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Abstract

Stencil computations are widely used from physical simu-
lations to machine-learning. They are embarrassingly par-
allel and perfectly fit modern hardware such as Graphic
Processing Units. Although stencil computations have been
extensively studied, optimizing them for increasingly diverse
hardware remains challenging. Domain Specific Languages
(DSLs) have raised the programming abstraction and offer
good performance. However, this places the burden on DSL
implementers who have to write almost full-fledged paral-
lelizing compilers and optimizers.
Lift has recently emerged as a promising approach to

achieve performance portability and is based on a small set of
reusable parallel primitives that DSL or library writers can
build upon. Lift’s key novelty is in its encoding of optimiza-
tions as a system of extensible rewrite rules which are used
to explore the optimization space. However, Lift has mostly
focused on linear algebra operations and it remains to be
seen whether this approach is applicable for other domains.

This paper demonstrates how complex multidimensional
stencil code and optimizations such as tiling are expressible
using compositions of simple 1D Lift primitives. By lever-
aging existing Lift primitives and optimizations, we only
require the addition of two primitives and one rewrite rule
to do so. Our results show that this approach outperforms
existing compiler approaches and hand-tuned codes.

CCS Concepts • Software and its engineering → Par-

allel programming languages; Compilers;

Keywords Code Generation, Stencil, GPU Computing, Per-
formance Portability, Lift
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1 Introduction

Stencils are a class of algorithms which update elements in a
multi-dimensional grid based on neighboring values using a
fixed pattern. They are used extensively in various domains
such as medical imaging (e.g., SRAD), numerical methods
(e.g., Jacobi) or machine-learning (e.g., convolution neural
networks). Stencils are part of the original “seven dwarfs” [2]
and are considered one of the most relevant classes of high-
performance computing applications.

However, efficient programming of stencils for parallel ac-
celerators such as Graphics Processing Units (GPUs) is chal-
lenging even for experienced programmers. Hand-optimized
high-performance stencil code is usually written using low-
level programming languages like OpenCL or CUDA. Achiev-
ing high-performance requires expert knowledge to manage
every hardware detail. For instance, special care is required
on how parallelism is mapped to GPUs or how data locality
is exploited with local memory to maximize performance.

Domain Specific Languages (DSLs) and high-level library
approaches have been successful at simplifying HPC applica-
tion development. These approaches are based on algorith-
mic skeletons [9] which are recurring patterns of parallel
programming. While these raise the abstraction level, they
rely on hard-coded, not performance portable implementa-
tions. Alternative approaches are based on code generation,
which places a huge burden on the implementers who have
to reinvent the wheel for each new application domain.

Lift [38] is a novel code generation approach based on a
high-level, data-parallel intermediate language whose cen-
tral tenet is performance portability. It is designed as a tar-
get for DSLs and library authors, and exploits functional
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principles to produce high-performance GPU code. Appli-
cations are expressed using a small set of functional primi-
tives and optimizations are all encoded as formal, semantics-
preserving rewrite rules. These rules define an optimization
space which is automatically searched for high-performance
code [42]. This approach liberates programmers and DSL
implementers from the tedious process of re-writing and
tuning their code for each new domain or hardware.
This paper shows how stencil code and optimizations

are expressible in Lift, reusing its existing machinery for
managing parallelism, memory hierarchy and optimizations.
Surprisingly, only two new primitives were added to Lift
for neighborhood gathering and boundary condition han-
dling. By composing these 1D primitives, complex multi-
dimensional stencils are expressible, demonstrating the ex-
tensibility of the Lift approach to new application domains.
The paper also shows how stencil-specific optimizations

are expressible using existing rewrite-rules in Lift such as
overlapped tiling. This only requires the addition of one new
rule that handles the newly introduced primitives. By reusing
the existing exploration mechanism, we can automatically
generate high-performance stencil code for AMD, NVIDIA
andARMGPUs. Our results show that this approach is highly
competitive with hand-written implementations and with
the state-of-the-art PPCG polyhedral GPU compiler.

This paper makes the following contributions:
1. We show how complex multi-dimensional stencils are

expressible using Lift’s existing primitives with the
addition of only two new primitives;

2. We formalize and implement a stencil-specific opti-
mization – overlapped tiling – as a rewrite rule;

3. We demonstrate that this approach generates high-
performance code for several stencil benchmarks.

The paper is organized as follows. Section 2 motivates
our work. Section 3 shows how stencil computations are ex-
pressed in Lift. Section 4 presents stencil-specific optimiza-
tions in Lift expressed as rewrite-rules. Section 5 explains
how Lift expressions are compiled to efficient OpenCL code.
Section 7 provides experimental evidence that this approach
produces high-performance code on a selection of GPUs.
Finally, Sections 8 and 9 present related work and conclude.

2 Motivation

The advent of Graphics Processing Units over the past decade
have been the first sign of an increasing trend of diversity in
computer hardware. The end of Dennard scaling andMoore’s
law forces computer architects to specialize their design for
increased performance and efficiency. Traditional multi-core
CPUs from Intel and AMD are now challenged by more
energy-efficient designs by ARM, massively parallel archi-
tectures such as GPUs, and accelerators such as the Xeon
Phi. This diversity in hardware requires massive changes for
software as traditional, sequential implementations are hard
to automatically adapt to this zoo of modern architectures.

Halide PolyMagePATUS Pochoir HIPAcc PARTANS
Domain Specific Languages

Hardware

multi-core CPU mobile GPU desktop GPUFPGAXeon Phi

Universal High Performance Code Generator

Figure 1. Vision of a high performance code generator used
as a universal interface between DSLs and hardware.

2.1 A Solved Problem: High-Level Programming

Abstractions for Stencils

Domain specific languages (DSLs) and libraries help appli-
cation developers target modern hardware, shielding them
from the ever changing landscape. They are commonly ac-
cepted as being part of the solution to address the perfor-
mance portability challenge. They are widely used in stencil
computations, which has been extensively – and success-
fully – studied in terms of application-specific optimizations
in the high performance computing community. High-level
framework such as Halide [33] are designed specifically to
express stencil computations in a functional style, fuse multi-
ple operations and generate parallel GPU code automatically.
Similarly, PolyMage [31] fuses multiple stencil operations
and uses the polyhedral model to produce parallel CPU code.
These approaches are particularly good at optimizing long
pipelines of stencil operations typically found in image pro-
cessing applications.
While the use of DSLs provides a nice solution for the

end user, they are costly in terms of compiler development.
Each new DSL needs to implement its own backend compiler
and optimizer with its own approach to parallelization. This
is clearly not sustainable given the number of application
domains and the ever growing hardware diversity.

2.2 The Real Challenge: Universal High

Performance Code Generation

What is needed is a compiler approach which can be reused
over a wide range of domains and deliver high performance
on a broad set of devices. Figure 1 shows the vision of a uni-
versal compiler between DSLs and hardware which was first
proposed by Delite [45]. Delite advocates the use of a small
set of parallel functional primitives upon which DSL are
implemented. A single backend takes care of compiling and
optimizing these primitives down to high performance GPU
code, enabling all the DSLs implemented on top of Delite to
benefit from these optimizations. This type of approach can
lead to good performance for many domains on a specific
parallel device and in particular for stencil code.

Lift [38, 41, 42] has recently emerged as a novel approach
to address the performance portability challenge. It follows
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Primitives

Rewrite Rules

map

split

reduce

…zip
+ slide

pad

map(f) � map(g) 7! map(f � g)

map fusion

exploit local memory

vectorization…

+

Lift

Overlapped
Tiling

map(f, slide(. . .))
7! . . .

Figure 2. Additions to Lift proposed for supporting stencils.
Only two new primitives and a rewrite rule enabling the
overlapped tiling optimization are added.

a similar philosophy as Delite by offering a small set of data-
parallel patterns used to implement higher-level abstrac-
tions. In contrast to Delite, Lift generates high performance
code by encoding algorithmic choices and device-specific
optimizations as provably correct rewrite rules. This design
makes it easy to extend and add new optimizations into
the compiler, in contrast to Delite where optimizations are
hard-coded for each backend.
Lift has demonstrated that high performance is achiev-

able for linear algebra operations [41]. This paper takes the
Lift approach a step further and shows how it can also be
applied, with few modifications, to stencil computations. In
particular, we show how complex multi-dimensional stencils
are expressible by composing a handful of simple 1D primi-
tives. Additionally, we strive to leverage existing functional-
ity in Lift, inheriting the benefits of automatic exploration
of algorithmic and device-specific optimizations.

3 Extending Lift for Stencil Computations

Figure 2 shows the extension to Lift for supporting stencil
computations which we describe in this and the following
section. Onlyminor additions are required to support stencils
and generate high-performance code across multiple parallel
devices. We begin by describing the existing Lift primitives
we reuse, before introducing the two new primitives slide
and pad which allow us to express stencil computations in
a functional style. After discussing a 1D example, we intro-
duce the handling of multi-dimensional stencils which are
expressed by composition of the fundamental 1D primitives.

3.1 Existing High-Level Lift Primitives

Lift was introduced in [38], offering a collection of data-
parallel functional primitives. Prior work has shown that
it is possible to compile these effectively to the GPU [42]
using rewrite-rules. The most relevant primitives for stencil
applications are shown below with their types which explain
how these primitives can be composed.

map : ( f : T → U , in : [T ]n ) → [U ]n
reduce : (init : U , f : (U ,T ) → U , in : [T ]n ) → [U ]1

zip : (in1 : [T ]n , in2 : [U ]n ) → [{T ,U }]n
iterate : (in : [T ]n , f : [T ]n → [T ]n , m : Int) → [T ]n
split : (m : Int, in : [T ]n ) → [[T ]m]n/m
join : (in : [[T ]m]n ) → [T ]m×n
at :(i : Cst , in : [T ]n ) → T

get :(i : Cst , in : {T1,T2, . . .}) → Ti

array :(n : Int, f : (i : Int, n : Int) → T ) → [T ]n
userFun : (s1 : ScalarT , s2 : ScalarT ′, . . .) → ScalarU

Wewrite [T ]n for an array with n elements of typeT . Note
that arrays can be nested and carry their size in their type.
We write {T1,T2, . . .} for a tuple with component types Ti .
Finally, T → U denotes a function type expecting a value of
type T and returning a resulting value of typeU .

Map,Reduce, Iterate Themap primitive applies a function
f to all elements of an array and produces a new array of the
same length. In Lift, this is the only primitive that expresses
data parallelism. reduce applies a reduction operator f to an
array by traversing it, applying f to the elements and an
accumulator variable initialized with the given init value.
iterate performs m iterations of a function f reusing the
output produced as an input for the next iteration. While this
paper purely evaluates single iteration stencils, the iterate
primitive can be used to perform multiple iterations.

Zip, Split, Join zip creates an array of tuples {T ,U } by
combining two input arrays of the same length. split intro-
duces an additional dimension, by splitting the input array
into chunks of sizem, wherem is a positive number evenly
dividing the input size n. join performs the opposite opera-
tion.

