
Security During Application Development: an Application
Security Expert Perspective

Tyler W Thomas, Madiha Tabassum, Bill Chu, and Heather Lipford
University of North Carolina at Charlotte

Department of Software and Information Systems
tthoma81@uncc.edu, mtabassu@uncc.edu, billchu@uncc.edu, Heather.Lipford@uncc.edu

ABSTRACT
Many of the security problems that people face today, such as
security breaches and data theft, are caused by security vul-
nerabilities in application source code. Thus, there is a need
to understand and improve the experiences of those who can
prevent such vulnerabilities in the first place - software devel-
opers as well as application security experts. Several studies
have examined developers’ perceptions and behaviors regard-
ing security vulnerabilities, demonstrating the challenges they
face in performing secure programming and utilizing tools
for vulnerability detection. We expand upon this work by fo-
cusing on those primarily responsible for application security
- security auditors. In an interview study of 32 application
security experts, we examine their views on application se-
curity processes, their workflows, and their interactions with
developers in order to further inform the design of tools and
processes to improve application security.

ACM Classification Keywords
H.2.m Information Interfaces and Presentation (e.g. HCI): Mis-
cellaneous; D.2.4 Software Engineering: Software/Program
Verification, Testing and Debugging, Management

Author Keywords
Application Security Experts; Security Vulnerabilities; Secure
Programming; Software Development

INTRODUCTION
A large number of security issues are caused by a type of soft-
ware bug, known as a security vulnerability. These vulnerabili-
ties can be extremely damaging when exploited. The infamous
2017 Equifax breach was the direct result of a web application
security vulnerability [5, 17]. As of this writing, this breach is
believed to have compromised detailed personal information
of one hundred forty three million people, or almost half of
the population of the United States [5, 17]. According to the
United States Department of Homeland Security, 6,449 new
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5620-6/18/04. . . $15.00

DOI: https://doi.org/10.1145/3173574.3173836

software vulnerabilities were reported in 2016 alone [8], and
the number of actual vulnerabilities in the software we use is
likely far higher than this. Security vulnerabilities can be ex-
ploited through a variety of attacks, such as cross site scripting
and SQL injection, to steal private information, harming both
individuals and organizations. Thus, to the extent possible,
security vulnerabilities should be found and remediated in
application source code.

Security vulnerabilities are introduced by developers while
creating software. Organizations implement a variety of pro-
cesses to find and fix vulnerabilities in the software devel-
opment lifecycle, such as security audits and static analysis.
There are a large number of commercial tools, as well as nu-
merous research projects aimed at helping detect such security
issues.

Yet, developers are not heavily involved in such security pro-
cesses [10, 16]. Prior research suggests that developers feel
that security is the responsibility of other parties, and conse-
quently avoid engaging in security practices when possible,
delegating to other people and processes within the organi-
zation [10, 16, 31]. Additional research has examined why
developers have difficulty using static analysis tools to de-
tect security vulnerabilities, including large numbers of false
positives, lack of collaboration support, and complicated tool
output [10]. Other researchers are examining guidelines and
approaches for improving the usability of tools for developers
[16, 19, 20].

All of this existing and ongoing work has focused on the
perspectives and needs of developers. We expand upon these
results by focusing on the people who currently do application
security work. Application security is often the responsibility
of a "Software Security Group," or SSG, within organizations.
Application security experts within that group are charged
with performing static and dynamic analysis to find security
vulnerabilities in application source code. By focusing on
this important group of users, we examine additional needs
and experiences of all people involved in application security
work to further inform the design of tools and processes for
reducing security vulnerabilities in applications.

In this paper, we report the results of an interview study of
application security experts who examine source code for se-
curity issues, who we refer to as security auditors. Our goals
are to gain an understanding of the security processes in their

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 262 Page 1

https://doi.org/10.1145/3173574.3173836
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3173574.3173836&domain=pdf&date_stamp=2018-04-21


organizations, their interactions with developers and other
stakeholders, and their perceptions on the challenges they face
and impact on application security. This knowledge will sup-
port the research and development efforts of tools aimed at
these security experts, and the developers they work with. The
end goal is to improve the experiences and interactions of de-
velopers and security experts, thereby improving the security
of applications, and reducing the likelihood and occurrences
of security attacks on applications.

RELATED WORK
Prior work has explored both the needs and behaviors of secu-
rity experts, as well as more specific behaviors and perceptions
of security within software development.

Security experts
A variety of research has examined the behaviors, perspec-
tives, and needs of security experts, identifying a range of
common challenges including a lack of security training in
organizations, communication issues between security experts
and other stakeholders, and the lack of efficient security tools
[24, 25, 26]. Security experts must communicate with a variety
of other stakeholders throughout an organization to resolve
security issues. Thus, there is need for security tools to better
support this collaboration and reduce communication over-
head.

Previous research on security experts has also produced guide-
lines for security tools for general security experts. Such
guidelines should also apply, at least to some degree, for ap-
plication security tools for both auditors and developers. For
example, Werlinger et al. recommended that security tools
should decrease complexity and communication overhead, dis-
seminate knowledge, and provide flexible reporting [25]. Sim-
ilarly, guidelines from Jaferian at al. on security management
tools include customizability, easy to change configurations,
automatic detection of security issues, and different interfaces
for different stakeholders [9]. We extend these results with
more depth regarding the detailed issues within the domain of
application security and vulnerability detection and mitigation.

Security in Software Development
Organizational factors, such as organizational structure, orga-
nizational politics, and managerial pressure, can impact the
quality of the code that developers write [11, 12, 13]. The se-
curity of the code is similarly impacted. For example, Kroksch
& Poller examined the potential of an external security con-
sultation to lead to new security routines within an Agile
development team [15]. They found that the intervention did
lead to increased awareness and desire to incorporate security
as an important quality of their software. Despite this interest,
security was not ultimately made an integral part of the devel-
opment process because such security work was discouraged
by the organizational structure and organizational goals. This
case study emphasizes the importance of not just increasing
developers’ attention to security issues, but also to the need for
organizations to develop routines and reward the security work
that developers do. Similarly, Jing et al. found “A disconnect
between developers conceptual understanding of security and

their attitudes regarding their personal responsibility and prac-
tices for software security [31].” Even with awareness of the
importance of security, developers expected other people and
processes to take care of those issues. Thus, simply increas-
ing developers’ knowledge of security vulnerabilities will not
necessarily lead to an increase in their performing security
work.

Researchers have also examined the challenges that developers
face in correctly utilizing security APIs and security-related
documentation and resources in their code. For example, Fahl
et al. demonstrated the mistakes developers make in incor-
rectly or insecurely using SSL APIs [6], and simplified crypto-
graphic APIs have been shown to be more usable [28]. A study
of cryptographic APIs also demonstrated that documentation
is crucial for both usability and security [1]. One difficulty
is that formal API documentation may be secure, but can be
difficult to use. Formal security guidance provided to devel-
opers may also not provide sufficiently detailed solutions [1,
3]. Instead, developers turn to informal but less secure sources
such as StackOverflow [2, 3].

