
Finite Sets in Homotopy Type Theory

Dan Frumin
Radboud University

Institute for Computation and Information Sciences
The Netherlands
dfrumin@cs.ru.nl

Herman Geuvers
Radboud University

Institute for Computation and Information Sciences
The Netherlands
herman@cs.ru.nl

Léon Gondelman
Radboud University

Institute for Computation and Information Sciences
The Netherlands
lgg@cs.ru.nl

Niels van der Weide
Radboud University

Institute for Computation and Information Sciences
The Netherlands
nweide@cs.ru.nl

Abstract

We study different formalizations of finite sets in homotopy
type theory to obtain a general definition that exhibits both
the computational facilities and the proof principles expected
from finite sets. We use higher inductive types to define the
typeK(A) of łfinite sets over typeAž à laKuratowski without
assuming that A has decidable equality. We show how to
define basic functions and prove basic properties after which
we give two applications of our definition.

On the foundational side, we use K to define the no-
tions of łKuratowski-finite typež and łKuratowski-finite sub-
objectž, which we contrast with established notions, e.g.,
Bishop-finite types and enumerated types. We argue that
Kuratowski-finiteness is the most general and flexible one
of those and we define the usual operations on finite types
and subobjects.

From the computational perspective, we show how to use
K(A) for an abstract interface for well-known finite set im-
plementations such as tree- and list-like data structures. This
implies that a function defined on a concrete finite sets im-
plementation can be obtained from a function defined on the
abstract finite sets K(A) and that correctness properties are
inherited. Hence, HoTT is the ideal setting for data refine-
ment. Beside this, we define bounded quantification, which
lifts a decidable property on A to one on K(A).

CCS Concepts · Theory of computation → Type the-

ory; Constructive mathematics;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

CPP’18, January 8ś9, 2018, Los Angeles, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5586-5/18/01. . . $15.00

https://doi.org/10.1145/3167085

Keywords finite sets, higher inductive types, finite types,
homotopy type theory, Coq

ACM Reference Format:

Dan Frumin, Herman Geuvers, Léon Gondelman, and Niels van der

Weide. 2018. Finite Sets in Homotopy Type Theory. In Proceedings

of 7th ACM SIGPLAN International Conference on Certified Programs

and Proofs (CPP’18). ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3167085

1 Introduction

We study finite sets and finite types from the point of view
of homotopy type theory (HoTT). HoTT aims at providing
a formal system that allows the user to reason about and
compute with mathematical structures at the proper level of
abstraction. To do so, it employs, for example, the univalence
axiom and higher inductive types. Univalence allows treating
isomorphic structures as equal and higher inductive types
allow ś among other things ś reasoning inductively over
structures modulo an equivalence relation. We apply these
techniques to finite sets and finite types. HoTT should pro-
vide the proper computational mechanisms and reasoning
principles for finite sets, like taking the union of two finite
sets, counting the number of elements, having an element-of
relation and extensional equality for sets.

In this paper we define the type of finite sets over a typeA
as a higher inductive type in two ways. First we defineK(A)

(the type ofKuratowski-finite sets) as the free join semi-lattice
overA. We give the induction (and recursion) principle, show
how some basic operations can be defined, and we show how
some basic properties can be proved. Second we define L(A)

(the type of listed finite sets) as the higher inductive type
of lists over A such that swapping elements and removing
duplicates preserves equality. We show that these two types
are equivalent.
This approach is inspired by topos theory [25] and it is

translated to HoTT by encoding free algebras as higher in-
ductive types [46]. These two views are connected since sets
in HoTT form a predicative topos [40].

201

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3167085
https://doi.org/10.1145/3167085
https://doi.org/10.1145/3167085

CPP’18, January 8ś9, 2018, Los Angeles, CA, USA D. Frumin, H. Geuvers, L. Gondelman, and N. van der Weide

Our development of finite sets inside HoTT adequately
stresses the subtlety of some of the defined functions: for
example, to count the number of elements of a finite set, we
need the underlying type A to have decidable mere equality
(similarly for defining the intersection of two finite sets). That
our type of finite sets is at the proper level of abstraction, is
further exemplified by the fact that a naive łsize functionž
that just takes the length of the list of elements can simply
not be defined in our system. This is because such a naive
size function does not preserve equality.

In intuitionistic mathematics there are essentially different
ways of defining the of łfinite setž. Themost well-known, due
to Bishop [13], states that a set A is finite if it is equivalent
to a canonical finite set {0, . . . ,n} for some n ∈ N. Alter-
natively, we could consider łKuratowski-finitenessž, which
states that there is a Kuratowski-finite subset of A that con-
tains all inhabitants of type A. Yet another way of defining
that A is finite, is by saying that it can be enumerated: there
is a list of objects of type A that contains all a : A. We prove
that the latter two notions (Kuratowski-finite and enumer-
ated) are equivalent. Bishop-finiteness is really stronger as
it implies that equality on the type A is decidable. In the
presence of decidable equality, all three notions coincide.
Hence, the most general of these are Kuratowski-finiteness
and enumeratedness.

In computer science, there are various concrete data struc-
tures for finite sets, for example lists, labeled binary trees,
binary search trees, AVL trees, and so on. Using our higher
inductive type K(A) of Kuratowski-finite sets, we define the
notion of a łimplementation of finite sets over Až, which is
basically a type T (A) with some operations satisfying some
equational laws. More precisely, we define a signature and
then T (A) is an implementation of finite sets if T (A) inter-
prets that signature and we have a homomorphism from
T (A) → K(A). The aforementioned examples are all imple-
mentations of finite sets and so is K(A) itself. We show how
a function defined on K(A) can be transferred to a function
on another implementation of finite sets over A while the
properties are automatically preserved.

Contributions The paper is intended as a case study in
HoTT and its contributions are the following.

• It presents the first consequent Coq development of
finite sets using higher inductive types;

• It translates the notions of Kuratowski-finiteness and
enumeratedness to HoTT in a proof-irrelevant way
and it gives a formalized comparative study between
these notions and Bishop-finiteness.

• It defines an interface of finite sets suitable for data
refinement such that the implementations properties
can automatically be deduced.

Implementation All results in the paper are formalized
in Coq using the HoTT library [9]. The formalization can

be found at http://cs.ru.nl/~nweide/fsets/finitesets.html and
contains many more results about finite sets and finite types.
An overview of the results, linking definitions and theorems
presented in this paper with formalized proofs, can be found
in the file ‘CPP.v’. Our development contains 4051 lines of
code of which 1406 are specifications and 2645 are proofs.
To implement finite sets efficiently, we use type classes for
overloading and proof automation [27, 43].

1.1 Homotopy Type Theory

We end this introduction with a short recap of homotopy
type theory where we also fix some notations. Everything
we describe is standard [46], so readers familiar with HoTT
can skip this section.

In HoTT, a crucial role is played by the identity type, which
is the inductive type with only one constructor, refl of type
∏

(x : A), x = x , andwith the J -rule as eliminator. The J -rule
says that given a type family φ :

∏

(x ,y : A), x = y → Type

and an inhabitant r of type
∏

(x : A), φ x x (reflx), we get

J (φ, r) :
∏

(x ,y : A),
∏

(p : x = y), φ x y p.

In HoTT, a proof of an equality p : a = b is interpreted as
a łpathž and from a computer science perspective, we may
view the term p as a way of transforming the object a into
the object b.
With the J -rule, we get symmA :

∏

x,y :A x = y → y = x

and transA :
∏

x,y,z :A x = y → y = z → x = z representing
symmetry and transitivity of equality respectively. For paths
p : a = b and q : b = c we write p−1 := symmA a b p and
p � q := transA a b c p q.

The J -rule also allows substituting paths along type fami-
lies (Leibniz’ law). For X and Y types and P : X → Type a
type family over X we define

transport :
∏

(x ,y : X), x = y → P x → P y.

As usual, we abbreviate this to p∗ := transportx y p.

Apart from the identity type, we also have definitional
equality, which is not a judgment in the system but rather
an equality that can be checked automatically by perform-
ing reductions. Definitional equality is denoted by ≡. The
conversion rule implies that definitionally equal types and
terms cannot be distinguished: ifm : A and B : Type such
that we have A ≡ B, thenm : B. For transport we have the
definitional equality (refl t)∗ s ≡ refl s .

Frequently, we need to compare terms s : P x and t : P y in
some type family P : X → Type. If we have a path q : x = y,
then we can compare s and t by transporting along q. More
precisely, we define s =Pq t := (q∗ s) = t .
Another major feature of homotopy type theory is the

univalence axiom which roughly says that equivalent types
are equal. With this axiom one can prove function extension-
ality. To formulate it more precisely, we first need to define
equivalences. Two types A and B are equivalent if there is a

202

http://cs.ru.nl/~nweide/fsets/finitesets.html

Finite Sets in Homotopy Type Theory CPP’18, January 8ś9, 2018, Los Angeles, CA, USA

map f : A → B such that isEquiv(f) where

isEquiv(f) :=
∑

д:B→A

(f ◦ д = idB) ×
∑

h:B→A

(h ◦ f = idA).

We write A ≃ B :=
∑

f :A→B isEquiv(f) and we call f an
equivalence. The univalence axiom asserts that equivalent
types are equal meaning that there is an equivalence ua from
the equivalences A ≃ B to the paths A = B.
HoTT also refines the propositions-as-types perspective

via the notion of a mere proposition. A type A is a mere
proposition if it is łproof-irrelevantž meaning that all its
inhabitants are equal. This can be formulated as a predi-
cate: Ishprop(A) :=

∏

(x ,y : A), x = y. Furthermore, we
define the collection of all mere propositions as the type
hProp :=

∑

A:Type Ishprop(A). An example of a mere propo-
sition is A ≃ B, the type of equivalences between two types.
It is customary to use the word proposition when speaking
about mere propositions, so when we say łA is a propositionž,
we actually mean that A : hProp.

