
ar
X

iv
:1

80
4.

04
02

1v
1

 [
cs

.M
S]

 1
0

A
pr

 2
01

8

�e Generalized Matrix Chain Algorithm

Henrik Barthels
AICES

RWTH Aachen University
Schinkelstr. 2

Aachen, NRW 52062, Germany
barthels@aices.rwth-aachen.de

Marcin Copik
AICES

RWTH Aachen University
Schinkelstr. 2

Aachen, NRW 52062, Germany
mcopik@gmail.com

Paolo Bientinesi
AICES

RWTH Aachen University
Schinkelstr. 2

Aachen, NRW 52062, Germany
pauldj@aices.rwth-aachen.de

Abstract

In this paper, we present a generalized version of the matrix
chain algorithm to generate efficient code for linear algebra
problems, a task for which human experts o�en invest days
or even weeks of works. �e standard matrix chain problem
consists in finding the parenthesization of a matrix product
M := A1A2 · · ·An that minimizes the number of scalar op-
erations. In practical applications, however, one frequently
encounters more complicated expressions, involving trans-
position, inversion, and matrix properties. Indeed, the com-
putation of such expressions relies on a set of computational
kernels that offer functionality well beyond the simple ma-
trix product. �e challenge then shi�s from finding an opti-
mal parenthesization to finding an optimal mapping of the
input expression to the available kernels. Furthermore, it
is o�en the case that a solution based on the minimization
of scalar operations does not result in the optimal solution
in terms of execution time. In our experiments, the gener-
ated code outperforms other libraries and languages on av-
erage by a factor of about 9. �e motivation for this work
comes from the fact that—despite great advances in the de-
velopment of compilers—the task of mapping linear algebra
problems to optimized kernels is still to be done manually.
In order to relieve the user from this complex task, new
techniques for the compilation of linear algebra expressions
have to be developed.

CCS Concepts •Computing methodologies → Linear

algebra algorithms; •So�ware and its engineering →

Compilers; Domain specific languages; •Mathematics

of computing→ Mathematical so�ware;

Keywords matrix chain problem, linear algebra, compiler

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for com-

ponents of this work owned by others than the author(s) must be honored.

Abstracting with credit is permi�ed. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CGO’18, Vienna, Austria

© 2018 Copyright held by the owner/author(s). Publication rights licensed

to ACM. 978-1-4503-5617-6/18/02. . . $15.00

DOI: 10.1145/3168804

ACM Reference format:

Henrik Barthels, Marcin Copik, and Paolo Bientinesi. 2018. �e

GeneralizedMatrixChain Algorithm. In Proceedings of 2018 IEEE/ACM

International Symposium on Code Generation and Optimization, Vi-

enna, Austria, February 24–28, 2018 (CGO’18), 11 pages.

DOI: 10.1145/3168804

1 Introduction

Although the evolution of languages and compilers in the
last 60 years is nothing short of remarkable, when it comes
to linear algebra computations, the efficiency levels achieved
by experts are still unmatched. Popular systems such asMat-
lab [2] and Julia [6] allow to directly express matrix expres-
sion, which are however evaluated according to general and
simple rules, usually resulting in slow execution. To achieve
optimal performance, it is necessary to manually map the
expressions to optimized routines for basic linear algebra op-
erations, for example as provided by libraries such as BLAS
[16, 17, 30] and LAPACK [4]. To automate this task, the lin-
ear algebra compiler Linnea is developed [5].
With Linnea, the objective is twofold: On the one hand,

the goal is to generate programs that come close to the effi-
ciency achieved by human experts; on the other hand, the
goal is also to achive a generation time that is only a frac-
tion of what a human would need, and without requiring
the user to possess expertise in linear algebra or high-per-
formance computing. As input, Linnea takes expressions
as described by the grammar shown in Fig. 1, in combina-
tion with a description of the operands and their properties,
as shown in Fig. 2. In this paper, we are concerned with
expressions consisting of products of matrices and vectors;
we also allow each of the operands to carry properties, and
to be transposed and/or inverted. As examples, consider
X := ABTC and x := A−1By, where A,B,C,X are matrices,
and x andy are vectors; to be computed efficiently, these ex-
pressions have to be mapped onto a set K of computational
kernels1 (e.g.: C:=A*B, C:= A-1*B, B:= A-1, . . .). Further-
more, themapping has to minimize a user-selected cost met-
ric (such as number of flops or execution time). �e output
is then a sequence of kernel calls that computes the original
expression.
We refer to this problem as the Generalized Matrix Chain

Problem (GMCP); the classic Matrix Chain Problem (MCP)

1�e terminology is explained in Sec. 1.1.

1

http://arxiv.org/abs/1804.04021v1

CGO’18, February 24–28, 2018, Vienna, Austria Henrik Barthels, Marcin Copik, and Paolo Bientinesi

assignments → assignment+

assignment → symbol := expr

expr → symbol | expr + expr | expr · expr |

expr−1 | exprT | expr−T

Figure 1. Linnea grammar describing the definition of ex-
pressions.

covers the specific instances of GMCP in which the input ex-
pression only consists of products (without additional oper-
ators such as transposition and inversion), K contains only
the kernel C:=A*B, and none of the matrices have a special
structure or properties [13]. �us, MCP only consists in
finding an optimal parenthesization. �e number of float-
ing point operations (FLOPs) is used as a cost metric.2 �e
applicability of the original algorithm, while well suited to
study dynamic programming algorithms, is fairly limited.
Having analyzed dozens of linear algebra algorithms, we
observed that long matrix chains occur only rarely. On the
other hand, expressions involving the product of up to about
ten matrices, where some of them are transposed and/or in-
verted, are much more common. �ese more complicated
matrix chains occur as part of linear algebra problems in
many different fields. For example, L−122L21L

−1
11L10 is part of

a blocked algorithm for the inversion of a triangular matrix
[7]. �e chains Xb

i Si (Y
b
i)

TR−1
i is encountered in the ensem-

ble Kalman filter [43]. In an algorithm to reduce matrices to
tridiagonal form, τvτvvv

TAuuT appears [11]. Blocked algo-
rithms for the simultaneous solution of two linear systems,
A := L−1AL−H contain multiple chains of length 3 [37]. Fur-
ther examples include the fields of computer vision [9], opti-
mization [49], information theory [3, 25], signal processing
[15, 34, 42], regularization [36] and the simulation of power
grids [44].
With GMCP, the challenge shi�s fromfinding the optimal

parenthesization to finding an optimal mapping to kernels.
�e standard algorithm operates on numbers that represent
the chain. To solve GMCP, one has to work on symbolic
expressions, rely on pa�ern matching and on the inference
of properties. In general, the solution to GMCP depends on
the available kernels. For the purpose of this paper, we as-
sume that the kernels in K offer the functionality necessary
to guarantee that every input chain is computable. In prac-
tice, the de-facto standard linear algebra libraries BLAS and
LAPACK offer such functionality, with kernels for matrix-
matrix products and solve linear systems, with optionally
transposed operands.
In typical chains, matrices o�en have properties and struc-

ture. �is information is relevant when trying to find the
optimal way to compute an expression; specialized, usually
more efficient kernels can be used. �is is true for matrix

