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ABSTRACT
Recent improvements in deep reinforcement learning have allowed
to solve problems in many 2D domains such as Atari games. How-
ever, in complex 3D environments, numerous learning episodes
are required which may be too time consuming or even impossible
especially in real-world scenarios. We present a new architecture
to combine external knowledge and deep reinforcement learning
using only visual input. A key concept of our system is augmenting
image input by adding environment feature information and com-
bining two sources of decision. We evaluate the performances of
our method in a 3D partially-observable environment from the Mi-
croso� Malmo platform. Experimental evaluation exhibits higher
performance and faster learning compared to a single reinforcement
learning model.
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1 INTRODUCTION
Reinforcement learning is a technique which automatically learns
a strategy to solve a task by interacting with the environment and
learning from its mistakes. By combining reinforcement learning
and deep learning to extract features from the input, a wide variety
of tasks such as Atari 2600 games [14] are e�ciently solved. How-
ever, these techniques applied to 2D domains struggle in complex
environments such as three-dimensional virtual worlds resulting a
prohibitive training time and an ine�cient learned policy.
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A powerful recent idea to tackle the problem of computational
expenses is to modularise the models into an ensemble of experts
[10]. Since each expert focuses on learning a stage of the task,
the reduction of the actions to consider leads to a shorter learning
period. Although this approach is conceptually simple, it does not
handle very complex environments and environments with a large
set of actions.

A similar idea of extending the information extracted from low-
level architectural modules [11] with high-level ones have been
previously used in the area of cognitive systems [15] but does not
directly relies on RL and was limited to a supervised classi�cation
problem. �e idea was to leverage information about videos with
external ontologies to detect events in videos.

Another technique is called Hierarchical Learning [20][1] and is
used to solve complex tasks, such as ”simulating human brain” [9].
It is inspired by human learning which uses previous experiences
to face new situations. Instead of learning directly the entire task,
di�erent sub-tasks are learned by the agent. By reusing knowledge
acquired from the previous sub-tasks, the learning is faster and
easier. Some limitations are the necessity to re-train the model
which is time consuming and problems related to catastrophic
forge�ing of knowledge on previous tasks.

In this paper, our approach focuses on combining deep reinforce-
ment learning and external knowledge. Using external knowledge
is a way to supervise the learning and enhance information given
to the agent by introducing human expertise. We augment the
input of a reinforcement learning model whose input is raw pixels
by adding high-level information created from simple knowledge
about the task and recognized objects. We combine this model with
a knowledge based decision algorithm using Q-learning [24]. In
our experiments, we demonstrate that our framework successfully
learns in real time to solve a food gathering task in a 3D partially
observable environment by only using visual inputs. We evaluate
our technique on the Malmo platform built on top of a 3D virtual
environment, Minecra�. Our model is especially suitable for tasks
involving navigation, orientation or exploration, in which we can
easily provide external knowledge.

�e paper is organized as follows. Section 2 gives an overview of
reinforcement learning and most recent models. �e environment
is presented in Section 3. �e main contribution of the paper is
described in Sections 4. Results are presented in Section 5. Section
6 presents the main conclusions drawn from the work.

2 RELATEDWORK
Below we give a brief introduction to reinforcement learning and
the models used into our system architecture.
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2.1 Reinforcement Learning
Reinforcement learning consists of an agent learning a policy by
interacting with an environment. At each time-step the agent
receives an observation st and choose an action at . �e agent
gets a feedback from the environment called a reward rt . Given
this reward and the observation, the agent can update its policy to
improve the future rewards.
Given a discount factor γ , the future discounted reward, called
return Rt , is de�ned as follows :

Rt =
T∑
t ′=t

γ t
′−t rt ′ (1)

�e goal of reinforcement learning is to learn to select the action
with the maximum return Rt achievable for a given observation
[19]. From Equation (1), we can de�ne the action value Qπ at a
time t as the expected reward for selecting an action a for a given
state st and following a policy π .