The notion of łsetž is refined by HoTT as well. A type
A is an hSet if all paths between terms of A are equal or
phrased differently, if for all x ,y : A, the type x = y is
a mere proposition. We define Ishset(A) as the dependent
product

∏

(x ,y : A),
∏

(p,q : x = y), p = q and hSet as the
type

∑

A:Type Ishset(A). It is customary to use the word set

when speaking about hSet, so when we say that łA is a setž,
we actually mean that A : hSet.

Another feature of HoTT is higher inductive types (HITs),
which allows defining a type by giving inductive constructors
and equations. An important example of such a type is the
truncation | |A| | of A.

Higher Inductive Type | |A| | :=
| tr : A → ||A| |

| trc :
∏

(x ,y : | |A| |), x = y

The truncation of a type is a proposition, as all the ele-
ments of | |A| | are equated. Truncation recursion says that
whenever B : hProp, a map A → B gives a map | |A| | → B.

When discussing the finite subsets of a type A, it makes a
difference whether or not we can algorithmically compare
elements of A. In case one can, the type A is said to have
decidable equality which means we have an inhabitant of
type

∏

(x ,y : A), x = y + ¬(x = y). In practice we are often
not interested in the path space on A and we only need
decidable mere equality, which is expressed via a truncation
as

∏

(x ,y : A), | |x = y | | + | |¬(x = y)| |.
Another example of a higher inductive type is the quotient

type, A/R. Given A : Type and R : A → A → hProp, it is
defined as follows.

Higher Inductive Type A/R :=
| [·] : A → A/R

| modr :
∏

(x ,y : A), R x y → [x] = [y]

| truncq :
∏

(x ,y : A/R),
∏

(r , s : x = y), r = s

Quotient recursion states that, whenever B : hSet, a map
A → B respecting R gives a map A/R → B. Note that a
quotient is always a set, because the path space is truncated.
Another important higher inductive type is the circle.

Higher Inductive Type S1 :=
| base : S1

| loop : base = base

With the univalence axiom, it can be shown that S1 is not a
set. More precisely, it is shown [35] that loop , refl.

2 Definitions

Our goal is to define a typeK(A) representing the finite sub-
sets of some type A. In type theory and functional program-
ming languages one defines data types using inductive types.
However, such types are freely generated by constructors
and that way equations on the type cannot be guaranteed.
When defining finite subsets, that lack of equations becomes
a serious hurdle.

With higher inductive types (HITs) this hurdle can be over-
come. Since HITs allow both point and path constructors in
their definitions, the type and its equality types are generated
by the point and the path constructors respectively.
In this section we give two equivalent representations

of finite sets in terms of higher inductive types. The first
representation corresponds to the Kuratowski finite sets [29].
Here finite sets are built step by step starting with the empty
set and singleton sets and then making larger sets by taking
the union. In an abstracter language, the finite subsets of A
form the free join semi-lattice on A.
The second representation is based on finite lists. Intu-

itively, sets are given by a list of elements, but the order and
multiplicity do not matter. This means that swapping two
elements and removing duplicates in the list gives the same
finite set.

2.1 Kuratowski Finite Sets

We start by defining the type K(A) of finite subsets of A.

Definition 2.1. Given a type A, we define the typeK(A) of
Kuratowski finite sets as follows.
Higher Inductive Type K(A) :=
| � : K(A)

| {·} : A → K(A)

| ∪ : K(A) → K(A) → K(A)

| nl :
∏

(x : K(A)), � ∪ x = x

| nr :
∏

(x : K(A)), x ∪ � = x

| idem :
∏

(x : A), {x} ∪ {x} = {x}

| assoc :
∏

(x ,y, z : K(A)), x ∪ (y ∪ z) = (x ∪ y) ∪ z

| com :
∏

(x ,y : K(A)), x ∪ y = y ∪ x

| trunc :
∏

(x ,y : K(A)),
∏

(p,q : x = y), p = q

Every line introduces a new constructor of the higher in-
ductive type K(A). The first three lines correspond to the
point constructors, and the other lines correspond to the path

203

CPP’18, January 8ś9, 2018, Los Angeles, CA, USA D. Frumin, H. Geuvers, L. Gondelman, and N. van der Weide

φ : K(A) → Type �φ : φ � Sφ :
∏

(a : A), φ {a} ∪φ :
∏

(x ,y : K(A)), φ x → φ y → φ (x ∪ y)

truncφ :
∏

(x : K(A)), Ishset((φ x)) idemφ :
∏

(a : A), ∪
φ
{a},{a} (S

φ a) (Sφ a) =
φ

idem a
Sφa

nlφ :
∏

(x : K(A)),
∏

(p : φ x), ∪
φ
�,x �φ p =

φ

nl x
p nrφ :

∏

(x : K(A)),
∏

(p : φ x), ∪
φ
x,� p �φ

=
φ
nr x p

commφ :
∏

(x ,y : K(A)),
∏

(p : φ x),
∏

(q : φ y), ∪
φ
x,y p q =

φ
com x y ∪

φ
y,x q p

assocφ :
∏

(x ,y, z : K(A)),
∏

(p : φ x),
∏

(q : φ y),
∏

(r : φ z), ∪
φ
x,y∪z p (∪

φ
y,z q r) =

φ
assoc x y z ∪

φ
x∪y,z (∪

φ
x,y p q) r)

there exists indK(A)(φ,�
φ
, Sφ ,∪φ

, assocφ , commφ
, nlφ , nrφ , idemφ

, truncφ) :
∏

x :K(A) φ x

such that indK(A)(. . .) � ≡ �φ
,

indK(A)(. . .) {a} ≡ Sφ a,

indK(A)(. . .) (x ∪ y) ≡ ∪φ (indK(A)(. . .) x) (indK(A)(. . .) y)

Figure 1. The induction principle for K(A)

constructors. All of those paths, except for trunc, are paths
between points and they describe basic join semi-lattice laws
such as associativity, commutativity, etc. Finally, the con-
structor trunc, which is a path between paths, forces the
higher groupoid K(A) to be an hSet.
Note that nr can be derived from nl and com. Since the

type is truncated, these two paths are the same. Hence, it
does not matter whether we add just nl or both nl and nr.
We choose the latter, more symmetrical, option.

Now that we know how finite sets are generated by con-
structors, the next step is to equip the type K(A) with in-
duction and recursion principles to describe how our finite
sets can be used. Since the recursion principle can always be
derived from the induction principle, we only give the latter
one here.

Definition 2.2. Given a type family φ : K(A) → Type,
the induction principle postulates that, provided how φ acts
on each of the constructors of K(A), an eliminator of type
∏

(x : K(A)), φ x exists. Figure 1 shows the induction prin-
ciple of K(A) in detail. For each constructor C ∈ {�, . . .},
we denote by Cφ the action of φ on C.

In addition, there are computation rules describing how
the eliminator acts on each of the constructors. We will only
need the computation rules for the points, and thus we will
not give any computation rule for the path constructors. For
the points we just use the same rules as for inductive types.

The path computation rules are not needed, since we only
use induction to prove mere propositions, and, since all
paths are equal in a proposition, we do not need to sim-
plify paths with computation rules. Let us illustrate how
induction works on the following example.

Lemma 2.3 (Union-idem). For any x : K(A), x ∪ x = x .

Proof. By induction on x . If x = �, the term nl� has the
expected type � ∪ � = �. Similarly, if x = {a}, we directly
get idema : {a}∪ {a} = {a}. If x = x1 ∪ x2 and xi ∪ xi = xi

for i = 1, 2, we need to show that the term x1 ∪x2 is equal to
(x1 ∪ x2) ∪ (x1 ∪ x2). Using associativity and commutativity,
we can show that the latter is equal to (x1 ∪ x1) ∪ (x2 ∪ x2)

and applying induction hypotheses allows us to conclude
this case.
It remains to construct images of the path constructors

nlφ , nrφ , etc., whereφ x is equal to x∪x = x . First note that it
is easy to produce truncφ from trunc. Indeed, since K(A) is
an hSet, φ x is an hProp. Consequently, φ x is an hSet [46,
Lemma 3.3.4] which gives us truncφ . In addition, we can
construct each of remaining terms nlφ , nrφ , . . . straightfor-
wardly using the fact that φ x is an hProp, which allows us
to conclude. □

2.2 Extensionality

One of the important axioms of set theory is extensionality
which says that two sets are equal if and only if they have
the same elements. Since our higher inductive type K(A)

represents finite sets, we show that it satisfies extensionality.
Let us start by defining the membership function.

Definition 2.4 (Membership). Assume univalence. Given
a type A, we construct by induction the membership func-
tion ∈ of type A → K(A) → hProp. For a : A we define
membership for the points as follows

a ∈ � ≡ ⊥,

a ∈ {b} ≡ ||a = b | |,

a ∈ (x1 ∪ x2) ≡ a ∈ x1 ∨ a ∈ x2

where B ∨C is defined by | |B +C | |. Dealing with other cases
amounts to prove that (hProp,∨,⊥) is a join semi-lattice.
With univalence this is straightforward.

In the remainder we shall assume the univalence axiom
unless stated otherwise. Note that we define membership
here as a function into hProp and not into Bool. As we shall
see in the next section, defining the latter is also possible,

204

Finite Sets in Homotopy Type Theory CPP’18, January 8ś9, 2018, Los Angeles, CA, USA

but requires assuming decidable mere equality on A. Let us
now state the extensionality for K(A).

Theorem 2.5 (Extensionality). For all x ,y : K(A) the types

x = y and
∏

(a : A), (a ∈ x = a ∈ y) are equivalent.