Developers and Security Analysis Tools
Researchers have established that developers underuse security
tools, focusing in particular on static analysis tools, for a
variety of reasons. Through an interview study of developers,
Johnson et al. found that while developers’ perceived static
analysis tools to be beneficial, they did not use them due to
high false positive rates, and the ways in which warnings were
presented to users [10]. Developers are also impacted by their
social and organizational environment, and are more likely
to adopt security tools when their peers already use and trust
those tools [27]. Interacting with security experts can also
increase developers’ feelings of responsibility for securing
their code [27].

However, commercial static and dynamic analysis tools may
not be sufficiently usable for developers, who will have more
limited security knowledge [18]. Smith et al. examined the
kinds of questions that developers ask when assessing pos-
sible security vulnerabilities found by static analysis tools
[20]. In categorizing these questions, they found that devel-
opers do a lot more work to understand a vulnerability and
its remediation than simply reading the warning notification.
Developers need support for a wide range of code understand-
ing, including tracing the flow of untrusted data, comparing
vulnerabilities against previous examples, and finding addi-
tional documentation. Tools do not adequately help developers
resolve vulnerabilities, resulting in failures to efficiently and
successfully address the vulnerability warnings [19].

Other researchers have created new static analysis tools to
address the specific needs of developers. At Google, Sadowski
created the static analysis tool Tricorder, with the specific aim
of increasing developer use of static analysis methods by de-
creasing false positive warnings [16]. Developers submitted
their own static analyzers, which were incorporated into the
tool only if user feedback indicated sufficiently low uninter-
esting warnings. Do et al. propose a just-in-time approach
through layered static analysis, providing developers with the

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 262 Page 2



most relevant warnings alongside their development activi-
ties in real time [4]. The ASIDE tool introduced interactive
static analysis, integrating security vulnerability warnings and
mitigations alongside the code that developers write [21, 30].
Similarly, the FixDroid tool provides Android developers with
warnings and quick fixes covering a variety of common secu-
rity pitfalls [14]. Developers have been shown to appreciate
in-context security feedback and easy mitigation options [4,
14, 29, 32]. None of these previous efforts have examined
vulnerability detection and mitigation within context of orga-
nizational teams and processes for developing and releasing
software. Thus, we aim to add to these results by examining
the viewpoint of an additional stakeholder, the application
security expert.

METHODOLOGY
We conducted an interview study of experts in application
security, seeking participants who either examine source code
or perform static or dynamic analyses. For simplicity, we refer
to these experts as security auditors throughout the paper. We
recruited these experts using a snowball sampling technique,
utilizing contacts from a variety of sources and then asking
participants to recommend additional experts. We started with
our own personal contacts, and made additional contacts at
two security events, namely the CyberSecurity Symposium at
our university held annually for regional security profession-
als as well as OWASP’s 13th Annual AppSecUSA Security
Conference.

We recruited a total of thirty-two participants from twenty-
seven different organizations, see Table 1. Job titles varied
greatly, and included “Security Consultant” (n=4), “Security
Engineer” (n=5), and “Systems” or “Software” Engineer with
a security role (n=5). As P6 stated, “In the industry there’s
security analyst, there’s security engineer, appsec engineer,
appsec analyst, there’s a lot of names. But they should all be
able to do the same thing.” Several participants held senior
positions, with titles containing “Manager” (n=2), “Director”
(n=6), or “Vice President” (n=2). Participants reported an
average of 10.72 years (SD 5.51) of professional experience
as a security expert. Twenty-seven participants had previously
been employed as a developer, with an average of 9.22 (SD
6.24) years of professional experience. All of our participants
were male, and 25 Caucasian. While many organizations did
not produce commercial software, all participants discussed
working at least in part on customer-facing software.

We conducted and recorded an interview over the phone with
each participant. The interviews were semi-structured, with
a set of basic questions that were varied depending on the
participant’s background and the answers they provided. We
asked about participants’ typical workday and responsibilities
for software security. We then asked about their own as well
as their organization’s processes and tools for finding and
mitigating vulnerabilities, how they interact with developers,
the biggest challenges they and their organizations face in
software security, and what solutions they think could address
those challenges. Interviews ranged from 30 - 45 minutes,
and experts were provided a $10 gift card as a thank you for

participating. The study was approved by our university’s
IRB.

We collected our demographic data at the end of the interviews
with a set of closed, structured questions. As part of this, we
asked participants to rate their general security knowledge,
secure programming knowledge, and programming skills on a
scale of one to ten. Participants responded with an average of
8.13 (SD 1.34) for security knowledge and 8.23 (SD 1.23) for
secure programming knowledge. Additionally, participants
responded with an average of 6.61 (SD 1.37) for programming
skills. As expected, participants rated themselves highly on
their security knowledge, with the low standard deviation
demonstrating that they felt similarly about these ratings.

Interviews were transcribed. We followed an inductive coding
process, looking for both common patterns of response to the
questions as well as interesting topics and comments. Two
researchers independently and iteratively coded five sample
participants, comparing and merging their code books with
discussion between all authors. Agreement was reached on the
codebook and all codes for those 5 participants, resulting in a
codebook of 39 separate codes. The two coders then coded all
remaining participants independently with no further changes
to the codebook. When coding was complete, the researchers
compared each individual code and discussed and resolved any
disagreements. Disagreements were tracked, and inter-rater
reliability was calculated at 95.15%. Codes were then grouped
into higher level categories which form the subsections of the
Results section below.

In addition to the coding, we examined all of the transcribed
interviews to perform workflow analysis. Based on each par-
ticipant’s responses, we created a workflow model for each
participant and their organization. Once all diagrams were
complete, we analyzed all of the diagrams, looking for com-
mon patterns and trends. Following this, we iteratively formed
an aggregate workflow model representing the most common
elements and patterns. Lastly, we analyzed the differences
between each of the workflow diagrams as a basis to discuss
the variations on our common workflow model.

RESULTS
We begin by describing the general workflow and security
processes our participants described. We then focus on the
communication and organizational issues that impacted vulner-
ability detection and remediation. Following this, we briefly
discuss technical challenges and needs that they encountered.
Our results are all qualitative, but we report the number of par-
ticipants with similar comments to highlight how prominent
different views were in our sample.

Security Processes
Participants worked in organizations ranging from small soft-
ware companies to very large financial institutions and tech-
nology companies, see Table 1. Although processes and work-
flows for finding and fixing vulnerabilities varied slightly be-
tween participants, most were quite similar. Figure 1 shows
an aggregate workflow model that represents our participants
and their organizations.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 262 Page 3



