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Abstract
Users’ cognitive load while interacting with a system is a
valuable metric for evaluations in HCI. We encourage the
analysis of eye movements as an unobtrusive and widely
available way to measure cognitive load. In this paper, we
report initial findings from a user study with 26 participants
working on three visual search tasks that represent different
levels of difficulty. Also, we linearly increased the cognitive
demand while solving the tasks. This allowed us to analyze
the reaction of individual eye movements to different levels
of task difficulty. Our results show how pupil dilation, blink
rate, and the number of fixations and saccades per second
individually react to changes in cognitive activity. We dis-
cuss how these measurements could be combined in future
work to allow for a comprehensive investigation of cognitive
load in interactive settings.
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Introduction
Traditional measurements of usability (effectiveness, ef-
ficiency, and satisfaction) allow to assess the quality of
system support for task performance [4]. Additionally, the
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cognitive load that systems and tasks place on users can
serve as a valuable metric for evaluation. Cognitive load de-
scribes the amount of mental effort of the working memory
when interacting with a system or solving a task [8]. It can
be split into the load imposed by a task (intrinsic), the load
to understand and process content (germane), and the way
information is presented (extraneous) [8]. The later is valu-
able for practitioners, as a smooth system interaction can
lower the extraneous load to free cognitive capacities.

Figure 1: Target elements for each
task are encircled – other elements
are distractors. In color,
participants had to find a randomly
assigned blue element
(disregarding different shapes); in
shape they had to find a randomly
assigned circle (disregarding
different colors). Both tasks
resemble a preattentive visual
search task, yet without pop-out
effect due to a high variety of
distractors [9]. In color & shape
they had to conduct a conjunction
search by finding a blue circle [9].

Standardized measurements to assess the load imposed
by a system are post-hoc questionnaires like the NASA
TLX [3]. It relies on subjective ratings of participants, but
does not provide in situ information or assess unconscious
processes. To address these limitations, eye tracking is
suggested to measure users’ cognitive processes while
interacting with a system in an objective and unobtrusive
way [6]. To this end, several studies have investigated the
relation of eye-movements and cognitive processes: Find-
ings reveal a relation of increased cognitive load with an in-
crement in pupil dilation [6], a higher frequency of fixations
and saccades [2], as well as a lower blink rate [1]. Most of
these studies either focused on individual eye movements
or investigated these measurements in a very artificial con-
text neglecting influences of real-world activities [10]. In our
work, we aim to measure cognitive load based on multiple
eye movements in interactive settings to detect cognitive
changes during task activities. Based on our results, we
discuss the potential of cross-validation, where weaknesses
of one measurement might be compensated for by other
measurements’ strengths [5].

Research Goal
Our overall goal is to allow for the classification and thus
evaluation of cognitively demanding activities using unob-
trusive eye tracking devices. To that end, we need to better

understand how different eye movements are affected by
cognitive load. As an initial step, we tackle this by analyzing
different eye movements individually while linearly increas-
ing the cognitive demand on different levels of task difficulty.
In future work, results from this analysis will be the basis
of complementary cross-validation of the measurements
towards assessing cognitive load.

User Study
This section provides an overview of the employed meth-
ods, including the tasks, apparatus, participants and the
procedure that we followed in our user study.

Tasks and Apparatus
We employed a visual search task (similar to [7]) in three
variants, representing different levels of difficulty: color,
shape, and color & shape (see Figure 1). In line with [7],
we decided for stimuli that involve perception as well as
higher-level cognitive processes. Yet, they also represent
a basic set of elements excluding the need for specific do-
main knowledge. For each task, participants were asked to
find one specific target element in a field of distractors by
clicking on it as soon as they found it using a mouse. We
defined an invisible grid covering the entire screen space
and set the number of elements (width and height: 20 pix-
els) to 155, representing 10% of the screen space in round
1. We linearly increased the number of distractors (and by
this the difficulty) by 10% for each round until the display
was completely covered (1550 elements) in round 10. In
order to gather sufficient eye tracking data, each round had
to be passed three times – each with different randomized
positions of elements – resulting in 30 trials per task and
participant. We decided to limit the duration of each visual
search activity to 10 seconds to assure comparability of
tasks. After this, participants were asked to place the cursor
in the middle of the screen to avoid lucky target hits. Addi-



tionally, the content of the screen was frozen for a resting
period of two seconds – avoiding possible influences on eye
movements due to differences in e.g. screen brightness.

