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ABSTRACT
The use of relevant metrics of software systems could improve vari-
ous software engineering tasks, but identifying relationships among
metrics is not simple and can be very time consuming. Recommender
systems can help with this decision-making process; many applica-
tions have utilized these systems to improve the performance of their
applications. To investigate the potential benefits of recommender
systems in regression testing, we implemented an item-based collab-
orative filtering recommender system that uses user interaction data
and application change history information to develop a test case
prioritization technique. To evaluate our approach, we performed
an empirical study using three web applications with multiple ver-
sions and compared four control techniques. Our results indicate
that our recommender system can help improve the effectiveness of
test prioritization.

ACM Reference Format:
Maral Azizi and Hyunsook Do. 2018. A Collaborative Filtering Recom-
mender System for Test Case Prioritization in Web Applications. In Proceed-
ings of ACM Conference, Washington, DC, USA, July 2017 (Conference’17),
8 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Software systems undergo many changes during their lifetime, and
often such changes can adversely affect the software system. To
avoid undesirable changes or unexpected bugs, software engineers
need to test the overall functionality of the system before deploying
a new release of the product. One of the common ways to evaluate
system quality in a sequence of releases is regression testing. In
regression testing, software engineers validate the software system
to ensure that new changes have not introduced new faults. How-
ever, modern software systems evolve frequently, and their size and
complexity grow quickly, and thus the cost of regression testing
can become too expensive [3]. To reduce regression testing cost,
many regression testing and maintenance approaches including test
selection and test prioritization [28] have been proposed.

To date, most regression testing techniques have utilized various
software metrics that are available from software repositories, such
as the size and complexity of the application, code coverage, fault
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history information, and dependency relations among components.
Further, various empirical studies have shown that the use of a par-
ticular metric or combination of multiple metrics can improve the
effectiveness of regression testing techniques better than others. For
example, Anderson et al. [3] introduced a new technique that identi-
fies distinct usage patterns of software through telemetry data and
showed that their technique can reduce regression test execution
time by over 30 percent compared to traditional prioritization tech-
niques. However, we believe that, rather than simply picking one
metric over another, adopting a recommender system, that identifies
more relevant metrics by considering software characteristics and
the software testing environment might provide a better solution.

Recommender systems have been utilized to alleviate the decision
making effort by providing a list of relevant items to users based on
a user’s preference or item attributes. For example, companies that
produce daily-life applications, such as Netflix, Amazon, and many
social networking applications [11], are adopting recommender sys-
tems to provide more personalized services so that they can attract
more users. Recently, recommender systems have been used in soft-
ware engineering areas to improve various software engineering
tasks. For example, Anvik et al. conducted research that applied
machine learning techniques to developers as well as bug history
to make suggestions about “who should fix this bug?” [4]. While
many software engineering techniques have started to incorporate
recommendation systems, no researchers have investigated the use
of recommender systems in the area of regression testing.

Therefore, we have investigated whether the use of recommender
systems can improve regression testing techniques, in particular fo-
cusing on test case prioritization. To implement the recommender
system, we used user interaction data and application change his-
tory information. Previous studies have shown that change history
information is an effective indicator for bug prediction [13, 18], and
the most frequently accessed components have a higher impact on
the user-perceived reliability of the application [3, 25]. Using this
kind of information, our recommender system identifies potential
components that contain faults that can lead to system failure. By
running test cases that exercise such components earlier, we can in
turn find defects that are exposable by user interactions earlier. We
implemented a test case prioritization technique by applying our
recommender system and performed an empirical study using two
open source and one commercial web applications. The results of
our study show that our proposed recommender system approach
can improve the effectiveness of test case prioritization compared to
four other control techniques.

The rest of the paper is organized as follows. In Section 2, we
discuss the approach used in this research and formally define collab-
orative filtering recommender systems. Sections 3 and 4 present our
empirical study, including the design, results, and analysis. Section 5
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discusses the results and the implications of these results. Section 7
presents background and related work, and finally in Section 8, we
provide conclusions and discuss future work.