Table 1. Participant Demographics
ID Job Title Organization Type ID Job Title Organization Type
P1 Principle Application Security Engineer Large Business Management Software P17 Senior Security Consultant Small Consulting
P2 Information Security Engineer Large Financial Institution P18 Director of Information Security Medium Security Software
P3 Director of Security Solutions Large Internet Service Provider P19 Systems Engineer (Security Role) Medium Network Security Services
P4 Senior Software Engineer (Security Focus) Large Engineering and Consulting P20 Senior Security Engineer Medium Call Center Analytics
P5 Technology Manager Information Security Large Financial Institution P21 Cloud and Application Security Manager Large Consulting and Training
P6 Application Security Engineer Large Healthcare Software P22 Director of Security Strategy Medium Risk Management
P7 Security Lead Large Technology Infrastructure P23 CTO (Chief Technology Officer) Small Security Consulting
P8 Senior Security Architect and IT Architect Large Hardware and Software P24 Software Developer (Security Focus) Small Network Security
P9 Sales Engineer Medium Security Software P25 Director of Engineering Small Network Security
P10 Senior Vice President (Role: Security Architect) Large Financial Institution P26 Senior Technology Project Coordinator Large Security Foundation
P11 Senior Security Director Large Technology Infrastructure P27 Principle Security Consultant Medium Consulting
P12 Director of Security Research and Development Large Security Software P28 CTO (Chief Technology Officer), CoFounder Medium Security Software
P13 Program Manager Medium Consulting P29 CSO (Chief Security Officer) Small Security Software
P14 Application Security Consultant Medium Security Software P30 Software Engineer Large Network Infrastructure
P15 Vice President of Threat Research Center Medium Security Software P31 Application Security Consultant Medium Cyber Risk Management
P16 Senior Security Researcher Medium Security Software P32 Senior Application Security Engineer Large Entertainment

Figure 1. Aggregate Security Auditor Workflow Model

Whether the organization followed a more traditional waterfall-
like process and SDLC (Systems Development LifeCycle), or
an AGILE methodology, software developers would first per-
form their implementation tasks. Our auditors (n=25) did men-
tion that code reviews and testing were regularly performed by
developers looking for all kinds of bugs and quality issues, but
that the auditors were not involved in that process as security
was rarely a focus of them.

Our participants were all part of a separate security group op-
erating outside of development teams. Auditors often oversaw
the security of many different applications throughout the orga-
nization. Security processes were initiated after changes to the
code were complete. Two timeline schedules were observed.
If security processes were scheduled at regular intervals, such
as annually, the security process was considered an audit. Au-
dits continued to be performed on released code to find issues
in the deployed software. Otherwise, the security processes
would be scheduled based on the needs of the project and
organization. Both timelines used the same processes of static
analysis, dynamic analysis, pen testing, and manual inspection
to find security vulnerabilities. More details of these processes
are described below.

Once a vulnerability was detected, it was then triaged. This
means that the order in which security bugs were remediated

was prioritized based on their severity. Security vulnerabil-
ities were often documented alongside all other bugs using
bug tracking tools, the most popular of which was JIRA1. In
other instances, the results of all security processes would be
compiled in a separate, out of band report produced for the
development team. Addressing vulnerabilities then becomes
part of the typical bug fixing process undertaken by the de-
velopment team. In other words, all participants reported that
remediation of a vulnerability was always performed by a
developer.

A number of participants discussed the use of continuous in-
tegration processes within their development teams. Amazon
defines Continuous Integration as “A DevOps software devel-
opment practice where developers regularly merge their code
changes into a central repository, after which automated builds
and tests are run. [7]” When continuous integration was used,
static analysis was done on the build server every time a new
build was created and pushed to production. The results would
be integrated into the bug tracking platform and be shown
as security bugs. Depending on the severity of the issue, the
bugs could fail the build. The developer would then have to
fix these bugs and recommit the code. The “integrated” static
analysis rules were always configured by a security auditor.

All configuration of security tools and processes was per-
formed by security auditors themselves as needed. In addition
to their primary role of finding security vulnerabilities, ten
participants also mentioned that they participated in threat
modelling or security architecture discussions as part of the
overall software development process, but did not mention
specifically when those activities occurred.

Finding Bugs
The primary responsibility of all of our participants was to
find security vulnerabilities in application source code. As
expected, all participants reported using static analysis and
dynamic analysis tools, such as Fortify2 and AppScan3, to
detect security vulnerabilities. The participants conducted all
static and dynamic analyses themselves. Static and dynamic
analysis were sometimes perceived differently within an orga-
nization and performed at separate times. For example, as P27
stated:
1https://jira.atlassian.com/
2https://saas.hpe.com/en-us/software/application-security
3http://www-03.ibm.com/software/products/en/appscan

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 262 Page 4



“In my experience, organizations treat them (static and dynamic
analysis) as separate steps and oftentimes I feel that’s the
result of the way security controls inside of guidance and
policy documents express those tasks. They’re not treated as
a holistic set of controls. They aren’t done as a combined
activity and I feel that’s a bit of a disservice to the practice of
application security.” -p27

In addition to static and dynamic analysis, twelve auditors
mentioned the use of penetration testing, sometimes performed
by a separate security team. Finally, two participants used
bug bounties to uncover problems in released code that were
otherwise missed. Not surprisingly, many (n=24) participants
in our sample mentioned the management of false positives
and false negatives as a challenge of all of these processes.

Thirty participants reported that they frequently examined
code for vulnerabilities on their own, referring to this as “man-
ual code inspection.” This was done to understand discovered
vulnerabilities, as part of a security audit, or to investigate
issues such as authentication, datastore accesses, and architec-
tural flaws that may not be found by other means. Inspections
also occurred to help create customized rules for tools to re-
duce false positives:

“All applications end up needing custom rules written or some
sort of tweak to make the (static or dynamic analysis) scan-
ner work for that application. Manual code review is how
you identify those patterns and make sure that your rules are
covering them appropriately. We’d typically go through and
we’d say ‘Alright, let’s go find the CSRF protection. Let’s go
find their encoding mechanism. How are they handling their
database queries?”’ -p17

However, code inspections were done on a limited scale due
to the sheer volume of code.

Another major responsibility of our participants was perform-
ing regular audits of projects. Based on different risk desig-
nations, projects were required to undergo such audits over
various intervals of time. For example, as P2 states:

“Basically there’s three levels. That’s high, medium, and low,
and the high risk projects have to be reviewed every year. The
medium ones are two years. The low ones, every three years.”
-p2

Static analysis, dynamic analysis, and sometimes audit meet-
ings were conducted as a part of the audit process. Our partic-
ipants described the meeting as similar to a traditional code
review, however it involved security auditors, project leads,
and sometimes developers.

“If a section of code is deemed very important and critical, then
we do get assigned reviewers who have worked on security
areas before and then it’s like a peer review; they check it. It’s
normal code review process, but with a emphasis on... the
security aspect of it.” -p24

Participants would meet face to face and review code in order
to identify code smells which may carry risk.

“So, the reviews are targeted typically based on two elements;
one is that static analysis has told us that there is a problem or

even dynamic analysis has told us there is a problem so they
will look in that area. And secondly, where have code changes
been made or where have new features been added to the code.
So, those are high-risk spots and those are the ones that are
targeted for inspection.” -p7

Detected vulnerabilities were again triaged. However, verifi-
cation that developers fixed the issues brought up during these
audits was not performed until the next scheduled audit.

Fixing Bugs
Triage was an important aspect of our security auditors’ work-
flow, reflecting their perceptions of risk. Serious vulnerabili-
ties would be given a deadline for resolving. Vulnerabilities
deemed critical, or higher risk, would have much shorter dead-
lines. The criteria by which vulnerabilities were triaged were
often varied and proprietary. Generally, the probably of an
exploit occurring and the impact if it did occur were the two
primary factors in the triaging process.