Qπ (s,a) = E [Rt | st = s,a] (2)
�e optimal policy is de�ned as selecting the action with the opti-
mal Q-value, the highest expected return, followed by an optimal
sequence of actions. �is obeys the Bellman optimality equation:

Q∗(s,a) = E
[
r + γ max

a′
Q∗(s′ ,a′) | s,a

]
(3)

When the state space or the action space is too large to be repre-
sented, it is possible to use an approximator to estimate the action-
value Q∗(s,a):

Q∗(s,a) ≈ Q(s,a;θ ) (4)
Neural networks are a common way to approximate the action-
value. �e parameters of the neural network θ can be optimized
to minimize a loss function Li de�ned as the expected temporal
di�erence error of Equation (3):

Li (θi ) = Es,a,r,s ′
[
(yi −Q(s,a;θi ))2

]
(5)

where yt = rt + γ maxa′ Qθtarдet (st+1,a
′)

�e gradient of the loss function with respect to the weights is the
following :

∇θ iLi (θi) = Es,a,r,s ′
[
(r + γ maxa′ Q(s

′
,a
′ ;θi−1) −Q(s,a;θi ))∇θ iQ(s,a;θi )

]
(6)

Mnih et al. (2013) used this idea and created the famous method
called Deep Q-learning (DQN) [14]. However, the learning may be
slow due to the propagation of the reward to the previous states
and actions.
Similarly, the value function V π (s) which represents the expected
return for a state s following a policy π is de�ned as follows:

V π (s) = E [Rt | st = s] (7)
Some reinforcement learning models such as Actor-Critic or Dueling
Network decompose the Q-values Q(s,a) into two more fundamen-
tal values, the value functionV (s) and the advantage functionA(a, s)
which is the bene�t of taking an action compared to the others.

Figure 1: Actor-critic model

A(s,a) = Q(s,a) −V (s) (8)

2.2 Asynchronous Advantage Actor-Critic
(A3C)

It was shown that combining methods of deep learning and rein-
forcement learning is very unstable. To deal with this challenge,
many solutions store the agent’s data into a memory, then the data
can be batched from the memory. It is done because sequences of
data are highly correlated and can lead to learn from its mistakes
resulting in a worse and worse policy. A3C [13] avoids computa-
tional and memory problems by using asynchronous learning. It
allows the usage of on-policy reinforcement learning algorithms
such as Q-learning [24] or advantage actor-critic. �e learning is
stabilized without using experience replay and the training time is
reduced linearly in the number of learners.

�e learners of A3C which use their own copy of the environ-
ment are trained in parallel. Each process will learn a di�erent
policy and hence will explore the environment in a di�erent way
leading to a much more e�cient exploration of the environment
than with a replay memory. A process updates its own policy based
on an advantage actor-critic model [8] (Figure 1). �e actor-critic
model is composed by an actor which acts out a policy and a critic
which evaluates the policy. �e main thread is updated periodically
using the accumulated gradients of the di�erent processes.
�e critic takes as input the state and the reward and outputs a score
to criticize the current policy. In the case of advantage actor-critic
model, the critic estimates the advantage function which requires
to estimate V and Q .

�e actor does not have access to the reward but only to the state
and the advantage value outpu�ed by the critic. Contrary to the
critic which is value based, the actor directly works into the policy
space and changes the policy towards the best direction estimated
by the critic. Optimization techniques such as stochastic gradient
descent are used to �nd θ that maximizes the policy objective
function J (θ ). �e policy gradient objective function ∇θ J (θ ) is
de�ned as follows:

∇θ J (θ ) = Eπ ,θ
[
∇θ loдπθ (s,a)Aw (s,a)

]
(9)

where Aw (s,a) is a long term estimation of the reward to allow the
actor to go in the direction that the critic considers the best.



