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Abstract
We prove nearly matching upper and lower bounds on the randomized communication complexity
of the following problem: Alice and Bob are each given a probability distribution over n elements,
and they wish to estimate within ±ε the statistical (total variation) distance between their
distributions. For some range of parameters, there is up to a logn factor gap between the upper
and lower bounds, and we identify a barrier to using information complexity techniques to improve
the lower bound in this case. We also prove a side result that we discovered along the way: the
randomized communication complexity of n-bit Majority composed with n-bit Greater-Than is
Θ(n logn).
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1 Introduction

Statistical (a.k.a. total variation) distance is a standard measure of the distance between two
probability distributions, and is ubiquitous in theoretical computer science. Expressing the
distributions (over a universe of n elements) as vectors of probabilities x = (x1, . . . , xn) and
y = (y1, . . . , yn), the statistical distance is defined as

∆(x, y) := 1
2
∑
i∈[n] |xi − yi| = maxS⊆[n]

∣∣∑
i∈S xi −

∑
i∈S yi

∣∣
= maxS⊆[n]

(∑
i∈S xi −

∑
i∈S yi

)
.

This measure has various interpretations, such as the minimum over all couplings of the
probability that the sample from x and the sample from y are unequal, or as twice the
maximum advantage an observer can achieve in guessing whether a random sample came
from x or from y (where x or y is used with probability 1/2 each).

Given its pervasiveness, it is natural to inquire about the computational complexity of
estimating the statistical distance between two distributions x and y that are given as input.
This topic has been studied before in several contexts:

[25] showed that when each of x and y is succinctly represented by an algorithm that takes
uniform random bits and produces a sample from that distribution (so our actual input
is the description of this pair of algorithms), then (a decision version of) the problem of
estimating ∆(x, y) is complete for the complexity class SZK (statistical zero knowledge).
(For results about the complexity of other problems where the inputs are succinctly
represented distributions, see [12, 13, 3, 14, 30, 29].)
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49:2 Communication Complexity of Statistical Distance

[2, 27, 9] studied the complexity of statistical distance estimation when an algorithm
is only given black-box access to oracles that produce samples from the distributions
specified by x and y. (For results about the complexity of other problems where the
inputs are black-box samples from distributions, see the surveys [14, 24, 7].)
[10, 11] studied the space complexity of (a generalization of) statistical distance estimation
when the vectors x and y are provided as data streams.

1.1 Communication Upper and Lower Bounds
We study the statistical distance estimation problem in the context of communication
complexity: Alice is given the vector x, Bob is given the vector y, and they wish to output
a value in the range

[
∆(x, y)− ε,∆(x, y) + ε

]
. We let Stat-Distn,ε denote this two-party

search problem. For any two-party search problem F , we let R(F ) denote the minimum
worst-case communication cost of any randomized protocol (allowing both public and private
coins) such that for each input, the output is correct with probability at least 3/4. (For our
problem Stat-Distn,ε, the 3/4 can be replaced by any constant in the range (1/2, 1) since
we can amplify success probability by taking the median of multiple trials.) The following is
a clean summary of our bounds.

I Theorem 1.

R(Stat-Distn,ε) is


Θ(1/ε2) if 1 > ε ≥ 1/O(

√
n)

Ω(n) and O(n logn) if 1/ω(
√
n) ≥ ε ≥ 1/2o(n logn)

Θ(log(1/ε)) if 1/2Ω(n logn) ≥ ε > 0
.

We also go ahead and ascertain the deterministic communication complexity (denoted
with D instead of R) of this problem. We prove Theorem 1 and Theorem 2 in Section 2.

I Theorem 2. D(Stat-Distn,ε) = Θ(n log(1/ε)) provided ε is at most a sufficiently small
constant.

Closing the gap in Theorem 1 is a principal open problem. We get slightly better bounds
in certain narrow ranges of ε (see the proof), but e.g., it remains open to prove our conjecture
that R(Stat-Distn,1/2n) ≥ ω(n). A natural strategy is to use information complexity lower
bound techniques; however, in the full version we exhibit a barrier to accomplishing this.
Specifically, for a large class of inputs having a certain type of product structure (which
arises naturally from attempts to use the direct sum property of information complexity),
and for a wide range of ε, Stat-Distn,ε can be solved with O(n) information cost and 0
error probability. This suggests that to improve the Ω(n) bound, we may need to look at
inputs not having the aforementioned product structure, and we are at a loss for techniques
in this case.