2 THE PROPOSED APPROACH
Figure 1 shows three major activities in our approach and how these
activities are related to each other. The first step of our proposed
technique is usage pattern extraction, which is shown in the upper
box of Figure 1. In this activity, we analyze the users’ interaction data
to determine the most frequently accessed components of the system.
Our second activity is change history analysis, which is shown in
the lower box of Figure 1. In this activity, we build a classification
model to measure the relationship between software defects and
change history metrics. Then, by obtaining the output from these two
activities, we measure the risk score of each component and prioritize
the test cases based on their coverage of these risky components. In
this paper, component refers to method.

2.1 Usage Pattern Extraction
The goal of our recommender system is to suggest the highest-
risk components with the most access frequency among all other
components in the applications. In large scale applications, there
are wide ranges of features and components; however, in reality,
only a relatively small subset of components is accessed by users.
Therefore, even if there are bugs in some part of the system that is
not generally accessed by users, we assume that those bugs have less
impact on the user-reliability perception of a system; catching those
bugs that have been exposed by users is a bigger priority.

To calculate the access frequency of the components, we used
two collected data sets: a list of users U = {u1,u2, ...,um } and a
list of the components C = {c1, c2, ..., cn }. Each component ci has a
list of users’ ratings if users have performed at least one task with
it. Typically, in recommender systems, prediction is based on the
numerical values of ratings from active users, but in our case we do
not have access to such rating modules; instead, we use the value of
access frequency for a specific component by an individual active
user as a rating score.

Suppose that we have a web application that has several func-
tionalities; a group of users shows similar interests in using a set of
components, while other groups of users use different sets of com-
ponents. We want to measure the similarity between components

by considering users’ activities and their preferences in using the
components.

Figure 2 illustrates an example of component similarity prediction.
The upper left-hand matrix in the figure shows how many times each
component has been used by users. The numbers in the cells show
the access frequency by the user ui of the component c j , and NA
indicates that the user ui has not used that particular component yet.
In this figure, u1, u3, u6, and u8 utilized components c1; and u1, u2,
u4, u5, and u9 utilized c2. We refer to a set of component ratings as
a component vector. For example, the vector c1 is ⟨ 5, NA, 6, NA,
NA, 3, NA, 1, NA, NA⟩ Once we identify the component vectors,
we measure the similarity between ci and all other components one
by one.

In order to determine the similarity between two components i
and j, we use Pearson-r correlation [26]. If U is the set of users who
rated components i and j, then we compute the correlation similarity
using the following equation:

Sim(i, j) =
∑
u ∈U (Cu,i − C̄i )(Cu, j − C̄j )√∑

u ∈U (Cu,i − C̄i )2
√∑

u ∈U (Cu, j − C̄j )2

where Cu,i is the value of access frequency for component i by
user u, and C̄i is the average access frequency value of Ci .

The reason for finding the similarity between components is to
find the missing value in the matrix. To measure the similarity be-
tween components, we normalize the rating of each component by
subtracting the row mean. The upper right-hand matrix in Figure 2
shows the normalized rating values of the left matrix. For example,
the average of access frequency of c1 and c2 is 15/4 and 26/5, respec-
tively. Then, we subtracted mean values from each corresponding
row of the left matrix. Positive values indicate that the user used
the component more than average; while negative values indicate
that the user used the component less than average; 0 indicates the
average access frequency for a component. We treat blank values
as 0. The rightmost column in the upper right-hand matrix shows
the similarity between c1 and all other components. For example,
Sim(c1, c2) = −0.54 < Sim(c1, c4) = 0.38 means that the probability
of rating of c1 is much more like c4 than c2.

After calculating the similarity between all components, we select
the set of N most similar components for ci ; this process will be
iterated for every component. Once we have this set of N , then we
can make a prediction of access frequency for the missing values of

Figure 1: An Overview of Our Test Case Recommender System
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ci based on a rating of the N similar components. To estimate the
access frequency rates of ignored components, we performed ratio
prediction computation using a weighted sum method. This method
provides the ratio prediction of a specific component i for user u
based on similar components.