We prove this theorem via the following equivalences:

x = y ≃ (y ∪ x = x) × (x ∪ y = y) ≃
∏

a:A

a ∈ x = a ∈ y.

Let us show only the following auxiliary lemma here.

Lemma 2.6. For all x ,y : K(A) we have

(
∏

(a : A), a ∈ y → a ∈ x) → y ∪ x = x .

Proof. We prove the result by induction over y keeping x as
a free variable. More specifically, we construct for x : K(A)

a map of type
∏

(y : K(A)), (
∏

(a : A), a ∈ y → a ∈ x) → y ∪ x = x .

Note that it suffices to just consider the cases of the point
constructors. Indeed, other cases are straightforward since
for each y the resulting type is a mere proposition.
If y = �, then nl x : � ∪ x = x .
If y = {b} for some b : A, we have the hypothesis H of

type
∏

(a : A), a ∈ {b} → a ∈ x and we need to show the
equality {b} ∪ x = x . To do so, we show that

∏

(x : K(A)), b ∈ x → {b} ∪ x = x

by induction on x . Again it suffices to consider just the point
constructors for the same reason as above.
If x = �, we have b ∈ �, which is a contradiction.
If x = {c}, we have p ′ : b ∈ {c} and we need to show that

{b} ∪ {c} = {c}. Note that by Definition 2.4 we have that p ′

is of type | |b = c | |. Since the goal is a mere proposition, we
get a path p : b = c by truncation recursion. Now we can
define the desired path as follows

ap (λx , {x} ∪ {c}) p � idem c : {b} ∪ {c} = {c}.

Otherwise, we havex = x1∪x2 andwe have the hypothesis
H ′ of type b ∈ x1 ∪ x2, and for i = 1, 2, the hypotheses

Hi : b ∈ xi → {b} ∪ xi = xi .

By definition, H ′ is of type b ∈ x1 ∨ b ∈ x2. Similarly to the
previous case, we get by truncation recursion an inhabitant
of typeb ∈ x1+b ∈ x2. Hence, there are two cases to consider.

If t : b ∈ x1, then we have the following chain of equalities

{b} ∪ (x1 ∪ x2) = ({b} ∪ x1) ∪ x2 = x1 ∪ x2.

The case t : b ∈ x2 is proven similarly.
Lastly, if y = y1 ∪ y2 and if we have a term H of type

∏

(a : A), a ∈ y1 ∪ y2 → a ∈ x and for i = 1, 2 hypotheses

Hi : (
∏

(a : A), a ∈ yi → a ∈ x) → yi ∪ x = x ,

then we need to prove (y1 ∪y2) ∪x = x . Using the induction
hypotheses, we get paths p1 : y1 ∪ x = x and p2 : y2 ∪ x = x

from which we get the desired path as the following chain
of equalities

(y1 ∪ y2) ∪ x = y1 ∪ (y2 ∪ x) = y1 ∪ x = x . □

2.3 Listed Finite Sets

When working with finite sets, one would naturally expect
to have standard operations such as size of a set. However,
it quickly turns out that just using the higher inductive type
K(A) is problematic.
There are two issues. First of all, without being able to

decide membership, it is impossible to define size (as we
shall see in the next section). Second of all, even assuming
decidable membership, we would get stuck when defining
the size for the union. Indeed, the corresponding equation

#(x ∪ y) = #x + #y − #(x ∩ y) (2.3.1)

does not fit into the induction scheme fromDefinition 1 since
#x ∩ #y is not structurally smaller than x ∪ y. Clearly, an
alternative induction principle is needed.
A possible solution would be to reason in terms of strict

subsets, which would require to show that strict subsets
is a well-founded relation. However, it turns out that we
can work around this problem by defining an alternative
representation of finite sets, equivalent to K(A) and more
suited for this purpose.
More concretely, we introduce a representation of finite

sets based on lists.

Definition 2.7. Given a type A, we define the type L(A) of
listed finite sets as follows.
Higher Inductive Type L(A) :=
| nil : L(A)

| · :: · : A → L(A) → L(A)

| dupl :
∏

(a : A),
∏

(x : L(A)), a ::a ::x = a ::x

| coml :
∏

(a,b : A),
∏

(x : L(A)), a ::b ::x = b ::a ::x

| truncl :
∏

(x ,y : L(A)),
∏

(p,q : x = y), p = q

We do not show the induction and recursion principles
for L(A). What matters here, is that we can establish an
equivalence between the representations of finite sets based
on Kuratowksi sets and lists.

Theorem 2.8. K(A) ≃ L(A).

This is proven by constructing a bi-invertible map from
K(A) to L(A) and, assuming the univalence axiom, this
equivalence becomes an equality. With the equivalence we
derive a new recursion principle for Kuratowski sets.

Proposition 2.9. The typeK(A) satisfies the primitive recur-

sion principle given in Figure 2.

Proof. Let e : K(A) → L(A) be the equivalence defined in
Theorem 2.8. By recursion on L(A) and using the inverse of
e , there exists µ : L(A) → φ. Consequently, the composition
µ · e can be taken as the map recK(A)(. . .) : K(A) → φ

described in Figure 2. □

205

CPP’18, January 8ś9, 2018, Los Angeles, CA, USA D. Frumin, H. Geuvers, L. Gondelman, and N. van der Weide

φ : Type �φ : φ ·::φ · : A → K(A) → φ → φ

truncφ : Ishset(φ)

duplφ :
∏

a:A

∏

x :K(A)

∏

p :φ

a ::
φ
{a}∪x a ::

φ
x p = a ::

φ
x p

comφ :
∏

a,b :A

∏

x :K(A)

∏

p :φ

a ::
φ

{b}∪x
b ::

φ
x p = b ::

φ
{a}∪x a ::

φ
x p

there exists recK(A)(φ, . . . , com
φ) : K(A) → φ

such that recK(A)(. . .)(�) ≡ �φ
,

recK(A)(. . .)({a} ∪ x) ≡ a ::
φ
x recK(A) x

Figure 2. A primitive recursion principle for K(A)

3 Decidability

Now there is only one obstacle left to define the size function:
membership needs to be decidable. Equivalently, we need to
define membership as a Boolean predicate in contrast to the
previous section’s definition as a proposition.
In addition, in many situations it is convenient to have

membership defined as a Boolean predicate. For example,
to equip K(A) with a lattice structure, we need to define
intersection and for that we also use decidable membership.
As we shall see, for defining those operations, some de-

cidability notion for the equality on A is both sufficient
and necessary. More precisely, we show that decidable mere

equality is suitable for our purpose. Recall that a type A has
decidable mere equality if we have an inhabitant of type
∏

(x ,y : A), | |x = y | | + | |¬(x = y)| |.
Interestingly enough, even though decidablemere equality

might seem innocent, it actually is not. Indeed, it yields the
law of excluded middle if it holds in general.

Theorem 3.1. If all types have decidable mere equality, then

the law of excluded middle holds.

Proof. Given P : hProp, consider the quotient type Bool/∼
where ∼: Bool → Bool → hProp is defined by

false ∼ true ≡ true ∼ false ≡ P ,

false ∼ false ≡ true ∼ true ≡ Unit .

First, note that ∼ is an equivalence relation. Hence, by [46,
Lemma 10.1.8], the type [false] = [true] is isomorphic to P .

Since all types are assumed to have decidable mere equal-
ity, the quotient Bool/∼ does so as well. Therefore, we have
an inhabitant of type

| |[false] = [true]| | + ¬||[false] = [true]| | = | |P | | + ¬||P | |.

Finally, since P is a mere proposition, we have | |P | | = P and
thus we have an inhabitant of P + ¬P . Hence, the law of
excluded middle holds. □

3.1 Decidable Membership

To construct a Boolean membership predicate, let us first
show that propositional membership is decidable whenever
A has decidable mere equality.

Proposition 3.2. For a type A with decidable mere equality

and x : K(A) we have an inhabitant

dec (a ∈ x) : a ∈ x + ¬(a ∈ x).

Proof. By induction on x , using the fact that Empty is decid-
able and that decidability is closed under +. The assumption
is used in the singleton case. □

Now we can define the Boolean membership predicate.

Definition 3.3. We define ∈d : A → K(A) → Bool by case
distinction on dec (a ∈ x).

a ∈d x ≡

{

true if dec (a ∈ x) = inl p with p : a ∈ x ;

false otherwise.

Note that the predicate a ∈d ·meets the expected specifica-
tion for membership. That is, a ∈d � = false and a ∈d x ∪ y

is equal to ∈d x ∨ a ∈d y. Furthermore, a ∈d {a} = true,
while a ∈d {b} = false, whenever we have ¬(a = b). In
addition, extensionality holds for ∈d , i.e., assuming for all
a : A the equality a ∈d x = a ∈d y implies the equality
between x and y.
It turns out that the decidable mere equality on A is not

only sufficient, but also necessary condition for the decidable
membership predicate.

Proposition 3.4. If the proposition a ∈ x is decidable, then

A has decidable mere equality.

Proof. Given a,b : A, the type a ∈ {b} is equal to | |a = b | |.
Since the former is decidable, the latter is as well. Hence,
the type | |a = b | | is decidable for all a and b and thus A has
decidable mere equality. □

3.2 Size

Now we have all the ingredients to define the size function.

Proposition 3.5 (Size). There is a size function on finite sets,

denoted by # : K(A) → N.

Proof. We use the primitive recursion principle in Figure 2.
The element � is mapped to 0. We map {a} ∪ x to # x if
a ∈d x = true and to # x + 1 otherwise. Now we have two
proof obligations left. We briefly indicate how to prove them.
First, for duplφ we need to show that #({a} ∪ {a} ∪ x)

is equal to #({a} ∪ x). This follows directly from the two
equalities a ∈d {a} = true and a ∈d x ∪y = a ∈d x ∨a ∈d y.