“We’re looking at things like, how it can be exploited, how
many, how likely is it to be exploited, what are the assets that
we’re trying to protect? Because obviously if you have an
application that’s got only, let’s say a thousand confidential
records at risk, then that’s a lot less of a risk to a company as
if they’re 100,000 confidential records, right? So those types
of things are taken all into account. That is part of the risk
analysis.” -p2

While security auditors would follow through on the more
serious vulnerabilities to ensure they were resolved, a project
could still continue to move into production containing known
vulnerabilities.

“And, unless that’s critical or high severity in nature, a lot of
lingering issues remain simply by the quantity of issues that
come out” -p27

In order to assist developers, participants may provide static
or dynamic analysis results, documentation, or suggestions
within the bug tracking tool. However, release of the software
can occur at any time, at the discretion of management. In most
of our participants’ organizations, it is possible for release to
occur with known security vulnerabilities if management is
willing to accept the risk.

“It’ll be assigned to a developer. Typically we try to provide as
much information in there so that they can reproduce the issue.”
-p21

Summary
To summarize the common security practices reported by our
participants:

• Security auditors are solely responsible for detecting secu-
rity vulnerabilities in code.

• Their processes are labor intensive and often manual.
• Responsibility for fixing vulnerabilities lies with develop-

ment teams.

Developer Interaction
One of our goals was to examine the interaction that applica-
tion security experts have with the developers who write the

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 262 Page 5



code. While our interviews confirmed that auditors are respon-
sible for detecting bugs, fixing them required communication
between auditors and developers as shown in the workflow
model in Figure 1.

Communication Patterns
To understand communication patterns, we coded any time
an auditor reported communication with someone else. Com-
munication between security auditors and developers did not
occur as frequently as we expected. Most communication
revolved around how to remediate a vulnerability detected
during static analysis. Thus, the communication involved no-
tifying the developer of the issue and providing guidance for
fixing it. Further interaction could be initiated by a security au-
ditor with an interest in seeing a vulnerability resolved, or by a
developer with questions about how to resolve a vulnerability.

Most auditors described communication primarily occurring
through the bug tracking or ticketing system. Auditors would
provide explanations on what the vulnerability is, and pointers
on how to fix it. Developers may then make additional com-
ments to ask questions or for more help. For more in depth
conversations, developers would contact the auditor more di-
rectly. For example:

“So there is some interaction there but it’s typically through
the ticketing system where we’ll trade some comments back
and forth. There’ll definitely be like a re-test. ‘Can you make
sure it works for me?’ They’ll ask. Sometimes if, like I said, if
they’re new to us, if they’re new to security, they might ask for
a ten minute call just to make sure that they understand the
issue.” -p21

As P21 stated, how communication occurred was based on
the team and the individual developer. Auditors stated that
they tried to engage developers wherever they were most com-
fortable interacting, whether that be in person, over email, or
simply through the comments in the bug tracking system.

In addition to the developer assigned to remediate the vul-
nerability, auditors also interacted with other members of the
development team. Analysis results were sometimes pack-
aged as a report and provided to the project, rather than to
an individual developer. In these cases, the project lead or a
designated developer with an interest in security, known as a
security champion, would interact with the security auditor.
Our participants also interacted with developers as they sought
to understand the security properties and use cases of an ap-
plication during dynamic analysis, manual code inspection, or
security code review.

Finally, security auditors interacted with developers during
training. Many (n=23) of the security training programs were
designed and taught by the auditors themselves. Training
could be general application security training, or customized
to the types of errors that developers are currently making.

“What we often do is periodically assess the category of vulnera-
bilities, what the kinds of volume and mistakes the developers
are making and provide a very small part of training just on
those things.” -p22

While training has obvious goals of increasing the knowledge
of developers, participants also commented on the importance
of raising developer awareness of the auditors themselves:

“While we can argue about whether secure code training gets us
anywhere, at least it raises the visibility into these issues and
people come back. Now whether or not they remember, you
know, all the different things that are out there, probably not.
But as long as they know how to access you and they know
that you’re there as a resource, it is certainly very beneficial.”
-p21

Communication Challenges
The importance of communication to fixing bugs means that
communication breakdowns can impact the security of the ap-
plication when bugs are not properly addressed. One primary
communication challenge was coordinating between different
teams. Developers and security teams operated independently,
and some organizations even had separate teams for static
and dynamic analysis. Auditors also oversaw applications
for many different teams of developers throughout the orga-
nization. Naturally, this leads to communication bottlenecks
as auditors must navigate the different cultures and needs of
these different teams to coordinate the reporting and fixing of
security vulnerabilities.

To make matters worse, security auditors must sometimes co-
ordinate with different teams of developers and project stake-
holders to get approval to fix issues. Divergent interests of
developers, managers, and other stakeholder means that this
is sometimes very difficult. Many participants (n=10) com-
mented that such communication issues could cause delays in
security problems being fixed.

“There’s this approval process, IT has concerns, marketing has
concerns, and you need that unanimous approval and that if
you don’t get it that vulnerability persists.” -p3

Participants perceived that much of their role is in motivating
and convincing other parties to implement security solutions.
Security auditors in our study struggled with convincing devel-
opers or other stakeholders that a security issue was real and
in need of remediation. Many (n=9) participants mentioned
that developers had difficulty in seeing a harmless example
exploit and understanding that the vulnerability was serious.
For example, one participant mentioned that developers fre-
quently did not understand that alert boxes delivered through
cross site scripting vulnerabilities could be easily replaced
with credential stealing, false login forms by an attacker.

“The biggest question they have is ‘Why, why do I actually need
to do this, why do I care?’ They usually call me out on that,
and say, ‘So how do you weaponize this, right? What’s the
attack path here? I don’t see an actual vulnerability. All I see
is some alert box”’ -p17

Auditors also mentioned that communicating vulnerabilities
found outside of static analysis could be challenging. Static
analysis tools report a particular line of code potentially con-
taining a bug. This means that notification and subsequent
remediation suggestions can be provided in the context of
the source code. However, dynamic analysis is performed

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 262 Page 6



by using test data in a running application. Therefore, if an
issue is found, the lines of code causing this issue must be
first determined before they can be fixed. Several participants
(n=3) mentioned that it was very difficult for developers to
interpret the results of dynamic analysis scans, locate the prob-
lem in the code, and then apply the correct fix. Similarly, two
participants mentioned that developers struggled to understand
how security problems in the architecture of applications were
actual security issues. In these cases, auditors had to leverage
knowledge of the functionality of applications to demonstrate
architectural or logic flaws.

Another commonly reported issue was determining the best
way to communicate and motivate different groups of people.
For example, three participants commented on the need to be
sensitive to the developers’ feelings about their code when
notifying them of security issues in that code.

“Obviously, if you’re examining one of the applications that
they have written, you just have to be very sensitive to the fact
that... we call it ‘calling someone’s baby ugly.’ So you have to,
if you’re going to point out a security flaw, you have to do it in
a way that’s respectful.” -p11

Overall, this means that auditors must be familiar with other
stakeholders’ knowledge and needs in order to determine how
to best communicate with them regarding security issues. P14
talked about the importance of this message delivery.