Deep Reinforcement Learning Boosted by External Knowledge SAC 2018, April 9–13, 2018, Pau, France

Figure 2: Dueling network architecture

2.3 Dueling Network
�e idea is to separately compute the advantage function and the
value function and combine these two values at the �nal layer
(Figure 2). �e dueling network [23] may not need to care about
both values and the advantage at any given time. �e estimation
of a state value is more robust by decoupling it from the necessity
of being a�ached to a speci�c action. �is is particularly useful
in states where its actions do not a�ect the environment in any
relevant way. For example, moving le� or right only ma�ers when
a collision is upcoming. �e second stream, which estimates the
advantage function values, is relevant when the model needs to
make a choice over the actions in a state. �e Bellman’s equation
(3) becomes now:

Q(s,a;θ ,α , β) = V (s,θ , β)+ (A(s,a;θ ,α)− max
a′ ∈A

A(s,a′ ;θ ,α)) (10)

And by changing the max by a mean:

Q(s,a;θ ,α , β) = V (s,θ , β) + (A(s,a;θ ,α) − 1
|A|

∑
a′

A(s,a′ ;θ ,α))

(11)
With θ the shared parameters of the neural network, α the parame-
ters of the stream of the advantage functionA and β the parameters
of the stream of the value function V. Since the output of the two
streams produces a Q function, it can be trained with many existing
algorithms such as Double Deep Q-learning (DDQN) [22] or SARSA
[18]. �e main advantage is that for each update of the Q-values,
the value function is updated whereas with traditional Q-learning
only one action-value is updated.

3 TASK & ENVIRONMENT
We built an environment on the top of the Malmo platform [5] to
evaluate our idea. Malmo is an open-source platform that allows
us to create scenarios with Minecra� engine. To test our model, we
trained an agent to collect foods in a �eld with obstacles. �e agent
can only receive partial information of the environment from his
viewpoint. We only use image frames to solve the scenario. An
example of screenshot with the object recognition results is shown
in Figure 3.

�e goal of the agent is to learn to have a healthy diet. It involves
to recognize the objects and learn to navigate into a 3D environ-
ment. �e task consists in picking up food from the ground for
30 seconds. Food is randomly spread across the environment and
four obstacles are randomly generated. Each of the 20 kinds of food

Figure 3: Screenshot of the environment

has an associated reward when the agent picks it up. �is reward
is a number between +2 (healthy) and -2 (unhealthy). �ey are
distributed equitably, meaning that a random agent should get a
reward of 0.

�e se�ings were: window size: 400 × 400 pixels, actions: turn
le�, turn right, crouch, jump, move straight and move back , number
of objects: 200, number of obstacles: 4. �e actions turn le� and
turn right are continuous actions to make the learning smoother as
consecutive frames are more similar.

4 SYSTEM ARCHITECTURE
4.1 General Idea
Figure 4 describes the global architecture of our new framework
called DRL-EK. It consists of four modules: an Object Recognition
Module, a Reinforcement Learning Module, a Knowledge Based
Decision Module, and an Action Selection Module.

�e object recognition module identi�es the objects within the
current image and generates high-level features. �ese features of
the environment are then used to augment the raw image input
to the reinforcement learning module. In parallel, the knowledge
based decision module selects another action by combining external
knowledge and the object recognition module outputs. To manage
the trade-o� between these two sources of decision we use an action
selection module. �e chosen action is then acted by the agent and
the modules are updated from the obtained reward.

4.2 Object Recognition Module
Injecting external knowledge requires to understand the scene at a
high-level in order to be interpreted by a human. �e easiest way
to understand an image is to identify the objects. For example, it is
intuitive to give more importance to the actions turn or jump than
the actionmove straiдht when an obstacle is in front of the agent.
To recognize the objects, the module uses You Only Look Once
(YOLO) [16][17] library which is based on a deep convolutional
neural network. As input, we use an RGB image of size 400×400
pixels. YOLO predicts in real time the bounding boxes, the labels
and con�dence scores between 0 and 100 of the objects. An example
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Figure 4: Global architecture of DRL-EK

is shown in Figure 3. We trained YOLO on a dataset of 25 000
images with twenty di�erent classes corresponding to the food that
is presented in the environment.