Pu,i =

∑
all similar components,N (Si,N ∗ Ru,N )∑

all similar components,N (Si,N )
Ru,N is the rating score for useru and N most similar components,

and Si,N is the similarity score of component i and N . We illustrate
this using an example in Figure 2. The lower matrix in the figure
shows the predicted frequency access for P1,4, which is calculated
by (0.38 ∗ 6/5 + 0.18 ∗ −13/7)/(0.38 + 0.18) = 0.23.

The number, N , is determined based on the context of application
domain, ranging from 1 to size of C − 1. However, assigning a
large number to N will increase the calculation cost significantly,
while the result accuracy would not change noticeably. Therefore,
to reduce the cost of the calculation process, we set N = 2 , which
means that to predict the missing values we only select the two most
similar components to ci . This process is repeated until we find the
ranking for the all missing values. Once we calculate ratio scores for
the components, we can produce a matrix of components and their
access frequency ranking scores. We calculate normalized access
frequency scores using the following equation:

FCi =

∑(PCi )
number o f components

where PCi is the predicted rank score and FCi is the normalized
rank score of component i. Then we can sort the matrix of com-
ponents based on their ranking to select Top − N most frequently
accessed components.

2.2 Change History Analysis
The second phase of our proposed approach is change history analy-
sis. Among hundreds of attributes of code and change history metrics
to evaluate the code quality and error proneness, we chose change
history metrics to identify the riskiest components. According to

a previous study [18], change history is a better indicator for bug
prediction purposes than code metrics.

The process of change analysis involves two major steps. First, we
collect change history information (e.g., added lines of code, deleted
lines of code, etc.) and bug reports from all available versions of
the applications from their repositories. The details of collecting the
change history information are discussed in Section 3.3. Once the
change history data is collected, we then design a linear model from
a set of collected change metrics to build a classification model for
bug prediction. Our goal is to find the correlation coefficient of each
metric to measure statistical relationships between a change metric
and real defects. The value of this measure ranges between 1 and
-1, where 1 indicates a strong positive relationship, 0 indicates no
correlation, and a negative value indicates a reverse correlation.

To evaluate our linear model, we applied 10-fold cross validation
and repeated this process 100 times. We used a common accuracy
indicator to determine the accuracy of our model. The three accuracy
indicators that we used are PC, TP and FP. PC indicates the percent-
age of correctly classified instances, TP (true positive) indicates the
number of components that contain a bug (and our classification
model also classified them as buggy components), and FP (false
positive) is the number of components that are classified as buggy
(but they are clean). The output of our classification model is a list
of components with their risk values, ICi (the risk score of being
buggy for component i).

2.3 Test Prioritization Using the Recommender
System

After obtaining the two metrics explained in previous subsections
(component risk scores and access frequency ratios), we calculate
the final risk scores using the following equation:

RCi = FCi ∗ ICi
where FCi is the access frequency score of component i and ICi

is the fault risk score of Ci . Using RCi scores, our recommender
system provides a ranked list of components. The ranked list of
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Figure 2: Item-Based Collaborative Filtering Process for Identifying Most-Frequent Components
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components contains those components of the system that are most
likely to be the cause of regression faults. As shown in Figure 1, the
test case prioritization algorithm reads two inputs (a recommended
Top−N list of components and code coverage of tests), and reorders
test cases.

For example, suppose we have five componentsC = {c1, c2, ..., c5}
with risk scores R = {0.0014, 0.251, 0.034, 0.561, 0.138}. Also, sup-
pose we have a list of test cases with their code coverage information ,
such as TC = {T1 = (c5, c3),T2 = c1,T3 = (c4, c2),T4 = (c2, c5),T5 =
c2} . Then, we reorder the test cases in this order: T3,T4,T1,T2,T5,
since T3 covers c4, c2, the two components having the highest risk
score (0.561 + 0.251 = 0.812), and T2 and T5 will be executed last
because T2 covers c1, which has the lowest risk score (0.0014). T5
only covers c2 (this component has been covered by T3 as well);
and because T4 covers more components (0.251 + 0.138 = 0.389),
then it has higher priority than T5, which covers only c2 = 0.251.
Finally, we calculate the fault detection rate of the reordered test
cases by applying the proposed technique in the latest version of
each application.

