skip to main content
10.1145/3173574.3173834acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Thermorph: Democratizing 4D Printing of Self-Folding Materials and Interfaces

Authors Info & Claims
Published:21 April 2018Publication History

ABSTRACT

We develop a novel method printing complex self-folding geometries. We demonstrated that with a desktop fused deposition modeling (FDM) 3D printer, off-the-shelf printing filaments and a design editor, we can print flat thermoplastic composites and trigger them to self-fold into 3D with arbitrary bending angles. This is a suitable technique, called Thermorph, to prototype hollow and foldable 3D shapes without losing key features. We describe a new curved folding origami design algorithm, compiling given arbitrary 3D models to 2D unfolded models in G-Code for FDM printers. To demonstrate the Thermorph platform, we designed and printed complex self-folding geometries (up to 70 faces), including 15 self-curved geometric primitives and 4 self-curved applications, such as chairs, the simplified Stanford Bunny and flowers. Compared to the standard 3D printing, our method saves up to 60% - 87% of the printing time for all shapes chosen.

Skip Supplemental Material Section

Supplemental Material

pn2599-file3.mp4

mp4

49 MB

pn2599-file5.mp4

mp4

9.6 MB

References

  1. An, B., Miyashita, S., Tolley, M.T., Aukes, D.M., Meeker, L., Demaine, E.D., Demaine, M.L., Wood, R.J., Rus, D. 2014. An end-to-end approach to making self-folded 3D surface shapes by uniform heating. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), 14661473.Google ScholarGoogle ScholarCross RefCross Ref
  2. Beyer, D., Gurevich, S., Mueller, S., Chen, H.-T., Baudisch, P. 2015. Platener: Low-fidelity fabrication of 3D objects by substituting 3D print with laser-cut plates. In Proceedings of the CHI 2015, 1799--1806. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Carneiro, O., Silva, A., Gomes, R. 2015. Fused deposition modeling with polypropylene. Materials & Design 83, 768--776.Google ScholarGoogle ScholarCross RefCross Ref
  4. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G. 2008. Meshlab: an opensource mesh processing tool. In Proceedings of the Eurographics Italian Chapter Conference, 129--136.Google ScholarGoogle Scholar
  5. Coelho, M., Ishii, H., Maes, P. 2008. Surflex: a programmable surface for the design of tangible interfaces. In Proceedings of the CHI'08 extended abstracts on Human factors in computing systems, 3429--3434. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Coelho, M., Maes, P. 2009. Shutters: a permeable surface for environmental control and communication. In Proceedings of the TEI 2009, 13--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Correa, D., Papadopoulou, A., Guberan, C., Jhaveri, N., Reichert, S., Menges, A., Tibbits, S. 2015. 3DPrinted Wood: Programming Hygroscopic Material Transformations. 3D Printing and Additive Manufacturing 2, 106--116.Google ScholarGoogle Scholar
  8. Felton, S., Tolley, M., Demaine, E., Rus, D., Wood, R. 2014. A method for building self-folding machines. Science 345, 644--646.Google ScholarGoogle ScholarCross RefCross Ref
  9. Felton, S.M., Tolley, M.T., Onal, C.D., Rus, D., Wood, R.J. 2013. Robot self-assembly by folding: A printed inchworm robot. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), 277--282.Google ScholarGoogle ScholarCross RefCross Ref
  10. Follmer, S., Leithinger, D., Olwal, A., Hogge, A., Ishii, H. 2013. inFORM: dynamic physical affordances and constraints through shape and object actuation. In Proceedings of the UIST 2013, 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ge, Q., Qi, H.J., Dunn, M.L. 2013. Active materials by four-dimension printing. Applied Physics Letters 103, 131901.Google ScholarGoogle ScholarCross RefCross Ref
  12. Gladman, A.S., Matsumoto, E.A., Nuzzo, R.G., Mahadevan, L., Lewis, J.A. 2016. Biomimetic 4D printing. Nature materials 15, 413--418.Google ScholarGoogle Scholar