�e model is trained o�-line before starting the learning into the
environment. �e neural network architecture is adapted from the
one proposed by Redmon et al. (2016) for the Pascal VOC dataset
[17]. In order to recognize small objects, the size of cells is decreased
from 7 to 5 pixels and the number of bounding boxes for each cell
is increased from 2 to 4.

In addition to the identi�ed objects, the module creates feature
information about the current frame. To generate these high-level
abstraction features we combine the recognized objects and external
knowledge. �ey are then used as input by the reinforcement
learning module and the knowledge based decision module. We
designed two types of features presence of objects and important
area.

4.2.1 Presence Of Objects Features. �e �rst type of features is
a vector of booleans which indicates whether an object appears or
not within the current image. �e size of this vector is the number
of di�erent objects in the environment. Since some objects are not
helpful to solve the task, we can decide to only take some of the
objects into account based on our knowledge about the task.

4.2.2 Important Area Features. As the position of objects is im-
portant, we encode information about objects within each area of

Figure 5: Important areas of an image

Inputs

Figure 6: Injection of new features into the reinforcement
learning module (A3C)

the image. We split the image into k rectangles vertically and hori-
zontally. So, the number of areas is k2 and for each one we compute
a score (Figure 5). �e score of an area is the sum of the score of
the objects within this area. External knowledge can be introduced
by shaping the score of the objects. From our knowledge about
the task, we manually de�ned the scores to indicate whether or
not an object is important to solve the task. To tackle problems
with partially observable environments, we keep track of recent
information by concatenating the array of scores of the current
frame with the arrays of the two previous frames.

In our experiments, the top half of the images only contains
the sky so we computed the important area features on the half
bo�om of the images. We gave a score of -15/+5 to foods we think is
unhealthy (cake,cookie) / healthy (meat, fruit) and 0 for the others.
�at way, if an area contains a healthy food such as a fruit and a
sweet food, then the score of the area will be lower than an area
containing only a fruit or no object. We set the number of rectangles
to 3 (9 areas in total: 3×3). We found that with a higher number of
areas the amount of encoded information is bigger but information
quality of each area is worse than with 3 areas.

4.3 Reinforcement Learning Module
For a computer, learning from an image is di�cult and requires a
lot of training steps. To deal with it, the entry point of most of the
reinforcement learning models is a recurrent convolutional neural
network [3] to extract temporal and spatial features of the image.
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We trained a deep reinforcement learning model to perform
policy learning and we modi�ed the neural network structure to
incorporate external knowledge. In addition to the image input, we
injected presence of objects or important area features which are
created by the object recognition module. In the neural network,
we give to a Long Short Term Memory (LSTM) [4] the output of
the last convolutional layer concatenated with the new features
(Figure 6). �e next layers of the neural network are two separated
fully-connected layers to estimate the value function V (s) and the
policy π (a |st ). �e purpose is to help the model at the beginning
of the training to recognize and focus on objects. �e new features
augment the raw image input to the reinforcement learning model
by adding high-level information. For example, from presence of
objects features the model can decide which actions are allowed or
not. If a door is detected some of the actions may become irrelevant
such as jumpinд.

�e choice of the reinforcement learning model highly depends
on the environment. Since the model at each time-step takes an
input and outputs an action, we can easily substitute most of the
reinforcement learning techniques such as Deep Q-learning (DQN)
[14], Deep Deterministic Gradient Policy (DDPG) [12], Dueling Net-
work [23] or Asynchronous Actor-Critic Agents(A3C) [13] by using
a recurrent convolutional neural network as state approximator.

A3C is the most suitable model to solve our task. We tested and
empirically searched the best parameters such as a good convolu-
tional neural network architecture and the choice of the optimizer
of this model. It provides a baseline to evaluate the importance of
each module of our architecture on the �nal policy.

Working directly with 400 × 400 pixel images is too computa-
tionally demanding. We apply image preprocessing before training
A3C. �e raw frame is resized to 200 × 200 pixels. To decrease the
storage cost of the images we convert the image scale from 0 − 255
to 0 − 1.