3 STUDY
Our study investigates whether the use of a recommender system
can improve the effectiveness of test case prioritization techniques
considering the following research question.

• RQ: Can our recommender system be effective in improving
the effectiveness of test case prioritization techniques when
we have a limited time budget?

3.1 Objects of Analysis
To investigate our research question, we performed an empirical
study using two open source applications and one commercial web
application. DASCP is a digital archiving and scanning software
designed for civil projects; we obtained this application from a
private company. DASCP is a web based application written in
ASP.Net and designed to store civil project contracts, which include
the technical information of civil and construction projects such
as project plans and relevant associated information. Our second
application is nopCommerce, which is a widely used open source
e-commerce web application with more than 1.8 million downloads.
This application is written in ASP.Net MVC and uses Microsoft
SQL Server [1]. The last application is Coevery, which is an open
source customer relationship management (CRM) system written in
ASP.Net. This application provides an easy framework for users to
create their own customized modules without having to write any
code [2].

Table 1 lists the applications under study and their associated data:
“Classes” (the number of class files), “Files” (the number of files),
“Functions” (the number of functions/methods), “LOC” (the number
of lines of code), “Sessions” (the number of user sessions that we
collected), “Faults” (the total number of seeded and real faults),
“Version” (the number of versions), “Test Cases” (the number of test
cases), and “Installations” (the number of different locations where
the applications were installed). Test cases were in the application
package; we did not generate any new test cases. We downloaded all
available versions of open source applications from the applications’
GitHub repositories.

Table 1: Application Properties

Metrics DASCP nopCommerce Coevery
Classes 107 1,919 2,258
Files 201 1,473 1,875
Functions 940 21,057 13,041
LOC 35,122 226,354 120,897
Sessions 748 1310 274
Faults 35 70 30
Versions 3 23 3
Test Cases 95 543 1,120
Installations 3 2 1

Table 2: Test Case Prioritization Techniques

Group Technique

Control

Change history-based (Tch )
Most frequent methods-based (Tmfm )
Random (Tr )
Greedy (Tд)

Heuristic Hybrid collaborative filtering-based (Thcf )

3.2 Variables and Measures
3.2.1 Independent Variable. To investigate our research ques-

tion, we manipulated one independent variable: prioritization tech-
nique. We considered five different test case prioritization techniques,
which we classified into two groups: control and heuristic. Table 2
summarizes these groups and techniques. The second column shows
prioritization techniques for each group. As shown in Table 2, we
considered four control techniques and one heuristic technique. For
our heuristic technique, we used the approach explained in Sec-
tion 2, so, here, we only explain the control techniques we applied
as follows:

(1) Change History-Based (Tch ): In order to perform this tech-
nique, we used the information that we obtained from the
change history analysis approach, which we explained in Sec-
tion 2.2. We prioritized our test cases based on the highest
scores of the change risk list.

(2) Most Frequent Methods-Based (Tmfm): The most frequent
methods usually have high dependency on other classes and
methods. If one of them fails, it can cause a significant failure
or degradation of the system. In order to prevent a domino
effect in the system, high-frequency methods should be tested
first, because their failure can cause other components to fail
due to their dependencies.

(3) Random (Tr ): The random prioritization technique randomly
reorders test cases.

(4) Greedy (Tд): The greedy technique reorders test cases based
on the total number of methods covered by test cases.

3.2.2 Dependent Variable. Our research question seeks to
measure the effectiveness of our proposed approach when we have
constrained resources. Qu et al. [21] defined the normalized metric
of APFD [23], which is the area under the curve when the numbers
of test cases or faults are not consistent. The NAPFD formula is as
follows:

NAPFD = p − TF1 +TF2 + ... +TFm
nm

+
p

2n
4



In this formula, n is a percentage of the test suite run,m represents
the total number of faults found by all test cases, TFi is the first test
case that catches the fault i, and p is the number of faults detected by
the percentage of our budget divided by the total number of detected
faults when running 100% of test cases.

