inference

rules:

ciuHole

θ : Γ ⊨ ∆

∆ ⊢ ⟨⟨θ−⟩⟩ : ⟨⟨Γ ⊢ A⟩⟩CIUA

ciuApp

∆ ⊢ D : ⟨⟨Γ ⊢ A⟩⟩CIUB ∆,B ⊢ N : C

∆ ⊢ letB D N : ⟨⟨Γ ⊢ A⟩⟩CIUC

It is worth stressing the differences between ASCs and

CIU contexts. ASCs consist of a well-typed and well-scoped

hole applied to a sequence of closed values. CIU contexts

form a nested sequence of let bindings (culminating in the

hole) with a term body.
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Well-Typed Syntax

NilFrmTy

· ⊢ Id : A ⊸ A

ConsFrmTy

· ⊢ S : B ⊸ C A ⊢ N : B

· ⊢ S ◦A N : A ⊸ C

Semantics

nilValue

· ⊢ V : A

⟨Id,V ⟩ ↓A V

consValue

⟨S,N [U ]⟩ ↓B V

⟨S ◦A N ,U ⟩ ↓B V

primRed

M { M ′ ⟨S,M ′⟩ ↓A V

⟨S,M⟩ ↓A V

seq

⟨S ◦A N ,M⟩ ↓B V

⟨S,letA M N ⟩ ↓B V

Figure 9. λ→FG frame stack syntax and semantics

Definition 4.2 (CIU Approximation). Let CIU approxima-

tion be Definition 2.7 with K = CIU.

Definition 4.3. Define the operation ♦ : CIU → VCC ,
which transforms a closed CIU context into a closed VCC,

by induction on the structure of the CIU context:

♦(⟨⟨θ−⟩⟩) = ⟨⟨−⟩⟩θ

♦(let P N ) = let ♦(P) N

Lemma 4.4. If Γ ⊢ M ⪍VCC
A N then Γ ⊢ M ⪍CIU

A N .

4.1 Frame Stack Properties
In this section, we establish some properties of frame stacks,

a well-typed construct satisfying the inference rules in Fig-

ure 9. A frame stack is a stack consisting of open terms each

containing exactly one free variable. The frame stack type

A ⊸ B denotes a stack with argument typeA and return type

B. For example, ConsFrmTy says that if we have a frame

stack S of type B ⊸ C , expecting an argument of type B, and
a term N of type B with a free variable of typeA then we can

form the frame stack S ◦A N of type A ⊸ C , expecting an

argument of type A. The argument to a frame stack mimics

that of a hole in a closed VCC.

Evaluation of a frame stack is with respect to a focussed
term whose type corresponds to the argument type of the

frame stack. For readability we mostly suppress typing an-

notations on frame stack evaluation, just as for big-step

evaluation.

Define the (left) action over a frame stack, @, to be the

operation that produces a term given a frame and a closed

term to fill its hole:

Id@M = M

(S ◦A N )@M = S@(letA M N )

We may extend the @ action to operate on closed CIU con-

texts instead of terms, denoted by − ⟨⟨@⟩⟩ −, replacing the

case for ConsFrmTy above with:

(S ◦A N )⟨⟨@⟩⟩P = S⟨⟨@⟩⟩(let P N )

The type of the holes in the context are left unchanged by the

operation. The following lemma establishes that the action

over a frame stack commutes with context instantiation.

Lemma 4.5. (S⟨⟨@⟩⟩P)⟨⟨M⟩⟩CIU = S@(P⟨⟨M⟩⟩CIU)

Proof. By induction on the frame stack S . □

The following lemma relates frame stack and big-step

evaluation using the action over a frame stack.

Lemma 4.6. ⟨S,M⟩ ↓ V ⇐⇒ S@M ⇓ V .

Proof. For⇐=, the proof follows by the properties:

1. M ⇓ V =⇒ ⟨Id,M⟩ ↓ V
2. ⟨Id,S@M⟩ ↓ U =⇒ ⟨S,M⟩ ↓ U

where (1) is by induction on the derivation ofM ⇓ V and (2)

is by induction on S .
For =⇒, the proof follows from a standardisation argu-

ment [33]: evaluation can be decomposed into evaluation

of a focussed termM to valueW and evaluation of the sur-

rounding context S filled withW .

3. S@M ⇓ V =⇒ ∃W .M ⇓W ∧ S@W ⇓ V
4. M ⇓W ∧ S@W ⇓ V =⇒ S@M ⇓ V

Both are proved simultaneously by induction on S . □

We define a relation transformer that lifts a relation on val-

ues to a relation between frame stack configurations ⟨−,−⟩.