Second, for commφ weneed to show that #({a} ∪ {b} ∪ x)

is equal to #({b} ∪ {a} ∪ x). Here we use the decidability of
mere equality. We have two cases to consider.
If | |a = b | |, we get p : a = b. Rewriting along p solves

it. Otherwise, we have ¬||a = b | |, which gives us ¬(a = b).

206

Finite Sets in Homotopy Type Theory CPP’18, January 8ś9, 2018, Los Angeles, CA, USA

Then, a ∈d {b} = false, which, together with the equality
a ∈d x ∪ y = a ∈d x ∨ a ∈d y allows us to conclude. □

Note that, for the size function as well, decidable mere
equality on A is necessary.

Proposition 3.6. Given a map s : K(A) → N such that

1. For a : A we have s {a} = 1;

2. Whenever s x = 1, then there merely exists an a : A such

that x = {a},

then the type A has decidable mere equality.

Finally, note that the size function meets its specification,
i.e., it verifies the Equation 2.3.1. We do not describe here the
proof but instead, we explain how we define the intersection
of finite sets, which leads us to another interesting topic,
namely how to equip the type K(A) with a lattice structure.

3.3 Lattice Structure

To equip K(A) with a lattice structure, we need to define a
meet operator which, in our case, is intersection. To do so,
we introduce the comprehension operation.

Definition 3.7 (Comprehension). For φ : A → Bool and
x : K(A) we define {x | φ} by induction on x as follows

{� | φ} ≡ �,

{{a} | φ} ≡ if φ a then {a} else�,

{x ∪ y | φ} ≡ {x | φ} ∪ {y | φ}.

For the image of idem we use Lemma 2.3. For the images of
the other path constructors, we can take the corresponding
constructor itself in each case.

With this in place, we can define intersection.

Definition 3.8 (Intersection). IfA has decidable mere equal-
ity, then we define x ∩ y ≡ {x | λa,a ∈d y}.

Note that intersection behaves correctly with respect to
the membership predicate.

Proposition 3.9. For a : A and x ,y : K(A) we have

a ∈d x ∩ y = a ∈d x ∧ a ∈d y.

Finally, we equip K(A) with a lattice structure.

Theorem 3.10. The typeK(A) is a lattice with join and meet

operations ∪,∩, and minimal element �.

Let us just illustrate how we prove commutativity for the
intersection. Other lattice laws are proved similarly. To show
that x ∩ y = y ∩ x , we start by using extensionality. Then,
to show that a ∈d x ∩ y = a ∈d y ∩ x for all a : A, we use
Proposition 3.9, so it suffices to show

a ∈d x ∧ a ∈d y = a ∈d y ∧ a ∈d x .

This follows from the fact that∧ on Booleans is commutative.

Note that this proof can be automated in Coq. The main
ingredient is equipping the Booleans with a lattice structure
and then this method can be described with a tactic.
Let us finish this section by showing that, as with decid-

able membership and size, decidable mere equality on A is
necessary for the lattice structure. To this end, we use the
following result.

Proposition 3.11 (Mere Choice). We have an inhabitant of

type
∏

(x : K(A)), (x = �) + | |
∑

(a : A),a ∈ x | |.

Proposition 3.12. Given a binary operation ∩ such that for

all a : A we have a ∈ x ∩ y = a ∈ x × a ∈ y, the type A has

decidable mere equality.

Proof. Let a,b be some inhabitants ofA. First, we apply mere
choice on the set {a} ∩ {b}. We have two cases to consider.

If {a} ∩ {b} = �, we reason by absurd, showing | |a = b | |

leads to a contradiction. Assume p : | |a = b | |. Note that,
since Empty is a mere proposition, by truncation recursion,
we can assume a = b. Consequently, we have

{a} ∩ {a} = {a} ∩ {b} = �,

which gives the contradiction a ∈ �, since

a ∈ � = a ∈ {a} ∩ {a} = a ∈ {a} × a ∈ {a}.

Otherwise, given t : | |
∑

(c : A), c ∈ {a} ∩ {b}| |, we show
| |a = b | |. Since this is a mere proposition, we again use
truncation recursion to acquire c : A with c ∈ {a} ∩ {b}.
From that we get c ∈ {a} and c ∈ {b}.
In other words, we have | |c = a | | and | |c = b | |. Again,

since | |a = b | | is a mere proposition, we get p1 : c = a and
p2 : c = b. Then the desired path is tr(p−11

�p2) : | |a = b | |. □

4 Finite Types

In constructive mathematics, there are genuinely different
ways of stating that a set has a finite number of elements
[20, 44]. A first one would be counting the elements, which
leads to the notion of Bishop-finiteness [13, 52]. However, this
notion is rather restrictive since, for example, Bishop-finite
subsets are not closed under union in general.
Alternatively, one could represent collections with some

data type and then use them to enumerate elements of types.
Using lists is the most straightforward. However, enumerat-
ing a type by lists without truncation would make the notion
of finiteness proof-relevant since list equality is too strict.
By truncating, it can be made proof-irrelevant again. Nev-
ertheless, by truncation elimination, the list of enumerated
elements can be obtained when proving a proposition.
As we shall see, this problem can be overcome by using

Kuratowski-finiteness instead since its definition does not in-
volve truncation. Moreover, we shall see that the Kuratowski-
finiteness [29] is generally less strict than Bishop-finiteness.
To study the aforementioned finiteness notions, we first

need to introduce the notion of subobjects of a given type A.

207

CPP’18, January 8ś9, 2018, Los Angeles, CA, USA D. Frumin, H. Geuvers, L. Gondelman, and N. van der Weide

This allows us to define a semi-lattice structure on subobjects
of A and to see which notions of finiteness preserve it.

4.1 Subobjects

We first need to recall the definition of subobjects [40, 46].

Definition 4.1. Given a type A, we define a type Sub(A)

by the function type A → hProp. Inhabitants of Sub(A)
are called subobjects. We say that a function λx .| |a = x | |

represents a singleton subobject, which we write as {a}. We
say that a is a member of X if X a, which we write as a ∈ X .

Intuitively, an inhabitantm of Sub(A) represents a subset
ofA by assigning to each element ofA a truth value indicating
whether it is a member of m. Note that by extensionality
Sub(A) is a set sincehProp is a set. Moreover, from the lattice
structure on hProp, we get one for Sub(A) by defining the
operations ∨ and ∧ pointwise.
Before investigating the aforementioned finiteness no-

tions, let us prove the following auxiliary lemma:

Lemma 4.2. Given a type A with decidable equality, b : A,

and Y : Sub(A) such that b < Y , we have
∑

(a : A),a ∈ {b} ∪ Y ≃ (
∑

(a : A),a ∈ Y) + Unit .

Proof. We construct a bi-invertible map. Define f for a : A

and p : a ∈ {b} ∪ Y by case distinction on dec (a = b).
If a = b, then f (a;p) = inr tt. If a , b, then we have

p = tr(inr p ′) and we define f (a;p) = inl(a;p ′).
The inverse д is defined by д(inr(tt)) = (b; tr(inl(tr refl)))

and д(inl(a;p)) = (a; tr(inr p)). The assumption b < Y is
needed to prove these maps are indeed inverses. □

4.2 Finite by Counting

Let us start by defining Bishop-finiteness [13, 52].

Definition 4.3. For n : N we define the standard finite car-
dinals by [0] ≡ Empty and [n + 1] ≡ [n] + Unit.

Definition 4.4. A typeA is Bishop-finite, written as isBf(A),
if there is n : N such that | |A ≃ [n]| |.

Definition 4.5. A subobject P : Sub(A) is Bishop-finite,
written as isBf(P), if

∑

(x : A), P x is Bishop-finite.

Note that isBf(A) is a mere proposition. We abbreviate
Bishop-finite by B-finite. The B-finite types come together
with an induction principle [9] which corresponds to the
following lemma.

Lemma 4.6. Let P : Type → hProp be a family such that

P Empty, and P(X + Unit) for all X : Type with isBf(X) and

P X . Then we have
∏

(X : Type), isBf(X) → P X .

Next we study the structure on B-finite types. The empty
type is B-finite, but for singleton subobjects the underlying
type needs to be a set. This is both necessary and sufficient.

Proposition 4.7. IfA is a set, then all its singleton subobjects

are Bishop-finite.

Proof. It suffices to show {a} is contractible with center
(a; tr refl). Let us show that all (b;p) are equal to (a; tr refl).
Since A is a set, by truncation recursion we obtain q : b = a

from p : | |b = a | |. For first coordinate we use q; for the
second that A is a set. □

Proposition 4.8. If all singleton subobjects of A are B-finite,

then A is a set.

Since S1 is not a set, we deduce that not every single-
ton subobject of S1 is Bishop-finite. For example, { base },
for which we have S1 ≃ { base }, cannot be Bishop-finite,
because then S1 would be a set.

Next we look at the union of Bishop-finite subobjects, and
here decidable equality is both sufficient and necessary. We
first need two lemmas.

Lemma4.9. Given a subobject P : Sub(A) and an equivalence

f : (
∑

(a : A), P a) ≃ [n + 1], we get
∑

P ′:Sub(A)

∑

b :A

(
∏

a:A

P a = (P ′ a ∨ ||a = b | |)) × (
∑

a:A

P ′ a ≃ [n]).

Proof. For simplicity, we only give the proof in the case A
is a set. Define a mapping P ′ a :=

∑

y :[n] a = π1(f
−1 (inly))

and b := f −1 (inr tt).
First we show that P ′a is a proposition. Suppose , we have

(xi ;pi) : P
′ a with xi : [n] and pi : a = π1(f

−1 (inl xi)) for
i = 1, 2. Since A is a set, it suffices to prove x1 = x2.