3.3 Data Collection and Experimental Setup
In order to perform our experiment, for both the control and heuristic
techniques we needed to collect three different types of datasets:
telemetry data, change history, and code coverage information. We
explain the data collection processes in the following subsections.

3.3.1 Collection of Telemetry Data. To collect telemetry data,
we implemented a small function to record user interactions. We
considered a sequence of each user’s interactions on a specific date
as a user session. First, we uploaded two applications, Coevery and
nopCommerce, on an IIS server at the University of X in November
2016. The server specification is CPU Core i7, with 16 GB of RAM.
After deploying our applications, we recruited volunteer graduate
and undergraduate computer science students and assigned a variety
of tasks to them. These tasks to the volunteers were simple scenarios
that each application is designed for. For example, in nopCommerce,
we asked the volunteers to perform online shopping following the
actual necessary steps, from login to payment. We also asked some
of the users to be the system administrator, so we could monitor
the whole system rather than only the end user side. We asked the
end users to access other parts of the system randomly, for exam-
ple, checking their inbox or wish list. In total, seventy volunteer
students performed different tasks during a forty-day period. We col-
lected 1,310 and 274 user sessions for nopCommerce, and Coevery
respectively.

The data collection process for DASCP is different from that of
Coevery and nopCommerce. The DASCP users whose data we exam-
ined are real users, and they have application domain knowledge. We
collected a twelve-month period of user interactions for DASCP. In
total, 748 user sessions were collected during the designated period
of time.

However, the length of the sessions varied by user, date, and
workplace. For example, some users performed all their assigned task
a few hours before the determined deadline, while others distributed
their tasks over several days. The average length of user sessions for
nopCommerce is equal to 56 and, for Coevery, 24. However, in some
cases we obtained session lengths over 300, especially when the
interaction date was close to the deadline. Also, most of the Coevery
users were selected among graduate students, since the functionality
of this application is relatively more complex that of nopCommerce.

Figure 3 shows an example of the raw telemetry data. The left-
hand column shows the session identifier, which is a user navigating
through the system. The right-hand column is the set of server-side
user interactions. The structure of the interactions is of the format
(Form name):(Control name):(Action name).

3.3.2 Collection of Code Change History. We had to take
three steps to measure change risk. First, we needed a clear un-
derstanding of the applications with respect to their changes. For
instance, we needed to check whether a change was just the renam-
ing a variable or component, the addition of some comments, or

Figure 3: Sample User Session

an alteration of code by adding or deleting functions, and so on.
Then, we needed to check whether changes had been made in the
current version, and finally, we tested a recently changed system [5].
Figure 4 shows the versions that we used in this study. nopCom-
merece contains 36 versions but we used only the versions available
on the GitHub repository as of the experiment date. However, for
Coevery and DASCP, we used all available versions. All studied
applications contain fine-grained changes, and the commits on these
two open source applications are available in the GitHub repository.

Figure 4: Versions of Each Application with Change Informa-
tion and Bug Reports

In our study, we collected the change history of our three applica-
tions following Giger et al.’s approach [13]. Most of these metrics
have been used in bug detection research, and they are known to be
good indicators for locating bugs [13, 15, 17, 18, 20, 27]. Table 3
shows the applied change metrics in this study.

3.3.3 Collect Code Coverage. Once our recommender sys-
tem was designed and implemented, we needed to find test cases
that covered the recommended components. We collected the code
coverage data of the latest version of AUTs for our test cases using
the code coverage analysis tool that Microsoft Visual Studio pro-
vides as part of its framework. After collecting the code coverage
information, we entered it into a relational database. We assigned
unique identifier values for each method and test case, which pro-
vides a key for method and test tables. Hence, we could easily map
the methods to the test cases that exercise them.