1.2 Composing with Majority
We take this opportunity to prove other results that we discovered in the process of trying
to analyze Stat-Distn,ε. Recall the famous direct sum conjecture stating that computing k
independent copies of a two-party function should require Ω(k) times as much randomized
communication as computing 1 copy. A somewhat stronger version of the conjecture states
that even just computing the And of k independent copies should still require Ω(k) times as
much communication. [15] proved the query complexity analogue of this And-composition
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conjecture, as well as a communication complexity version that is weaker than the full
conjecture in two senses: it is qualitatively weaker since instead of converting a protocol
for Andk composed with F into a plain randomized (BPP-type) protocol for F with factor
Ω(k) savings, the conversion results in a protocol in a slightly stronger model (which has
been variously called 2WAPP [16, 15], two-sided smooth rectangle bound [18], and relaxed
partition bound [19]); it is quantitatively weaker since besides the Ω(k) savings, the conversion
incurs a logarithmic additive loss due to the use of the “information odometer” of [5]. (We
provide the precise statement in Section 3.)

We prove that when composing with the k-bit Majority function Majk instead of Andk,
the above quantitative deficiency can be avoided: we get a perfect Ω(k) factor savings by
circumventing the need for the odometer (although we retain the qualitative deficiency).
For the applications in [15, 1], the logarithmic additive loss in the And-composition result
was immaterial albeit perhaps a slight nuisance. In some settings, however, that loss would
be damaging; one such setting is the following corollary (which holds by combining our
Maj-composition result with the lower bound of [6] for the Greater-Than function Gtn on
n-bit inputs).

I Theorem 3. R(Majn ◦Gtnn) = Θ(n logn).

Evaluating the function Majn ◦Gtnn can be described by a story: Alice and Bob have
taken some exams and know their own scores, and they wish to determine the victor of their
rivalry: who got a higher score on the most exams?

We prove the Maj-composition result and provide details about Theorem 3 in Section 3.
We make the stronger conjecture that Theorem 3 should hold even with Andn instead of
Majn; this would follow from an Ω(logn) information complexity lower bound for Gtn with
respect to a distribution only over 1-inputs (which is open but may be doable).

1.3 Preliminaries
We define Andn, Orn, Majn as the And, Or, and Majority functions on n bits, and Eqn,
Gtn, Disjn, Ghn as the Equality, Greater-Than, Set-Disjointness, and Gap-Hamming
two-party functions where Alice and Bob each get n bits. We use P for probability, E
for expectation, H for Shannon entropy, and I for mutual information. We generally use
upper-case letters for random variables and corresponding lower-case letters for particular
outcomes.

Randomized protocols by default have both public and private coins. We let CC (Π)
denote the worst-case communication cost of protocol Π. We let ICD(Π) := I(T ; X |Y,R) +
I(T ; Y |X,R) denote the (internal) information cost with respect to (X,Y ) sampled from
the input distribution D, where the random variables T and R represent the communication
transcript and public coins of Π, respectively.

2 Communication Upper and Lower Bounds

We now prove Theorem 1 and Theorem 2. As a preliminary technicality, we note that for the
upper bounds, we may assume each of the probabilities xi and yi can be written exactly in
binary with log(n/ε) +O(1) bits. This is because if we truncate the binary representations
to that many bits and reassign the lost probability to an arbitrary element in both x and y,
this ensures at most ε/4 mass has been shifted within each distribution, so their statistical
distance changes by at most ε/2; then to obtain an ε-estimation for the original x and y, we
can run a protocol to get an (ε/2)-estimation for the new x and y.

APPROX/RANDOM’17



49:4 Communication Complexity of Statistical Distance

Proof of Theorem 1. In fact, we show that R(Stat-Distn,ε) is always
(i) O(1/ε2),
(ii) O(max(n logn, log(1/ε))),
(iii) Ω(min(1/ε2, n)),
(iv) Ω(log(1/ε)),
which gives a slightly more detailed picture than the statement of Theorem 1.

The proof of (i) is inspired by the “correlated sampling lemma” that has been used in the
context of parallel repetition [17, 22, 23] and earlier in the context of LP rounding [20]. As
noted above, we may assume each probability xi and yi is a multiple of 1/m for some integer
m := O(n/ε). We make use of an O(1)-communication equality testing protocol that accepts
with probability 1 when the inputs are equal and accepts with probability exactly 1/2 when
the inputs are unequal (e.g., by using the inputs to index into a uniformly random public
string and comparing the bits at those indices).