2�ecost of a productAB, withA ∈ Rn×k and B ∈ Rk×m , is 2mnk FLOPs.

products, but even more so for operations involving matrix
inversion. In Sec. 3.2 we explain that in order to fully take
advantage of properties and structure, not only must the
GMC algorithm select kernels based on this knowledge, it
also needs to propagate and infer knowledge along with in-
termediate results.
�e MC algorithm finds the parenthesization that mini-

mizes the FLOP count. In practice, the number of FLOPs
is not always an accurate metric to assess the performance
of linear algebra operations. More accurate results can be
achieved by taking the “efficiency” of the kernels into ac-
count.3 For this reason, our GMC algorithm allows to spec-
ify an arbitrary cost metric, including vector measures, ac-
cording to which the optimal solution is chosen.
In this paper, we describe GMCP, and present an algo-

rithm—the Generalized Matrix Chain (GMC) algorithm—to
solve it.

Organization of the paper �e remainder of this section
contains an overview of the terminology related to GMCP,
as well as a discussion of previous works. �e standard dy-
namic programming matrix chain algorithm is summarized
in Sec 2. Our GMC algorithm is presented in Sec. 3, and eval-
uated in Sec. 4. Finally, in Sec. 5 we discuss opportunities for
future work.

1.1 Terminology

Chain and Expression A valid input to the GMCP—a
“matrix chain” or simply “chain”—is a productM :=
f0 · · · fn−1 where fi is a matrix or a vector that can
be transposed and/or inverted. We use M[i j] to de-
note the product fi · · · fj , which we call “sub-chain”
or simply “expression”. If i = j , the chain consists
of one single matrix and is denoted by M[i]. Notice
that the grammar in Fig. 1 does not imply the correct-
ness of expression, i.e. it does not guarantee that the
dimensions of all operands match.

In this paper, we require the input to be a well-
formedmatrix chain of length two or higher. Vectors
are considered to be matrices of size n × 1 or 1 × n.
Since scalars commute with matrices, we do not fur-
ther consider them.

Property In addition to the specification shown in Fig. 1,
we allow each symbol (i.e. each matrix) to be anno-
tated with one or more properties. �e grammar for
the definition of the operands, including properties,
is shown in Fig. 2. Frequently encountered proper-
ties are: lower and upper triangular, symmetric, di-
agonal, and symmetric positive-definite (SPD).

Kernel A kernel is an optimized routine for computing
the solution of a well defined linear algebra problem,

3It is o�en believed that the minimum execution time of an algorithm

is a�ained by minimizing the number of floating point operations per-

formed. �is is not true, as not all flops cost the same (they are not equally

“efficient”.

2

The Generalized Matrix Chain Algorithm CGO’18, February 24–28, 2018, Vienna, Austria

definitions → definition+

definition → Matrix name size 〈property∗〉

size → (rows, columns)

property → LowerTriangular | Diagonal | . . .

Figure 2. Grammar describing the definition of operands.

e.g. C:=A*B, C:= A-1*B, as provided by libraries such
as BLAS.�roughout this paper, we assume that there
exists a set of specialized kernels that can take advan-
tage of matrix properties.4

Solution A solution for the GMCP consists of a paren-
thesization of the input chain, in conjunction with a
mapping of expressions to kernels.

Cost function �is is a function to quantify the qual-
ity of a solution to the GMCP. Commonly used met-
rics are the total number of FLOPs, and the number
of FLOPs per second, called performance.5 cost(M)

is used to denote the cost of computing the chainM.
�e solution that minimizes this cost function is the
optimal solution.

1.2 Related Work

�ematrix chain problem is subject to a lot of research. �e
classic algorithm to solve MCP uses dynamic programming
and has O(n3) complexity, where n is the length of the chain
[13]. �e best known algorithm, by Hu and Shing, exploits
the equivalence betweenMCP and the triangulation of poly-
gons to achieve O(n log(n)) complexity [26, 27]. A num-
ber of approaches take parallelism into account, some us-
ing multiple processors to reduce the time needed to find
the solution (which will be evaluated on a sequential sys-
tem) [8, 41, 50], while others find an ordering that is opti-
mal when the matrix chain is evaluated on a parallel system
[31]. Nishida et al. present a version for GPUs [35]. Addi-
tionally, both sequential [10] and parallel [14] algorithms ex-
ist that find approximate solutions. All the aforementioned
algorithms deal with the basic problem of multiplying ma-
trices that are neither transposed nor inverted.
High-level languages such as Matlab allow to directly ex-

press instances of GMCP, without explicit parenthesization,
and link to highly optimized kernels. However, they put lit-
tle to no effort into mapping the mathematical problem to

4As an example, consider the BLAS kernels GEMM, TRMM and SYMM,

which all compute the product of two matrices. GEMM computes a general

matrix-matrix product, while TRMM and SYMM require one operand to be

triangular and symmetric, respectively. Compared to GEMM, TRMM and

SYMM perform half of the scalar operations.
5�is use of performance is, admi�edly, a somewhat unfortunate choice of

terminology adopted in the HPC community.

said kernels in a way that results in a highly efficient eval-
uation. By constrast, expressions are typically evaluated ac-
cording to simple rules. For example, if the inverse opera-
tor is used in Matlab, then an inverse is computed explicitly,
even though the mathematically equivalent solution of solv-
ing a linear system is faster and numerically more stable;
indeed, it is up to the user to rewrite the inverse in terms
of the slash (/) or backslash (\) operators, to “enable” the
linear systems. Furthermore, in Matlab products are always
evaluated from le� to right [2]. Matrix properties are con-
sidered by inspecting matrix elements at runtime. Although
not documented, Mathematica applies the same strategy to
evaluate expressions,6 including the choice between explicit
inversion and solution of a linear system. Recently, the Ju-
lia project [6] set out to design a language that natively in-
tegrates tools for scientific computing, including linear al-
gebra; while high-level expressions are accepted, they are
evaluated just as in Matlab. Julia uses types to represent a
small set of basic properties and uses multiple dispatch to
select appropriate kernels.
An alternative approach consists in the use of (smart) ex-

pression templates in C++, as employed by libraries such as
Blaze [28], Blitz++ [51], and Eigen [24]. �e main idea is to
improve performance by eliminating temporary operands
and provide a domain-specific language integrated within
C++. However, similar to high-level languages, expressions
are evaluated according to very simple rules. To some ex-
tent, the C++ library Armadillo is an exception [45]: It uses
a simple algorithm which is not guaranteed to find the best
solution to the MCP (the algorithm is discussed in detail in
Sec. 4). Moreover, the choice regarding the treatment of the
inverse operator is again le� to the user. Similar to Julia,
matrix properties are represented by types.
Recognizing that BLAS is not optimal across the full spec-

trum of operations and problem sizes, some compilers such
as Build to Order (BTO) [46] and LGen [47, 48] aim at gen-
erating directly code, without relying on standard building
blocks. BTO specializes in bandwidth-bound operations (BLAS
1 and 2), while LGen focuses on small-scale problems for
which BLAS usually performs poorly. Finally, one could ap-
proach the problem by systematically partitioning the input
matrices, thus originating problems that fit exactly in a tar-
get cache level [18, 19].
In principle, GMCP (and thus also MCP) can be solved by

means of a search-based approach, as the one adopted in the
linear algebra compiler presented in [20, 21] (CLAK), which
exclusively relies on pa�ern matching. �is approach has
two drawbacks: �e type of pa�ern matching that CLAK
uses is expensive, and due to the search-based nature, the
number of explored solutions is exponential in the length

6�is can be easily tested by comparing the time necessary to evaluate

M0 · · ·Mk−1x and yM0 · · ·Mk−1 , with Mi ∈ Rn×n , x ∈ Rn×1 and y ∈

R
1×n .