Array and Tuple accesses The at primitive enables the
indexing of arrays with constant (literal) indices. For stencils
this is useful for accessing the elements which define the
stencil shape. For the rest of this paper, we will write in[3] as
syntactic sugar for at (3, in). Similarly, the get primitive in-
dexes into the components of a tuple. For instance, дet (2, in)
returns the second component of tuple in. For the rest of this
paper, we will write in.2 as syntactic sugar for дet (2, in).

Array Constructor This primitive constructs array ele-
ments lazily by invoking the function f with index i and
array length n. Later we will show this primitive being used
for creating masks which can be useful for certain stencils.

UserFun Finally, userFuns define arbitrary functions which
operate on scalar values. These functions are written in C
and are embedded in the generated OpenCL code.
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1 for(int i = 0; i < N; i++) {
2 int sum = 0;
3 for(int j = -1; j <= 1; j++) { // (a)
4 int pos = i+j;
5 pos = pos < 0 ? 0 : pos; // (b)
6 pos = pos > N-1 ? N-1 : pos;
7 sum += A[pos]; } // (c)
8 B[i] = sum; }

Listing 1. Simple 3-Point Jacobi Stencil in C

3.2 Extensions for Supporting Stencils

It is not possible to express stencil computations in Lift
using solely the primitives just described as they are too
restrictive. Instead of expressing stencil computations using
a single high-level stencil primitive, as often seen in other
high-level approaches, e.g. [7, 39], in Lift we aim for com-
posability and instead express stencil computations using
smaller fundamental building blocks. Using an example, we
can show that stencil computations can be decomposed in
three steps: consider the 3-point stencil shown in Listing 1
applied on a 1D array A of length N that sums the elements
of each neighborhood. As denoted in the comments, stencil
computations consist of three fundamental parts:

(a) for every element of the input, a neighborhood is ac-
cessed specified by the shape of the stencil (line 3);

(b) boundary handling is performed which specifies how
to handle neighboring values for elements at the bor-
ders of the input grid (lines 5 and 6);

(c) finally, for each neighborhood their elements are used
to compute an output element (line 7).

We have added new primitives to perform the first two
steps. Following Lift’s design goal, each primitive expresses
a single concept and complex functionality is achieved by
composition. The first new primitive handles boundary con-
ditions and the second one expresses element grouping.

Boundary Handling with pad pad adds l and r elements
at the beginning and end of the input array in, respectively. A
first variant reindexes into the input array, a second variant
appends values computed by a user-specified function. For
stencil computations, these primitives are used to express
what happens when we reach the edge of the data boundary.

Step 1 in Figure 3 visualizes boundary handling with pad.
The input array on the top is enlarged with one element on
each side as highlighted with dashed lines.

The pad primitive for reindexing has the following type:

pad :
(
l : Int, r : Int,
h : (i : Int, len : Int) → Int,

in : [T ]n
)
→ [T ]l+n+r

It uses the index function h to map indices from the range
[0, l + n + r ] into the smaller range of the input array [0,n].
The elements added at the boundaries are, thus, elements of

...

3-point stencil

input

output

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 90 9

1 2 3

boundary handling 
using pad

create neighborhoods
using slide 

compute output element
  using map stencilfunction

 
 

1

2

3

0 1 2 1 2 3 8 9 9

Figure 3. Expressing a stencil in Lift using pad for boundary
handling, slide for creating the neighborhood and map to
compute the output elements. These three logical steps are
compiled into a single efficient OpenCL kernel by Lift.

the input array and h is used to determine which elements
this will be. For instance, by defining the following function:

clamp(i, n) = (i < 0) ? 0 : ((i >= n) ? n-1 : i)

it is possible to express a clamping boundary conditionwhich
artificially extends the original input array by two elements
to the left and three to the right by repeating the value at
the boundary. In the extended version of Lift we write:
pad(2, 3, clamp, input ).

Indexing functions implementing mirroring or wrapping
are similarly defined. Indexing functions must not reorder
the elements of the input array, but only map indices from
outside the array boundaries into a valid array index.

The pad primitive which appends values has a very similar
type (not shown for brevity), where the functionh produces a
value which is added to the edges of the array. This variation
of pad is used to implement constant boundary conditions,
or dampening boundary conditions where the out-of-bound
value decreases with the distance to the boundary.

Creating Neighborhoods with slide The slide primitive
applies a sliding window of length size which traverses
past step elements. For a one-dimensional 3-point stencil
we write: slide(3, 1, input ).

This creates a nested array, as shown after step 2 in Fig-
ure 3, where each element of the outer array is itself an array
of three elements. The second element of the first inner array
is hereby also the first element of the second array, which
corresponds to the notion that we group the first three ele-
ments together before we move the sliding window by one
element. The type of slide can be described as:
slide : (size: Int, step: Int, in: [T ]n ) → [[T ]size ] n−size+step

step

We will later show how this primitive is used to create multi-
dimensional neighborhoods.
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1 val sumNbh = fun(nbh => reduce(add , 0.0f, nbh))
2
3 val stencil =
4 fun( A: Array(Float , N) =>
5 map(sumNbh , // (c)
6 slide(3, 1, // (a)
7 pad(1, 1, clamp , A)))) // (b)

Listing 2. 3-Point Jacobi Stencil expressed in Lift

Computing the Stencil for eachNeighborhoodwithmap

The map primitive is the only way in Lift to express data
parallelism. As stencils are naturally data-parallel, we ex-
press the last step of the stencil computation using the map

primitive. This step takes arrays of neighborhood as its input
and performs the stencil computation to produce a single
output value for each neighborhood.

3.3 One-dimensional Stencil Example in Lift

Listing 2 shows a simple 3-Point Jacobi Stencil expressed in
Lift. This is the same example we saw as C code in Listing 1.
Due to the functional style of nested function calls, the Lift
expression reads from bottom to top. We can see the decom-
position in three logical steps: first, boundary handling is
performed (line 7) using pad; then, the neighborhoods are
created (line 6) using slide; finally, map is used (line 5) to
perform the computation for every created neighborhood.
The computation is defined as function sumNbh in line 1.

It is important to emphasize that the logical distinction
of these three steps will not be echoed in the generated
OpenCL code. The boundary handling and creation of neigh-
borhoods are not performed by copying elements in memory,
but are combined with map in a single step by creating a
compiler-internal data structure, called view in Lift [42],
which influences how data will be read from memory. This
is discussed in more detail in Section 5.

3.4 Multi-Dimensional Stencils in Lift

One of the crucial concepts in this paper is the ability to
express complex multi-dimensional stencils as compositions
of simple one-dimensional primitives. We will now show
how we define n-dimensional versions of padn and sliden as
compositions of the simple pad, slide, andmap primitives we
have just seen.
Multi-dimensional stencils are then expressed following

the same structure as one-dimensional stencils:
map

n
( f , sliden (size, step, padn (l , r , h, input )))

Boundary handling is performed via padn using the function
h. Here we present the simple case where the same bound-
ary handling strategy is performed in each dimension. It is
straightforward – and supported by our implementation –
to do different boundary handlings in each dimension. The
sliden creates a n-dimensional neighborhood, which is then
processed by mapn.

Multi-Dimensional BoundaryHandling Boundary han-
dling in multiple dimensions follows the same idea as in the
one-dimensional case. Using nested maps, we apply pad to
inner dimensions. Thus, padn is defined recursively:

pad1 (l , r , h, input ) = pad(l , r , h, input )

padn (l , r , h, input ) = mapn−1 (pad(l , r , h),

padn−1 (l , r , h, input ))

where mapn are n nested maps:
map1 ( f , input ) = map( f , input )

mapn ( f , input ) = mapn−1 (map ( f ), input )

While the base case is the one-dimensional pad, for each
higher dimension a pad primitive is added where nested
maps are used to apply it to the innermost dimension.

We provide a simple 2D example for pad2 using the clamp
boundary handling which repeats the values at the boundary:

pad2 (1, 1, clamp,

[
[a, b],
[c, d]

]
) =

map(pad(1, 1, clamp), pad(1, 1, clamp,
[
[a, b], [c, d]

]
)) =

map(pad(1, 1, clamp),
[
[a, b], [a, b], [c, d], [c, d]

]
) =



[a, a, b, b],
[a, a, b, b],
[c, c, d, d],
[c, c, d, d]


After expanding the definition of pad2, we first apply pad to
the outer dimension of the two-dimensional array, resulting
in an enlarged array where the first and last element – them-
selves both arrays – are prepended and appended. Then, in
the second step, pad is applied to the nested dimension using
the map primitive, which applies pad to every nested array
resulting in the final two-dimensional array.

Multi-Dimensional Neighborhood CreationThe creation
of multi-dimensional neighborhoods is more complex than
the boundary handling, but follows a similar idea.

For the two-dimensional case, slide2 is defined as:
slide2 (size, step, input) =

map(transpose,

slide(size, step,

map(slide(size, step), input)))

We explain this definition using an example:

slide2 (2, 1,


[a, b, c],
[d, e, f ],
[д, h, i]


) =

map(transpose, slide(2, 1,

map(slide(2, 1),
[
[a, b, c], [d, e, f ], [д, h, i]

]
))) =

map(transpose, slide(2, 1,
[
[[a, b], [b, c]], [[d, e], [e, f ]], [[д, h], [h, i]]

]
)) =
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map(transpose,
[
[ [ [a, b], [b, c] ], [ [d, e], [e, f ] ] ],
[ [ [d, e], [e, f ] ], [ [д, h], [h, i] ] ]

]
)) =



[ [
[a, b],
[d, e]

]
,

[
[b, c],
[e, f ]

] ]
,

[ [
[d, e],
[д, h]

]
,

[
[e, f ],
[h, i]

] ]


The resulting four-dimensional array is created out of four
2 × 2 neighborhoods. These are created by applying slide

to the inner and then the outer dimension, before using
map(transpose) to switch the two inner dimensions.

We can generalise the definition of slide2 to sliden for cre-
ating n-dimensional neighborhoods. The general structure
is similar to the two-dimensional case:

sliden (size, step, input) =
reorderingDimensions(

slide(size, step,
map(sliden−1 (size, step, input))))

We first recursively apply the sliding in one inner dimen-
sion for the nested dimension of our n-dimensional input
with map(sliden−1). Then we apply slide to the outermost
dimension, so that we now have applied slide exactly once
to all dimensions. In the last step, we now have to reorder
the dimensions, so that the nested dimensions created by
the slides are the innermost ones. This is best understood by
looking at the types involved. For a three-dimensional array,
after applying slide in each dimension we obtain an array
of this type: [[[[[[T ]so ]o]sn ]n]sm ]m , where sm andm are the
two dimensions resulting from applying slide to the outer-
most dimension. By rearranging the dimensions, we obtain
an array of type: [[[[[[T ]so ]sn ]sm ]o]n]m , which corresponds
to the desired result: a three-dimensional neighborhood. The
rearranging is realized purely as a combination of map and
transpose calls which swap individual dimensions.

3.5 A Complex Stencil: Room Acoustics Simulation

Listing 3 shows a real stencil application for modeling room
acoustics which was developed by HPC physicists [49] and
models the behavior of a sound wave propagating from a
source to a receiver in an enclosed 3-dimensional space.

The two inputs used in this benchmark (дridt−1 and дridt
in lines 1- 2) indicate previous and current time steps in
order to update the state of the room across time. This type
of inputs is often found in real-world physical simulations,
which span three dimensions for physical space and one
for time. The first grid is taken point-by-point, however
the second grid uses slide3 to form stencil neighborhoods.
The number of neighborhoods correctly matches up to the
size of the дridt input array as the дridt−1 input is padded
using pad3 first, so that no out-of-bounds accesses occur.
These inputs are then zipped together with their number of
neighbors resulting in a tuple of: {valuet−1, neighborhoodt ,
numNeighbors} as seen in lines 12- 14.

1 acousticStencil(gridt−1:[[[ Float]m ]n ]o ,
2 gridt :[[[ Float]m ]n ]o ) {
3 map3(m -> {
4 val sumGridt−1 =
5 m.1[0][1][1] + m.1[1][0][1] + m.1[1][1][0] +
6 m.1[1][1][2] + m.1[1][2][1] + m.1[2][1][1]
7 val numNeighbor = m.2
8 return getCF(m.2, CSTloss1 , 1.0f) * ( (2.0f -
9 CSTl2 * numNeighbor) * m.1[1][1][1] +
10 CSTl2 * sumGridt−1 - getCF(m.2,
11 CSTloss2 , 1.0f) * m.0) },
12 zip3(gridt ,
13 slide3(3, 1, pad3(1,1,1,zero ,gridt−1)),
14 array3(m,n,o,computeNumNeighbors))) }

Listing 3. Accoustic simulation expressed in Lift

In lines 4- 6, the stencil is computed by accessing values
in the neighborhood using the at primitive which is written
as [ ]. The results are then combined with the other inputs
in an equation to model the sound (lines 8–11).
A difficult problems for wave-based simulations is accu-

rate handling of physical obstacles in the room. The variable
coefficients (a. k. a. “loss”) at the obstacles boundary are han-
dled through the use of a mask, which returns a different
value depending on whether it is on an obstacle or not. In
Lift, this mask is calculated on the fly using the array3d

generator and contains a value at each point in the grid.

3.6 Summary

In this section, we have demonstrated how stencils are ex-
pressed in Lift by extending the set of primitives by two new
additions: pad and slide. Together with existing Lift primi-
tives, this allows for expressing multi-dimensional stencils
which are built from the one-dimensional building blocks.

Crucially, the parallelism found in stencil applications is
expressed using the existing map primitive, without intro-
ducing a special case for stencils. Rewrite rules explaining
how to optimally leverage OpenCL hardware using map are
then reusable for stencil applications as we show next.

4 Expressing Optimizations

This section discusses how stencil-specific optimizations can
be expressed as rewrite rules. These new rules are then used
together with Lift’s existing rules to explore the implemen-
tation space of stencil applications. By applying different
rewrites, we can tailor programs to target different architec-
tures, thus, achieving performance portability.

4.1 Exploiting Locality through Tiling

Stencil applications involve local computations which only
access elements in a neighborhood. Furthermore, neighbor-
ing elements in a grid share large parts of their neighbor-
hoods. Exploiting this locality is the most commonly used
and most successful optimization for stencil computations.
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Figure 4. Overlapped tiling for a 3-point Jacobi stencil.

1 fun( A: Array(Float , N) =>
2 map(tile => map(sumNbh , slide(3, 1, tile),
3 slide(5, 3,
4 pad(1, 1, clamp , A)))) )

Listing 4. 3-Point Jacobi Stencil using overlapped tiling

On GPUs, the fast (but small) local memory can be used as
a cache to store a set of neighborhoods where elements are
loaded only once from the slow global memory, such that
successive accesses are made from the fast local memory.
Traditionally, locality in stencils is exploited using over-

lapped tiling [17, 19, 52]. The input grid is divided into tiles
which overlap at the edges to allow every grid element to
access its neighboring elements. The size of the overlap is
determined by the size of the neighborhood.
Figure 4 visualizes overlapped tiling for a 3-point one-

dimensional Jacobi stencil. The left-hand side shows a single
tile of five elements. Here we can see the reuse of data where
the highlighted computation on the left shares two elements
from the tile with the computation in the middle. On the
right-hand side, we can see the overlap in between the left
and right tile. These two elements are available in both tiles.

Representing Overlapped Tiling in Lift We reuse the
slide primitive to represent overlapping tiles. Listing 4 shows
the Lift expression of the 3-point Jacobi stencil using tiling.

The slide primitive is now used twice: in line 2 a neighbor-
hood is created, as explained earlier, but in line 4 overlapping
tiles are created instead of neighborhoods. Due to parameter
choice (5 and 3 in this case), 5 elements are grouped in a tile,
with 2 elements overlapping with the next tile.

Figure 5 shows the creation of tiles in the first step (by
using slide(5, 3)), then for each tile we create the local neigh-
borhoods using the slide primitive again.

Tiling as a Rewrite Rule Phrasing tiling as a rewrite rule
makes it accessible to Lift’s automatic exploration process.

Tiling in one dimension is expressible as follows:
map( f , slide(size, step, input)) 7→

join(map(tile⇒ map( f , slide (size, step, tile)),

slide(u,v, input)))

The parameters u and v have to be selected appropriately,
i.e., the difference between the size and step has to match the
difference ofu andv : size-step =u−v . Figure 4 visualizes this
constraint for the one-dimensional 3-point Jacobi where the

...

...

slide (5, 3)

input

array of 
overlapping tiles

array of tiles 
containing 
neighborhoods

output

map (slide (3, 1))

Figure 5. Expressing Overlapped Tiling using slide: Apply-
ing slide to the input creates overlapping tiles. Applying slide
to every tile creates the required neighborhoods

neighborhood size is 3 (and the step is 1). When choosing the
size of the tile u, e.g. 5 in the example, v has be selected so
that it matches the formula (i.e. 3 in this case) as 3−1 = 5−3.
This is the only valid choice forv as it determines the overlap
created between the tiles which corresponds with the size of
the original neighborhood. Choosing u and v according to
the formula ensures that we end up with the same number
of neighborhoods on both sides of the rewrite rule.
To see that this rule is semantics preserving, we can de-

compose it into two smaller rules:

map( f , join(input)) 7→ join(map(map( f ), input))

and
slide(size, step, input) 7→

join(tile⇒ map(slide (size, step, tile)),

slide(u,v, input))

Here it can be seen that the first rule is semantics preserv-
ing, as on both sides function f is applied to each element
of the two-dimensional input. On the left-hand side, this is
done by flattening the input and then applying the function,
whereas on the right-hand side the function is first applied
to each element of the input and then flattened afterwards.
Assuming that u and v are valid parameter choices as

described above, the correctness of the second rule is also
straightforward. Starting on the right-hand side, we create
tiles using the first slide primitive. Then, we perform the
second slide for each created tile, before the join removes
the outermost dimension and, therefore, resolves the tiles,
leaving us with a two-dimensional array equivalent to the
array produced by only applying the second slide.

OverlappedTiling in Lift inMultiple Dimensions Our
extension to Lift fully supports tiling in higher dimensions.
Figure 6 visualizes overlapped tiling in two dimensions.

The optimization rules for tiling higher-dimensional sten-
cils are expressed by reusing the one-dimensional primitives.
The rewrite rule covering two-dimensional tiling looks simi-
lar to the one-dimensional case when written with the map2
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Figure 6. Applying overlapped tiling in two dimensions

and slide2 primitives introduced previously:
map2 ( f , slide2 (size, step, input)) 7→

map(join, join(map(transpose,

map2 (tile⇒ map2 ( f , slide2 (size, step, tile)),

slide2 (u,v, input)))))

However, it is difficult to ensure that the correct dimensions
are combined at the very end on the right-hand side.

4.2 Usage of Local Memory

Tiling is used to exploit locality. Modern GPUs have fairly
small caches and rely on the programmer explicitly using
the fast scratchpad memory, called local memory in OpenCL.
This can be cumbersome and does not always provide better
performance. Whether or not the local memory is beneficial
depends on the hardware architecture and the amount of
data reuse in the stencil application.
In Lift, we address these issues by expressing the local

memory usage as a rewrite rule. When exploring the opti-
mization space, this rule will be one of many optimization
choices applied in the automatic optimization process.

Besides the high-level primitives introduced in Section 3,
Lift also defines OpenCL-specific low-level primitives [38]
to exploit particular features of OpenCL, such as the use the
local memory. The toLocal primitive wraps around a function
to indicate that this function should write its result into local
memory. To copy a single scalar value into local memory, we
can use the identity user function id, as in: toLocal(id). For
copying arrays, we wrap the map(id) function in toLocal.

As copying data into local memory is always legal inside
an OpenCL workgroup, we introduce this rewrite rule:

map(id) 7→ toLocal(map(id))

Together with a rule which introduces map(id) at any posi-
tion, this allows the exploration of copying to local memory
as an optimization. Currently, heuristics are used to prevent
applying this rule at unfavorable places.

4.3 Loop Unrolling

Unrolling loops is a traditional low-level optimization which
can greatly increase performance for certain cases. To ex-
plore loop unrolling as an optimization for stencil applica-
tions, we make use of a variation of the reduce primitive
which is unrolled by the Lift compiler. As we saw in the 3-
Point Jacobi example in Listing 2, the reduce pattern is often

used in stencil computations to sum up the values in a neigh-
borhood. The unrolled variation of the reduction is called
reduceUnroll and has a matching rewrite rule providing it
as an optimization choice during exploration. Unrolling is
only legal if the size of the input array has a length which is
known at compile time. For stencils this is usually the case,
as the reduction is applied to a neighborhood which almost
always consists of a fixed number of elements.

4.4 Summary

In this section we have shown how stencil optimizations
are expressed as rewrite rules, which are then applied by
the Lift exploration process. Overlapped tiling in multiple
dimensions is expressed by reusing ideas of the simple one-
dimensional case. Together with low-level optimizations,
such as usage of local memory, we can automatically explore
a variety of optimizations for stencil applications.

5 Code Generation

A stencil program expressed using pad, slide, and map is
rewritten into a Lift expression of low-level, OpenCL-specific
primitives which explicitly encode implementation and opti-
mization choices like the use of local memory. The OpenCL
code generation is largely unchanged from the compilation
of Lift programs as described in [42].

Lift uses so-called views [42] when implementing primi-
tives, which modify data layout without performing compu-
tations themselves. These operations are not performed in
memory, but define how primitives read input data,

Pad and slide are implemented using this same approach.
These primitives are integrated with Lift’s view system and
are not directly compiled to OpenCL code. Instead, the rein-
dexing of computations introduced with pad are performed
when the padded array is read for the first time. Similarly,
the slide primitive does not physically copy created neigh-
borhoods into memory. Slide guides accesses to elements in
a neighborhood to the original array, so that accesses to the
same element in different neighborhoods result in memory
accesses from the same physical location.
This technique means Lift can build complex - poten-

tially multi-dimensional - abstractions which simplify the
implementation of stencil applications compiled to efficient
OpenCL code.

6 Experimental Setup

Platforms andMeasurement Experiments are conducted
using single precision floats on: a Tesla K20c with CUDA
8.0 driver version 367.48; an AMD Radeon HD 7970 with
OpenCL version 1.2 AMD-APP (1912.5); and the SAMSUNG
Exynos 5422 ARM Mali GPU with OpenCL 1.2 v1.r17p0. The
medians of 100 executions are reported measured using the
OpenCL profiling API. Data transfer times are ignored since
the focus is on the quality of the generated kernel code.
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Benchmark Dim Pts Input size #grids

Stencil2D [10] 2D 9 4098×4098 1
SRAD1 [6] 2D 5 504 × 458 1
SRAD2 [6] 2D 3 504 × 458 2
Hotspot2D [6] 2D 5 8192×8192 2
Hotspot3D [6] 3D 7 512×512×8 2
Acoustic [43] 3D 7 512×512×404 2
Gaussian [36] 2D 25 40962 / 81922 1
Gradient [36] 2D 5 40962 / 81922 1
Jacobi2D [36] 2D 5/9 40962 / 81922 1
Jacobi3D [36] 3D 7/13 2563 / 5123 1
Poisson [35] 3D 19 2563 / 5123 1
Heat [35] 3D 7 2563 / 5123 1
Table 1. Benchmarks used in the evaluation.

Benchmarks The Lift-generated kernels are compared
against hand-tuned and automatically-generated kernels
from the PPCG [48] state-of-the-art OpenCL polyhedral com-
piler. We collected hand-written kernels from SHOC (v1.1.5),
Rodinia (v3.1) and an OpenCL version of the acoustics sim-
ulation code discussed in Section 3.5. We hard-coded each
benchmark to perform a single iteration of the stencil compu-
tation.We also collected a series of single-kernel C codes that
work with the PPCG compiler from a recent study [35, 36],
provided by the authors. Table 1 lists these benchmarks along
with their key characteristics.

Auto-Tuning Lift exposes optimization choices via rewrite
rules which leads to several low-level Lift expressions per
benchmark. Each low-level expression contains many param-
eters that are tunable, controlling for instance: local/global
thread counts, tile sizes, howmuchwork a thread performs or
how memory accesses are reordered. The parameters of each
Lift expression are fine-tuned using the ATF auto-tuning
framework [34] which builds on top of OpenTuner [1] and
additionally allows constraint specification in the parame-
ter space. The auto-tuner was used for a maximum of three
hours for a single program for tuning all expressions.

The PPCG compiler used in our comparison exposes glob-
al/local thread counts and tile sizes as tunable parameters in
each dimension. We also use ATF and OpenTuner for find-
ing the best combination of these parameters, with again a
maximum tuning time of three hours per benchmark. For
both Lift and PPCG, the auto-tuner has been enhanced to
take into account OpenCL specific constraints (e.g., global
thread counts should be a multiple of local thread counts).

7 Evaluation

7.1 Performance Results

This section presents the results of the exploration and auto-
tuning process. It also shows the performance achieved by
hand-written optimized kernels from the benchmark suites
or fromHPC experts, as explained previously. Performance is
expressed in elements updated per second, which we define
simply as the output size divided by the execution time.

Figure 7 shows the performance for the six benchmarks
of which we have hand-written implementations. As can be
seen, in most cases the Lift generated kernels are compa-
rable to their hand-written counter parts, showing that our
compiler approach generates high-performance kernels.

The benchmarks srad1 and srad2 seem to under-perform
compared to the other benchmarks on the AMD and Nvidia
platforms. This is due to the input sizes being too small to
saturate these large GPUs (on the smaller ARM GPU, these
benchmarks perform as good as the others).
The Hotspot2D benchmark is also a clear outlier on the

AMD and ARM platforms. On the ARM GPU, the Lift gener-
ated version is 2× faster than the hand-written version. On
the AMD platform, the performance of the hand-written ver-
sion is clearly under-performing, especially compared to the
performance of the other benchmarks. The Lift generated
kernel achieves similar performance than the other bench-
marks while being 15× faster than the hand-written version
which was originally written for an Nvidia platform. This
clearly illustrates the need for code-generation techniques
which compile generated code specific to a particular device.

7.2 Performance Comparison of Lift versus PPCG

This section compares Lift with the state-of-the-art PPCG
polyhedral GPU compiler [48]. Similar to Lift, PPCG is an ap-
proach for compiling data-parallel algorithms starting from
a single program and generating optimized code.

Figure 8 shows the relative performance of Lift-generated
kernels over PPCG-generated kernels. As explained in sec-
tion 6, both Lift and PPCG use the same auto-tuning mecha-
nism for a fair comparison. As can be seen, in most cases, the
Lift generated code is on-par or clearly outperforms PPCG.
On Nvidia, many benchmarks achieve a speedup of up

to 4× over PPCG, such as the Heat program with large size,
where Lift is 4.3× faster. In this case, the best Lift kernel
performs no tiling and each thread only computes 2 elements.
On the contrary, the PPCG version looks very different and
uses tiling, with each thread processing 512× more elements
sequentially than Lift. For Gradient on the small size, the
PPCG performance is almost as good as Lift. In this case,
both versions are similar, use tiling and the difference be-
tween the amount of sequential work is only 4×.
On AMD, the results look more uniform, with the excep-

tion of the Poisson benchmark on the large input. Here
again, the best Lift kernel does not use tiling, while the
PPCG compiler generates a tiled version of the benchmarks.
On the ARM GPU, the results of Lift and PPCG are much
closer than on the other platforms, with most of the gain
coming again from not using tiling.
Interestingly, none of the Lift kernels generated for the

ARM or AMD GPU use tiling, however on Nvidia 33% of the
best Lift versions use the tiling optimization. This confirms
that different optimization strategies are required for varying
program/input sizes as well as for different hardware.
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Figure 7. Performance of the Lift generated code and hand-optimized kernels expressed as Giga-elements updated per second.
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Figure 8. Performance of Lift-generated kernels compared to PPCG-generated kernels. Both approaches auto-tune the kernels
for up to three hours per benchmark/input/device. Large input sizes did not fit onto the ARM GPU.