Table 4 show the code coverage data we collected. The first
column, “MethodID”, shows the unique identifier values that we
assigned for each method. The second column shows the final risk
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Table 3: Change Metrics Used to Evaluate Risk

Metrics Name Description
Modification Number of times a method was changed

LOC Added
Added lines of code to a method
body over all method histories

Max LOC Added
Maximum added lines of code to a method
body for all method histories

AVE LOC Added
Average added lines of code to a method
body per method history

LOC Deleted
Deleted lines of code from a method
body over all method histories

Max LOC Deleted
Maximum deleted lines from a method
body for all method histories

AVE LOC Deleted
Average deleted lines from a method
body per method history

Code Churn Sum of all changes over all method histories
Max Code Churn Maximum code churn for all method histories
AVE Code Churn Average code churn per method history
Age Age of a method in weeks from last re-

lease

Table 4: Code Coverage Data Table

MethodID Risk Score TestID1 ... TestID n
12 0.876 0 0

287 0.012 1 0
301 0.547 0 0
148 0.145 1 1
67 0.055 1 0

scores, which is the output of our recommender system. Other
columns list our test cases with Boolean values: 0 indicates that
the test case does not cover the method, and 1 indicates that the test
case covers the method.

3.3.4 Faults. The applications contain real defects reported by
users, but the number of defects is rather small considering the size
of the applications we studied. Thus, two graduate students seeded
additional faults by simulating programmers’ common mistakes
(e.g., using a single equal sign to check equality). All seeded faults
were in the server-side code level, and we ignored HTML-based and
GUI faults. Four types of faults were seeded: (1) data faults that are
related to interaction with the data store; (2) logic faults that are logic
errors in the code; (3) action faults that modify parameter values and
actions; and (4) linkage faults that change the hyperlinks references.
Table 1 shows the total number of faults that including both real and
seeded faults. The number of real faults for nopCommerce, Coevery,
and DASCP is 25, 8, and 13, respectively. Once we collected all the
required data, we ran control and heuristic techniques and calculated
all the dependent values for the reordered test cases.

4 DATA AND ANALYSIS
Our research question investigates whether the use of the recom-
mender system can improve the effectiveness of test prioritization
when we have a limited budget for testing, a common situation that
the software industry often faces. To analysis this research question,
we measured the NAPFD, which is a normalized ratio of APFD,

Table 5: NAPFD Scores on Average.
Application Test Exe. Techniques

Rate (%) Tch Tmfm Tr Tд Thcf
10 18.54 15.12 14.33 19.81 23.37
20 21.31 16.78 15.51 24.62 29.98
30 28.86 25.12 18.47 38.23 40.95
40 40.42 38.68 25.59 43.76 55.3

DASCP 50 54.34 42.9 49.53 50.13 67.07
60 61.7 50.34 45.29 65.8 70.42
70 68.34 65.97 60.74 74.66 76.67
80 75.41 71.14 64.88 79.26 84.01
90 83.35 77.69 67.11 88.32 89.83
100 90.16 79.22 70.91 92.39 94.14

10 17.54 15.75 8.33 16.85 28.14
20 29.28 28.35 12.51 32.39 47.9
30 38.86 35.45 15.57 34.73 55.28
40 44.42 48.68 27.59 39.96 65.06

nopCommerce 50 58.34 54.94 35.91 47.65 74.78
60 62.7 57.08 41.45 53.22 81.49
70 68.14 59.97 50.02 59.39 86.38
80 76.22 64.14 58.15 67.41 89.87
90 79.4 70.22 60.17 71.81 95.14
100 82.16 76.04 63.91 73.72 97.06

10 26.54 29.12 20.33 26.15 41.02
20 44.28 45.12 24.51 46.82 66.98
30 60.86 50.12 28.57 53.71 73.28
40 63.42 53.68 31.59 65.33 75.06

Coevery 50 64.34 58.3 39.62 67.14 77.1
60 66.7 60.41 44.09 70.23 78.65
70 68.19 62.97 46.11 73.14 81.13
80 70.67 65.14 57.91 74.09 83.2
90 71.81 66.03 59.01 74.69 86.69

when our resources were not consistent. In this experiment, first we
executed 10% of our test cases, and we continued to execute the
test cases in increments of 10% of the total until they had all been
executed to see whether we could improve the fault detection rate,
given a time constraint dictating that running 100% of the test cases
at one time was not feasible.