3

CGO’18, February 24–28, 2018, Vienna, Austria Henrik Barthels, Marcin Copik, and Paolo Bientinesi

of the chain, even for the standard matrix chain problem
[13].

2 �e Standard Matrix Chain Algorithm

MCP can be elegantly solved with a dynamic programming
approach, both in a top-down and a bo�om-up fashion [13].
Here, we briefly explain the bo�om-up version, as it is the
foundation for the algorithm presented in this paper.
Consider the chain X := ABCDE as an example. �e algo-

rithm proceeds by finding the optimal parenthesization for
parts of this chain of increasing length, using the optimal so-
lutions for sub-chains. Let us assume the algorithm already
computed all solutions for sub-chains of length up to three.
�e next step consists of computing solutions for sub-chains
of length four. M[0,4] = ABCDE has two such sub-chains,
M[0,3] = ABCD and M[1,4] = BCDE. Let us illustrate the
step for ABCD: �ere are three different ways to write this
chain as a product of two shorter chains, or, to put it differ-
ently, three ways to splitM[0,3] intoM[0,k]M[k+1,3], namely
for k ∈ {0, 1, 2}: A(BCD), (AB)(CD) and (ABC)D. �e algo-
rithm assigns a cost to all those products, and stores the best
solution together with its cost. �e cost for A(BCD) is the
cost of computingM[0,0] = A, plus the cost ofM[1,3] = BCD,
plus the cost of the product of A and the result of BCD. �e
cost of M[0,0] is known to be zero, and cost(M[1,3]) was al-
ready computed in a previous step because the length of
M[1,3] is three. �e same is done for (AB)(CD), (ABC)D, as
well as all possible ways to splitM[1,4]. At this point, the al-
gorithm uses all the results from the previous steps to find
the best way to express ABCDE as a product of two shorter
parts.
�e algorithm is shown in Fig. 3. �e following arrays are

used, where solution and costs have size n × n, sizes is
of size n + 1:

solution �e entry solution[i][j] stores the integer
k which specifies the optimal split for M[i, j]. �is
array has the exact same role as the s array in [13].

costs �e value of costs[i][j] is the minimal cost for
the computation of the sub-chainM[i, j]. �e entries
costs[i][i] are initialized to 0, while all other fields
are initialized with ∞. �is array has exactly the
same role as the m array in [13].

sizes �is array contains the operand sizes. sizes[0]
contains the number of rows of M[0]. For i > 0,
sizes[i] stores the number of columns ofM[i−1].

3 �e GMC Algorithm

3.1 Unary Operators

In its standard version, thematrix chain algorithmonlyworks
with binary, non-commutative operators. To extend it to
unary operators, we observe that compositions of binary
and unary operators on two operands can still be seen as
(an extended set of) binary operators. In fact, as long as

for l ∈ {1, . . . ,n − 1}:

for i ∈ {0, . . . ,n − l − 1}:

j := i + l

for k ∈ {i, . . . , j − 1}:

c := 2∗sizes[i]∗sizes[k + 1]∗sizes[j + 1]

cost := costs[i][k] + costs[k + 1][j] + c

if cost < costs[i][j]:

costs[i][j] := cost

solution[i][j] := k

Figure 3. �e matrix chain algorithm.

1 for l ∈ {1, . . . ,n − 1}:

2 for i ∈ {0, . . . ,n − l − 1}:

3 j := i + l

4 for k ∈ {i, . . . , j − 1}:

5 expr := tmps[i][k] × tmps[k + 1][j]

6 kernel := match(expr)

7 cost := costs[i][k] + costs[k + 1][j] + kernel.cost

8 if cost < costs[i][j]:

9 tmps[i][j] := create tmp(expr)

10 tmps[i][j].properties := infer properties(expr)

11 kernels[i][j] := kernel

12 costs[i][j] := cost

13 solution[i][j] := k

Figure 4. �e GMC algorithm.

it is possible to assign a cost to those compositions of op-
erations, the dynamic programming approach remains ap-
plicable. �e algorithm, however, becomes more complex
because in addition to the parenthesisation, it also has to
identify which kernels can be applied and when. To solve
this problem, the GMC algorithmworks on symbolic expres-
sions, which are represented as expression trees. Operands
have a name, a size and a set of properties (see Sec. 3.2). In-
stead of the one-dimensional array sizes, we now use the
n ×n array tmps, which is used to store store symbolic tem-
porary variables representing sub-chains. In the following,
consider the chain M = A−1BCT as an example. tmps[i][j]
contains the temporary that represents M[i, j]. �e entry
tmps[i][i] is initialized with a symbolic representation of the
matrixM[i]. For example tmps[0][0] is A−1. When the algo-
rithm terminates, tmps[1][2] contains a temporary T12 that
represents BCT . �e symbols representing those operands
are used to create the expressions that have to be computed.
For i = j = 0, k = 2, expr is the expression tmps[0][0] ×

4

The Generalized Matrix Chain Algorithm CGO’18, February 24–28, 2018, Vienna, Austria

Table 1. Examples of pa�erns for BLAS kernels.

Name Pa�ern Constraints Cost

GEMM XY - 2mnk

TRMM XY is lower triangular(X) m2n

SYMM XY is symmetric(X) m2n

TRSM X−1Y is lower triangular(X) m2n

SYRK XTX - m2k

tmps[1][2] = A−1T12 , which corresponds to the parenthe-
sizationA−1(BCT). New temporaries are created by the func-
tion create tmp (line 9), which creates an operand with a
unique name and correct sizes.
To select a suitable kernel, our algorithm relies on pat-

tern matching as offered by MatchPy [29], a Python library
that implements discrimination nets, data structures for ef-
ficient syntactic many-to-one pa�ern matching [12, 23, 33].
In many-to-one pa�ern matching, a set of pa�erns and one
expression are given, and it is tested whether or not any of
those pa�erns matches the expression. In our case, the set
of pa�erns is the set of kernelsK . Some examples are shown
in Table 1. In the next section, we discuss the case in which
more than one kernel matches the target expression. In the
pseudocode in Fig. 4, pa�ern matching appears in line 6.
To store the solution, in addition to the solutionsarray—

which contains the information on the parenthesization—it
is necessary to also keep track of the kernel used for the op-
eration. In the MC algorithm, this is not necessary because
the kernel is always the same. For this purpose, we intro-
duce the n × n kernels array, whose entry kernels[i][j]

contains the kernel that is used to compute the temporary
tmps[i][j]. In the end, the kernels are used to generate the
code (see Sec. 3.5). To simplify the discussion, here we only
consider direct solvers for linear systems, using matrix fac-
torizations if necessary. While the GMC algorithm can also
be applied to sparse linear algebra and iterative solvers, the
kernel selection becomes even more challenging [32].

3.2 Properties

Many linear algebra operations can be sped up by taking
advantage of the properties of the involved matrices. As a
most basic example, the multiplication of a lower triangular
matrices with a full matrix requires m2n scalar operations,
as opposed to 2m2n operations for the multiplication of two
full matrices of the same sizes; likewise, a linear system
A−1B where A is symmetric positive definite can be solved
faster than a systemwhereA does not have any special prop-
erties.
Many properties are not mutually exclusive. As an exam-

ple, a matrix can be banded and symmetric at the same time.
�us, it is possible that the same expression can be com-
puted by multiple kernels. Whenever more than one kernel
matches (match function, line 6), the algorithm selects the

ABT

A BT

B

Figure 5. Example for the propagation of properties inABT

where A is lower and B is upper triangular.

kernel that minimizes the cost function (cost functions are
discussed in the next section).
To fully take advantage of properties, it is certainly impor-

tant to select the best matching kernel, but it is even more
critical to keep track of how structure and properties prop-
agate throughout the intermediate results, as different ker-
nels are applied. Take the productABT as an example. If it is
possible to assert that B is upper triangular, BT is known to
be lower triangular. Furthermore, the product of two lower
triangular matrices is still lower triangular. �us, if A is
lower triangular, the entire expression ABT has this prop-
erty. Note that this property is independent of how ABT is
computed, and it can be inferred without actually comput-
ing the result, solely by inspecting the symbolic expression.
�is knowledge about properties can naturally be repre-

sented by inference rules, as for example

LoTri(A) ∧ LoTri(B) → LoTri(AB),

LoTri(A) ∧ Diag(B) → LoTri(AB),

LoTri(A) → UppTri
(

AT
)

.

In theGMC algorithm, the function infer properties (line
10) is responsible for the inference of properties. Intuitively,
matrix properties are propagated from the bo�om to the top
of the expression tree. An example is shown in Fig. 5. �is
is done by recursively traversing the symbolic expression
tree expr. In practice, this is implemented as a set of func-
tions, with a dedicated function for each property. A part of
the function is lower triangular is shown in Fig. 6.
Some languages, for example Matlab, do not infer proper-

ties symbolically but test for them by inspecting all entries
of a matrix. �e symbolic inference of properties has addi-
tional advantages over this approach: �e cost is indepen-
dent of the matrix size. Furthermore, some properties might
bemasked by numerical inaccuracies, which can have a con-
siderable impact on subsequent computations: A general-
ized eigenproblem Ax = λBx is typically solved via a reduc-
tion to a standard eigenproblem A′y = λy; this is done by
computing the expression A′ := L−1AL−T , where L is lower
triangular and A is symmetric; in floating point arithmetic,

5

CGO’18, February 24–28, 2018, Vienna, Austria Henrik Barthels, Marcin Copik, and Paolo Bientinesi

def is lower triangular(expr):

if expr is Times:

return ∀child ∈ expr.children :

is lower triangular(child)

if expr is Transpose:

return is upper triangular(expr.child)

if expr isMatrix:

if LowerTriangular in expr.properties:

return True

else:

return False

…

Figure 6. Pseudocode implementation of the function
is lower triangular.

if A′ is computed by solving two linear systems, symmetry
is lost; thus, when computing the eigenvalues of A′, one
can only use a non-symmetric eigensolver, which is about
three times more expensive than a symmetric one [22], and
worse yet, will deliver complex eigenvalues (with a very
small imaginary part), doubling the amount of output data.
Let us consider the matrix chain X := ATAB as an ex-

ample, where A ∈ Rn×n and B ∈ Rn×m are dense matrices
with n = 20 andm = 15, using the FLOP count as a metric.
�e first possible solution is to compute X via two general
matrix-matrix products:

W := AB,

X := ATW .

In this case,W is of size n×m and has no special properties.
Both products require 2n2k = 12000 FLOPs; the overall cost
of this solution is 24000 FLOPs. �e alternative solution re-
sults in an intermediate W ∈ Rn×n that is symmetric and
positive definite:

W := ATA,

X :=WB.

If ATA is computed as a general matrix-matrix product, the
cost is 2n3 = 16000 FLOPs. Disregarding that W is sym-
metric and computingWB as another general matrix-matrix
product, we get 2n2k = 12000 additional FLOPs. By taking
advantage of the property instead, one computes this prod-
uct with half the number of FLOPs (n2k = 6000). Hence, the
solution obtained by using a specialized kernel has a cost
of 22000 FLOPs, compared to 28000 FLOPs. �is example
shows that properties not only lead to be�er solutions, but
also to solutions that might differ in the parenthesization.
Note: instead of computingATA as a general matrix-matrix
product, it is also possible to use the specialized SYRK ker-
nel, performing half the number of FLOPs.

3.3 Cost Functions

It is well understood that properties such as temporal and
spacial locality impact the execution time of an algorithm
as much as, or even more than the number of FLOPs [16].
In fact, two solutions that are identical in terms of FLOPs
might have very different actual execution times; it might
even be the case that the faster algorithm performs signif-
icantly more FLOPs than the slower one. One such exam-
ple is the reduction of a symmetric matrix to tridiagonal
form [22]. As a second example, consider the matrix chain
ABCDE with matrix sizes (from le� to right) 130, 700, 383,
1340, 193 and 900. �e parenthesization that results in the
smallest number of FLOPs is (((AB)C)D)E with 3.16 × 108

FLOPs. �e parenthesization that results in the shortest ex-
ecution time is ((AB)(CD))E, even though the number of
FLOPs is slightly higher with 3.32 × 108. With an execu-
tion time of 7.6 milliseconds, the first parenthesization is
about 10% slower than the second parenthesization, which
takes 6.8 milliseconds.7 �at said, the FLOP count is still
the most commonly used metric in practice; this is certainly
because of its simplicity, but also because the performance
modeling and prediction of linear algebra kernels remains a
challenging, largely unsolved problem [38].
We want the GMC algorithm to use an arbitrary metric.

To take into account the different operations, a cost function
has to be provided that is defined for the different kernels.
Once a kernel is identified, the function is used to determine
its cost. �is is done based on the sizes of the operands and
their properties.
A more accurate metric than the FLOP count is the per-

formance (in FLOPs/sec); if the execution time of the matrix
chain algorithm is of no concern (Note: this is the time it
takes to find the optimal mapping, and not the execution
time of the resulting algorithm), realmeasurements could be
used, for example using performancemodeling tools such as
ELAPS [40]. However, these approaches are still not able to
accurately predict the performance of an entire chain. In
fact, performance is not composable, which means that the
combination of the performance of two kernels executed
separately will not be the same as the performance of the
same kernels executed back to back [39]. One of the rea-
sons for this is the state of the cache. Despite this hurdle,
performance is still a be�er approximation than the num-
ber of FLOPs.
A cost function can also take into account accuracy: �e

explicit inversion of matrices should be avoided if it is pos-
sible to solve a linear system instead, both for performance
and stability reasons. Since explicit inversion is more ex-
pensive, using a cost metric based on performance automat-
ically leads to a solution that favors the solution of linear
systems.

7�e presented times are the minimum out of 100 repetitions, using BLAS

wrappers in Julia 0.6.1 on an Intel Core i5 with 2,7 GHz.

6

The Generalized Matrix Chain Algorithm CGO’18, February 24–28, 2018, Vienna, Austria

3.4 Complexity and Completeness

�e functions used in the GMC algorithm and their com-
plexity are described below. For considerations regarding
the time complexity, it is important to note that the size of
the expression tree representing expr is limited. �e most
complex expressions have the form f1(A) · f2(B), with f be-
ing the transposition, inversion, or the combination of both,
and operands A and B. �us, those trees have at most five
nodes and three levels. �e same is true for the size of the
pa�erns, as kernels that computemore complex expressions
than f1(A) · f2(B) are not applicable.

match �e complexity of syntactic pa�ern matching
with discrimination nets does not depend on the num-
ber of pa�erns and is bounded by the size of the pat-
terns, which in our case is constant. It follows that
the complexity of pa�ern matching is O(1).

create tmp �is function creates a symbolic temporary
matrix that represents the result of computingM[i, j].

For example, for an outer product abT , with a ∈ Rn

and b ∈ Rm , a temporary matrix T ∈ Rn×m will
be created. �is function creates a symbolic object
with a unique name and correct sizes. �e size is de-
termined by traversing the expression tree, that is
bounded in its size by a constant, so this function is
in O(1).

infer properties Since the size of the expression trees
is limited by a small constant, this function has a
complexity of O(p), where p is the number of prop-
erties. �ose functions are then also used for the
constraints of the pa�erns that represent kernels (Ta-
ble 1).

�e loop body is executed O(n3) times, where n is the
length of the matrix chain (see [13]). �us, the complexity
of the entire algorithm is O(n3 + n3p). �is could be further
reduced to O(n3 + n2p) by inferring properties outside of
the k loop only for the temporary that might be used in the
solution.

Completeness We stress that the GMC algorithm might
deliver a solution even if one or more sub-chains are not
computable because no suitable kernel is found. Let us as-
sume we are given the matrix chain X := A−1B−1C , and
there is no kernel that computesX−1Y−1, so A−1B−1 can not
be computed. In this case, find sequence would return ∞

as the cost of A−1B−1. However, this chain can still be com-
puted by solving two linear systems:

T := B−1C

X := A−1T .

In general, the GMC algorithm will find a solution if there
is at least one parenthesization such that all exposed binary
operations can be computed.

def construct solution(i, j):

if i , j:

yield from construct solution(i, solution[i][j])

yield from construct solution(solution[i][j]+1, j)

yield kernels[i][j]

Figure 7. Function to construct the solution. yield and
yield from behave as the corresponding Python keywords.

3.5 Code Generation

Retrieving the sequence of kernels that was identified as
the optimal solution is done by calling construct solu-

tion(0,n − 1), where n is the length of the chain. �e func-
tion construct solution is show in Fig. 2. �e kernels are
returned in an order that respects dependencies. However,
in some cases, kernel calls can be reordered. �is is for ex-
ample the case for the chain (AB)(CD), where AB and CD

can be computed independently. Since performance is not
composable, different orders likely result in different perfor-
mance; the prediction of the best ordering is again a difficult
task and it could be added as a final optimization.

4 Results

To evaluate the quality of the algorithms generated by the
GMC algorithm,we compare against Julia8, Matlab9, Eigen10,
Blaze11 and Armadillo12. We link against the Intel MKL im-
plementation of BLAS and LAPACK (MKL 2017 update 3)
[1], with the exception of Matlab, which instead uses LA-
PACK 3.5.0 and MKL 11.3.1. �e GMC algorithm generates
Julia code that uses BLAS and LAPACK wrappers. As a cost
metric, FLOPs are used. When possible, we consider two dif-
ferent implementations for each library and language: naive
and recommended. �e naive implementation is the one
that comes closest to the mathematical description of the
problem. As an example, in Julia A−1B is implemented as
inv(A)*B. However, since the documentations almost al-
ways discourage this use of the inverse operator, we also
consider a so called recommended implementation, which
uses dedicated functions to solve linear systems (A\B).
In the following, we describe the different implementa-

tions. As examples, in Table 2 we provide the implementa-
tions ofA−1BCT where A is symmetric positive definite and
C is lower triangular.

Julia Properties are expressed via types. �e naive im-
plementation uses inv(), while the recommended
one uses the / and \ operators.

8Development version of Julia 0.7 from September 4, 2017.
9Version 2017a.
10Version 3.3.4.
11Development version of Blaze 3.3 from September 4, 2017.
12Version 7.960.2.

7

CGO’18, February 24–28, 2018, Vienna, Austria Henrik Barthels, Marcin Copik, and Paolo Bientinesi

Table 2. Implementations of A−1BCT .

Name Implementation

GMC trmm!(’R’, ’L’, ’T’, ’N’, 1.0, C,

B) posv!(’L’, A, B)

Jl n inv(A)*B*C’

Jl r (A\B)*C’
Arma n arma::inv sympd(A)*B*(C).t()

Arma r arma::solve(A, B)*C.t()

Eig n A.inverse()*B*C.transpose()

Eig r A.llt().solve(B)*C.transpose()

Bl n blaze::inv(A)*B*blaze::trans(C)

Mat n inv(A)*B*C’

Mat r (A\B)*C’

Matlab �e naive implementation uses inv(), the rec-
ommended the / and \ operators.

Eigen �e recommended implementation uses the rec-
ommended linear systems solvers based on the ma-
trix properties, as well as views to describe proper-
ties.

Armadillo In the naive implementation, specialized
functions are used for the inversion of SPD and diag-
onalmatrices. For solve, we use the solve opts::fast

option to disable an expensive refinement. In addi-
tion, trimatu and trimatl are used for triangular
matrices.

Blaze Since Blaze does not offer functions to solve lin-
ear systems, there is no recommended implementa-
tion. Properties are specified by adaptors.

�e example problems are generated randomly, to include
a mix of square and rectangular matrices as well as vectors.
�e length of the chains is chosen uniformly in the range
[3, 10]. Matrices can be transposed and/or inverted, andmay
have one of the following properties: Diagonal, lower trian-
gular, upper triangular, symmetric, symmetric positive def-
inite. Matrix sizes are chosen uniformly from between 50
and 2000 in steps of 50. For the experiments, we use 100
chains. �e measurements were taken on an Intel Xeon E5-
2680 v3 with 2.5 GHz and 64 GB RAM. All experiments were
repeated 20 times; and the average is reported.
�eGMC algorithm takes on average 0.03s to generate so-

lutions, and in all cases less than 0.07s. �us, it would even
be possible to use the GMC algorithm in an interactive envi-
ronment. Notice that the generation time does not depend
on matrix sizes.
�e average speedup of theGMC-generated code over the

other libraries and languages is between 6 and 15, as shown
in Fig. 8. One can observe that the execution times of Julia,
Armadillo and Blaze are comparable. �e naive implemen-
tations in Eigen and Matlab are noticeably slower. As ex-
pected, the recommended implementations perform be�er
than the corresponding naive implementations. In general,

Jl n
Jl r

A
rm
a
n

A
rm
a
r

Eig
n
Eig

r
Bl n

M
at n

M
at r

0

5

10

15

1

sp
ee
d
u
p
o
f
G
M
C

Figure 8. Average speedup of the GMC-generated code
over other libraries and languages.

Armadillo emerges as the second fastest solution. �is is
likely becauseArmadillo, unlike all the other systems, uses a
heuristic to finde be�er solutions for the matrix chain prob-
lem.

Matrix Chains inArmadillo Asmention before, Armadil-
lo is the only system that considers the matrix chain prob-
lem to some extent, using a simplified algorithm to solve it.
For a chain ABCD, (ABC)D is chosen if ABC is smaller in
size than BCD. Otherwise, A(BCD) is used. Similarly, for a
chain ABC , either (AB)C or A(BC) is chosen, depending on
the sizes ofAB and BC . Chainswith more than fourmatrices
are broken down into chains of length n ≤ 4. �is happens
in a deterministic way that depends on how expression tem-
plates are constructed in Armadillo. Using this method, not
all parenthesizations can be found; (AB)(CD) is not possible.
However, parenthesizations found by this algorithm have
the advantage that they have good caching behavior: Every
binary product uses the result of the previous one. As an
example, consider A((BC)D), which results in the following
sequence of kernels:

T1 := BC

T2 := T1D

T3 := AT2

�e execution times of all experiments are shown in Fig. 9.
�e average multiplication time of the GMC solutions is
0.13s, ranging from 0.0002s to 0.9s. For 86% of the test cases,
the code generated by the GMC algorithm is the fastest. In
those caseswhen theGMC implementation is not the fastest,
it is never more than a factor of 1.66 worse than the best
solution. In only 4% of the test cases, other solutions are
more than 1.1 times faster than the generated code. In at
least 10% of the test cases (from a minimum of 10% for Ar-
madillo recommended to 25% for Eigen naive), the other im-
plementations are more than 10 times slower than the GMC

8

The Generalized Matrix Chain Algorithm CGO’18, February 24–28, 2018, Vienna, Austria

10−3

10−2

10−1

100

Test problems

E
x
ec
u
ti
o
n
ti
m
e
[s
]

GMC Jl n Jl r Arma n Arma r

Eig n Eig r Bl n Mat n Mat r

Figure 9. Execution times of all test problems (sorted by the execution time of the GMC-generated code).

solutions. In the worst case, the naive Eigen and Matlab so-
lutions are about 200 times slower than the best solution.
�e maximal speedup of GMC implementations over other
solutions depends both on the length of the chains and ma-
trix sizes. Since it is possible for the GMC algorithm to find
solutions with lower asymptotic complexity, the speedup
of GMC implementations can potentially become arbitrar-
ily large.
Inspecting the cases where the GMC-generated code is

not the fastest reveals some pa�erns. �ere are multiple
cases with chains of the formM1 · · ·Mn−1Mnv1v

T
2 , wherev1

and v2 are vectors. �e best algorithm (in terms of FLOPs)
for this type of chain is usually to first compute a sequence
of matrix-vector products

t1 := Mnv1

t2 := Mn−1t1

. . .

tn := M1tn−1

and then compute the outer product tnv
T
2 . �is is the solu-

tion that the GMC algorithms finds, but also the one used by
Armadillo, Blaze and Eigen. In Armadillo, this sequence is
found by the heuristic for matrix chains. While Blaze does
not solve the matrix chain problem, products of the form
ABv , wherev is a vector, are computed asA(Bv) [28], result-
ing in the same sequence of kernels. For a chainM1M

−1
2 v1v

T
2 ,

the recommended Eigen implementation performs well be-
cause of the inverse operator: Using the .solve()method
in Eigen to solve the linear system result in the parenthesiza-
tion (M1(M

−1
2 v1))v

T
2 . Measuring the execution time of the

individual kernels reveals that Armadillo, Blaze and Eigen
have an implementation of an outer product that is signif-
icantly faster than the BLAS implementation used in the
GMC implementation.

For all remaining test caseswhere other solutions aremore
than 5% faster than the GMC-generated code, the evalua-
tion from le� to right happens to be optimal (or almost op-
timal) in terms of FLOPs. As a result, all implementations
use the same (or comparable) parenthesizations. �us, in
can be concluded that other implementations outperform
the GMC-generated code because the respective languages
and libraries use faster implementations of some kernels, or
because the GMC-generated code contains some overhead.
�is also means that for the presented test cases, the cost
function is sufficiently accurate to find good solutions.

5 Conclusion and Future Work

In this paper, we introduce a number of extensions to the
standard matrix chain algorithm to generate efficient algo-
rithms and code for classes of problems as they commonly
occur in actual applications. �e extensions include addi-
tional operations like transposition and solution of linear
systems, the use of matrix properties, which are necessary
to take advantage of specialized kernels and a flexible cost
function. Our experimental results provide evidence that
the algorithms generated by the GMC algorithm substan-
tially outperform existing libraries and languages.
In summary, this papermakes the following contributions.

- In theMCP, expressions only consist of products. We
demonstrate how the original algorithm can be ex-
tended to deal withmore complex expressions, which
also involve unary operators, by treating composi-
tions of unary and binary operators as an extended
set of binary operators.

- We discuss the use of properties and the importance
of propagating them to automatically map linear al-
gebra expressions to sequences of specialized kernels
that can take advantage of said properties.

- We provide evidence that the GMC algorithm is a
useful tool for the generation of efficient code for

9

CGO’18, February 24–28, 2018, Vienna, Austria Henrik Barthels, Marcin Copik, and Paolo Bientinesi

practical linear algebra problems. In addition to be-
ing part of a compiler for linear algebra, it could even
be used in interactive environments such as Julia.

For the linear algebra compiler Linnea [5], the GMC algo-
rithm allows to find good solutions while at the same time
keeping the search space relatively small.
�e GMC algorithm can be extended even further in mul-

tiple ways. For the purpose of this paper, we assumed that
a kernel for X := A−1B−1 is provided. In practice, such ker-
nels do not exists. Instead of manually constructing them
from existing BLAS and LAPACK kernels, it would also be
possible to again use Linnea to generate them when neces-
sary, as this is the exact type of problem that Linnea solves.
Of course, in that case one can easily expand the set of op-
erations even further, adding unary operators like complex
conjugation, matrix logarithm or exponentiation and other
non-commutative binary operators.
In general, the metric does not have to be a measure of

the execution time; it can be a measure of numerical accu-
racy, memory consumption, number of bytes moved, or a
combination of multiple objectives. It is also possible to use
a vector for the metric, as long as addition and a total order-
ing is defined on the vector space.

Acknowledgments

Financial support from theDeutsche Forschungsgemeinscha�
(German Research Foundation) through grants GSC 111 and
BI 1533/2-1 is gratefully acknowledged. We thankRyanCurtin
for helpful discussions on how the matrix chain problem is
solved in Armadillo. We thank Sadulla Aghayev and Edil-
bert Christhuraj for providing the example in Sec. 3.3.

References
[1] 2017. Intel®Math Kernel Library documentation.

h�ps://so�ware.intel.com/en-us/mkl-reference-manual-for-c.

(2017).

[2] 2017. Matlab documentation. h�p://www.mathworks.com/help/matlab.

(2017).

[3] Zaid Albataineh and Fathi M. Salem. 2014. A Blind Adaptive CDMA

Receiver Based on State Space Structures. CoRR abs/1408.0196 (2014).

[4] Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford,

Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammar-

ling, AMcKenney, and D Sorensen. 1999. LAPACK Users’ guide. Vol. 9.

SIAM.

[5] Henrik Barthels. 2016. A Compiler for Linear Algebra Opera-

tions. In SPLASH ’16 Companion. ACM, Amsterdam, Netherlands.

h�ps://doi.org/10.1145/2984043.2998539 Student Research Competi-

tion.

[6] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman.

2012. Julia: A Fast Dynamic Language for Technical Computing. (Sep-

tember 2012). arXiv:1209.5145

[7] Paolo Bientinesi, Brian Gunter, and RobertA. van deGeijn. 2008. Fam-

ilies of Algorithms Related to the Inversion of a Symmetric Positive

Definite Matrix. ACM Trans. Math. So�w. 35, 1, Article 3 (July 2008),

22 pages. h�ps://doi.org/10.1145/1377603.1377606

[8] Phillip G. Bradford, Gregory J.E. Rawlins, and Gregory E. Shannon.

1998. Efficient Matrix Chain Ordering in Polylog Time. SIAM J. Com-

put. 27, 2 (1998), 466–490.

[9] Alexander M. Bronstein, Yoni Choukroun, Ron Kimmel, and Matan

Sela. 2016. Consistent Discretization and Minimization of the L1

Norm on Manifolds. CoRR abs/1609.05434 (2016). arXiv:1609.05434

[10] Francis Y. Chin. 1978. An O(N) Algorithm for Determin-

ing a Near-optimal Computation Order of Matrix Chain

Products. Commun. ACM 21, 7 (July 1978), 544–549.

h�ps://doi.org/10.1145/359545.359556

[11] Jaeyoung Choi, Jack J Dongarra, and David WWalker. 1995. The De-

sign of a Parallel Dense Linear Algebra So�ware Library: Reduction

to Hessenberg, Tridiagonal, and Bidiagonal Form. Numerical Algo-

rithms 10, 2 (1995), 379–399.

[12] Jim Christian. 1993. Fla�erms, Discrimination Nets, and Fast Term

Rewriting. Journal of automated reasoning 10, 1 (1993), 95–113.

[13] �omas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. 1990.

Introduction to Algorithms. McGraw-Hill, Inc.

[14] Artur Czumaj. 1996. Very Fast Approximation of the Matrix Chain

Product Problem. Journal of Algorithms 21, 1 (1996), 71–79.

[15] Yin Ding and Ivan W. Selesnick. 2016. Sparsity-Based Correction of

Exponential Artifacts. Signal Processing 120 (2016), 236–248.

[16] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain S. Duff.

1990. A set of Level 3 Basic Linear Algebra Subprograms. ACM Trans-

actions on Mathematical So�ware (TOMS) 16, 1 (1990), 1–17.

[17] Jack J. Dongarra, Sven Hammarling, Richard J. Hanson, and Jeremy

Croz. 1988. An Extended set of FORTRAN Basic Linear Algebra Sub-

programs. ACM Transactions on Mathematical So�ware (TOMS) 14, 4

(1988), 399.

[18] Diego Fabregat-Traver and Paolo Bientinesi. 2011. Automatic Gen-

eration of Loop-Invariants for Matrix Operations. In Computational

Science and its Applications, International Conference. IEEE Computer

Society, Los Alamitos, CA, USA, 82–92.

[19] Diego Fabregat-Traver and Paolo Bientinesi. 2011. Knowledge-Based

Automatic Generation of Partitioned Matrix Expressions. CASC 6885,

4 (2011), 144–157.

[20] Diego Fabregat-Traver and Paolo Bientinesi. 2013. ADomain-Specific

Compiler for Linear Algebra Operations. In High Performance Com-

puting for Computational Science – VECPAR 2010 (Lecture Notes in

Computer Science), O. Marques M. Dayde and K. Nakajima (Eds.),

Vol. 7851. Springer, Heidelberg, 346–361.

[21] Diego Fabregat-Traver and Paolo Bientinesi. 2013. Application-

tailored Linear Algebra Algorithms: A search-sased Approach. In-

ternational Journal of High Performance Computing Applications (IJH-

PCA) 27, 4 (Nov. 2013), 425 – 438.

[22] Gene H. Golub and Charles F. Van Loan. 2013. Matrix Computations.

Vol. 4. Johns Hopkins.

[23] Albert Gräf. 1991. Le�-to-Right Tree Pa�ern Matching. In Interna-

tional Conference on Rewriting Techniques and Applications. Springer,

323–334.

[24] Gaël Guennebaud, Benoı̂t Jacob, et al. 2010. Eigen v3.

h�p://eigen.tuxfamily.org. (2010).

[25] M. Hejazi, S. M. Azimi-Abarghouyi, B. Makki, M. Nasiri-Kenari,

and T. Svensson. 2016. Robust Successive Compute-and-

Forward Over Multiuser Multirelay Networks. IEEE Trans-

actions on Vehicular Technology 65, 10 (Oct 2016), 8112–8129.

h�ps://doi.org/10.1109/TVT.2015.2506981

[26] T.C. Hu andM.T. Shing. 1982. Computation of Matrix Chain Products.

Part I. SIAM J. Comput. 11, 2 (1982), 362–373.

[27] T.C. Hu andM.T. Shing. 1984. Computation of Matrix Chain Products.

Part II. SIAM J. Comput. 13, 2 (1984), 228–251.

[28] Klaus Iglberger, Georg Hager, Jan Treibig, and Ulrich Rüde. 2012. Ex-

pression Templates Revisited: A Performance Analysis of the Current

ET Methodologies. SIAM Journal on Scientific Computing 34, 2 (2012),

C42–C69.

[29] Manuel Krebber. 2017. Non-linear Associative-Commutative

Many-to-One Pa�ern Matching with Sequence Variables. CoRR

abs/1705.00907 (2017). h�p://arxiv.org/abs/1705.00907

10

https://software.intel.com/en-us/mkl-reference-manual-for-c
http://www.mathworks.com/help/matlab
https://doi.org/10.1145/2984043.2998539
http://arxiv.org/abs/1209.5145
https://doi.org/10.1145/1377603.1377606
http://arxiv.org/abs/1609.05434
https://doi.org/10.1145/359545.359556
http://eigen.tuxfamily.org
https://doi.org/10.1109/TVT.2015.2506981
http://arxiv.org/abs/1705.00907

The Generalized Matrix Chain Algorithm CGO’18, February 24–28, 2018, Vienna, Austria

[30] Chuck L. Lawson, Richard J. Hanson, David R. Kincaid, and Fred T.

Krogh. 1979. Basic Linear Algebra Subprograms for FORTRANUsage.

ACM Transactions on Mathematical So�ware (TOMS) 5, 3 (1979), 308–

323.

[31] Heejo Lee, Jong Kim, Sung Je Hong, and Sunggu Lee. 2003. Processor

Allocation and Task Scheduling of Matrix Chain Products on Parallel

Systems. Parallel and Distributed Systems, IEEE Transactions on 14, 4

(2003), 394–407.

[32] Noël M Nachtigal, Satish C Reddy, and Lloyd N Trefethen. 1992. How

Fast are Nonsymmetric Matrix Iterations? SIAM J. Matrix Anal. Appl.

13, 3 (1992), 778–795.

[33] Nadia Nedjah, Colin Walter, and Stephen Eldridge. 1997. Optimal

Le�-to-Right Pa�ern-Matching Automata. InAlgebraic and Logic Pro-

gramming. Springer, 273–286.

[34] Elias D. Niño, Adrian Sandu, and Xinwei Deng. 2016. A Par-

allel Implementation of the Ensemble Kalman Filter Based on

Modified Cholesky Decomposition. CoRR abs/1606.00807 (2016).

h�p://arxiv.org/abs/1606.00807

[35] Kazufumi Nishida, Yasuaki Ito, and Koji Nakano. 2011. Accelerating

the Dynamic Programming for theMatrix Chain Product on the GPU.

In Networking and Computing (ICNC), 2011 Second International Con-

ference on. IEEE, 320–326.

[36] Silvia Noschese and Lothar Reichel. 2016. Some Matrix Nearness

Problems Suggested by Tikhonov Regularization. Linear Algebra

Appl. 502 (2016), 366–386.

[37] Devangi N Parikh, Maggie E Myers, and Robert A van de Geijn.

2017. DerivingCorrect High-Performance Algorithms. arXiv preprint

arXiv:1710.04286 (2017). arXiv:1710.04286

[38] Elmar Peise and Paolo Bientinesi. 2012. Performance Modeling for

Dense Linear Algebra. In Proceedings of the 2012 SC Companion: High

Performance Computing, Networking Storage and Analysis (PMBS12)

(SCC ’12). IEEE Computer Society, Washington, DC, USA, 406–416.

[39] Elmar Peise and Paolo Bientinesi. 2015. A Study on the Influence of

Caching: Sequences of Dense Linear Algebra Kernels. In High Perfor-

mance Computing for Computational Science – VECPAR 2014 (Lecture

Notes in Computer Science), Michel Daydé, Osni Marques, and Kengo

Nakajima (Eds.), Vol. 8969. Springer International Publishing, 245–

258. arXiv:1402.5897v1

[40] Elmar Peise and Paolo Bientinesi. 2015. The ELAPS Frame-

work: Experimental Linear Algebra Performance Studies. CoRR

abs/1504.08035 (2015). h�p://arxiv.org/abs/1504.08035

[41] Prakash Ramanan. 1996. An Efficient Parallel Algorithm for the

Matrix-Chain-Product Problem. SIAM J. Comput. 25, 4 (1996), 874–

893.

[42] V. Rao, A. Sandu, M. Ng, and E. Nino-Ruiz. 2015. Robust Data As-

similation Using L 1 and Huber Norms. ArXiv e-prints (Nov. 2015).

arXiv:math.NA/1511.01593

[43] Vishwas Rao, Adrian Sandu, Michael Ng, and Elias D. Nino-Ruiz.

2017. Robust Data Assimilation Using L1 and Huber Norms.

SIAM Journal on Scientific Computing 39, 3 (2017), B548–B570.

h�ps://doi.org/10.1137/15M1045910

[44] Henrik Ronellenfitsch, Marc Timme, and DirkWi�haut. 2015. A Dual

Method for Computing Power Transfer Distribution Factors. CoRR

abs/1510.04645 (2015). h�p://arxiv.org/abs/1510.04645

[45] Conrad Sanderson. 2010. Armadillo: An Open Source C++ Linear

Algebra Library for Fast Prototyping and Computationally Intensive

Experiments. (2010).

[46] Jeremy G. Siek, Ian Karlin, and Elizabeth R. Jessup. 2008. Build to

Order Linear Algebra Kernels. In Parallel and Distributed Processing,

2008. IPDPS 2008. IEEE International Symposium on. IEEE, 1–8.

[47] Daniele G. Spampinato and Markus Püschel. 2014. A Basic Linear

Algebra Compiler. In Proceedings of Annual IEEE/ACM International

Symposium on Code Generation and Optimization. ACM, 23.

[48] Daniele G Spampinato and Markus Püschel. 2016. A Basic Linear Al-

gebra Compiler for Structured Matrices. In International Symposium

on Code Generation and Optimization (CGO). 117–127.

[49] Damian Straszak and Nisheeth K Vishnoi. 2015. On a Natural Dynam-

ics for Linear Programming. (2015). arXiv:1511.07020

[50] Steve Strate, Roger L. Wainwright, et al. 1990. Parallelization of the

Dynamic Programming Algorithm for the Matrix Chain Product on a

Hypercube. In Applied Computing, 1990., Proceedings of the 1990 Sym-

posium on. IEEE, 78–84.

[51] Todd L. Veldhuizen. 1998. Arrays in Blitz++. In International Sympo-

sium onComputing in Object-Oriented Parallel Environments. Springer,

223–230.

11

http://arxiv.org/abs/1606.00807
http://arxiv.org/abs/1710.04286
http://arxiv.org/abs/1402.5897v1
http://arxiv.org/abs/1504.08035
http://arxiv.org/abs/math.NA/1511.01593
https://doi.org/10.1137/15M1045910
http://arxiv.org/abs/1510.04645
http://arxiv.org/abs/1511.07020

	Abstract
	1 Introduction
	1.1 Terminology
	1.2 Related Work

	2 The Standard Matrix Chain Algorithm
	3 The GMC Algorithm
	3.1 Unary Operators
	3.2 Properties
	3.3 Cost Functions
	3.4 Complexity and Completeness
	3.5 Code Generation

	4 Results
	5 Conclusion and Future Work
	Acknowledgments
	References