Here is the protocol witnessing (i). Alice and Bob repeat the following O(1/ε2) times:
Publicly sample a uniformly random ordering of [n]× [m].
Alice finds the first (iA, jA) in the ordering such that xiA ≥ jA/m.
Bob finds the first (iB, jB) in the ordering such that yiB ≥ jB/m.
Run the equality test on (iA, jA) and (iB, jB).

Then they output q/(1 − q) where q := min(1/2, fraction of iterations where equality test
rejected).

To analyze the correctness, let δ := ∆(x, y) and let p denote the probability the equality
test rejects in a single iteration of the loop. We claim that p = δ/(1 + δ) (and hence
δ = p/(1 − p)). To see this, define the following subsets of [n] × [m]: A :=

{
(i, j) : xi ≥

j/m and yi < j/m
}
, B :=

{
(i, j) : xi < j/m and yi ≥ j/m

}
, and C :=

{
(i, j) : xi ≥

j/m and yi ≥ j/m
}
. Then |A| = |B| = δm and |C| = (1 − δ)m. The first (i∗, j∗) in the

ordering to land in A ∪ B ∪ C is uniformly distributed in that set. Thus with probability
δ/(1+δ) we have (i∗, j∗) ∈ A, in which case (iA, jA) = (i∗, j∗) 6= (iB, jB), and with probability
δ/(1+δ) we have (i∗, j∗) ∈ B, in which case (iA, jA) 6= (i∗, j∗) = (iB, jB), and with probability
(1 − δ)/(1 + δ) we have (i∗, j∗) ∈ C, in which case (iA, jA) = (i∗, j∗) = (iB, jB). It follows
that the equality test rejects with probability δ

1+δ ·
1
2 + δ

1+δ ·
1
2 + 1−δ

1+δ · 0 = δ/(1 + δ).
By a Chernoff bound, the number of iterations guarantees that with probability at least

3/4, |q− p| ≤ ε/8. Since d
dp

[
p/(1− p)

]
= 1/(1− p)2 ∈ [1, 4] for all p ∈ [0, 1/2], it follows that

|output − δ| =
∣∣q/(1 − q) − p/(1 − p)∣∣ ≤ ε/2 whenever |q − p| ≤ ε/8 and q ∈ [0, 1/2]. This

proves (i).

To prove (ii), we exploit the fact that the Greater-Than function Gtk with k-bit inputs
can be computed with error probability γ > 0 and O(log(k/γ)) bits of communication (by
running the standard binary-search-based protocol [21, p. 170] for O(log(k/γ)) many steps).
As noted above, we may assume each probability xi and yi has log(n/ε) +O(1) bits.

Here is the protocol witnessing (ii). For each i ∈ [n], Alice and Bob compute Gt(xi, yi)
with error probability 1/(4n). Then Alice sends Bob the sum of xi over all i for which the
protocol for Gt(xi, yi) accepted, and Bob sends Alice the sum of yi over the same i’s. They
output Alice’s sum minus Bob’s sum. By a union bound, with probability at least 3/4 each of
the Gt tests returns the correct answer, in which case the final output is correct by definition.
The communication cost is O

(
n log(n log(n/ε)) + log(n/ε)

)
≤ O(max(n logn, log(1/ε))).

To prove (iii), we use a reduction from the Gap-Hamming partial function Ghn,ε, in which
the goal is to determine whether the relative Hamming distance between Alice’s and Bob’s
length-n bit strings is > 1/2 + ε or < 1/2− ε. It is known that R(Ghn,ε) ≥ Ω(min(1/ε2, n))
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[8, 28, 26]. Here is the reduction: Alice transforms a ∈ {0, 1}n into a distribution x over
[2n] by letting x2i−ai

= 1/n for each i ∈ [n] (and letting all other entries of x be 0). Bob
transforms b into y in the same way. Then ∆(x, y) equals the relative Hamming distance
between a and b, so a protocol for Stat-Dist2n,ε can distinguish the two cases (by whether
the output is above or below 1/2).