  13. Groeger, D., Chong Loo, E., Steimle, J. 2016. Hotflex: Post-print customization of 3d prints using embedded state change. In Proceedings of the CHI 2016, 420--432. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hawkes, E., An, B., Benbernou, N.M., Tanaka, H., Kim, S., Demaine, E., Rus, D., Wood, R.J. 2010. Programmable matter by folding. Proceedings of the National Academy of Sciences 107, 12441--12445.Google ScholarGoogle ScholarCross RefCross Ref
  15. Heibeck, F., Tome, B., Della Silva, C., Ishii, H. 2015. uniMorph: Fabricating thin film composites for shapechanging interfaces. In Proceedings of the UIST 2015, 233--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Khalilbeigi, M., Lissermann, R., Kleine, W., Steimle, J. 2012. FoldMe: interacting with double-sided foldable displays. In Proceedings of the TEI 2012, 33--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lendlein, A., Kelch, S. 2002. Shape-memory polymers. Angewandte Chemie International Edition 41, 20342057.Google ScholarGoogle ScholarCross RefCross Ref
  18. Liu, Y., Shaw, B., Dickey, M.D., Genzer, J. 2017. Sequential self-folding of polymer sheets. Science Advances 3, e1602417.Google ScholarGoogle ScholarCross RefCross Ref
  19. Mueller, S., Im, S., Gurevich, S., Teibrich, A., Pfisterer, L., Guimbretière, F., Baudisch, P. 2014. WirePrint: 3D printed previews for fast prototyping. In Proceedings of the UIST 2014, 273--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mueller, S., Kruck, B., Baudisch, P. 2013. LaserOrigami: laser-cutting 3D objects. In Proceedings of the CHI 2013, 2585--2592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mueller, S., Mohr, T., Guenther, K., Frohnhofen, J., Baudisch, P. 2014. faBrickation: fast 3D printing of functional objects by integrating construction kit building blocks. In Proceedings of the CHI 2014, 3827--3834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nakagaki, K., Dementyev, A., Follmer, S., Paradiso, J.A., Ishii, H. 2016. ChainFORM: A Linear Integrated Modular Hardware System for Shape Changing Interfaces. In Proceedings of the UIST 2016, 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Olberding, S., Soto Ortega, S., Hildebrandt, K., Steimle, J. 2015. Foldio: Digital fabrication of interactive and shape-changing objects with foldable printed electronics. In Proceedings of the UIST 2015, 223--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ou, J., Skouras, M., Vlavianos, N., Heibeck, F., Cheng, C.-Y., Peters, J., Ishii, H. 2016. aeroMorph-Heatsealing Inflatable Shape-change Materials for Interaction Design. In Proceedings of the UIST 2016, 121--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ou, J., Yao, L., Tauber, D., Steimle, J., Niiyama, R., Ishii, H. 2014. jamSheets: thin interfaces with tunable stiffness enabled by layer jamming. In Proceedings of the TEI 2014, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Qi, J., Buechley, L. 2012. Animating paper using shape memory alloys. In Proceedings of the CHI 2012, 749752. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Qi, J., Buechley, L. 2010. Electronic popables: exploring paper-based computing through an interactive pop-up book. In Proceedings of the TEI 2010, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Raviv, D., Zhao, W., McKnelly, C., Papadopoulou, A., Kadambi, A., Shi, B., Hirsch, S., Dikovsky, D., Zyracki, M., Olguin, C. 2014. Active printed materials for complex self-evolving deformations. Scientific reports 4, 7422.Google ScholarGoogle Scholar
  29. Sareen, H., Umapathi, U., Shin, P., Kakehi, Y., Ou, J., Ishii, H., Maes, P. 2017. Printflatables: Printing Human-Scale, Functional and Dynamic Inflatable Objects. In Proceedings of the CHI 2017, 3669--3680. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Saul, G., Xu, C., Gross, M.D. 2010. Interactive paper devices: end-user design & fabrication. In Proceedings of the TEI 2010, 205--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Schmutzler, C., Zimmermann, A., Zaeh, M.F. 2016. Compensating warpage of 3D printed parts using freeform deformation. Procedia CIRP 41, 1017--1022.Google ScholarGoogle ScholarCross RefCross Ref