We set the number of workers of A3C to 3 and a convolutional
recurrent neural network is used to approximate the states. �e
reason why we use a recurrent neural network is because the envi-
ronment is partially observable. �e input of the neural network
of A3C estimator consists in a 200×200×3 image. �e 4 �rst layers
convolve with the following parameters (�lter: 32,32,32,32, kernel
size: 8×8,4×4,3×3,2×2, stride size: 2,2,2,1) and apply a recti�er non-
linearity. It is followed by a LSTM layer of size 128 to incorporate
the temporal features of the environment. Two separate fully con-
nected layers predict the value function and a policy function, a
distribution of probability over the actions. We use RMSProp [21]
as optimization technique with ϵ = 10−6 and minibatches of size
32 for training.

4.4 Knowledge Based Decision Module
We believe that the agent is not able to accurately understand and
take into account the objects of the environment. A human can
easily understand and make a decision from high-level features such
as the utility or name of an object. Ge�ing this level of abstraction
is di�cult but we can help the machine by giving it less low-level
information such as color of pixels but more high-level information
such as the importance of an area of the image.

Moreover, when the reinforcement learning module is fed with
the images and the presence of objects or important areas fea-
tures, the training time is long due to the size of state space. �e
knowledge based decision module is able to select an action using
external knowledge and high-level features generated by the object
recognition module and without direct access to the image. We
propose two di�erent approaches, a long time planning model or a
meta-feature learning model.

4.4.1 Long Time Planning Model. Our approach to solving the
task is based on planning a sequence of actions. We designed and
developed a long time planning model without learning which
combines traditional test-case algorithms and planning. �e model
takes as input the probabilities and the bounding boxes of the
objects detected within the current frame.

We store in an array the sequence of planned actions. At each
time-step, the model checks if the previously planned sequence of
actions is still the optimal one and if it is not the case (for example
the next action is jump but there is no obstacle) the algorithm
updates it, otherwise the �rst action in the array is returned.

To update or plan a sequence of actions, the model uses the
information about the objects and manually created rules. First, a
test-case veri�cation selects the possible actions. An example of
simple rule is, if the object cookie is on the le� of the image then the
action turn le� is forbidden. �en, to decide of the action among
the remaining actions we use a priority list. If the selected action is
related to the movement, the model estimates the best angle and
the necessary number of steps to perform it. Finally, the �rst of the
planned actions is returned.

To decrease the number of rules we discretized the image space
into four areas: center, le�, right, other. We designed 43 rules to
prevent the agent from going in the direction of the food we think
is dangerous. To avoid static behaviour, we give more priority to
the actions turn le�, turn right, move straight than the others in the
priority list.

4.4.2 Meta-feature Learning Model. In our previous approach,
we manually create rules to reason on high-level features. To auto-
matically learn the rules and select the optimal action from them,
we use a deep reinforcement learning model such as DQN or duel-
ing network. Unlike the reinforcement learning module which uses
the image, the only input is high-level features such as important
areas or presence of objects. As the input is much smaller than an
image, a simple neural network can be trained to approximate the
states. �e smaller number of parameters leads to a faster learning
than a model trained from visual information.

In experiments, we trained a dueling network combined with a
double deep Q-learning (DDQN). It empirically gives a smoother
learning than most of the other reinforcement learning models.
A neural network approximates the states. It consists in 3 fully
connected layers of size 100 with a recti�er nonlinearity activa-
tion function. Network was trained using the Adam algorithm [7],
learning rate of 10−3 and minibatches of size 32. As input, we used
a slightly modi�ed version of the important area features outpu�ed
by the object recognition module. To create important area features,
we �ltered the objects too far and the objects with a con�dence
score less than 0.25. Taking into account an object such as grass is
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irrelevant and makes the learning more di�cult. We only used dan-
gerous or very healthy (10 objects out of 20) objects and removed 2
objects that we know are di�cult to distinguish.

4.5 Action Selection Module
�e module aggregates the actions proposed by the reinforcement
learning module and the knowledge based decision module to select
the action that the agent will perform in the environment. �e
goal is to take advantage of the fast learning of the knowledge
based decision module and the quality of the policy learned by the
reinforcement learning module. An important aspect of the action
selection, is selecting an action with the highest expected return
but also detecting error pa�erns to correct them. An error must be
detected when an action which has not been proposed could o�er
a higher return.

�is is achieved by training a Deep Q-learning model to select
the best action, detect and correct the error pa�erns. �ere is no
restriction on the possible actions meaning that the �nal action may
be di�erent from the two proposed actions if an error is detected. We
encode the proposed action by the two modules into two indicator
vectors. An indicator vector is a binary vector with only one unit
turned on to indicate the recommended action. �e neural network
input is the concatenation of these two vectors.

�e Q-learning algorithm is trained using a Boltzmann distribu-
tion (Equation 12) as explorer and experience replay (each experi-
ence is stored into memory and the algorithm is run on randomly
sampled batch) with a memory of size 106. Equation 12 gives the
probability of selecting an action in a given state s .

Ps (a) =
exp(Q(s,a)/τ )∑

a′ ∈A exp(Q(s,a′)/τ )
(12)

�e Q-network is composed of 2 hidden fully connected layers of
size 50 and are followed by recti�ed linear units.

5 EXPERIMENTS
We conducted several experiments for evaluating our architecture.
In all our experiments, we set the discount factor to 1.0. According
to our di�erent tests, on average the best reward that a perfect
agent can get in 30 seconds is 9.

5.1 Object Recognition
We evaluated our object recognition module for understanding
the correctness of obtained object information in the environment.
Figure 7 reports the object recognition module performance. In this
experiment, we measured the mean average precision (mAP) as the
error metric. �e results are similar to the results presented by the
authors (Redmon et al., 2017) [17] on the Pascal VOC. dataset [2].
We obtained a mean average precision of 53.47. Although other
libraries could o�er higher performance, the real-time detection
was the main criterion for selecting YOLO.

We noticed that most of the errors are false positives (68.3%)
whereas the false negatives (31.7%) are uncommon. It leads to an
agent with a policy more greedy and safer. As shown in the �gure,
the average precision is similar for every class. �e performance of
YOLO is slightly a�ected by the complexity of the objects such as
their shape, color or size.

Figure 7: Average precision over all the classes obtained by
the object recognition module

Figure 8: Evolution of the reward of the long time planning
model

5.2 Long Time Planning Model
Next, we tested the long time planning model in the knowledge
based decision module to evaluate the e�ectiveness of this approach.
We only utilized the object recognition module and the knowledge
based decision module in our framework. �e long time planning
model performs much be�er than a random agent with an average
reward of 3.3 (Figure 8), since expected reward of random agent is
0.

�e most likely cause of the wide variance is the di�culty to
handle all possible cases with manually created rules. For instance,
the agent has di�culty in gathering food near obstacles. Since there
is no learning, the quality of the agent only depends of the quality
of the rules and is not able to converge. On the other hand, from
the �rst episode the average reward is much higher than any other
learning based models.
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Figure 9: Average rewards of the meta-feature learning
model with di�erent parameters. �e rewards were aver-
aged over 200 episodes a�er 5000 training episodes

Figure 10: Average reward using meta-feature learning

5.3 Meta-feature Learning Model
To evaluate performance of the meta-feature learning model we
use as baseline the long time planning model. We optimized its
parameters, by sampling hyper-parameters from categorical distri-
butions:

• Number of areas sampled from {4, 9, 16, 25}
• Number of hidden layers from [1, 5]
• Size of hidden layers sampled from {25, 50, 100, 200, 300}

Figure 9 reports an example of hyper-parameter optimization re-
sults. Each cell corresponds to a con�guration of parameters. As
can be seen on the �gure, a number of hidden layers larger than
two or a large number of areas results in lower performance. �e
best hyper-parameters are 9 areas, and a neural network with 3
hidden fully-connected layers of size 100. Training time is about 4
hours for each con�guration on a Nvidia Titan-X GPU.

Figure� shows how the average total reward of the meta-feature
learning model evolves during training with the optimal se�ings.
�e dueling network architecture e�ectively learns to solve the task
from the important area features. �e learning is fast during the �rst
3000 episodes and the average reward quickly converges around
5.4. It is also interesting to note that this approach rapidly achieves
higher performance than the long time planning model. Automatic
rule learning is more e�ective than manual rule construction. Unfor-
tunately, the rules cannot be represented in a human-interpretable
way.

Figure 11: Frequency of selection of each action

Figure 12: Performance of DRL-EK comparing to DQN, Du-
eling Network and A3C

5.4 Action Selection
We also evaluated the characteristics of the action selection module.
We report the percentage of actions which is selected from the
knowledge based decision module (action 1) and from the reinforce-
ment learning module (action 2) against other actions. We measured
the frequency of selection of each action every 350 episodes. As
shown in Figure 11 the action selection module at the beginning
selects equally the actions then more the action 1 and gradually
give more importance to the action 2. �e results con�rm our in-
tuition, the module selects the action of the most e�cient module
and adapts over time the trade-o� between the sources of decision
to always select the best one.

5.5 Global Model Evaluation
Finally, we report the average reward of our whole framework
trained using the injection of important areas features into the
reinforcement learning module and a meta-feature learning model
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Table 1: �e table compares average reward for various fea-
tures injected into A3C.�e reinforcement learningmodule
was evaluated alone for 12 000 episodes.

Se�ings Rewards
A3C 5.6

A3C + presence of objects features 5.8
A3C + important area features 6.1

as knowledge based decision module. Figure 12 compares our
proposed method with the best performing reinforcement learning
methods. �ese models learn the policy only using raw pixels.

DRL-EK boosts A3C by injecting important area features. To
select these features, we compared A3C+presence of objects features
and A3C+important area features (Table 1). In both cases, the results
show that adding a new input to the reinforcement learning module
improves the quality of the policy.

As can be seen, DQN gives the worst results with an average
reward of 3.2, ≈ 40% less than A3C a�er converging. A�er 12 000
episodes, the average reward of the dueling network architecture
trained with a double deep Q-learning is around 4.4 while A3C is
able to achieve an average reward of 5.6. Surprisingly the meta-
feature learning model trained alone (Figure 10) achieves higher
performance than learning only from the image with a dueling
network or a DQN model.

Asynchronous advantage actor-critic tends to learn faster than
any other reinforcement learning based models. We believe this
is due to the 3 parallel workers of A3C which o�er a nonlinear
signi�cant speedup.

�ese results show that our architecture, DRL-EK, outperforms
the baselines. Its average reward is around 15% be�er than A3C
a�er 14 000 episodes. Moreover, the performance at the beginning
of the training and the learned policy of DRL-EK is signi�cantly
be�er than all other models. One thing to note is that the action
selection module tends to select an action di�erent from action 1
and 2 (Figure 11). �e continuous increase of the average reward
of DRL-EK and this observation indicates that the action selection
module is partially able to learn to correct the errors.

�e experiments demonstrate the importance of each module of
our system. With an average time for one step of 0.43 seconds on a
Nvidia Titan-X (Pascal) GPU, DRL-EK can be trained in real time.

6 CONCLUSION
We proposed a new architecture to combine reinforcement learn-
ing with external knowledge. We demonstrated its ability to solve
complex tasks in 3D partially observable environments with image
as input. Our central thesis is enhancing the image by generating
high-level features of the environment. Further bene�ts stem from
e�ciently combining two sources of decision. Moreover, our ap-
proach can be easily adapted to solve new tasks with a very limited
amount of human work. We have demonstrated the e�cacy of our
architecture to decrease the training time and to learn a be�er and
more e�cient policy.

In the future, a promising research area is building an agent
that incorporates human feedback. Another challenge is how to

integrate complex and structured external knowledge such as on-
tologies or textual data into our model. Finally, we are interested in
extending our experiments to new environments such as VizDoom
[6].
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