Using that f is an equivalence and inl is an embedding, it
is sufficient to prove f −1 (inl x1) = f −1 (inl x2). For the first
coordinate we use p−11

� p2, and for the second that A is a set.
Secondly, we show that (

∑

a:A P
′a) ≃ [n]. The bi-invertible

maps are f ′(a; (y;p)) = y and д′ y = (π1(f
−1 y); (y; refl)).

Finally, we show that P a = P ′ a ∨ ||a = b | | for all a : A.
Since it is an equality between propositions, it suffices to
prove a bi-implication. For the implication from right to left,
there are two cases.

If p : P ′ a, then P a holds since we have f −1(inl (π1 p)) and
π2 p. Otherwise, p : | |b = a | |, and then P a holds because we
have P b by definition.
For the other direction, suppose that we have p : P a.

There are two cases to consider. Either f (a;p) = inly for
y : [n] or f (a;p) = inr tt. If f (a;p) = inl y, then P ′ a holds
by definition of P ′. If f (a;p) = inr tt, then

b = π1(f
−1(inr tt))) = π1(f

−1(f (a;p))) = a □

Lemma 4.10. If A has decidable equality, then membership

of Bishop-finite subobjects is decidable.

Proposition 4.11. If A has decidable equality, then Bishop-

finite subobjects are closed under union.

Proof. Given is X ,Y ∈ Sub(A) such that both X and Y are
B-finite. We use induction on the size n of X . If n = 0, then
X = �, and thus X ∪ Y = Y is B-finite.

208

Finite Sets in Homotopy Type Theory CPP’18, January 8ś9, 2018, Los Angeles, CA, USA

If n = n′+1, then we use Lemma 4.9 to find P ′ and b. Since
membership is decidable by Lemma 4.10, there are two cases
to consider.

If b ∈ X ′∪Y , thenX ∪Y = X ′∪Y . Then the result follows
from the induction hypothesis.
Otherwise, b < X ′ ∪ Y , and then there is m such that

∑

a:A a ∈ X ′ ∪ Y ≃ [m]. We show
∑

a:A a ∈ X ∪ Y ≃ [m + 1]

in three steps.
∑

a:A

a ∈ X ∪ Y ≃
∑

a:A

a ∈ X ′ ∪ Y ∨ ||a = b | |

≃ (
∑

a:A

a ∈ X ′ ∪ Y) + Unit

≃ [m] + Unit ≃ [m + 1].

The first equivalence follows from Lemma 4.9, and the second
step follows from Lemma 4.2. □

Proposition 4.12. If Bishop-finite subobjects of a set A are

closed under union, then A has decidable equality.

Proof. Let a and b be of type A. Since singleton subobjects
are Bishop finite, {a}∪{b} is so as well by assumption. Note
that we have p,q such that (a;p), (b;q) : {a} ∪ {b}. This
means we have n such that {a} ∪ {b} ≃ [n]. Since the goal
is a proposition, we obtain f : {a} ∪ {b} → [n]. Now there
are three cases: either n = 0, or n = 1, or n = n′ + 2.
If n = 0, then we get a contradiction since {a} ∪ {b} is

inhabited by (a;p). If n = 1, then | |a = b | | follows from the
fact that [1] is a proposition, and thus

a = f −1(f (a;p)).1 = f −1(f (b;q)).1 = b .

If n = n′ + 2, then [n] = ([n′] + Unit) + Unit. We show
¬||a = b | |, so given p : a = b, we get a contradiction. Define
(x1;p1) = f −1(inl(inr tt))) and (x2;p2) = f −1(inr tt)) from
which we get p ′i : | |xi = a | | + | |xi = b | | for i = 1, 2 by
truncation recursion.

There are several cases to consider depending on the type
of p ′i , but in all cases we get x1 = x2, so (x1;p1) = (x2;p2).
Since f is an equivalence, we have inl(inr tt)) = inr ttwhich
is a contradiction. □

Hence, the Bishop-finite subobjects of A only possess a
join-semilattice structure if A has decidable equality.

4.3 Finite by Enumeration

Alternatively, one can say that an type is finite iff we can
enumerate its elements. Such a type is called enumerated in
constructive mathematics [44]. If we enumerate the elements
by lists, then there are multiple ways to prove some type is
finite as various lists can represent the same set. However,
with the łlogic to type theoryž translation [46, Definition
3.7.1], we get a proof-irrelevant version.

Definition 4.13. A type A is enumerated if there is an in-
habitant of type isEn(A) := | |

∑

l :List(A))

∏

a:Amemberx l | |

where member : A → List(A) → hProp is the membership
predicate on lists.

An alternative way to guarantee proof-irrelevance, is by
using the typeK(A) rather than lists. This gives Kuratowski-
finite types [29].

Definition 4.14. A type A is Kuratowski-finite if there is a
term of type isKf(A) :=

∑

(X : K(A)),
∏

(a : A), a ∈ X .

Proposition 4.15. The type isKf(X) is a mere proposition.

Proof. Define φ X :=
∏

a:A a ∈ X . By [46, Chapter 2.7] it
suffices to show that φ X is a proposition and that X = Y

whenever φ X and φ Y .
By function extensionality, φ X is a mere proposition. If

φ X and φ Y , then by Theorem 2.5 we get X = Y . □

These notions coincide as shown by the following two
propositions. Their proofs are straightforward.

Proposition 4.16. Enumerated types are Kuratowski-finite.

Proof. Define a map f : ListA → K(A) by f nil = � and
f (a :: l) = {a}∪ f l . Then we havemembera l = a ∈ f l . For
any enumerated typeA, we have a witness l : ListA proving
its finiteness since isKf is a proposition. Then f l proves A
is Kuratowski-finite. □

Proposition 4.17. Kuratowski-finite types are enumerated.

Sketch. The recursion principle from Figure 2 can also be
translated into an induction principle in the usual fashion.
With that, we show

∏

x :K(A))

| |
∑

l :List(A)

∏

a:A

a ∈ x = membera l | |.

Since truncations are propositions, it suffices to provide im-
ages for the point constructors.

If x = �, we pick tr(nil; λa, refl). Otherwise, x = {a} ∪ x ′.
We have the induction hypothesis

H : | |
∑

l :ListA

∏

a:A

a ∈ x ′
= membera l | |.

This gives us l ′ : List(A) and p :
∏

a:A a ∈ x ′
= membera l ′

by truncation recursion. Then the desired inhabitant is

tr(a :: l ′; λb .ap (λz.| |b = a | | ∨ z) (p b)). □

In addition, we can talk about Kuratowski-finite subob-
jects for which we first map K(A) into Sub(A). For that we
define a map fset by λ(X : K(A))(a : A),a ∈ X . Let us first
show that different finite sets represent different subobjects.

Proposition 4.18. The map fset is an embedding.

Proof. By the results [46, Section 4.6], it suffices to show
that fset is injective, because both Sub(A) and K(A) are
sets. Assuming fset X = fset Y , we obtain the proof of
∏

(a : A), (a ∈ X = a ∈ Y) by definition of fset. Then X = Y

follows from Theorem 2.5. □

209

CPP’18, January 8ś9, 2018, Los Angeles, CA, USA D. Frumin, H. Geuvers, L. Gondelman, and N. van der Weide

Definition 4.19. A subobject P : Sub(A) is Kuratowski-

finite if
∑

X :K(A) P = fset X .

We abbreviate Kuratowski-finite by K-finite. Let us now
move to the structure of K-finite subsets. The first example
is S1, which shows that being a set is not necessary.

Example 4.20. The circle S1 is Kuratowski-finite.

Proof. Take X = { base }. We show
∏

x :S1 x ∈ { base } by
induction on S1. For base we take tr(refl) : | | base = base | |,
and for loop we use that | |x = base | | is an hProp. □

Furthermore, unlike B-finiteness, singleton subobjects are
always K-finite subobjects and K-finite subobjects are closed
under union. In addition, they are closed under surjections,
products, and sums.

Theorem 4.21. K-finite types are closed under surjections,

products and sums. Singletons are K-finite subobjects. K-finite

subobjects are closed under union.

To prove that K-finiteness is preserved under products,
we make a map · × · : K(A) → K(B) → K(A × B) such
that a ∈ X × Y iff a ∈ X and a ∈ Y . Now, if A1 and A2 are
K-finite, we can find Xi : K(Ai), and then X1 ×X2 witnesses
the finiteness A1 ×A2. For the other statements, we use the
same technique.
Let us finish this section by comparing B-finiteness and

K-finiteness. In general, the former is stronger than the latter.

Proposition 4.22. Bishop-finite types are Kuratowski-finite.

Proof. Let A be a Bishop-finite type. We prove the statement
isKf(A) by Bishop-finite induction (Lemma 4.6), using the
fact that isKf(A) is a proposition (Proposition 4.15). The re-
quirements follow from Theorem 4.21. □

Since B-finite types are sets ([52, Proposition 2.4.8]), this
notion is strictly stronger than K-finiteness by Example 4.20.
However, they coincide if the type has decidable equality.

Theorem 4.23. If A has decidable equality, then A is B-finite

iff it is K-finite. Consequently, a type is B-finite iff it is K-finite

and it has decidable equality.

Proof. The direction from left to right corresponds to Propo-
sition 4.22. For the other direction, we useK(A)-induction to
establish

∏

(X : K(A)), isBf(fset X). Since isBf is a proposi-
tion, it suffices to provide images for the point constructors.
If X = �, then fset � is Bishop-finite since we have [0] ≃
{x : A | Empty}. The other cases follow from Lemma 4.7
and Proposition 4.11. □

5 Interface for Finite Sets

To obtain sound programs which use finite sets, one first
models sets by either list-like or tree-like data structures.
Then one writes programs and specifications and finally one
proves properties that relate the programs and specifications.