We used a Microsoft Perceptive Pixel 55′′display with a
resolution of 1920×1080 pixels as a wall display. We ad-
justed the height of the upper edge to 1.60m and positioned
a small desk at 1.30m distance from the display at a com-
fortable height to control a mouse while standing (1.20m).
To record eye movements, we employed SMI Eye Track-
ing Glasses 2, running at 120Hz. Interaction logs were
matched with the eye tracking data for analysis.

Figure 2: Exemplary pupil dilation
during trials. A represents a trial’s
start, B correlates with the target
hit, and C indicates a trial’s end.

Participants
34 participants were recruited for the user study. Due to in-
sufficient eye tracking data, we excluded eight participants
for analysis. The remaining 26 participants (16 female, 10
male) had a mean age of 24.15 (SD=2.49, aged 20-29). All
participants were students from our local campus. They
had a mixed background ranging from economics, poli-
tics, and computer science. None of the participants were
color-blind and all of them had normal or corrected to nor-
mal eye-sight using contact lenses. Consequently, they had
no problems with the employed size and color of items.

Procedure
At the beginning, each participant was asked to fill out a
demographic questionnaire including questions e.g. about
eye-sight. Then, each participant received an introduction
into the system including the eye tracking glasses. Already
wearing the eye tracking glasses, participants had to per-
form a demo task to get familiar with the procedure. This
allowed the eye tracking software to adapt to individual eye
features to improve the tracking accuracy of the subsequent
3-point calibration process. After that, participants were
asked to start the first assigned task. Afterwards partici-
pants were asked to fill out a NASA TLX [3] questionnaire.

This sequence was the same for all three tasks (color,
shape, color & shape). To avoid learning effects, we coun-
terbalanced the order of tasks by using a random selection
of 34 out of 36 possible combinations. Finally, each partic-
ipant filled out a post-questionnaire concerning ratings of
cognitive demand. Each session lasted about an hour in
total and participants were compensated for their time.

Analysis and Results
For statistical analyses, we chose dependent t-tests (if the
assumption of normal distribution was met) or Wilcoxon
signed-rank tests for comparisons of on and off phases
(see Figure 2) within a task (e.g. color) and repeated-
measures ANOVA for comparisons across tasks (e.g. color
vs. shape).

Subjective Ratings
We used a NASA TLX questionnaire [3] to investigate par-
ticipants’ task load when working with each of the three
tasks. A repeated-measures ANOVA revealed statistically
significant differences for the overall NASA TLX score (F (2,
50) = 83.82, p < .05) with mean scores of 23.40 (color,
SD=12.18), 32.44 (shape, SD=14.96), and 48.14 (color
& shape, SD=14.63). A post-hoc analysis revealed a sta-
tistically significant higher task load for color & shape com-
pared to color (p < .016) and to shape (p < .016). In addi-
tion, shape resulted in a statistically significantly higher task
load compared to color (p < .016).

For the ratings of cognitive demand, we asked participants
to rank the tasks (1 for low, 2 for medium, and 3 for high).
The mean scores are 1.04 (color), 2.12 (shape), and 2.85
(color & shape). 25 participants rated color with the low-
est demand, 21 rated shape with a medium demand, and
22 rated color & shape as task with the highest demand.

Based on the results of the NASA TLX and the subjective



ratings, we conclude that the tasks pose three distinct levels
of cognitive demand on participants, with color being the
easiest, followed by shape, and color & shape.