“I think a lot of what I deal with is not necessarily the technology,
it’s the how you communicate it effectively to developers. My
boss likes to joke that we are 60 percent psychologists and 40
percent security professionals. The hard part is determining
for the organization that we’re talking to at that moment, what
is the best way of communicating the solution and the risk
associated with an app in a way that’s going to resonate with
developers and cause them action, and also not make them
freak out.” -p14

Security Champions
One key type of developer that ten participants mentioned was
someone they referred to as a security champion. The security
champion was a member of the development team who was an
advocate for security. This was an unofficial designation, with
no formal security training needed. Instead, they only needed
an interest in security.

“The security champion is typically a volunteer from the engi-
neering team who is interested in security, and more impor-
tantly interested in reducing the incidents of security vulnera-
bilities. I work with him or her and discuss what the priorities
should be for that particular product as we move forward
towards the next release.” -p7

As these participants stated, security champions served as im-
portant liaisons between the security group and development
teams. They help to extend the efforts of the limited quantity
of security auditors and can serve as an advocate for security
on each development team. When security champions are in-
volved, the security auditor can communicate with the security
champion, and the security champion can then communicate
with each of the fellow members of the development team.

This requires less communication effort for the auditor, with
fewer needs to motivate the champion regarding security. The
security champion can then communicate as a peer to fellow
developers. Consequently, six auditors mentioned that security
champions were either required for the developer code review
process, or frequently participated in it. Auditors (n=3) also
recognized the benefit to “train the trainer” and educate the
security champion instead of all of the developers. The hope
is that the security champion could then train other developers
on his/her development team. The downside is that other mem-
bers of the development team may not receive such training
and security reports directly, resulting in decreased security
awareness overall.

Participants clearly tried to cultivate the relationships they
maintained with security champions in a variety of ways. For
example, while these roles were informal and not tied to pay,
auditors mentioned rewarding champions with trips to secu-
rity conferences to enhance their training and maintain their
interest in security.

Summary
Communication with development teams and other stakehold-
ers were important aspects of a security auditor’s job, with
auditors needing to motivate developers to understand and fix
the security problems found. Challenges and breakdowns to
this communication could result in vulnerabilities remaining
in the application. Security champions served as important
and valued liaisons between the auditors and development
teams.

Organizational Challenges
Auditors discussed a variety of challenges faced within their or-
ganizations that impact how application security is performed
and its effectiveness.

Balancing Risk and Resources
Twenty-two of our participants mentioned that balancing risk
against resource limitations is a key security challenge. The
first issue was understanding the risk of the various products,
which can be difficult to characterize. In addition, as several
(n=4) of the participants mentioned, not all products have the
same level of risk.

“The risk level that’s acceptable for product A isn’t the same as
it is for product B. So you don’t treat everything the same, you
can’t just state across the board here’s our watermark for risk
for the organization.” -p7

These risks must then be weighed against available resources,
which are limited. As participants mentioned, security costs
money and organizations must strike a balance between de-
livering a product and ensuring that the product is free of
security issues. And application security is just one aspect of
the security of an organization.

“If you look at percentage, for security in general, and particu-
larly between what I would call traditional infrastructure and
network security, versus application security. Those numbers
are horrifically in favor of the more traditional network and
operational security.” -p26

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 262 Page 7



These limitations mean that rarely does an organization do all
possible activities for vulnerability detection and remediation.

“The reality is that most of the dev efforts will implement one
or two of the things I’ve just described but not all of them.
In each one of those areas, you get a different lens into the
application. You get a different opportunity to identify and
re-mediate security concerns. Without implementing them all,
there’s a chance, and this is what we see all the time, there’s a
chance a security vulnerability is being missed and making it
through to the final product.” -p22

One strategy participants attempted was to reduce their effort
through automating tools and processes. More automation was
also commonly stated (n=14) as a potential improvement to ap-
plication security. Yet, participants also commented that many
of the existing processes and tools do not lend themselves well
to automation. In addition, auditors were also aware of the
importance of human judgement in security decisions.

“A human just has kind of this intuition about where to look and
how to basically defeat the system.” -p30

Limited Security Expertise
A key resource limitation is the skilled and knowledgeable
security experts themselves. For example, P10 estimated that
there are roughly 50 open positions to each qualified person.
Another stated:

“There’s just not enough people that know security. So we can’t
even find the resources that we would need to actually get the
job done.” -p21

This results in very few application security experts. As P15
states, “If you have ten employees you actually have a fairly
large security team.” This also means that the ratio of applica-
tion security experts to developers is also very small. Of the
participants who reported concrete numbers, they all reported
a single auditor for one to two hundred developers. Rather
than rely solely on application security experts, auditors em-
phasized the importance of training developers in security.

However, only two of our participants mentioned that secure
programming training was mandatory in their organizations,
and as a result, according to P15 “The percentage of people
that do the training is very, very small.” Similarly, several
lamented the lack of security education. “We have to train
developers at a university level. Computer science graduates,
to this day, don’t get secure code in training.” -p15

Fitting in Security
As described earlier, application security experts traditionally
are organized as part of a separate software security group,
overseeing almost all of the detection of security vulnerabili-
ties. This also reflects how an application’s security is viewed
within development teams, as a non-functional requirement
that is not built in from the beginning. As P10 states:

“I would say that the big challenge there is that security and
development have traditionally been disjointed and they have
been separate teams. Security is the watchdogs, development
does the work and all security has ever done is scan stuff. So

write code, ask questions later. And we have to change that”
-p10

One reason for this lack of security integration may be that
security was not an important feature for small or immature
applications. Yet, over time, security has grown more impor-
tant. Thus, organizations may not start out with strong security
processes, which means they later need to determine how to
add security on top of already complex software development
processes. Participants acknowledged this issue:

“Where are we going to plug in threat modeling? Where are we
going to plug in static scanning? Where are we going to plug
in dynamic scanning? When are we doing pen-testing? How
are we doing developer training? What’s the process to fix
bugs? How do we prioritize those bugs? Just getting that very
well integrated into what was already a well-oiled machine is
doable, but it’s challenging.” -p20

Summary
With security as just one of many competing requirements
within software development, organizing and utilizing the very
limited security resources and personnel has a major impact on
the resulting security of the end product. Auditors themselves
are limited resources, who must understand the risks of their
software and balance those against available time and efforts
to be effective.

Technical Challenges and Needs
Participants in our sample described many challenges and
needs within the tools that they used to find vulnerabilities.
These issues led to a significant amount of work to run these
tools and utilize the results.

Scalability and Performance
As with other studies of experts [24, 25], many (n=13) partici-
pants mentioned scalability as a key technical challenge. The
specific issues for application security tools include:

• Locating, acquiring, configuring, and using tools that can
adequately support all relevant languages and frameworks
of an organization;

• Time and effort required to write rules for static and dy-
namic analyzers;

• Managing large numbers of false positives from scanning
large applications or many applications; and

• Modern static analysis and dynamic analysis tools are not
sufficiently robust with large applications and have slow
performance, yet it is very labor intensive to configure them
to scan only pieces of an application.

Participants were most frustrated with the last issue above -
that their tools may just not work at all or work too slowly
to be useful. They stated that modern static and dynamic
analyzers tend to crash when scanning large amounts of code
or crawling large applications.