Implementing this in a proof assistant requires a significant
number of properties about operations of the data structure
which are proven directly on the implementation level.

Since list-like and tree-like structures can be seen as con-
crete representations of finite sets, modeling them explicitly
as such might be useful in the development process. Indeed,
this would allow one to reason about correctness of programs
on the abstract level of finite sets where various lattice laws
and other properties hold łon the nosež rather than via the in-
duced equivalence on the concrete implentation (a so called
łsetoid equalityž). Moreover, a function defined on the ab-
stract representation, can be refined into a function defined
on any given implementation, and functions on a concrete
representation can be transferred to another.
We start this section by discussing how we can use our

definition K(A) of finite sets for this approach and then
illustrate it on a small example.

5.1 Method

Consider a type operator T : Type → Type. Intuitively, T
is an implementation of K(A) if for all A : Type there exists
an interpretation function J·KT from T (A) to K(A) providing
structure-preserving implementations of the three point con-
structors and propositional membership. For this, we use
the definitions of signatures, interpretations and homomor-
phisms, which are translated from model theory. Formally,
we have the following definitions.

Definition 5.1 (Interpretation). Let A be a type. Denote by
ΣA the signature with a nullary symbol �, a binary symbol
· ∪ ·, and for each a : A, a nullary symbol {a} and a unary
predicate a ∈ ·.
A type B is an interpretation of ΣA if there is �B : B, an

operation ∪B : B → B → B, and if for each a : A there is
{a}B : B and a predicate a ∈B · : B → hProp.

Given two interpretations T and S of ΣA, a map f from T

to S is a homomorphism if

f �T = �S f (x ∪T y) = f x ∪S f y

f {a}T = {a}S a ∈T x = a ∈S f x

Note that K(A) itself is an interpretation of ΣA and thus
we can talk about homomorphisms into K(A).

Definition 5.2. A type operator T : Type → Type is an
implementation of finite sets if for each A the type T (A) is
an interpretation of ΣA and for each A we have a homomor-
phism J·KT from T (A) to K(A).

Suppose now that we are given an implementation T of
finite sets. First, note that the predicate a ∈T · behaves as
expected, i.e., we have for all a ∈ A,

(a ∈T �T) = (a ∈ J�T KT) = (a ∈ �) = Empty,

(a ∈T {b}T) = (a = b),

(a ∈T X ∪T Y) = (a ∈T X ∨ a ∈T Y).

210

Finite Sets in Homotopy Type Theory CPP’18, January 8ś9, 2018, Los Angeles, CA, USA

Next, let us show that J·KT is a surjective homomorphism.

Proposition 5.3. The map J·KT : T (A) → K(A) is surjective.

Proof. To show that J·KT : T (A) → K(A) is surjective, we
need to prove

∏

(Y : K(A)), | |
∑

(X : T (A)), JX KT = Y | |.We
use induction on K(A). Since being surjective is a mere
proposition, we only need to consider the point constructors.

For Y = � and Y = {a}, we use �T and {a}T respectively.
For Y = Y1 ∪ Y2 we assume pi : | |

∑

(Xi : T (A)), JXiKT = Yi | |
for i = 1, 2 and we need to find an inhabitant of the mere
proposition | |

∑

X :T (A)JX KT = Y | |. With truncation recursion
we get Xi : T (A) and qi : JXiKT = Yi from pi . From the qi we
get a path q of type JX1 ∪ X2KT = JX1KT ∪ JX2KT = Y1 ∪ Y2
and for the desired inhabitant we choose tr(X1 ∪ X2;q). □

In general,T (A)might have fewer equalities thanK(A), so
we cannot guarantee the map J·KT is injective. Nevertheless,
it always induces an equivalence relation onT (A) by defining
x ∼T y iff JxKT = JyKT . Moreover, using the fact that J·KT is
a homomorphism, we can conclude that the types x ∼T y

and
∏

(a : A), a ∈T x = a ∈T y are equivalent.
Furthermore, we factor the map J·KT using the quotient

type T (A)/∼T according to the diagram below

T (A)

[·] $$ $$

J·KT
// // K(A)

T (A)/∼T

::
mT

:: ::

where the mapmT is constructed by recursion on the quo-
tient type T (A)/∼T . Before proceeding, let us show that the
quotient type T (A)/∼T and K(A) are indeed equivalent.

Proposition 5.4. The mapmT is an equivalence.

Proof. Following Theorem 4.6.3 of [46], it suffices to show
thatmT is both an embedding and a surjection.

To show thatmT is an embedding, it suffices to showmT

is an injection since T (A)/∼T and K(A) are sets. Let x1,x2
be two arbitrary elements of T (A)/∼T . We use the recursion
on both x1 and x2. Since quotient types are sets, it suffices
to look at the points. So, we need to show that x1 ∼T x2
whenever Jx1KT = Jx2KT , which follows by definition.

The surjectivity ofmT follows from Proposition 5.3 since
whenever y = JxKT , we have y = JxKT =mT [x]. □

Note that even thoughT (A)might not be a semi-lattice, the
quotient type T (A)/∼T is always one. Indeed, we can reflect
the semi-lattice structure from K(A) using the equivalence
mA. Doing so guarantees that [·] becomes a homomorphism.

Even if we are just interested in the implementation T (A),
this is still useful, because equalities in the quotient can be
reflected to the relation ∼T we defined.

Proposition 5.5. We have [x] = [y] ≃ JxKT = JyKT .

Last, but not least, given a function from a certain im-
plementation of finite sets to some type B, we can get that
function from another implementation to B.

Theorem 5.6. Suppose, we are given two implementations T

and S of finite sets. Then from a map f : T (A) → B respecting

∼T , we get a map S(A) → B.

Proof. This follows from the diagram

S(A)/∼S
mS

// K(A)
m−1
T // T (A)/∼T

h

zz
S(A)

[·]

OO

// B T (A)
f

oo

[·]

OO

where h : T (A)/∼T → B is obtained by quotient-type re-
cursion from f and the fact that f respects ∼T . The map
S(A) → B is obtained by composition in the diagram. □

Since K(A) itself is an implementation of finite sets, we
immediately gain the following corollary.

Corollary 5.7. Given an implementation T of finite sets and

a map K(A) → B, we get a map T (A) → B.

5.2 Application

Let us illustrate ourmethod on the example of lists.We define
interpretation of ΣA for List(A) as follows

�List(A) ≡ nil, {a}List(A) ≡ a :: nil,

∪List(A) ≡ append, ∈List(A) ≡ member.

We define a homomorphism J·K : List(A) → K(A) by

JnilK ≡ �, Jx ::xsK ≡ {x} ∪ JxsK.

Consequently, we get l1 ∼ l2 iff for all a : A we have
membera l1 = membera l2.
The fact that List(A)/∼ is a semi-lattice implies that the

induced append operation is commutative even though the
append operation is not. From Proposition 5.5 we get that
appendx y and appendy x have the same elements. This
way we can for example prove that l and reverse l have the
same elements.
Finally, assuming that A has decidable mere equality, we

transfer the size function (Proposition 3.5) from K(A) to
List(A). This means that wemake themap #L : List(A) → N

according to Corollary 5.7. By working out the definitions,
we get

#L nil = 0,

#L (a :: l) = if membera l then #L l else #L l + 1.

The same way we can define bounded quantification for
lists. Both quantifiers exists and forall are done similarly, so
we only show forall here. Let us start by defining it on K(A)

and showing it has the right specification.

211

CPP’18, January 8ś9, 2018, Los Angeles, CA, USA D. Frumin, H. Geuvers, L. Gondelman, and N. van der Weide

Definition 5.8. We define the universal quantifier forall of
type (A → hProp) → K(A) → hProp by induction on
K(A). For the point constructors we define

forallφ � ≡ Unit,

forallφ {a} ≡ φ a,

forallφ (x ∪ y) ≡ (forallφ x) × (forallφ y).

For the paths we need to prove that (hProp,×,Unit) is a
semi-lattice which is straightforward.

Proposition 5.9. The operation forall meets the following

specification representing the introduction and elimination

rule of universal quantification

∀I :
∏

x :K(A)

(
∏

a:A

a ∈ x → φ a) → forallφ x ,

∀E :
∏

x :K(A)

∏

a:A

forallφ x → a ∈ x → φ a.

Using Definition 5.8 and Corollary 5.7 we define a quan-
tifier foralll : (A → hProp) → List(A) → hProp on lists.
The specifications in Proposition 5.9 can be translated to
List(A) and the quantifier foralll satisfies these.

6 Related Work

There have been several proposals to describe the syntax and
semantics of HITs in general [2, 7, 8, 18, 36, 42]. HITs origi-
nating from these schemata can be implemented in Coq[9],
Agda [15], and Lean [17, 26, 49].

Furthermore, several constructive interpretations of frag-
ments of homotopy type theory exist. The operational se-
mantics of a small fragment of univalence is given, capturing
extensionality in higher order propositional logic [1]. Both
the groupoid model [22, 23] and 2-dimensional type theory
[34] are constructive, but only model a fragment of homo-
topy type theory (groupoids). Cubical sets and cubical type
theory give a model with inductive types and numerous ex-
amples of non-trivial higher inductive types combined with
univalence at all levels [11, 16]. However, a constructive in-
terpretation of HoTT including all higher inductive types
remains to be given.
Higher inductive types have been applied to numerous

problems in computer science including partiality [3, 47],
homotopical patch theory [6], type theory formalized in
type theory [4, 5], and even real numbers [21]. In addition,
HITs have been used to define spaces in synthetic algebraic
topology of which the homotopy is studied [24, 32, 33, 35, 46].