To prove (iv), consider any correct randomized protocol for Stat-Distn,ε, and fix any set
of 1/(3ε) many pairs of distributions having statistical distances 0, 3ε, 6ε, 9ε, . . .. There must
exist some outcome of the randomness of the protocol such that the induced deterministic
protocol is correct on at least three fourths of those inputs. But then the same transcript
cannot occur for any two of these 1/(4ε) inputs since the statistical distances are more than
2ε apart. Thus at least 1/(4ε) transcripts are necessary, so the communication cost must be
at least log(1/ε)− 2. J

Proof of Theorem 2. For the upper bound, assuming each probability xi and yi is a multiple
of 1/m for some integer m := O(n/ε), we employ the trivial protocol where Alice sends a
specification of her distribution to Bob (who then responds with the (log(n/ε) +O(1))-bit an-
swer). We just need to count the number of such distributions:

(
m+n−1
n−1

)
≤
( e·(m+n−1)

n−1
)n−1 ≤(

O(1/ε)
)n. Hence only O(n log(1/ε)) bits are needed to specify a distribution.

The proof of the lower bound is basically a Gilbert–Varshamov argument for codes in the
Manhattan metric. Specifically, we claim that there is a set of 2Ω(n log(1/ε)) many distributions
over [n] that pairwise have statistical distance > 2ε. Then for any distinct distributions x
and x′ from this set, the inputs (x, x) and (x′, x′) cannot share the same transcript in any
correct protocol for Stat-Distn,ε, because if they did then (x, x′) would also share that
transcript, but (x, x) requires output ≤ ε while (x, x′) requires output > ε. Hence any correct
protocol has at least 2Ω(n log(1/ε)) transcripts and so has communication cost Ω(n log(1/ε)).

To see the claim, first note that the number of distributions whose probabilities are
multiples of 1/m is

(
Ω(1/ε)

)n, while the number of such distributions within statistical
distance ≤ 2ε of any fixed such distribution can be simply upper bounded by 2n ·

(4εm+n
n

)
≤(

O(1)
)n. Hence if we keep greedily adding to a set any distribution that has statistical

distance > 2ε from every distribution we picked so far, then the number of iterations
this process can continue is at least

(
Ω(1/ε)

)n/(
O(1)

)n ≥ (Ω(1/ε)
)n, which is 2Ω(n log(1/ε))

provided ε is at most a sufficiently small constant. J

3 Composing with Majority

In this section, we follow a convention that has become common in recent literature: For a
two-party (possibly partial) function F : {0, 1}n × {0, 1}n → {0, 1} and a complexity class
name C, we let C(F ) denote the minimum worst-case cost of any protocol for F in the model
corresponding to C, and we also use C to denote the class of (families of) F ’s such that
C(F ) ≤ polylog(n). In particular, BPP(F ) is an alias for the plain randomized communication
complexity R(F ) in the case of {0, 1}-valued F , but we use the complexity class notation
now for aesthetic consistency. We also need the following “2-sided WAPP” model.1

1 There are two ways to define this model, which are equivalent up to a factor of 2 in ε. Our way was
also used in [16] and is the same as the relaxed partition bound [19]. In [15], a “starred” notation was
used for this, while the notation 2WAPP was reserved for the other definition, which is the same as the
two-sided smooth rectangle bound [18].

APPROX/RANDOM’17
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I Definition 4. 2WAPPε(F ) := min
(
CC (Π) + log(1/α)

)
over all α > 0 and protocols Π

with output values {0, 1,⊥} such that for all (x, y), P[Π(x, y) 6= ⊥] ≤ α and P[Π(x, y) =
F (x, y)] ≥ (1− ε)α.

For all F and constants 0 < ε < 1/2, we have O(BPP(F )) ≥ 2WAPPε(F ) ≥ Ω(PP(F )),
and thus BPP ⊆ 2WAPPε ⊆ PP. It is not necessary to recall the communication complexity
definition of PP, but we remark that 2WAPPε feels intuitively much closer to BPP, since
there are many interesting classes sandwiched between 2WAPPε and PP [16]. The following
is due to [16].

I Theorem 5 (And-composition). For all F , k, and constants 0 < ε < 1/2, we have

2WAPPε(F ) ≤ O
(
BPP(Andk ◦ F k)/k + log BPP(Andk ◦ F k)

)
.

We prove that by using Majk instead of Andk, the logarithmic term can be avoided.

I Theorem 6 (Maj-composition). For all F , k, and constants 0 < ε < 1/2, we have

2WAPPε(F ) ≤ O
(
BPP(Majk ◦ F k)/k + 1

)
.

Proof of Theorem 3. As noted in the proof of Theorem 1, Gtn has a protocol with error
probability 1/(4n) and communication cost O(logn). By running this on each of n coordinates,
with probability at least 3/4 all the outputs will be correct, so a protocol witnessing
BPP(Majn ◦ Gtnn) ≤ O(n logn) can be obtained by applying Majn to all these outputs.
The matching lower bound follows by combining Theorem 6 with the result that PP(Gtn) ≥
Ω(logn) [6]. J

Theorem 6 follows by stringing together the following three lemmas. For any input
distribution D (over the domain of F ), we define the distributions Db := (D |F−1(b)) for
b ∈ {0, 1}. We say a protocol Π is δ-correct for F iff P[Π(x, y) = F (x, y)] ≥ 1 − δ for all
(x, y).

I Lemma 7. Fix any F , k, 0 < δ < 1/2, and input distribution D. For every δ-correct
protocol Π for Majk ◦ F k there exists a δ-correct protocol Π′ for F such that ICDb(Π′) ≤
O(CC (Π)/k) holds for both b ∈ {0, 1}.

I Lemma 8. Fix any F , input distribution D, and protocol Π (not necessarily correct). Then

ICD(Π)− 4 ≤
∑
b PD[F−1(b)] · ICDb(Π) ≤ ICD(Π).

I Lemma 9. Fix any F , constants 0 < δ < ε < 1/2, and value c. If for every in-
put distribution D there exists a δ-correct protocol Π for F such that ICD(Π) ≤ c, then
2WAPPε(F ) ≤ O(c+ 1).

Only the first inequality in Lemma 8 is needed for Theorem 6. Lemma 9 is due to [19].
Before we commence with the proofs of Lemma 7 and Lemma 8, we recall the following
standard fact; see [4, §2.1] for a proof. (We apologize for overloading the D notation between
this fact and the above lemmas, but there should be no confusion.)

I Fact 10. Let A,B,C,D be four random variables. Then
(i) I(A ; B |C) ≤ I(A ; B |C,D) if I(B ; D |C) = 0;
(ii) I(A ; B |C) ≥ I(A ; B |C,D) if I(B ; D |A,C) = 0.
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Proof of Lemma 7. Assume k is odd for convenience. Consider a probability space with the
following random variables: Z ∈ {0, 1}k is a uniformly random string of Hamming weight
dk/2e, S := {i : Zi = 1}, (X,Y ) is such that (Xi, Yi) ∼ DZi for each i ∈ [k] independently,
and T and R are the communication transcript and public coins (respectively) of Π on
input (X,Y ). We use the subscript notation X<i and X>i for restrictions to coordinates
in {1, . . . , i − 1} and {i + 1, . . . , k}, and we use the superscript notation XS and X−S for
restrictions to coordinates in S and [k] r S, and we may combine these so e.g., X−S>i is the
restriction to coordinates in {i+ 1, . . . , k}rS. We use corresponding notation for restrictions
of Y . We have

2 · CC (Π)
≥ I
(
T ; XS

∣∣X−S , Y, R, S)+ I
(
T ; Y S

∣∣Y −S , X,R, S)
= Es∼S

[∑
i∈s I

(
T ; Xi

∣∣Xs
<i, X

−s, Y, R, s
)

+
∑
i∈s I

(
T ; Yi

∣∣Y s>i, Y −s, X,R, s)]
≥ Es∼S

[∑
i∈s I

(
T ; Xi

∣∣Yi, X<i, Y>i, R, s
)

+
∑
i∈s I

(
T ; Yi

∣∣Xi, Y>i, X<i, R, s
)]

= dk/2e · E
s∼S, i∼s, r∼R

x<i∼X<i, y>i∼Y>i

[
I
(
T ; Xi

∣∣Yi, x<i, y>i, r, s)+ I
(
T ; Yi

∣∣Xi, x<i, y>i, r, s
)]

where the second line is by the chain rule, the third line is by Fact 10.(i) since X−s>i , Y<i
is independent of Xi given Yi, X<i, Y>i, R, s and since Y −s<i , X>i is independent of Yi given
Xi, Y>i, X<i, R, s, and where i ∼ s on the fourth line means i is sampled uniformly at random
from the set s.