8 Related Work

Stencil-SpecificHigh-Level ProgrammingApproaches

There exist many approaches aiming to simplify the pro-
gramming of stencils. These include stencil-specific DSLs
(Domain Specific Languages) or EDSLs (Embedded DSLs)
like HLSF [12], Pochoir [46], Halide [33], PolyMage [31]
and many others [3, 8, 20, 22, 30]. [35, 36] discuss a stencil-
specific compiler with a focus on fusion of stencil opera-
tions to minimize data movements. Even more specialized
solutions exist for Partial Differential Equations [4, 5] and
image processing [14]. Skeleton libraries providing stencil
skeletons include SkePU [13], SkelCL [40], MUESLI [24], and
PASTHA [25]. Most of these approaches rely on hard-coded
and stencil specific implementations.

Optimizations for Stencil Computations There are
also many works detailing stencil optimization strategies.
These include blocking [32, 50, 51] and tiling approaches [17–
19, 23, 26, 37], and other collections of optimizations [11, 15,
28, 44]. Furthermore, multiple auto-tuning frameworks aim
to automatically optimize stencils [16, 21, 27].

High Perfomance Code Generation Languages like
Accelerate [29], StreamIt [47] or Halide [33] aim to simplify
the programming of GPUs through parallel patterns.
Delite [45] is the closest related work. A small set of par-

allel patterns is compiled and optimized by a single backend
into high-performance code. This approach lacks perfor-
mance portability as device-specific optimizations have to
be implemented separately for each platform. In contrast,
Lift goes a step further by encoding optimizations in an
extensible system of rewrite rules.

9 Conclusions

This paper has shown how stencils and their optimizations
are expressible in the data-parallel, hardware-agnostic in-
termediate language Lift. The language has been extended
by two primitives to gather neighboring elements (slide)
and define boundary conditions (pad). Lift can now express
complex stencils (like acoustic simulations), which will allow
higher-level DSLs to be defined on top of these primitives.

Stencil-specific optimizations are encoded as rewrite rules.
Due to the general nature of Lift, we are able to leverage
existing Lift optimizations which are also directly applicable
to stencil computations. This demonstrates that Lift is easily
extensible to new domains with little effort required.
Finally, experimental results provide evidence that this

approach generates high-performance stencil code on GPUs.
On three platforms, we see that performance is on par with
hand-optimized reference implementations. We also com-
pare our approach to the PPCG polyhedral GPU compiler,
showing that Lift outperforms it in many cases.
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A Artifact Description

Submission and reviewing guidelines and methodology:
http://cTuning.org/ae/submission.html

A.1 Abstract

The artifact contains the high performance stencil code gen-
erator Lift which is described in the CGO 2018 paper High
Performance Stencil Code Generation with Lift. Furthermore,
this artifact contains the scripts and reference implemen-
tations required to reproduce the performance results pre-
sented in the paper. To validate the results build Lift and the
software used as comparison with the provided scripts, run
the benchmarks and, finally, the plotting script to reproduce
the results from Figure 7 and 8 in the paper. We also provide
scripts to generate OpenCL kernels from high-level Lift ex-
pressions, as well as scripts for performing a time-intensive
auto-tuning for finding the best performing OpenCL kernel
and its numerical parameters on the target platform.

A.2 Description

A.2.1 Check-List (Artifact Meta Information)

• Program: The Lift stencil code generator implemented in
Scala; The PPCG polyhedral compiler; Benchmark programs
implemented in C/C++ using OpenCL
• Compilation: With provided scripts
• Data set: Provided with the corresponding benchmarks
• Run-time environment: Linux with OpenCL
• Hardware: Any OpenCL enabled GPU
• Output: Runtime in CSV files and plots as PDFs
• Experimentworkflow: Git clone; build software; run bench-
marking scripts; observe performance results
• Publicly available?: Yes

A.2.2 How Delivered

The artifact is publicly available and hosted on gitlab at:
https://gitlab.com/larisa.stoltzfus/liftstencil-cgo2018-artifact/

A.2.3 Hardware Dependencies

An OpenCL enabled GPU is required. In the paper we used
a Nvidia Tesla K20c, an AMD Radeon HD 7970, and a ARM
Mali GPU on an ODROID-XU4 developer board.

A.2.4 Software Dependencies

Lift requires Java 8, OpenCL, OpenTuner, the Auto Tuning
Framework (ATF), and PPCG as its main dependencies.

The software dependencies are listed on the gitlab page.

A.2.5 Datasets

Datasets are provided as part of the artifact.

A.3 Installation

After cloning the repository, build scripts are provided for
Lift, OpenTuner, the ATF, PPCG, and the used benchmarks.

Detailed installation descriptions are given on gitlab.

A.4 Experiment Workflow

After the installation, provided scripts should be used for
running all benchmarks and plotting the results.
Detailed descriptions for the experiment workflow are

provided on the gitlab page.

A.5 Evaluation and Expected Result

The main results of the artifact evaluation is to reproduce the
performance comparison given in Figure 7 and 8. Depending
on the precise GPU used for evaluation we expect the results
to show a similar performance trend as reported in the paper
between the Lift generated OpenCL kernels compared to
the reference implementations.
The reviewers are invited to investigate the implementa-

tion of the Lift compiler, re-generate OpenCL kernels with
Lift and perform the auto-tuning process for finding the
best OpenCL kernel and parameters for a target hardware.

http://cTuning.org/ae/submission.html
https://gitlab.com/larisa.stoltzfus/liftstencil-cgo2018-artifact/
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