Table 5 shows the results of our three applications. By examining
the numbers in the table, we can observe that the improvement
rates of our heuristic technique over the control techniques vary
widely. When we compared the heuristic with Tch , the improvement
rates ranged from 4% to 41% for DASCP, from 17% to 63% for
nopCommerce, and from 17% to 54% for Coevery. When compared
with Tmfm , the improvement rates ranged from 15% to 78% for
DASCP, from 27% to 78% for nopCommerce, and from 27% to 48%
for Coevery, indicating results similar to those for as Tch . When
compared withTд , the improvement rates ranged from 1% to 33% for
DASCP, from 31% to 67% for nopCommerce, and from 10% to 56%
for Coevery, showing improvement over a popular and commonly
used technique. As for the comparison with Tr , the results were
more remarkable. The rates ranged from 32% to 282% for all three
applications. Note that the results for random technique are average
of iterating this technique for 10 times.

One outstanding trend we observed in the table is that the im-
provement rates are much higher when the time budget is smaller.
For example, in the comparison with Tch for nopCommerce, when
10% of the budget was assigned, the improvement rate was 60%, but
when we had a full budget, the rate dropped to 18%. A similar trend
can be observed across all control techniques and applications. This
indicates that our approach can be more helpful when companies are
operating under a tight budget.

6



5 DISCUSSION
Our experiment results indicate that by utilizing a recommender
system when we prioritize test cases, we were able to improve the
effectiveness of test case prioritization. While we have not conducted
a cost benefit analysis of our approach, which is our future work,
we found that the cost of applying our approach is negligible. The
biggest cost for applying our approach is calculating the matrix of
access frequency scores, but it took only 580, 153, and 374 seconds
for nopCommerce, Coevery and DASCP, respectively. Further, the
prioritization algorithm took only 0.29 seconds for nopCommerce,
the application that has the largest number of test cases.

Limitations of Applying Recommender Systems. There are
three common limitations in collaborative filtering recommender
systems; new user problem, new item problem, and sparsity [11].
Among these three limitations, two of them are related to our study.

Sparsity. As we discussed earlier, we do not have a rating mod-
ule in our applications, and thus we used access frequencies to each
component as a user rating. Further, for the open source applica-
tions, nopCommerce and Coevery, we collected the user interaction
data from nonprofessional users, so our data could contain noise
and redundancy, which can affect the performance of our technique.
Moreover, the number of collected ratings is relatively small, com-
pared to the number of expected ratings required to generate an
accurate prediction.

Also, the distribution patterns of user ratings can affect the out-
come of collaborative filtering algorithms. For example, in nop-
Commerce case, some components were used by all users, such as
registration and membership components, while some other compo-
nents were ignored by the majority of users. In order to eliminate this
issue, we need to collect more user interaction data by considering
a larger number of users and a longer period of time. In addition,
having actual users would generate more realistic results, because
their interactions would be based on real business functions and
system workflows.

New Item Problem. Another limitation of collaborative filtering
that is related to our study is the “New Item Problem”. It is a com-
mon practice that newly developed components are frequently added
to a system. However, rankings on collaborative filtering algorithms
are based on user access frequencies to the components. Therefore,
the newly added components would not appear in the recommender
suggestion list until a certain number of users perform some tasks
on them. In our study, in addition to using access frequency scores,
we also applied change risk scores to recommend the riskiest com-
ponents. Therefore, even if a new component has a high change
risk score, its frequency score would still be zero, which makes the
overall risk score zero. To overcome this limitation, we need to use
a hybrid and normalized ranking score by assigning a small value to
the components.

6 THREATS TO VALIDITY
The primary threat to validity of this study is the amount of user
session data and the type of users who participated in this study.
For the proprietary application that we used in this study, we col-
lected user interaction data for a long period time; the collected
data was created by actual users of the application. However, for
the two open source applications, the period of time over which we

collected user interactions was relatively short, and the participants
were not domain experts or regular users of the applications, so their
usage patterns had wide variations. This threat can be addressed by
performing additional studies that monitor user interactions over a
longer time period among a wider population, and by considering in-
dustrial applications and different types of applications (e.g., mobile
applications).