Definition 4.7. For frame stacks S1,S2 : A ⊸ B, closed
termsM1,M2 : A, and binary relation R on closed values of

type B, relation S1,M1 [R]
F S2,M2 holds if and only if

∀V . ⟨S1,M1⟩ ↓ V =⇒ ∃U . ⟨S2,M2⟩ ↓ U ∧V R U .

4.2 Applicative Frame Approximation
Having set up frame-stack machinery, we move on to the as-

sociated approximation relations. In Sections 3.1 and 3.2 we

defined value and term relations simultaneously, using [ ]
T

to pass from values to terms. In a CIU setting, frame stacks

now provide a bridge between value relations and term re-

lations. This is most obvious with logical approximations,

where all three are defined simultaneously. For applicative

approximation, our results need only the term relation.

Definition 4.8 (Applicative Frame Approximation). Term
M1 applicatively frame approximatesM2 at type A if evalua-

tion ofM1 in any appropriately-typed frame stack S approx-

imates the evaluation ofM2 in the same S .

M1 ⟨≲⟩
trm
A M2 ≜ ∀S : A ⊸ B. S ,M1 [≊B]

F S ,M2

Approximation for values mirrors that of Definition 3.8,

building on this term approximation; while two frame stacks

are related based on their evaluation at all values. We omit

the formal descriptions as we do not need them further.

9
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Lemma 4.9. If Γ ⊢ M ⪍CIU
A N then Γ ⊢ M ⟨≲⟩trmA N

Proof. Assume a Γ-closing substitution θ with ⟨S ,θ (M )⟩ ↓ V
for some S and V . By Lemma 4.6, S@θ (M ) ⇓ V holds. In

the CIU approximation assumption, set the context P to be

S⟨⟨@⟩⟩⟨⟨θ−⟩⟩. It follows that there exists a valueW such that

(S⟨⟨@⟩⟩⟨⟨θ−⟩⟩)⟨⟨N ⟩⟩CIU ⇓W and V ≊ W . The result follows

by Lemmas 4.5 and 4.6. □

Lemma 4.10. Observational approximation implies applica-
tive frame approximation.

Proof. By Lemmas 2.9, 4.4 and 4.9. □

4.3 Logical Frame Approximation
We now define the frame stack analogue to logical approxi-

mation from Section 3.2, using ⊤⊤-lifting / biorthogonality

for logical relations as demonstrated by Pitts and Stark [30].

Definition 4.11 (Logical Frame Approximation). Logical
frame approximation is defined by three mutually recursive

relations on pairs of (closed) values, terms and stacks. De-

fine V1 ⟨⪅⟩
val
A V2 for closed values V1,V2 inductively by the

structure of type A:

LogFrmGndApx

V1 ≊τ V2

V1 ⟨⪅⟩
val
τ V2

LogFrmAbsApx

∀V1,V2. V1 ⟨⪅⟩
val
A V2 =⇒ M1[V1] ⟨⪅⟩

trm
B M2[V2]

λAM1 ⟨⪅⟩
val
A→B λAM2

The relation ⟨⪅⟩trm is defined by the ⊤⊤-lifting of ⟨⪅⟩val

over ⟨⪅⟩stk : for closed terms M1 and M2, approximation

M1 ⟨⪅⟩
trm
A M2 is defined to be

∀S1,S2. S1 ⟨⪅⟩
stk
A⊸B S2 =⇒ S1,M1 [≊B]

F S2,M2

where the approximation S1 ⟨⪅⟩
stk
A⊸B S2 for frame stacks S1

and S2 is defined as

∀V1,V2. V1 ⟨⪅⟩
val
A V2 =⇒ S1,V1 [≊B]

F S2,V2 .

As with applicative frame approximation, ⟨⪅⟩trm uses the ≊
relation to relate the final values. In the definition of ⟨⪅⟩stk ,
we implicitly lift the value arguments to terms.

As in Lemmas 3.15, 3.16, and 3.22, logical frame approxi-

mation is closed under primitive reduction and expansion,

and closed under all VSCs.

Lemma 4.12 (Logical Frame Apx. Lifts). Logical frame ap-
proximation is closed under the compound term formers.

Proof. The only deviation from the proof of Lemma 3.18 is

for let, where we extend the approximation of stacks from

S1 ⟨⪅⟩
stk
B⊸C S2 to S1 ◦A N ⟨⪅⟩stkA⊸C S2 ◦A N ′. □

Lemma 4.13. Logical frame approximation is reflexive:
1. Γ ⊢ V ⟨⪅⟩valA V

2. Γ ⊢ M ⟨⪅⟩trmA M

3. S ⟨⪅⟩stkA S

Proof. For (1) and (2) the proof is similar to Lemma 3.19

using Lemma 4.12. For (3), perform induction on the well-

typed derivation of S using (2) for consValue. □

Lemma4.14. If Γ ⊢ M1 ⟨⪅⟩A M2 and∆ ⊢ C : ⟨⟨Γ ⊢ A⟩⟩B then

∆ ⊢ C⟨⟨M1⟩⟩ ⟨⪅⟩
trm
B C⟨⟨M2⟩⟩

4.4 Establishing the Triangle
We can nowproceed to the following analogue of Lemma 3.23.

Lemma 4.15. Logical frame approximation implies observa-
tional approximation:

Γ ⊢ M ⟨⪅⟩trmA N =⇒ Γ ⊢ M ⪍VSC
A N .

Proof. By definition, using Lemma 4.14. □

Lemma 4.16. Applicative and logical frame approximation
satisfy the following transitivity property:

If M ⟨≲⟩trmA N and N ⟨⪅⟩trmA P thenM ⟨⪅⟩trmA P .

Proof. By induction on the structure of type A. □

We establish the final implication of the triangle: that

applicative frame approximation implies logical frame ap-

proximation.

Lemma 4.17.

Γ ⊢ M ⟨≲⟩trmA N =⇒ Γ ⊢ M ⟨⪅⟩trmA N

Proof. By Lemmas 4.13 and 4.16. □

Once again, all three notions coincide.

Lemma 4.18 (Frame Stack Triangulation). Observational,
applicative frame and logical frame approximation coincide.

Proof. Using Lemmas 4.10, 4.17 and 4.15. □

For a simply-typed lambda calculus like λ→FG it is not in

fact essential to consider CIU approximation — we already

know from Section 3 that applicative contexts are enough

to distinguish terms. Differences, though, arise in any lan-

guage with features like state, exceptions, or other effects

that give program contexts greater discriminating power. In

these cases we expect the frame-stack approach to be appro-

priate: and note that the triangulation proofs are reassuringly

similar in shape when moving fromMilner’s original context

lemma to a CIU version. We hope to maintain this in scaling

the development to support effectful calculi, in particular

those based on algebraic effects and handlers [6, 18].
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5 Related Work
Program equivalence has a long history, so an exhaustive

account of the literature on the subject is impossible in the

space available. We identify brief highlights that have had a

direct influence on this work.

Howe developed a general method for proving coinci-

dence of applicative bisimilarity and observational equiva-

lence for a broad class of (untyped) lazy languages [12] and

subsequently extended the method to support call-by-value

calculi [13]. A key element of the approach is to introduce a

relation, called the ‘precongruence candidate’, which bridges

the gap between the applicative and observational notions.

The technique has been shown to extend to other languages,

including a typed metalanguage with recursive types [11]

and extensions of PCF [15, 28]. Howe’s method does not

reason explicitly about reduction sequences in contrast to

others [19, 32]. Instead, the precongruence candidate is suf-

ficient to show that the relation is closed under all contexts,

treating contexts abstractly. Our approach is a middle ground

in that we reason explicitly about the structure of contexts

but do not explicitly analyse reduction sequences.

Since our original submission, we have formalised Howe’s

construction as (yet another) operator [_]
H
on relations, prov-

ing its basic properties (reflexivity, transitivity, substitutivity,

and crucially, the analogue of Lemma 3.22). We have fur-

ther proved that [ ≲ ]
H ⊆ ⪅ , making essential use of (an

analogue of) Lemma 3.20. Hence, by virtue of our existing

(big-step) triangulation, we obtain that [ ≲ ]
H
is extension-

ally equivalent to ⪅ , since R ⊆ [R]H for R reflexive.

Stark showed a triangle of relations equivalent for the nu-

calculus and proved a context lemma for an instantiated hole

applied to functions returning a boolean value [32]. However,

this special form of context lemma is proved by analysing

the process of reduction and the particular forms for closed

expressions in the calculus. In contrast, our fine-grained

calculus is simple enough for consideration of applicative

contexts à la Milner [20] to suffice, and hence the context

lemma follows from the triangulation result.

Pitts and Stark prove a context lemma, which includes the

CIU theorem, for a functional language with local state [30].

Their use of the triangulation technique inspired this work

and our Section 4 essentially isolates their approach, free

from considerations of state relations. However, our formal

approach gives a more satisfactory account of contexts, their

scope and the variable capture involved when instantiating

a hole with a term. In particular, there is no requirement

for a side-condition in our analogue (Theorem 4.14) of their

Theorem 4.9 since by construction every occurrence of a

hole (in a VSC) is paired with a well-typed and well-scoped

substitution.