Bounded quantification has also been defined for enumer-
ated sets [19]. In addition, the authors showed that bounded
quantification of decidable properties is again decidable. The
same results hold for our notion of finite sets.
In constructive mathematics finiteness has extensively

been studied [13, 44, 50] and Kuratowski finite sets have
been studied both in a classical [29] and constructive set-
ting [14, 25]. Other definitions include Bishop-finiteness

[13], enumerated sets [44], streamless sets, and Noether-
ian sets [12, 20, 37ś39, 44]. The latter three notions have
also been translated to type theory [10, 19, 48], but only in a
proof-relevant fashion i.e.,without truncation. Note also that
streamlessness and Noetherianness both are weaker than
enumeratedness, which we studied in Section 4.
The finite sets defined by Firsov et al. and Parmann al-

ways have decidable equality [19, 38, 39], but there also are
variations of Noetherianness which do not imply decidable
equality [20]. In contrast, Kuratowski-finiteness does not im-
ply decidable equality and we systematically use the weaker
notion of decidable mere equality.
Furthermore, hereditary finite sets were studied in type

theory forwhich categoricity and consistencywere shown by
Smolka et al. [41]. In their work, the definition of a hereditary
finite structure Ð a model for hereditary finite sets Ð is
similar to Definition 2.7. In addition, since the structures are
defined axiomatically, this gives an interface for finite sets.
In homotopy type theory, it has been proven that the

universe of sets forms a predicative topos [40, 46] and Bishop
finiteness has been implemented [51, 52], although neither
of those consider Kuratowski-finite sets.
Other interfaces of finite sets have been developed, most

notably by Krebbers and Wiedijk in the CH2O formalization
of the C-standard [28] and by Lescuyer [31]. In contrast to
our work, those developments use setoids instead of higher
inductive types. The usage of higher inductive types allows
us to avoid considerations regarding well-definedness of the
maps, as all defined functions automatically respect equality.

7 Conclusion and Perspectives

Higher inductive types offer a flexible method to work with
finiteness. Using HITs, we can define a data type of finite sets
K(A) for which reasoning is sufficiently simple and which
has the right level of abstraction. In addition, using the data
type K(A) we define finite subobjects, finite types and an
interface for finite sets.
In constructive mathematics there is still an amount of

theory about Kuratowski finite sets left untouched in our
development [14, 25]. Some work has already been done to
prove that the decidable Kuratowski-finite sets form a topos
in Theorem 4.21, but for a full proof, function spaces and the
subobject classifier have to be considered as well.
In a similar fashion to Definition 2.1, we can define bags.

This would allows us to define when two lists represent the
same bag i.e., when two lists are permutations of each other.
A sorting algorithm would then be defined by a map sort

from lists to ordered list such that l and sort l represent the
same bag. This technique could simplify correctness proofs of
sorting algorithms. Furthermore, since these two definitions
are similar, it would be interesting to see whether techniques
from łdata types à la cartež would be applicable [45].

212

Finite Sets in Homotopy Type Theory CPP’18, January 8ś9, 2018, Los Angeles, CA, USA

In Coq, there already are several implementations and
interfaces of finite sets. One of them is included in the Coq
distribution [30]. It requires giving several operations satis-
fying some specifications and it is more expanded than our
interface. The specifications for operations present in our
interface can be derived. However, a complete connection
between the two would require additional work.
To make the developed material work best, a computa-

tional interpretation of the univalence axiom and higher
inductive types is needed since that would allow actually
executing the code. Steps have been made towards this goal
especially in cubical type theory [1, 11, 16], but a computa-
tional interpretation of higher inductive types is still missing.

Acknowledgments

The authors thank the anonymous reviewers of the HoTT/UF
workshop, Guillaume Allais and Cory Knapp for useful tips.
The authors would also like to thank the CPP reviewers for
their careful reading and comments on the paper.

The first three authors were supported by the STW project
14319, which is (partly) financed by the Netherlands Organi-
sation for Scientific Research (NWO).

References
[1] Robin Adams, Marc Bezem, and Thierry Coquand. 2016. A Strongly

Normalizing Computation Rule for Univalence in Higher-Order Mini-

mal Logic. CoRR abs/1610.00026 (2016). http://arxiv.org/abs/1610.00026

[2] Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, and Fredrik Nord-

vall Forsberg. 2016. Quotient Inductive-Inductive Types. CoRR

abs/1612.02346 (2016). http://arxiv.org/abs/1612.02346

[3] Thorsten Altenkirch, Nils Anders Danielsson, and Nicolai Kraus. 2016.

Partiality, Revisited: The Partiality Monad as a Quotient Inductive-

Inductive Type. CoRR abs/1610.09254 (2016). http://arxiv.org/abs/1610.

09254

[4] Thorsten Altenkirch and Ambrus Kaposi. 2016. Normalisation by

Evaluation for Dependent Types. In 1st International Conference on

Formal Structures for Computation and Deduction, FSCD 2016, June

22-26, 2016, Porto, Portugal. 6:1ś6:16. https://doi.org/10.4230/LIPIcs.

FSCD.2016.6

[5] Thorsten Altenkirch and Ambrus Kaposi. 2016. Type Theory in Type

Theory using Quotient Inductive Types. In Proceedings of the 43rd An-

nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016.

18ś29. https://doi.org/10.1145/2837614.2837638

[6] Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper.

2016. Homotopical Patch Theory. J. Funct. Program. 26 (2016), e18.

https://doi.org/10.1017/S0956796816000198

[7] Steven Awodey, Nicola Gambino, and Kristina Sojakova. 2012. Induc-

tive Types in Homotopy Type Theory. In Proceedings of the 27th Annual

IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik,

Croatia, June 25-28, 2012. 95ś104. https://doi.org/10.1109/LICS.2012.21

[8] Henning Basold, Herman Geuvers, and Niels van der Weide. 2017.

Higher Inductive Types in Programming. Journal of Universal Com-

puter Science 23, 1 (jan 2017), 63ś88.

[9] Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shul-

man, Matthieu Sozeau, and Bas Spitters. 2017. The HoTT Library: A

Formalization of Homotopy Type Theory in Coq. In Proceedings of the

6th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP

2017). ACM, New York, NY, USA, 164ś172. https://doi.org/10.1145/

3018610.3018615

[10] Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. 2008.

Canonical Big Operators. In Theorem Proving in Higher Order Log-

ics, 21st International Conference, TPHOLs 2008, Montreal, Canada,

August 18-21, 2008. Proceedings. 86ś101. https://doi.org/10.1007/

978-3-540-71067-7_11

[11] Marc Bezem, Thierry Coquand, and Simon Huber. 2013. A Model of

Type Theory in Cubical Sets. In 19th International Conference on Types

for Proofs and Programs, TYPES 2013, April 22-26, 2013, Toulouse, France.

107ś128. https://doi.org/10.4230/LIPIcs.TYPES.2013.107

[12] Marc Bezem, Keiko Nakata, and Tarmo Uustalu. 2012. On Streams

that are Finitely Red. Logical Methods in Computer Science 8, 4 (2012).

https://doi.org/10.2168/LMCS-8(4:4)2012

[13] Errett Bishop and Douglas Bridges. 1985. Constructive Analysis.

Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-61667-9

[14] Andreas Blass. 1995. An Induction Principle and Pigeonhole Principles

for K-Finite Sets. The Journal of Symbolic Logic 60, 4 (1995), 1186ś1193.

[15] Jesper Cockx, Dominique Devriese, and Frank Piessens. 2014. Pattern

MatchingWithout K. InACM SIGPLANNotices, Vol. 49. ACM, 257ś268.

[16] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg.

2016. Cubical Type Theory: a Constructive Interpretation of the Uni-

valence Axiom. CoRR abs/1611.02108 (2016). http://arxiv.org/abs/1611.

02108

[17] Floris van Doorn. 2016. Constructing the Propositional Truncation

using Non-Recursive HITs. In Proceedings of the 5th ACM SIGPLAN

Conference on Certified Programs and Proofs. ACM, 122ś129.

[18] Peter Dybjer and Hugo Moeneclaey. 2017. Finitary Higher Inductive

Types in the Groupoid Model. In Proceedings of MFPS 2017, Electronic

Notes in Theoretical Computer Science, Vol. to appear. Elsevier.

[19] Denis Firsov and Tarmo Uustalu. 2015. Dependently Typed Program-

ming with Finite Sets. In Proceedings of the 11th ACM SIGPLAN Work-

shop on Generic Programming, WGP@ICFP 2015, Vancouver, BC, Canada,

August 30, 2015. 33ś44. https://doi.org/10.1145/2808098.2808102

[20] Denis Firsov, Tarmo Uustalu, and Niccolò Veltri. 2016. Variations

on Noetherianness. In Proceedings 6th Workshop on Mathematically

Structured Functional Programming, MSFP@ETAPS 2016, Eindhoven,

Netherlands, 8th April 2016. 76ś88. https://doi.org/10.4204/EPTCS.207.4

[21] Gaëtan Gilbert. 2017. Formalising Real Numbers in Homotopy Type

Theory. In Proceedings of the 6th ACM SIGPLAN Conference on Certified

Programs and Proofs, CPP 2017, Paris, France, January 16-17, 2017. 112ś

124. https://doi.org/10.1145/3018610.3018614

[22] Martin Hofmann and Thomas Streicher. 1994. The Groupoid Model

Refutes Uniqueness of Identity Proofs. In Proceedings of the Ninth An-

nual Symposium on Logic in Computer Science (LICS ’94), Paris, France,

July 4-7, 1994. 208ś212. https://doi.org/10.1109/LICS.1994.316071

[23] Martin Hofmann and Thomas Streicher. 1998. The Groupoid Interpre-

tation of Type Theory. Twenty-five years of constructive type theory

(Venice, 1995) 36 (1998), 83ś111.