“I think all the current tools lack performance. Lack the ability
to go fast. The reason why a lot of the testing tools don’t fit
into a traditional DevOps model is because they’re really slow.”
-p28

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 262 Page 8



“I’ve had a scan running for at least two or three days, I just
had to kill it.” -p12

Legacy and Complex Code
Participants frequently mentioned both legacy and complex
code as key security challenges. In order to properly identify
security vulnerabilities in code, it is often necessary for se-
curity auditors to obtain a limited understanding of a given
application’s functionality. If the person who wrote the code is
no longer available, the security auditor must locate a suitable
proxy. Unfortunately, they can be both difficult to locate and
their knowledge may be incomplete. This makes the evalua-
tion of false positives and the remediation of vulnerabilities
much more difficult.

Third Party Libraries
Third party code was also very challenging (n=13) for two
reasons. First, participants stated that vulnerabilities are very
common in frameworks and libraries, even well-known estab-
lished ones. Yet, determining the problem as well as actually
fixing it may be beyond their abilities, requiring a patch from
the library vendor. Additionally, third party libraries can break
static analysis and greatly contribute to false positives. This
is because entry into a 3rd party library or component, when
the source code is not available, constitutes a “boundary” or a
“breakage.” This breaks the analyses path from the source to
the sink and destroys the taint signature that is used by static
analysis algorithms.

“As soon as you trace that into a third party component, its kind
of a dead end there.” -p12

Thus, tools may report many vulnerabilities simply because
the code relies on a third party library.

Automation and Smarter Tools
Many participants expressed a desire for more automation or
intelligence in security tools. For example, seven participants
wanted tools which are capable of assisting in triaging and
remediating vulnerabilities. While participants had varied
wishlists, their desires often related to tools requiring less
manual configuration to run, and enabling easier data sharing
and analysis across tools. In other words, auditors wanted tools
to relieve more of their mundane and tedious manual labor.
They acknowledged that creating smarter or more automated
tools was challenging, but they were hopeful that with time,
tools would improve.

Limitations
Security experts can be difficult to recruit for user studies,
which leads to the use of convenience sampling techniques
that come with limitations. Our participants are not necessarily
representative of all application security experts. Given our
recruiting methods, we likely have more experts from large
organizations, with larger security groups and established se-
curity processes. Still, the results demonstrate the problems
even mature organizations encounter surrounding security. We
also have primarily U.S. based organizations, and processes
and security cultures may differ in other countries. Our sample
is also all male, and while the security field is primarily male,

we were disappointed to not have a more gender-representative
sample.

IMPLICATIONS
As other researchers have already described, developers who
write code are often not very involved in detecting security vul-
nerabilities in that code [10, 15, 31]. Additionally, given our
auditors’ complaints regarding the lack of security knowledge
and training by developers, developers are likely not taking
the necessary steps to prevent many of those vulnerabilities
in the first place, even though they are ultimately tasked with
fixing them. Placing sole responsibility for software security
in the hands of very few application security experts has a
profound impact, resulting in known vulnerabilities slipping
into production, long delays, added expense to fix vulnera-
bilities, and insufficient analysis to detect potentially serious
vulnerabilities. Thus we, like others, believe that these results
point to the need to increase developer attention to preventing
vulnerabilities in their code. Many of our participants directly
advocated for greater developer involvement in the security
process and the benefits of doing so:

“And that’s the biggest challenge, getting security moving all
the way to the left and addressing every single phase of the
development life cycle....Then I guess 80 percent of the kind
of low hanging fruit vulnerabilities like SQL Injection that we
find out in the wild would be addressed.” -p17

Preventing more vulnerabilities from being committed in the
first place would also free up auditors to focus on more com-
plex or difficult to detect vulnerabilities, to more deeply mon-
itor and analyze the risk profiles of various projects, and to
provide more in-depth assistance to development teams. In-
volving other stakeholders may also relieve auditors of the
burden of motivating and coordinating vulnerability remedia-
tion.

Participants also suggested ways to increase developer involve-
ment in vulnerability prevention. For example:

• Several auditors (n=3) suggested that the Agile process
be modified to treat security as a functional requirement
instead of “technical debt.” This may shift the importance
of security in the eyes of developers since it would be treated
at the same level as other functionality.

• Other auditors (n=6) discussed increasing the use of con-
tinuous integration, where security bugs are entered auto-
matically into defect tracking systems with other general
bugs. Security bugs are more likely to be on a level playing
field with other bugs if they are continuously found and po-
tentially prevent code from being committed. However, as
mentioned earlier, performance and scalability issues make
it challenging to run scans quickly.

• Many of our participants (n=19) also called for more secu-
rity training for developers to provide them with a greater
awareness of security and the knowledge necessary to pro-
duce fewer security bugs.

Yet, as prior work has clearly demonstrated, the burden of
security work needs to be lowered for developers and auditors

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 262 Page 9



alike [2, 3, 23, 28]. In addition, organizational processes need
to support and reward that work rather than delegate it to one
small group of security experts [15]. We believe our findings
suggest three particular areas that need increased attention and
future research to achieve these goals.

Security training. Auditors commented that improved train-
ing is needed for developers, such as training that is more
engaging (one participant suggested gamification for exam-
ple), and concrete, involving code the developer is actually
working on. Auditors also felt it should be targeted towards
the issues developers are actually encountering, and delivered
in-situ, as developers encounter those issues in their code.
Commercial tools do not currently do this. There were several
concrete suggestions for training support, such as:

• (p4, p20, p31) Tools which run in the developers’ IDE,
that provide feedback directly to the developer about why
something is wrong, and help generate code for developers;

• (p4) Tools that report problems to supervisors or others to
determine the kinds of security training needed;

• (p22) Tools for collaboration around security vulnerabilities,
providing contextualized communication and help beyond
just the location of a bug.

We, and others, are working towards developing tools to
achieve some of these goals [4, 21, 22, 30]. We are encouraged
to find additional support from auditors of these design needs.

Increasing automation As shown both by existing research
[10, 16] and our results, analysis tools produce many false
positives, and is one reason that developers are discouraged
from using such tools. Our application security experts also
indicated that false positives were a major challenge for them
as well. Experts are required to manually create custom rules
and configuration for every application to reduce these false
positives, which is time consuming.

“I would love to see a static analysis tool where I could get it
out of the box, run it on my application and it just worked. No
tuning required...But right now I had never found a tool that
allows me to just go from zero to a good or a reasonable scan
result. Just doesn’t exist.” -P28.

False positives can be reduced with more accurate analysis
algorithms, and our participants pointed out particular pain
points around third-party libraries for example. However,
providing more automated support for the tuning process to
help users customize security scanners could also be helpful
and greatly reduce the burden of using static and dynamic
analysis tools.

Additionally, utilizing continuous integration processes re-
quires detection tools to run automatically. Yet, as our auditors
mentioned, many tools do not yet have sufficient performance
to be run in this way, or are simply too difficult to configure
to do so. Tool builders need to investigate more incremental
and layered mechanisms for scanning and reporting detected
vulnerabilities in order to provide faster and more localized
feedback. This would also support the more interactive analy-
sis tools proposed by several researchers to provide developers
with real-time and interactive security feedback [30, 14].

Risk assessment. Assessing and acting upon security risk
is a key role of auditors. Yet, this process was primarily
manual. Auditors considered risk during vulnerability triage,
in determining audit frequency, and in choosing which parts of
the code to spend more time on. There are currently few tools
that provide auditors and other stakeholders with assessments
of risk to an application to support decision making. Similarly,
few tools help users prioritize issues found, or are configurable
based upon risk assessments. As one participant commented:

“I don’t have a good tool that lets me say, ‘Hey, what’s, you
know, what’s my risk posture right now? ... am I doing as well
as I should be?”’ -p20

Thus, tools need to reflect such risk assessments. For example,
when should static analysis results fail a build and how should
it be configured to do that? If builds are broken too frequently,
organizations will incur a severe cost. On the other hand, if
builds are not broken frequently enough, applications will
be developed with serious security issues. How much effort
should developers put toward fixing different vulnerabilities?
Which vulnerabilities are the most serious and which are not?
If developers perform more vulnerability prevention and detec-
tion themselves, their tools will also need to reflect such risk
assessments to help prioritize and direct their limited amount
of time towards addressing the most important security issues.

CONCLUSION
To our knowledge, this paper is the first user study to specifi-
cally focus on application security experts. Our results provide
further evidence that application security work is primarily
performed by these experts, separately from software devel-
opment teams. Separating security from development adds
communication overhead and barriers. And finding and fixing
security vulnerabilities so late in the software lifecycle can
result in costly delays and expense to applications, and an in-
creased likelihood that applications are not adequately secure.
In particular, our results highlight the importance of triage
to reflect risk assessments, the challenges of security com-
munication that mostly occurs within bug tracking systems,
the experts’ role of motivating developers to fix problems,
the importance of security champions, and the desires for
less configuration and more automation. These results further
demonstrate that improving application security will involve
a combination of organizational processes to incentivize and
support developers in focusing on security issues earlier, de-
veloper training to give them more concrete and actionable
knowledge and motivation, and tools for both developers and
experts that reduce the manual burdens of configuration and
analysis. We hope these results can inform a variety of process
and tool improvements to reduce the costs of vulnerability
detection and remediation, and allow application security ex-
perts to focus on deeper and more complex security issues and
processes.

ACKNOWLEDGMENTS
We would like to thank the National Science Foundation
(Grants NSF-DGE #1523041 and NSF-CNS #1318854) for
supporting this work.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 262 Page 10



REFERENCES
1. Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L.

Mazurek, and C. Stransky. 2017. Comparing the
Usability of Cryptographic APIs. In 2017 IEEE
Symposium on Security and Privacy (SP). 154–171. DOI:
http://dx.doi.org/10.1109/SP.2017.52

2. Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and
C. Stransky. 2016. You Get Where You’re Looking for:
The Impact of Information Sources on Code Security. In
2016 IEEE Symposium on Security and Privacy (SP).
289–305. DOI:http://dx.doi.org/10.1109/SP.2016.25

3. Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L.
Mazurek, and S. Fahl. 2017. Developers Need Support,
Too: A Survey of Security Advice for Software
Developers. In 2017 IEEE Cybersecurity Development
(SecDev). 22–26. DOI:
http://dx.doi.org/10.1109/SecDev.2017.17

4. Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits,
Eric Bodden, Justin Smith, and Emerson Murphy-Hill.
2017. Just-in-time Static Analysis. In Proceedings of the
26th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2017). ACM, New
York, NY, USA, 307–317. DOI:
http://dx.doi.org/10.1145/3092703.3092705

5. Nathan Bomey Elizabeth Weise. 2017. Equifax data
breach: Identity-theft hackers exploited flaw experts
flagged in March
https://www.usatoday.com/story/money/2017/09/15/equifax-
data-breach-what-you-need-know-hacking-
crisis/670166001/.
(2017).

6. Sascha Fahl, Marian Harbach, Henning Perl, Markus
Koetter, and Matthew Smith. 2013. Rethinking SSL
Development in an Appified World. In Proceedings of the
2013 ACM SIGSAC Conference on Computer &#38;
Communications Security (CCS ’13). ACM, New York,
NY, USA, 49–60. DOI:
http://dx.doi.org/10.1145/2508859.2516655

7. What is Continuous Integration?
https://aws.amazon.com/devops/continuous integration.
2017. (2017).

8. Department of Homeland Security National Institute of
Standards and Technology National Vulnerability
Database. https://web.nvd.nist.gov/view/vuln/statistics
results. 2017. (2017).

9. Pooya Jaferian, David Botta, Fahimeh Raja, Kirstie
Hawkey, and Konstantin Beznosov. 2008. Guidelines for
Designing IT Security Management Tools. In
Proceedings of the 2Nd ACM Symposium on Computer
Human Interaction for Management of Information
Technology (CHiMiT ’08). ACM, New York, NY, USA,
Article 7, 10 pages. DOI:
http://dx.doi.org/10.1145/1477973.1477983

10. Brittany Johnson, Yoonki Song, Emerson Murphy-Hill,
and Robert Bowdidge. 2013. Why Don’t Software
Developers Use Static Analysis Tools to Find Bugs?. In

Proceedings of the 2013 International Conference on
Software Engineering (ICSE ’13). IEEE Press,
Piscataway, NJ, USA, 672–681.
http://dl.acm.org/citation.cfm?id=2486788.2486877

11. M. Lavallée and P. N. Robillard. 2015. Why Good
Developers Write Bad Code: An Observational Case
Study of the Impacts of Organizational Factors on
Software Quality. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, Vol. 1.
677–687. DOI:http://dx.doi.org/10.1109/ICSE.2015.83

12. E. Murphy-Hill, T. Zimmermann, C. Bird, and N.
Nagappan. 2015. The Design Space of Bug Fixes and
How Developers Navigate It. IEEE Transactions on
Software Engineering 41, 1 (Jan 2015), 65–81. DOI:
http://dx.doi.org/10.1109/TSE.2014.2357438

13. Nachiappan Nagappan, Brendan Murphy, and Victor
Basili. 2008. The Influence of Organizational Structure
on Software Quality: An Empirical Case Study. In
Proceedings of the 30th International Conference on
Software Engineering (ICSE ’08). ACM, New York, NY,
USA, 521–530. DOI:
http://dx.doi.org/10.1145/1368088.1368160

14. Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar,
Michael Backes, Charles Weir, and Sascha Fahl. 2017. A
Stitch in Time: Supporting Android Developers in
WritingSecure Code. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security (CCS ’17). ACM, New York, NY, USA,
1065–1077. DOI:
http://dx.doi.org/10.1145/3133956.3133977

15. Andreas Poller, Laura Kocksch, Sven Türpe, Felix Anand
Epp, and Katharina Kinder-Kurlanda. 2017. Can Security
Become a Routine?: A Study of Organizational Change
in an Agile Software Development Group. In
Proceedings of the 2017 ACM Conference on Computer
Supported Cooperative Work and Social Computing
(CSCW ’17). ACM, New York, NY, USA, 2489–2503.
DOI:http://dx.doi.org/10.1145/2998181.2998191

16. Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma
Söderberg, and Collin Winter. 2015. Tricorder: Building
a Program Analysis Ecosystem. In Proceedings of the
37th International Conference on Software Engineering -
Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA,
598–608.
http://dl.acm.org/citation.cfm?id=2818754.2818828

17. Kanishka Singh. 2017. Equifax says web server
vulnerability led to hack
https://www.reuters.com/article/us-equifax-
cyber/equifax-says-web-server-vulnerability-led-to-
hack-idUSKCN1BP0CB.
(2017).

18. Yannic Smeets. 2015. Improving the Adoption of
Dynamic Web Security Vulnerability Scanners. In
Master’s Thesis, Radboud University.
https://pdfs.semanticscholar.org/1981/

583700ada13fa5fc376999726a3545c90891.pdf

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 262 Page 11

http://dx.doi.org/10.1109/SP.2017.52
http://dx.doi.org/10.1109/SP.2016.25
http://dx.doi.org/10.1109/SecDev.2017.17
http://dx.doi.org/10.1145/3092703.3092705
http://dx.doi.org/10.1145/2508859.2516655
http://dx.doi.org/10.1145/1477973.1477983
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dx.doi.org/10.1109/ICSE.2015.83
http://dx.doi.org/10.1109/TSE.2014.2357438
http://dx.doi.org/10.1145/1368088.1368160
http://dx.doi.org/10.1145/3133956.3133977
http://dx.doi.org/10.1145/2998181.2998191
http://dl.acm.org/citation.cfm?id=2818754.2818828
https://pdfs.semanticscholar.org/1981/583700ada13fa5fc376999726a3545c90891.pdf
https://pdfs.semanticscholar.org/1981/583700ada13fa5fc376999726a3545c90891.pdf


19. Justin Smith. 2016. Identifying Successful Strategies for
Resolving Static Analysis Notifications. In Proceedings
of the 38th International Conference on Software
Engineering Companion (ICSE ’16). ACM, New York,
NY, USA, 662–664. DOI:
http://dx.doi.org/10.1145/2889160.2891034

20. Justin Smith, Brittany Johnson, Emerson Murphy-Hill,
Bill Chu, and Heather Richter Lipford. 2015. Questions
Developers Ask While Diagnosing Potential Security
Vulnerabilities with Static Analysis. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). ACM, New York, NY,
USA, 248–259. DOI:
http://dx.doi.org/10.1145/2786805.2786812

21. Tyler Thomas, Bill Chu, Heather Lipford, Justin Smith,
and Emerson Murphy-Hill. 2015. A Study of Interactive
Code Annotation for Access Control Vulnerabilities. In
Proceedings of the 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing (VLHCC ’15).
IEEE Computer Society, Washington, DC, USA.

22. Tyler W. Thomas, Heather Lipford, Bill Chu, Justin
Smith, and Emerson Murphy-Hill. 2016. What Questions
Remain? An Examination of How Developers
Understand an Interactive Static Analysis Tool. In Twelfth
Symposium on Usable Privacy and Security (SOUPS
2016). USENIX Association, Denver, CO.
https://www.usenix.org/conference/soups2016/

workshop-program/wsiw16/presentation/thomas

23. Rodrigo Werlinger, Kirstie Hawkey, and Konstantin
Beznosov. 2008. Security Practitioners in Context: Their
Activities and Interactions. In CHI ’08 Extended
Abstracts on Human Factors in Computing Systems (CHI
EA ’08). ACM, New York, NY, USA, 3789–3794. DOI:
http://dx.doi.org/10.1145/1358628.1358931

24. Rodrigo Werlinger, Kirstie Hawkey, and Konstantin
Beznosov. 2009. An integrated view of human,
organizational, and technological challenges of IT
security management. Information Management &
Computer Security 17, 1 (2009), 4–19. DOI:
http://dx.doi.org/10.1108/09685220910944722

25. Rodrigo Werlinger, Kirstie Hawkey, Kasia Muldner,
Pooya Jaferian, and Konstantin Beznosov. 2008. The
Challenges of Using an Intrusion Detection System: Is It

Worth the Effort?. In Proceedings of the 4th Symposium
on Usable Privacy and Security (SOUPS ’08). ACM,
New York, NY, USA, 107–118. DOI:
http://dx.doi.org/10.1145/1408664.1408679

26. Rodrigo Werlinger, Kasia Muldner, Kirstie Hawkey, and
Konstantin Beznosov. 2010. Preparation, detection, and
analysis: the diagnostic work of IT security incident
response. Information Management & Computer Security
18, 1 (2010), 26–42. DOI:
http://dx.doi.org/10.1108/09685221011035241

27. Jim Witschey, Olga Zielinska, Allaire Welk, Emerson
Murphy-Hill, Chris Mayhorn, and Thomas Zimmermann.
2015. Quantifying Developers’ Adoption of Security
Tools. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015).
ACM, New York, NY, USA, 260–271. DOI:
http://dx.doi.org/10.1145/2786805.2786816

28. Glenn Wurster and P. C. van Oorschot. 2008. The
Developer is the Enemy. In Proceedings of the 2008 New
Security Paradigms Workshop (NSPW ’08). ACM, New
York, NY, USA, 89–97. DOI:
http://dx.doi.org/10.1145/1595676.1595691

29. Jing Xie, Bill Chu, Heather Richter Lipford, and John T.
Melton. 2011a. ASIDE: IDE Support for Web
Application Security. In Proceedings of the 27th Annual
Computer Security Applications Conference (ACSAC ’11).
ACM, New York, NY, USA, 267–276. DOI:
http://dx.doi.org/10.1145/2076732.2076770

30. Jing Xie, Heather Lipford, and Bei-Tseng Chu. 2012.
Evaluating Interactive Support for Secure Programming.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’12). ACM, New
York, NY, USA, 2707–2716. DOI:
http://dx.doi.org/10.1145/2207676.2208665

31. J. Xie, H. R. Lipford, and B. Chu. 2011b. Why do
programmers make security errors?. In 2011 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 161–164. DOI:
http://dx.doi.org/10.1109/VLHCC.2011.6070393

32. Jun Zhu, Jing Xie, Heather Richter Lipford, and Bill Chu.
2014. Supporting secure programming in web
applications through interactive static analysis. Journal of
Advanced Research 5, 4 (2014), 449–462.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 262 Page 12

http://dx.doi.org/10.1145/2889160.2891034
http://dx.doi.org/10.1145/2786805.2786812
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
http://dx.doi.org/10.1145/1358628.1358931
http://dx.doi.org/10.1108/09685220910944722
http://dx.doi.org/10.1145/1408664.1408679
http://dx.doi.org/10.1108/09685221011035241
http://dx.doi.org/10.1145/2786805.2786816
http://dx.doi.org/10.1145/1595676.1595691
http://dx.doi.org/10.1145/2076732.2076770
http://dx.doi.org/10.1145/2207676.2208665
http://dx.doi.org/10.1109/VLHCC.2011.6070393

	Introduction
	Related Work
	Security experts
	Security in Software Development
	Developers and Security Analysis Tools

	Methodology
	Results
	Security Processes
	Finding Bugs
	Fixing Bugs
	Summary

	Developer Interaction
	Communication Patterns
	Communication Challenges
	Security Champions
	Summary

	Organizational Challenges
	Balancing Risk and Resources
	Limited Security Expertise
	Fitting in Security
	Summary

	Technical Challenges and Needs
	Scalability and Performance
	Legacy and Complex Code
	Third Party Libraries
	Automation and Smarter Tools

	Limitations

	Implications
	Conclusion
	Acknowledgments
	References 