Pitts [29] developed a triangle for an ML-like language,

but in contrast to ReFS [30], it is based on an extension of

Howe’s relational approach [11, 15]. The relational approach

for representing contexts is favoured in order to mitigate

the difficulties involved with concrete contexts and their

potential capture of free variables of a term. The folklore

belief is that such issues are especially difficult to handle in

the setting of machine checked proofs. On the contrary, a

careful choice of representation and appropriate use of state-

of-the-art technology makes their representation routine.

Moreover, the relational approach relies on an inductive

characterisation in terms of the language syntax. Some of

these rules involve the use of variables from the context. It is

not clear how one would formalise such definitions without

having to deal with issues of naming and α-convertibility;
issues handled automatically by the ACMM framework.

We note that we have in this work used straightforward re-

cursion and structural induction in our definitions and proofs.

This is to be expected for a simply-typed lambda-calculus,

where all evaluation is terminating. However, previous work

on ReFS shows that frame stacks are also sufficient to handle

recursive definitions, termination, and unwinding [30, §3].

The key feature is how the structure of frame stacks captures

evaluation in fine detail, guiding the corresponding proof

structure. We conjecture that this auto-calibration may help

postpone or even avoid the need for step-indexing [1, 4]

when moving to more elaborate language features.

More generally, we consider that the significant character-

istic of all our structural relations, applicative or logical, is

not recursion or induction but their closure under inference

rules and biorthogonality / ⊤⊤-lifting.

Regarding formalisations of context-lemma-like results,

the nearest related work we can find is by Ambler and Crole,

in Isabelle/HOL [3], subsequently with Momigliano in the

Hybrid system [22], then by Momigliano in the Abella theo-

rem prover [21], and by Thibodeau et al. in the Beluga theo-

rem prover [35]. With the exception of Ambler and Crole’s

work in HOL, also based on a concrete de Bruijn representa-

tion, the other authors address higher-order abstract syntax

(HOAS) presentations, together with greater or lesser sophis-

tication in the implementation of the meta-level to account

for term contexts and open approximation relations. In each

case, the authors use Howe’s coinductive method for defin-

ing applicative simulation and proving it a pre-congruence,

but do not show its coincidence with observational approxi-

mation as we do in Lemmas 3.23 and 4.15. Indeed, Thibodeau

et al.’s HOAS approach does not support any kind of variable-

capturing contexts, while the authors note Beluga requires a

non-trivial extension to encode observational approximation

using the relational approach [16, 27].

Prior to Thibodeau et al., it seems to have been extremely

difficult to judge formalisation work as robust or reusable.

Ambler and Crole themselves note howmuchworkwent into

the machinery of substitution and de Bruijn manipulation;

we might conjecture that our use of a dependently-typed

metalanguage confers many advantages over HOL formali-

sations in terms of building-in well-typed invariants to our

11
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definitions, while our exploitation of ACMM demonstrates

the versatility and abstraction available in a first-order deep

embedding combined with shallow HOAS reasoning tech-

niques. Momigliano’s suggestive title hints at his reluctance

to repeat the experiment. Working in Beluga, Thibodeau et al.

seem to have achieved robustness, readability, and (poten-

tial) reusability, but at the cost of a much more sophisticated

meta-language than our concrete approach in Agda.

Johann et al. study similar results in a general operational

setting for a polymorphic calculus extended with algebraic

effects [14]. Like us, they parameterise their approximations

with respect to a notion of ‘basic’ preorder for making ob-

servations on ground type computations. Their expressive

setting provides justification for the parameterisation, per-

mitting different choices of basic preorder to give a semantics

with respect to different collections of effects. Their work of-

fers hope that our results will extend to calculi with algebraic

effects and handlers.

6 Conclusion
We have drawn out the distinctive proof technique of tri-

angulation utilised in proofs of previous context lemmas.

We isolated the method by considering two versions in the

setting of a fine-grained call-by-value calculus: the applica-

tive or classical result inspired by Milner; and the CIU-like

result required of effectful calculi. Moreover, we formalised

our results using state-of-the-art technology for represent-

ing well-typed and well-scoped syntax — in particular, the

explicit first-order representation of observational contexts.

We have contributed to the exposition of triangulation as

a general technique for proving context lemmas; its formali-

sation provides a robust basis for future work on more exotic

calculi. In particular, we see frame stacks as a good model for

reasoning about handler stacks and the operational semantics

of algebraic effects in languages like Eff and Frank [6, 18].
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