Pupil Dilation
Analyzing participants’ pupil dilation during the trials, we
identified a peak that correlates with the task activity (see
detail in Figure 2). We consider the phase between a trial’s
start (Figure 2-A) and the target hit (Figure 2-B) as on (as
the participant is actively searching for the target element)
and the time span between the target hit (Figure 2-B) and
the start of the next trial (Figure 2-C) as off. We follow this
approach for all other metrics – additionally, this approach
(including constraints given by the task) keeps the number
of elements and the luminance constant, which minimizes
the influence on eye movements. As the on/off approach
counterbalances values for pupil dilation, we do not con-
sider statistical calculations for it.

Figure 3: Mean number of
fixations per second. Each round is
represented by values for on and
off phases. Standard deviations
are hidden to increase readability.
Green background color represents
statistically significant differences
(p < .05).

Fixations
Figure 3 shows the comparisons of the number of fixations
per second between on and off phases for all ten rounds
in the three tasks. Focusing on statistically significant dif-
ferences concerning the number of fixations per second
across the three tasks, we identify following differences: In
color, there are no statistically significant differences in the
number of fixations per second between on and off phases.
As color was identified as easiest task, we conclude that
the number of fixations is not reliable to detect differences
in cognitive load for easy tasks. However, in shape and
color & shape the number of fixations per second is statis-
tically significantly higher in on than in off phases, starting
from R3 (color & shape) and R4 (shape) onward.

We identified an increase for the differences between on
and off phases in color & shape: The number of fixations
per second in on phases increases per round while it de-

creases for off phases. We conclude that more difficult
tasks lead to larger differences in the number of fixations
per second. However, this tendency is not visible in color or
shape. Thus, to measure changes in cognitive load, tasks
have to be sufficiently demanding, as small changes (e.g.
in easy tasks) cannot be detected. In substantially demand-
ing tasks, we might not only distinguish different states of
cognitive load using the number of fixations per second, but
also describe the extent of such differences.

To identify task-specific differences regarding cognitive
load, we applied a repeated-measures ANOVA to compare
the mean number of fixations per second in on phases for
tasks color (M = 2.03, SD=0.20), shape (M = 2.23, SD=0.55),
and color & shape (M = 2.67, SD=0.41). This difference
was statistically significantly different (F (2, 50) = 20.95,
p < .05). A post-hoc analysis revealed statistically signifi-
cant more fixations per second in color & shape compared
to color (p < .016) and compared to shape (p < .016).

Saccades
Figure 4 shows the mean number of saccades per second
for on and off phases for all ten rounds in the three tasks.
The analysis of the number of saccades per second reveals
similar tendencies as the analysis of fixations, yet more
sensitive with regard to changes in cognitive activity for eas-
ier tasks. Figure 4 shows that for color, the number of sac-
cades is statistically significantly higher in on phases com-
pared to off phases for rounds eight, nine, and ten. Thus,
even for the easiest task (color), the number of saccades
can be used to identify differences if the number of distrac-
tors is high enough. In tasks shape and color & shape the
number of saccades is statistically significantly higher in
on phases compared to off phases for all runs. Again, the
larger difference between on and off phases in advanced
rounds of color & shape indicate a possibility to measure



the extent of the in- or decrease of cognitive activities.

We applied a repeated-measures ANOVA to compare the
mean number of saccades per second in on phases for
color (M = 1.83, SD=0.26), shape (M = 2.09, SD=0.62), and
color & shape (M = 2.53, SD=0.48). This difference was
statistically significant (F (2, 50) = 19.36, p < .05). A post-hoc
analysis revealed statistically significantly more saccades
per second in color & shape compared to color (p < .016)
and compared to shape (p < .016).

Figure 4: Mean number of
saccades per second. Each round
is represented by values for on and
off phases. Standard deviations
are hidden to increase readability.
Green background color represents
statistically significant differences
(p < .05).