[24] Kuen-Bang Hou (Favonia) and Michael Shulman. 2016. The Seifert-van

Kampen Theorem in Homotopy Type Theory. In 25th EACSL Annual

Conference on Computer Science Logic, CSL 2016, August 29 - September

1, 2016, Marseille, France. 22:1ś22:16. https://doi.org/10.4230/LIPIcs.

CSL.2016.22

[25] Peter T Johnstone. 2002. Sketches of an Elephant: a Topos Theory

Compendium. Vol. 2. Oxford University Press.

[26] Nicolai Kraus. 2016. Constructions with Non-Recursive Higher Induc-

tive Types. In Proceedings of the 31st Annual ACM/IEEE Symposium on

Logic in Computer Science. ACM, 595ś604.

[27] Robbert Krebbers and Bas Spitters. 2011. Type Classes for Efficient

Exact Real Arithmetic in Coq. Logical Methods in Computer Science 9,

1 (2011). https://doi.org/10.2168/LMCS-9(1:01)2013

[28] Robbert Krebbers and Freek Wiedijk. 2015. A Typed C11 Semantics

for Interactive Theorem Proving. In Proceedings of the 2015 Conference

on Certified Programs and Proofs, CPP 2015, Mumbai, India, January

213

http://arxiv.org/abs/1610.00026
http://arxiv.org/abs/1612.02346
http://arxiv.org/abs/1610.09254
http://arxiv.org/abs/1610.09254
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1017/S0956796816000198
https://doi.org/10.1109/LICS.2012.21
https://doi.org/10.1145/3018610.3018615
https://doi.org/10.1145/3018610.3018615
https://doi.org/10.1007/978-3-540-71067-7_11
https://doi.org/10.1007/978-3-540-71067-7_11
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://doi.org/10.2168/LMCS-8(4:4)2012
https://doi.org/10.1007/978-3-642-61667-9
http://arxiv.org/abs/1611.02108
http://arxiv.org/abs/1611.02108
https://doi.org/10.1145/2808098.2808102
https://doi.org/10.4204/EPTCS.207.4
https://doi.org/10.1145/3018610.3018614
https://doi.org/10.1109/LICS.1994.316071
https://doi.org/10.4230/LIPIcs.CSL.2016.22
https://doi.org/10.4230/LIPIcs.CSL.2016.22
https://doi.org/10.2168/LMCS-9(1:01)2013

CPP’18, January 8ś9, 2018, Los Angeles, CA, USA D. Frumin, H. Geuvers, L. Gondelman, and N. van der Weide

15-17, 2015. 15ś27. https://doi.org/10.1145/2676724.2693571

[29] Casimir Kuratowski. 1920. Sur la Notion d’Ensemble Fini. Fundamenta

Mathematicae 1, 1 (1920), 129ś131. http://eudml.org/doc/212596

[30] Stéphane Lescuyer. 2011. First-Class Containers in Coq. Stud. Inform.

Univ. 9, 1 (2011), 87ś127.

[31] Stéphane Lescuyer. 2011. Formalizing and Implementing a Reflexive

Tactic for Automated Deduction in Coq. (Formalisation et Developpement

d’une Tactique Reflexive pour la Demonstration Automatique en Coq).

Ph.D. Dissertation. University of Paris-Sud, Orsay, France. https://tel.

archives-ouvertes.fr/tel-00713668

[32] Daniel R Licata and Guillaume Brunerie. 2013. πn (S
n) in Homotopy

Type Theory. In International Conference on Certified Programs and

Proofs. Springer, 1ś16.

[33] Daniel R Licata and Eric Finster. 2014. Eilenberg-MacLane Spaces

in Homotopy Type Theory. In Proceedings of the Joint Meeting of the

Twenty-Third EACSL Annual Conference on Computer Science Logic

(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in

Computer Science (LICS). ACM, 66.

[34] Daniel R. Licata and Robert Harper. 2012. Canonicity for 2-

Dimensional Type Theory. In Proceedings of the 39th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL

2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012. 337ś348.

https://doi.org/10.1145/2103656.2103697

[35] Daniel R. Licata and Michael Shulman. 2013. Calculating the Funda-

mental Group of the Circle in Homotopy Type Theory. In 28th Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New

Orleans, LA, USA, June 25-28, 2013. 223ś232. https://doi.org/10.1109/

LICS.2013.28

[36] Peter LeFanu Lumsdaine andMike Shulman. 2017. Semantics of Higher

Inductive Types. arXiv preprint arXiv:1705.07088 (2017).

[37] Keiko Nakata, Tarmo Uustalu, and Marc Bezem. 2011. A Proof

Pearl with the Fan Theorem and Bar Induction - Walking through

Infinite Trees with Mixed Induction and Coinduction. In Program-

ming Languages and Systems - 9th Asian Symposium, APLAS 2011,

Kenting, Taiwan, December 5-7, 2011. Proceedings. 353ś368. https:

//doi.org/10.1007/978-3-642-25318-8_26

[38] Erik Parmann. 2014. Investigating Streamless Sets. In 20th International

Conference on Types for Proofs and Programs, TYPES 2014, May 12-15,

2014, Paris, France. 187ś201. https://doi.org/10.4230/LIPIcs.TYPES.2014.

187

[39] Erik Parmann. 2014. Some Varieties of Constructive Finiteness. In 19th

Int. Conf. on Types for Proofs and Programs. 67ś69.

[40] Egbert Rijke and Bas Spitters. 2015. Sets in Homotopy Type Theory.

Mathematical Structures in Computer Science 25, 5 (2015), 1172ś1202.

[41] Gert Smolka and Kathrin Stark. 2016. Hereditarily Finite Sets in Con-

structive Type Theory. Springer International Publishing, Cham, 374ś

390. https://doi.org/10.1007/978-3-319-43144-4_23

[42] Kristina Sojakova. 2015. Higher Inductive Types as Homotopy-Initial

Algebras. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2015, Mum-

bai, India, January 15-17, 2015. 31ś42. https://doi.org/10.1145/2676726.

2676983

[43] Matthieu Sozeau and Nicolas Oury. 2008. First-Class Type Classes.

In Theorem Proving in Higher Order Logics, 21st International Confer-

ence, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings

(Lecture Notes in Computer Science), Otmane Aït Mohamed, César A.

Muñoz, and Sofiène Tahar (Eds.), Vol. 5170. Springer, 278ś293.

[44] Arnaud Spiwack and Thierry Coquand. 2010. Constructively Finite? In

Contribuciones científicas en honor de Mirian Andrés Gómez, Laureano

Lambán Pardo, Ana Romero Ibáñez, and Julio Rubio García (Eds.).

Universidad de La Rioja, 217ś230. https://hal.inria.fr/inria-00503917

[45] Wouter Swierstra. 2008. Data Types à la Carte. Journal of functional

programming 18, 4 (2008), 423ś436.
[46] The Univalent Foundations Program. 2013. Homotopy Type Theory:

Univalent Foundations of Mathematics. https://homotopytypetheory.

org/book, Institute for Advanced Study.

[47] Tarmo Uustalu and Niccolò Veltri. 2017. The Delay Monad and Re-

striction Categories. Springer International Publishing, Cham, 32ś50.

https://doi.org/10.1007/978-3-319-67729-3_3

[48] Tarmo Uustalu and Niccolò Veltri. 2017. Finiteness and Rational Se-

quences, Constructively. J. Funct. Program. 27 (2017), e13. https:

//doi.org/10.1017/S0956796817000041

[49] Floris van Doorn, Jakob von Raumer, and Ulrik Buchholtz. 2017. Ho-

motopy Type Theory in Lean. In International Conference on Interactive

Theorem Proving. Springer, 479ś495.

[50] Wim Veldman and Marc Bezem. 1993. Ramsey’s Theorem and the

Pigeonhole Principle in Intuitionistic Mathematics. Journal of the

London Mathematical Society 2, 2 (1993), 193ś211.

[51] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. 2017.

UniMath: Univalent Mathematics. Available at https://github.com/

UniMath.

[52] Brent Abraham Yorgey. 2014. Combinatorial Species and Labelled

Structures. Ph.D. Dissertation. University of Pennsylvania.

214

https://doi.org/10.1145/2676724.2693571
http://eudml.org/doc/212596
https://tel.archives-ouvertes.fr/tel-00713668
https://tel.archives-ouvertes.fr/tel-00713668
https://doi.org/10.1145/2103656.2103697
https://doi.org/10.1109/LICS.2013.28
https://doi.org/10.1109/LICS.2013.28
https://doi.org/10.1007/978-3-642-25318-8_26
https://doi.org/10.1007/978-3-642-25318-8_26
https://doi.org/10.4230/LIPIcs.TYPES.2014.187
https://doi.org/10.4230/LIPIcs.TYPES.2014.187
https://doi.org/10.1007/978-3-319-43144-4_23
https://doi.org/10.1145/2676726.2676983
https://doi.org/10.1145/2676726.2676983
https://hal.inria.fr/inria-00503917
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://doi.org/10.1007/978-3-319-67729-3_3
https://doi.org/10.1017/S0956796817000041
https://doi.org/10.1017/S0956796817000041
https://github.com/UniMath
https://github.com/UniMath

	Abstract
	1 Introduction
	1.1 Homotopy Type Theory

	2 Definitions
	2.1 Kuratowski Finite Sets
	2.2 Extensionality
	2.3 Listed Finite Sets

	3 Decidability
	3.1 Decidable Membership
	3.2 Size
	3.3 Lattice Structure

	4 Finite Types
	4.1 Subobjects
	4.2 Finite by Counting
	4.3 Finite by Enumeration

	5 Interface for Finite Sets
	5.1 Method
	5.2 Application

	6 Related Work
	7 Conclusion and Perspectives
	Acknowledgments
	References