Note that sampling s ∼ S and i ∼ s is equivalent to sampling i ∼ [k] and a uniformly
random balanced bit string z−i ∼ Z−i indexed by [k] r {i} (and setting zi = 1). We let
q ∼ Q denote a sample of all the data (i, z−i, r, x<i, y>i). In summary, we have

Eq∼Q
[
I(T ; Xi |Yi, q) + I(T ; Yi |Xi, q)

]
≤ (2/dk/2e) · CC (Π)

so by Markov’s inequality, with probability > 1/2 over q ∼ Q we have

I(T ; Xi |Yi, q) + I(T ; Yi |Xi, q) ≤ (4/dk/2e) · CC (Π) (1)

where (Xi, Yi) ∼ D1. By symmetric reasoning (interchanging the roles of 0 and 1), with
probability > 1/2 over q ∼ Q, (1) also holds if we instead have (Xi, Yi) ∼ D0. Thus there
exists a q (which we fix henceforth) such that (1) holds both when (Xi, Yi) ∼ D1 and when
(Xi, Yi) ∼ D0 (and in either case, (Xj , Yj) ∼ Dzj for j 6= i).

Now consider the protocol Π′ where the input is interpreted as (xi, yi), Alice privately
samples x>i ∼ (X>i | y>i, z>i), Bob privately samples y<i ∼ (Y<i |x<i, z<i), and they run Π
on the combined input (x, y) with public coins r. The conclusion of the previous paragraph
is exactly that ICDb(Π′) ≤ (4/dk/2e) · CC (Π) ≤ O(CC (Π)/k) holds for both b ∈ {0, 1}.
Furthermore, Π′ is δ-correct since Π is δ-correct and F (xi, yi) = (Majk ◦ F k)(x, y) with
probability 1, for every (xi, yi) in F ’s domain. J

Proof of Lemma 8. Consider a probability space with the following random variables:
(X,Y ) ∼ D, F := F (X,Y ), and T and R are the communication transcript and public
coins (respectively) of Π on input (X,Y ). Then we have

ICD(Π) = I(T ; X |Y,R) + I(T ; Y |X,R)∑
b PD[F−1(b)] · ICDb(Π) = I(T ; X |Y,R, F ) + I(T ; Y |X,R, F )

APPROX/RANDOM’17
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and so the second inequality of Lemma 8 holds by Fact 10.(ii) since conditioned on X,Y,R,
there is no remaining entropy in F and hence it is independent of T .

For the first inequality, we use the following result proven in [15].

I Lemma 11. There exist numbers cx,y, c′x,y ≥ 0 for each input (x, y) in the domain of F ,
such that

ICD(Π) = E[cX,Y ],
ICDb(Π) = E[c′X,Y |F = b] for both b ∈ {0, 1},
for each (x, y) in the domain of F , letting b := F (x, y) we have

cx,y ≤ c′x,y + log
(
1/P[F = b | y]

)
+ log

(
1/P[F = b |x]

)
.

Hence, letting px,y := P[(X,Y ) = (x, y)], we have

ICD(Π) =
∑

(x,y) px,y · cx,y
≤
∑
b

∑
(x,y)∈F−1(b) px,y ·

(
c′x,y + log

(
1/P[F = b | y]

)
+ log

(
1/P[F = b |x]

))
=
∑
b P[F = b] · ICDb(Π) +∑
b

∑
(x,y)∈F−1(b) px,y ·

(
log
(
1/P[F = b | y]

)
+ log

(
1/P[F = b |x]

))
.

We claim that for both b ∈ {0, 1} we have
∑

(x,y)∈F−1(b) px,y · log
(
1/P[F = b | y]

)
≤ 1

and
∑

(x,y)∈F−1(b) px,y · log
(
1/P[F = b |x]

)
≤ 1; it then follows that ICD(Π) ≤

∑
b P[F =

b] · ICDb(Π) + 4.
We just argue the claim for b = 1 and conditioning on y; the other three cases are com-

pletely analogous. For a ∈ {0, 1} define pay := P[F = a and Y = y] =
∑
x : (x,y)∈F−1(a) px,y.

Then we have∑
(x,y)∈F−1(1) px,y · log

(
1/P[F = 1 | y]

)
=
∑
y p

1
y · log

(
(p0
y + p1

y)/p1
y

)
≤
∑
y p

1
y ·
(
(p0
y + p1

y)/p1
y

)
= 1.

This finishes the proof. J
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