Another concern involves the bug reports that we used. Our classi-
fication prediction values for designing linear models in the change
history analysis were generated from bug history that was reported
by actual users. Further, using these bug reports, we measured the
coefficient of other variables to create our linear model for change
history analysis. Because our bug report data is not comprehensive
and contains only those bugs accrued up to the time that we stopped
collecting data, and because there might be other bugs that have not
been reported yet or that might occur later, there is a possibility that
the bug reports are biased.

7 RELATED WORK
Test Case Prioritization. Due to the appealing benefits of test

case prioritization in practice, many researchers have proposed vari-
ous techniques. These techniques help engineers discover faults early
in testing, which allows them to begin debugging earlier. Recent sur-
veys [7, 28] provide a comprehensive understanding of overall trends
of the techniques and suggest areas for improvement. Depending
on the types of information available, various test case prioritiza-
tion techniques can be utilized, but the majority of prioritization
techniques have used source code information to implement the tech-
niques. For instance, many researchers have utilized code coverage
information to implement prioritization techniques [9, 16, 24].

Further, some researchers have used software risk information
in testing approaches. For instance, Frankl and Weyuker [10] intro-
duced two risk related measures of software testing effectiveness,
which are expected detected risk and expected risk reduction and
investigated the effectiveness of these two measures on testing tech-
niques. Hettiarachchi et al. [14] proposed a new test case prioritiza-
tion technique. Their technique uses risk levels of potential defects
to detect risky requirements then it prioritizes test cases by mapping
the related test cases and these requirements.

More recently, several prioritization techniques utilizing other
types of information have also been proposed. For example, Ander-
son et al. applied telemetry data to compute fingerprints to extract
usage patterns and for test prioritization [3]. Brooks and Memon
performed a study applying telemetry data to generate usage pat-
tern profiles [6]. Gethers et al. presented a method that uses textual
change of source code to estimate an impact set [12].

Recommender Systems. Recommender systems are software
engineering tools that make the decision making process easier by
providing a list of relevant items. Some widely-used applications that
provide recommender systems are Amazon, Facebook, and Netflix.
These applications provide suggestions to target users based on the
user or on item characteristic similarities.

With the fast growth of such information, machine learning tech-
nologies motivate software engineers to apply recommendation sys-
tems in software development. Recommender systems in software
engineering have been applied to improve software quality and to
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address the challenges of the development process [22]. For instance,
Murakami et al. [19] proposed a technique that uses user editing
activities detecting code relevant to existing methods. Danylenko
and Lowe provided a context-aware recommender system to auto-
mate a decision-making process for determining the efficiency of
non-functional requirements [8].

As discussed briefly earlier, many types of information are avail-
able for implementing test case prioritization techniques. In this
research, we collected over 2,000 user sessions from three different
web applications and gathered the change history of each applica-
tion. Our research seeks to apply item-based collaborative filtering
algorithms to generate a recommendation list for test prioritization.
To our knowledge, our recommender system-based prioritization
technique is novel and has not yet been explored in regression test-
ing.

8 CONCLUSIONS AND FUTURE WORK
In this research, we proposed a new recommender system to improve
the effectiveness of test case prioritization. Our recommender system
uses three datasets (code coverage, change history, and user sessions)
to produce a list of the riskiest components of a system for regression
testing. We applied our recommender system using two open source
applications and one industrial application to investigate whether
our approach can be effective compared to four different control
techniques. The results of our study indicate that our recommender
system can improve test case prioritization; also, the performance
of our approach was particularly noteworthy when we had a limited
time budget.

In future research, we plan to investigate other approaches to
address a sparsity problem of our recommender system by applying
an associative retrieval framework and related spreading activation
algorithms to track user transitive interactions through their previous
interactions. To address the “New Item Problem,” we plan to apply
knowledge-based techniques such as case-based reasoning.
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