Blinks
Figure 5 shows the mean number of blinks per second for
on and off phases for all ten rounds in the three tasks. We
expected a lower blink rate being related to a higher cogni-
tive load [2]. Our results are in line with previous work (cf.
Figure 5). We observed statistically significantly less blinks
per second for on phases compared to the corresponding
off phases for shape and color & shape. This tendency
is also visible in color, statistically significant differences
could be identified for round 6 and round 8 onward.

We applied a repeated-measures ANOVA to compare the
mean number of blinks per second in on phases for the
tasks color (M = 0.14, SD=0.12), shape (M = 0.10, SD=0.10),
and color & shape (M = 0.12, SD=0.10). This difference
was statistically significantly different (F (2, 50) = 6.31, p < .05).
However, a post-hoc analysis revealed no statistically signif-
icant differences after applying Bonferroni correction.

Discussion and Future Work
The goal of our study was to measure cognitive load in an
interactive setting based on the analysis of multiple eye
movements as a basis for future cross-validation of mea-
surements. As our results show, all four measurements
(pupil dilation, fixations, saccades, and blink rate) react to
changes in cognitive activity, yet in slightly different ways.

Our analysis revealed the pupil to adapt very quickly to
changes in cognitive demand, allowing us to differentiate
cognitively active phases (on) from passive ones (off ). This
novel technique allows to measure cognitive load beyond
tightly controlled conditions. However, due to the fluctua-
tion, aggregating pupil dilation data over time was difficult.
Also, the pupil is more sensitive to changes in light than to
cognitive demand [6]. We accounted for that by keeping
light conditions constant, however this is difficult to realize
in real-world settings.

Regarding the number of fixations and saccades, we con-
clude that a higher number of these eye movements is
related to an increased level of cognitive load. We found
that both measurements are applicable to detect significant
changes in cognitive demand. However, the measurement
of saccades per second also detects changes on easier
tasks, whereas the number of fixations reacts to changes in
cognitive demand on a higher level. Yet, missing statistically
significant differences might not necessarily indicate that an
eye movement is less applicable, it might also reflect a lack
of cognitive load. Additionally, we found a tendency, that the
size of the difference between on and off phases relates
to the level of cognitive load, as the differences seem to be
larger for more difficult tasks. Envisioning the application
of these measurements in real-world settings, we need to
note that fixations and saccades are very dependant on the
visualization, the interaction, and the nature of the task [10].
Relying on a single metric bears the danger to measure
how people visually interact with the system, rather than
their cognitive engagement. Investigating fixations and
saccades for different types of tasks that involve an even
stronger focus on interaction (e.g. sorting, moving, or rotat-
ing objects) in future work will help us to validate our find-
ings and analyze to what extend these measurements can
be used to investigate cognitive load task-independently.



Regarding the measurement of blink rates, our findings re-
veal significantly lower blink rates for on than for off phases
for rather difficult tasks, showing their applicability to detect
short term changes of cognitive load. As with fixations, this
measurement does not seem to detect changes in cognitive
load on a rather low level. Also, the analysis of blink rates
did not reflect the different levels of difficulty between the
three tasks. We conclude that – similarly to the analysis of
the pupil dilation – the blink rate is particularly applicable for
the identification of cognitive changes during task activity
rather than for aggregations and comparisons of data over
a longer period of time.

Figure 5: Mean number of blinks
per second. Each round is
represented by values for on and
off phases. Standard deviations
are hidden to increase readability.
Green background color represents
statistically significant differences
(p < .05).

Discussing strengths and weaknesses, we conclude that
eye measurements contribute to the detection of cognitive
load. In the future, we encourage a cross-validation of eye
movements to allow for a reliable measurement of cognitive
load. We suggest to use the analysis of pupil dilation and
blink rate to identify changes in cognitive demand during
a task, while the analysis of the frequency of fixations and
saccades seems promising to identify the extent of the cog-
nitive load. Overall, our identified relations of eye tracking
measurements to cognitive load encourage future work on
cognitive load as an objective metric for evaluations in HCI.
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