  32. Sundaram, S., Kim, D.S., Baldo, M.A., Hayward, R.C., Matusik, W. 2017. 3D-printed self-folding electronics. ACS applied materials & interfaces 9, 32290--32298.Google ScholarGoogle Scholar
  33. Takahashi, S., Wu, H.Y., Saw, S.H., Lin, C.C., Yen, H.C. 2011. Optimized topological surgery for unfolding 3d meshes. In Proceedings of the Computer graphics forum, 2077--2086.Google ScholarGoogle ScholarCross RefCross Ref
  34. Tao, Y., Wang, G., Zhang, C., Lu, N., Zhang, X., Yao, C., Ying, F. 2017. WeaveMesh: A Low-Fidelity and Low-Cost Prototyping Approach for 3D Models Created by Flexible Assembly. In Proceedings of the CHI 2017, 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Tibbits, S., McKnelly, C., Olguin, C., Dikovsky, D., Hirsch, S. 2014. 4D Printing and universal transformation.Google ScholarGoogle Scholar
  36. Tolley, M.T., Felton, S.M., Miyashita, S., Aukes, D., Rus, D., Wood, R.J. 2014. Self-folding origami: shape memory composites activated by uniform heating. Smart Materials and Structures 23, 094006.Google ScholarGoogle ScholarCross RefCross Ref
  37. Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., Kelly, D., Chen, K., Pinschmidt, R., Rolland, J.P., Ermoshkin, A. 2015. Continuous liquid interface production of 3D objects. Science 347, 1349--1352.Google ScholarGoogle ScholarCross RefCross Ref
  38. Umapathi, U., Chen, H.-T., Mueller, S., Wall, L., Seufert, A., Baudisch, P. 2015. Laserstacker: Fabricating 3D objects by laser cutting and welding. In Proceedings of the UIST 2015, 575--582. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. van Manen, T., Janbaz, S., Zadpoor, A.A. 2017. Programming 2D/3D shape-shifting with hobbyist 3D printers. Materials Horizons 4, 1064--1069.Google ScholarGoogle ScholarCross RefCross Ref
  40. Wang, G., Yao, L., Wang, W., Ou, J., Cheng, C.-Y., Ishii, H. 2016. xPrint: A Modularized Liquid Printer for Smart Materials Deposition. In Proceedings of the CHI 2016, 5743--5752. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wang, W., Yao, L., Zhang, T., Cheng, C.-Y., Levine, D., Ishii, H. 2017. Transformative Appetite: ShapeChanging Food Transforms from 2D to 3D by Water Interaction through Cooking. In Proceedings of the CHI 2017, 6123--6132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wiethoff, A., Schneider, H., Rohs, M., Butz, A., Greenberg, S. 2012. Sketch-a-TUI: low cost prototyping of tangible interactions using cardboard and conductive ink. In Proceedings of the TEI 2012, 309--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Yang, W.G., Lu, H., Huang, W.M., Qi, H.J., Wu, X.L., Sun, K.Y. 2014. Advanced shape memory technology to reshape product design, manufacturing and recycling. Polymers 6, 2287--2308.Google ScholarGoogle ScholarCross RefCross Ref
  44. Yao, L., Niiyama, R., Ou, J., Follmer, S., Della Silva, C., Ishii, H. 2013. PneUI: pneumatically actuated soft composite materials for shape changing interfaces. In Proceedings of the UIST 2013, 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Yao, L., Ou, J., Cheng, C.-Y., Steiner, H., Wang, W., Wang, G., Ishii, H. 2015. BioLogic: natto cells as nanoactuators for shape changing interfaces. In Proceedings of the CHI 2015, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Zhang, Q., Yan, D., Zhang, K., Hu, G. 2015. Pattern transformation of heat-shrinkable polymer by threedimensional (3D) printing technique. Scientific reports 5.Google ScholarGoogle Scholar
  47. Zhang, Q., Zhang, K., Hu, G. 2016. Smart threedimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Scientific reports 6, 22431.Google ScholarGoogle Scholar

Index Terms

  1. Thermorph: Democratizing 4D Printing of Self-Folding Materials and Interfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '18: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
      April 2018
      8489 pages
      ISBN:9781450356206
      DOI:10.1145/3173574

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 April 2018

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '18 Paper Acceptance Rate666of2,590submissions,26%Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader