
P4-compatible High-level Synthesis of Low Latency 100Gb/s
Streaming Packet Parsers in FPGAs

Jeferson Santiago da Silva, François-Raymond Boyer and J.M. Pierre Langlois
Polytechnique Montréal, Canada

{jeferson.silva,francois-r.boyer,pierre.langlois}@polymtl.ca

ABSTRACT
Packet parsing is a key step in SDN-aware devices. Packet parsers in
SDN networks need to be both reconfigurable and fast, to support
the evolving network protocols and the increasing multi-gigabit
data rates. The combination of packet processing languages with
FPGAs seems to be the perfect match for these requirements.

In this work, we develop an open-source FPGA-based config-
urable architecture for arbitrary packet parsing to be used in SDN
networks.We generate low latency and high-speed streaming packet
parsers directly from a packet processing program. Our architecture
is pipelined and entirely modeled using templated C++ classes. The
pipeline layout is derived from a parser graph that corresponds a P4
code after a series of graph transformation rounds. The RTL code is
generated from the C++ description using Xilinx Vivado HLS and
synthesized with Xilinx Vivado. Our architecture achieves 100Gb/s
data rate in a Xilinx Virtex-7 FPGA while reducing the latency by
45% and the LUT usage by 40% compared to the state-of-the-art.

CCS CONCEPTS
•Hardware→Reconfigurable logic applications; •Networks
→ Programming interfaces;

KEYWORDS
FPGA; packet parsers; HLS; programmable networks; P4
ACM Reference Format:
Jeferson Santiago da Silva, François-Raymond Boyer and J.M. Pierre Lan-
glois. 2018. P4-compatible High-level Synthesis of Low Latency 100Gb/s
Streaming Packet Parsers in FPGAs. In Proceedings of ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays (FPGA’18). ACM, New
York, NY, USA, Article 4, 7 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
The emergence of recent network applications have opened new
doors to FPGA devices. Dataplane realization in Software-defined
Networking (SDN) [10] is an example [14] of such applications. In
SDN networks, the data and control planes are decoupled, and they
can evolve independently of each other. When new protocols are
deployed in a centralized intelligent controller, new forwarding
rules are compiled to the data plane element without any change

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA’18, February 2018, Monterey, California USA
© 2018 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

to the underlying hardware. FPGAs, therefore, offer just the right
degree of programmability expected by these networks, by offer-
ing fine grain programmability with sufficient and power-efficient
performance.

A standard SDN forwarding element (FE) is normally imple-
mented in a pipelined-fashion [3]. Incoming packets are parsed
in order to extract header fields to be matched in the processing
pipelines. Theses pipelines are organized as a sequence of match-
action tables. In SDN FEs, a packet parser is expected to be pro-
grammable, and it can be reconfigured at run time whenever new
protocols are deployed.

Recent packet processing programming languages, such as POF
[9] and P4 [4], allow describing agnostic data plane forwarding
behavior. Using such languages, a network programmer can specify
a packet parser to indicate which header fields are to be extracted.
He can as well define which tables are to be applied, and the correct
order in which they will be applied.

The main focus of this work is to propose a high-level and con-
figurable approach for packet parser generation from P4 programs.
Our design follows a configurable pipelined architecture described
in C++. The pipeline layout and the header layout templates are
generated by a script after the P4 compilation.

The contributions of this paper are classified into two classes:
architectural and microarchitectural. The summary of the architec-
tural contributions of this work is listed as follows:

• an open-source framework for generation of programmable
packet parsers1 described in a packet processing language;

• amodular and configurable hardware architecture for stream-
ing packet parsing in FPGAs; and

• a graph transformation algorithm to improve the parser
pipeline efficiency.

The contributions related to the microarchitectural improve-
ments are as follows:

• a data-bus aligned pipelined architecture for reducing the
complexity in the header analysis; and

• a lookup table approach for fast parallel barrel-shifter imple-
mentation.

The rest of this paper is organized as follows. Section 2 presents
a review of the literature, Section 3 draws the methodology adopted
in this work, Section 4 shows the experimental results, and Section 5
draws the conclusions.

2 RELATEDWORK
Packet processing languages. The SDN [10] paradigmhas brought
programmability to the network environment. OpenFlow [11] is
the standard protocol to implement the SDN networks. However,

1Available at https://github.com/engjefersonsantiago/Vivado_HLS

ar
X

iv
:1

71
1.

06
61

3v
1

 [
cs

.A
R

]
 1

7
N

ov
 2

01
7

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://github.com/engjefersonsantiago/Vivado_HLS

FPGA’18, February 2018, Monterey, California USA J. S. da Silva et al.

the OpenFlow realization [7] is protocol-dependent, which limits
the genericity expected in SDN.

Song [9] presents the POF language. POF is a protocol-agnostic
packet processing language, where the user can define the behavior
of the network applications. A POF program is composed of a
programmable parser and match-action tables.

P4 [4] is an emergent protocol-independent packet processing
language. P4 provides a simple network dialect to describe the
packet processing. The main components of a P4 program are the
header declarations, packet parser state machine, match-action
tables, actions, and the control program. Recently, P4 has gained
adoption in both academia and industry, and this is why we have
chosen P4 as the packet processing language in this work.

Packet parsers design. Gibb et al. present in [6] a methodol-
ogy to design fixed and programmable high-speed packet parsers.
However, this work did not show results for FPGA implementation.

Attig and Brebner [1] propose a 400Gb/s programmable parser
targeting a Xilinx Virtex-7 FPGA. Their methodology includes a
domain specific language to describe packet parsers, a modular
and pipelined hardware architecture, and a parser compiler. The
deep pipeline of this architecture allows very high throughput at
expense of longer latencies.

Benácek et al. [2] present an automatic high-speed P4-to-VHDL
packet parser generator targeting FPGA devices. The packet parser
hardware architecture is composed of a set of configurable parser
engines [8] in a pipelined-fashion. The generated parsers achieve
100Gb/s for a fairly complex set of headers, however the results
showed roughly 100% overhead in terms of latency and resources
consumption when compared to a hand-written VHDL implemen-
tation.

Recently, Xilinx has released the P4-SDNet translator [13], par-
tially compatible with the P416 specification, that maps a P4 de-
scription to custom Xilinx FPGA logic. One particular limitation of
P4-SDNet is the lack of support for variable-sized headers.

In this work, we deal with some of the pitfalls of previous works
[1, 2], trading-off design effort, latency, performance, and resources
usage. Our pipeline layout, leads to lower latencies compared to the
literature [1, 2]. Moreover, the FPGA resource consumption in terms
of lookup tables (LUTs) is reduced compared to [2], since instead of
generating each parser code we parametrize generic hand-written
templated C++ classes targeted to FPGA implementation.

3 DESIGN METHODOLOGY
This section presents the methodology followed in this work. Sec-
tion 3.1 draws the high-level architectural view. Section 3.2 deals
with details on microarchitectural aspects. Section 3.3 presents our
method to generate the parser pipeline.

3.1 High-Level Architecture
A packet parser can be seen at a high-level as a directed acyclic
graph (DAG), where nodes represent protocols and edges are proto-
col transitions. A packet parser is implemented as an abstract state
machine (ASM), performing state transition evaluations at each
parser state. States belonging to the path connecting the first state
to the last state in the ASM compose the set of supported protocols
of an FE.

Header A

Re
gi
st
er Header B

Header C Re
gi
st
er

D
at
a
In

D
at
a
O
ut

(a) High-level packet parser pipeline layout

Pipeline Alignment

State Transition

Header Extraction

Data In

NHeader In

Data Out

NHeader Out

Header Valid

Header Size

Header Layout

PHV

(b) Internal header block architecture
Figure 1: High-level architecture

Figure 1a depicts the high-level view of the packet parser re-
alization proposed in this work. The proposed architecture is a
streaming packet parser, requiring no packet storage. Header in-
stances are organized in a pipelined-fashion. Headers that share
the same previous states are processed in parallel. Throughout
this work, we say that those headers belong to the same parser
(graph) level. The depth of the parser pipeline is the length of the
longest path in the parser graph. For sake of standardization, thick
arrows in the figures throughout this work indicate buses, while
thin arrows represent single signals.

The internal header block architecture is shown in Figure 1b.
This block was carefully described using templated C++ classes to
offer the right degree of configurability required by the most varied
set of protocol headers this architecture is intended to support. This
design choice was also taken to improve bit-accuracy by accordingly
setting arbitrary integer variables, reducing FPGA resources usage.

In Figure 1b, the Header Layout is a configuration parameter. It is
a set of data structures required to initialize the processing objects.
It includes keymatch offsets and sizes for protocol matching, lookup
tables to determine data shift values, expressions to determine the
header size, last header indication, and so forth. Data In is a data
structure that contains the incoming data to be processed in a header
instance. It is composed of the data bus to be analyzed and some
metadata. These metadata include data start and finish information
for a given packet and packet identifier. The packet identifier is
used to keep track of the packet throughout the processing pipeline
and to identify which headers belong to the same packet. NHeader
In is assigned by the previous header instance indicating which is
the next header to be processed. PHV is a data structure containing
the extracted fields. It includes the extracted data, number of bits
extracted, a data valid information, and header and packet identifier.
Signals labelled with In and Out are mirrored, which means that In
signals undergo modifications before being forwarded to Out.

Internal sub-blocks execute in parallel with minimum data de-
pendency. In fact, only theHeader Valid informationmust propagate

P4-compatible HLS of Low Latency 100Gb/s Streaming Packet Parsers in FPGAs FPGA’18, February 2018, Monterey, California USA

≫ &

=

=

+

KeyMatchDataIn

shiftValue

KeyMask

ReceivedBits

KeyLocation ReceivedBits

BusSize

thisHeader

nextHeaderIn

dMatch

co
m
pE

na
bl
e

NextHeader

NextHeaderValid

HeaderException

validHeader

Figure 2: Station transition block

among the blocks within the same clock cycle and it is generated
from a basic combinational logic. Header Size also transits from
the Header Extraction to the Pipeline Alignment module. However,
this information is only required in the next cycle, which does not
constitute a true data hazard.

3.2 Microarchitectural Aspects
This subsection presents microarchitectural aspects of our proposed
method. We start by presenting the state transition block. Details
of the header extraction module are drawn followed by the pipeline
alignment block. Then, we present the case of variable-sized head-
ers.

3.2.1 State Transition Block. Figure 2 shows the state transition
block which implements part of the ASM that represents the whole
parser. Each state (header) of this ASM performs state transition
evaluations by observing a specific field in the header and matching
against a table storing the supported next headers for a given state.
In this work, this table is filled at compilation time and it is part of
what we call Header Layout.

The state transition block uses only barrel-shifters, counters, and
comparators to perform state evaluations. Such operations can be
easily done in an FPGA within a single clock cycle.

In Figure 2, validHeader is the result of a comparison between
the nextHeaderIn and thisHeader. thisHeader is hardwired and it is
part of the header layout. validHeader is used as an enable signal
for all stateful components in the header instance. ReceivedBits is a
counter that keeps track of the number of bits received in the same
header. This information is used to check if the current data window
belongs to the same window in which the KeyValue is placed in
(KeyLocation). A barrel-shifter is used to shift the input data and
to align it with the KeyValue. The bitwise AND (&) operation after
the barrel-shifter guarantees this alignment. Finally, the KeyMatch
compares the key aligned input data and the key table. If a match is
found, the NextHeader is assigned to the value corresponding to the
match and the NextHeaderValid is set. HeaderException is asserted
otherwise.

3.2.2 Header Extraction Block. Figure 3 shows the header ex-
traction block which retrieves the header information from a raw
input data stream. Similarly to the state transition block, this mod-
ule is implemented using barrel-shifters, comparators, and counters.
Additionally, this module calculates header sizes derived from the
raw input data in case of variable-sized headers. For fixed-sized
headers, the header size information is hardwired at compile time.

≪ | D Q

E

≤

+ SizeDetector

DataIn

shiftValue[ReceivedWords]

BusSize×ReceivedWords

HeaderSize

ReceivedWords

1

HeaderValidIn

PHV

HeaderDone

DataIn HeaderSize

HeaderSizeField

Figure 3: Header extraction block

In the header extraction module architecture, the counter Re-
ceivedWords is used to delimit the header boundaries for comparison
with the HeaderSize. It is also used to index a table that stores the
shift amounts for the barrel-shifter. This table is fixed and it is
filled at compile time. The bitwise OR (|) acts as an accumulator,
receiving the current shifted and value accumulating it with the
results from previous cycles. HeaderDone indicates that a header
has been completely extracted.

The SizeDetector sub-block is hardwired for fixed-sized headers.
For variable-sized headers, this sub-block has a behavior similar
to the state transition module, returning the header size and the
value of the field corresponding to the header size. More details
regarding variable-sized headers are drawn in Section 3.2.4.

3.2.3 Pipeline Alignment Block. Unlike previous works, we opt
for a bus-aligned pipeline architecture. That means that each stage
in the parser pipeline aligns the incoming data stream before send-
ing it to the next stage. This design choice reduces the complexity
of the data offset calculation at the beginning of a stage. The bus
alignment is done in parallel with other tasks within a stage and
therefore has a low overall performance impact. The pipeline align-
ment block microarchitecture is depicted in Figure 4.

D Q

E

≪

|

≫

ShiftAmount

DataIn

H
ea
de
rV
al
id
In

headerSizeField

headerSize
BusSize

leftShiftAmount

rightShiftAmount

leftShiftAmount

rightShiftAmount

DataOut

Figure 4: Pipeline alignment block

This block delays the input data and performs bit-shifts to remove
the already extracted data at the same parser stage. Shift amounts
are functions of the header size and the bus size. In the case of fixed-
size headers, these shift amounts are hardwired. For variable-sized
headers, they are calculated by the ShiftAmount, which is explained
in more details in Section 3.2.4.

The output bus is then composed of data belonging to the current
input data stream and from the previous cycle. When the current

FPGA’18, February 2018, Monterey, California USA J. S. da Silva et al.

P4 Compilation

JSON Parser

Graph Reduction

Graph Optimization

Pipeline Generation

RTL Generation

RTL Synthesis

P4 Code

JSON Array

H
eadersLayout

Full Graph

Reduced Graph

Optimized Graph

C++ Code

RTL code

FPGA Bit Stream
Figure 5: Parser pipeline generation.

header instance is not to be processed, in the case where HeaderVa-
lidIn is not set, this block just passes the input data to the output
bus, playing the role of a bypass unit.

3.2.4 Handling Variable-sized Headers. It is not unusual to have
a network protocol in which the header size is unknown until the
packet arrives at a network equipment. The header size is inferred
from a header field. IPv4 is such an example.

One approach to handle variable-sized headers would be to di-
rectly generate the required arithmetic circuit from the high-level
packet processing program. However, this is an inefficient option
based on our bus-aligned pipeline layout. In our architecture, sup-
porting variable-sized would require dynamic barrel-shifters. Recall
that a brute-force approach to design barrel-shifters uses a chain
of multiplexers. For a N-bit barrel-shifter, this approach requires
N loд(N) multiplexers and introduces loд(N) combinational delay
units to the critical path, compromising both FPGA resources and
performance.

To get rid of dynamic barrel-shifters, we are inspired by a tech-
nique available inmodern high-level programming languages known
as template metaprogramming. Template metaprogramming uses
the compiler capabilities to compute expressions at compilation
time, improving the application performance. Based on this tech-
nique, during the P4 compilation in our framework, we calculate all
valid results of arithmetic expressions storing them into ROMmem-
ories. These expressions include header size calculation and shift
amount taps for static barrel-shifters. The results for a variable-
sized IPv4 header instance showed 13% LUT and 15% FF usage
reduction when implementing these ROM memories rather than
dynamic barrel-shifters.

3.3 Pipeline Layout Generation
The procedure to generate the parser pipeline is depicted in Fig-
ure 5. The input P4 code is compiled using the P4C compiler [12]
producing a JSON array. We have chosen to use the result of the P4
back-end compilation (p4c-bm2-ss driver) for sake of simplicity.

Algorithm 1: Graph balancing algorithm
input :List of nodes representing a transitive reduced graph
input :Ordered list of nodes belonging to the longest path
output :Optimized balanced graph
Data: A node is a data structure that has pointers to

successors /predecessors and methods to add/remove them. A node
level represents the graph level and it is unassigned at the beginning.

1 Function graphBalance(tReducedGraph, longestPath)
/* Compute the distance of all nodes to the root */

2 computeNodesLevel(tReducedGraph)
/* Remove edges to successors from nodes not in the longest

path */

3 for node in tReducedGraph do
4 if node < lonдestPath then
5 for sucNode in node .successors() do
6 removeEdge(node, sucNode)

/* Adding spare edges to balance the graph */

7 for node in tReducedGraph do
8 if node < lonдestPath then
9 addEdge(node, lonдestPath[node .level + 1])

10 return tReducedGraph

Our work is limited to what is enclosed by the dashed rectangle
in Figure 5 and it is written in Python. It starts with the parsing
of the JSON array file. While parsing, the script extracts the data
structures necessary to initialize the multiple C++ Header instances
that compose the parser pipeline. The JSON parser also extracts the
full parser graph. Figure 6a presents a full parser graph generated
from a header stack comprising the following protocols: Ethernet,
IPv4, IPv6, IPv6 extension header, UDP and, TCP.

For an efficient pipelined design, the graph illustrated in Figure 6a
is not suitable. In that representation, almost all pipeline stages need
bypass schemes to skip undesired state transitions, introducing
combinational delays and increasing the resource usage due to the
bypass multiplexers. We propose to simplify the original graph in
order to have a more regular pipeline layout.

The graph simplification starts with the graph reduction phase
that receives as input the full graph. This step performs a transitive
reduction of the original graph in order to eliminate redundant
graph edges. This phase also extracts the longest possible path of
the parser graph. The result of this phase is shown in Figure 6b.

The graph presented in Figure 6c is an alternative representation
for the reduced graph from Figure 6b. In this graph, a dummy
node is introduced to offer the same reachability while balancing
the graph. This dummy node only acts as a bypass element and
therefore has no implementation cost, thus, they can be merged
with existent nodes at the same graph level.

We propose a graph balancing algorithm in Algorithm 1 to op-
timize the reduced graph. It receives as parameters the transitive
reduced parser graph and the longest path in the graph. As output,
the algorithm returns a balanced graph tailored to our pipelined ar-
chitecture. The first function call (line 2) in the algorithm executes
the node level computation in relation to the root for all nodes. The
first loop (lines 3 - 6) iterates over the nodes that are not in the
longest path. It deletes the edges from these nodes to their children.
The last loop (lines 7 - 9) iterates again over the nodes that are not
part of the longest path and assigns a child to them. The chosen
child is the first one belonging to the next graph level. Finally, the
algorithm returns an optimized graph on line 10. An example of
balanced graph is shown in Figure 6d.

P4-compatible HLS of Low Latency 100Gb/s Streaming Packet Parsers in FPGAs FPGA’18, February 2018, Monterey, California USA

ETH

IPv4 IPv6

EXT

UDPTCP

END

(a) Original parser graph

ETH

IPv4 IPv6

EXT

UDPTCP

END

(b) Transitive reduc-
tion of the original
graph

ETH

IPv4

dummy

IPv6

EXT

UDPTCP

END

(c) Equivalent reduced
graph with an spare
node

ETH

IPv4 IPv6

EXT

UDPTCP

END

(d) Final transformed
graph

Figure 6: Parser graph transformation

The last step of the proposed approach illustrated in Figure 5 is
the code generation. This phase receives as input a set of data struc-
tures representing the supported header layouts and the balanced
graph. The header layouts are used to initialize both template and
construction parameters for the C++ objects. The pipeline layout
is drawn based on the balanced graph, with multiplexer insertion
when required. The result of this phase is a synthesizable C++ code.

The generated C++ code is tailored for FPGA implementation.
The next step in the processing chain is to generate RTL code for
FPGA synthesis and place-and-route. Vivado HLS 2015.4 is used in
this phase. Then, the generated RTL is synthesized under Vivado,
which produces a bit stream file compatible with Xilinx FPGAs.

4 EXPERIMENTAL RESULTS
To demonstrate and evaluate our proposed method, we conducted
two classes of experiments, the same ones performed in [2], to
simplify comparisons. These two classes are defined as follows:

• Simple parser: Ethernet, IPv4/IPv6 (with 2 extensions), UDP,
TCP, and ICMP/ICMPv6; and

• Full parser: same as simple parser plus MPLS (with two
nested headers) and VLAN (inner and outer).

We used Vivado HLS 2015.4 to generate synthesizable RTL code.
The RTL code was afterwards synthesized under Vivado 2015.4.
The target FPGA device of this work was a Xilinx Virtex-7 FPGA.

Table 1 shows a comparison against others works present in
the literature [2, 6] that support fixed- and variable-sized headers.
In the case of [6], because they do not provide FPGA results, we
reproduced their results based on a framework provided by the
authors [5]. For that, we developed a script that converts the P4
code to the data structures needed in the framework.

Analysing the data from Table 1, both this work and [2] out-
perform [6], which is expected since the framework proposed in
that work for automatic parser generation was designed for ASIC
implementation and not for FPGA.

We assume as a golden model, labelled as Golden [2] in Table 1,
a hand-written VHDL implementation presented in [2], which the
authors used to evaluate their method.

Under the same design constraints, our work achieves the same
throughput as [2], while not only reducing latency by 45% but also
the LUT consumption by 40%. However, our architecture consumes
more FFs, which is partially explained by the additional pipeline
registers inferred by the Vivado HLS. Nonetheless, we can even
have a lower overall slice utilization compared to [2], since in a
Virtex-7 each slice has four LUTs and eight FFs, and our architecture
does not double the number of used FFs.

Also, a notable resource consumption reduction is noticed when
the number of extracted fields are reduced from all fields to 5-tuple,
since a large amount of resources is destined to store the extracted
fields, which matches with the findings reported in [6].

To compare the impact of our proposed pipelined layout, we
implemented the pipeline organization proposed in [2] using the
proposed header block architecture illustrated in Figure 1b since
their source code was unavailable. This experiment is marked as
"Hybrid [2] and this work" in Table 1. For the simple parser, our
proposed architecture improves latency by more than 33%, while
reducing by 16% and 10% number of used FFs and LUTs, respectively.
In the case of the full parser, the latency was reduced by 39%, while
the resource consumption follows the results of the simple parser.

Moreover, this hybrid solution also outperforms the original
work [2] in both latency and LUT consumption. It shows that our
microarchitectural choices are more efficient in these aspects. In
addiction, these better results can also be related to the language
chosen to describe each architecture. In [2], they generated VHDL
code from a P4 description. Our design uses templated C++ classes,
which can fill the abstraction gap between the high-level packet
processing program and the low-level RTL code.

When comparing to the golden model, the results obtained with
our architecture are comparable to it in terms of latency. Our design,
however, utilizes nearly twice the overall amount of logic resources,
following what has been reported in [2]. However, since separate
LUTs and FFs, or slice consumption results are unavailable, we
cannot fairly compare resources utilization results.

As shown in Table 1, the present work achieves the best maxi-
mum frequency comparing to state-of-the-art, which allows scaling

FPGA’18, February 2018, Monterey, California USA J. S. da Silva et al.

Table 1: Parser results comparison

Work
Performance Resources Extracted

FieldsData Bus Frequency Throughput Latency LUTs FFs Slice Logic
[bits] [MHz] [Gb/s] [ns] (LUTs+FFs)

Simple Parser
[6] 256 184.1 47 N/A 14 906 2963 17 869 All fields
[6] 256 178.6 46 N/A 6865 1851 8716 TCP/IP 5-tuple

Golden [2] 512 195.3 100 15 N/A N/A 5000 TCP/IP 5-tuple
[2] 512 195.3 100 29 N/A N/A 12 000 TCP/IP 5-tuple

Hybrid [2] and this work 320 312.5 100 28.8 4699 7254 11 953 TCP/IP 5-tuple
This work 320 312.5 100 19.2 4270 6163 10 433 TCP/IP 5-tuple
This work 320 312.5 100 19.2 5888 10 448 16 336 All fields

Full Parser
[6] 64 172.2 11 N/A 6946 2600 9546 All fields
[6] 64 172.2 11 N/A 3789 1425 5214 TCP/IP 5-tuple

Golden [2] 512 195.3 100 27 N/A N/A 8000 TCP/IP 5-tuple
[2] 512 195.3 100 46.1 10 103 5537 15 640 TCP/IP 5-tuple

Hybrid [2] and this work 320 312.5 100 41.6 6450 10 308 16 758 TCP/IP 5-tuple
This work 320 312.5 100 25.6 6046 8900 14 946 TCP/IP 5-tuple
This work 320 312.5 100 25.6 7831 13 671 21 502 All fields

10 40 100 160
0
2
4
6
8
10
12
14
16
18
20

Throughput [Gb/s]

LU
Ts
/F
Fs

(T
ho

us
an
ds
) LUTs (simple parser) LUTs (full parser)

FFs (simple parser) FFs (full parser)

Figure 7: Synthesis results for multiple data rate parsers.

to data rates higher than 100Gb/s. Figure 7 presents the design scal-
ability results for data rates ranging from 10Gb/s up to 160Gb/s.
It is worth noting that the data rate scaling causes a non-expressive
impact in terms of LUTs, corresponding to an increase of 35 LUTs/Gbps
in the case of the full 160Gb/s parser.

5 CONCLUSION
FPGAs have increasingly gained importance in today’s network
equipment. FPGAs provide flexibility and programmability required
in SDN-based networks. SDN-aware FEs need to be reconfigured to
be able to parse new protocols that are constantly being deployed.

In this work, we proposed an FPGA-based architecture for high-
speed packet parsing described in P4. Our architecture is completely
described in C++ to raise the development abstraction. Our method-
ology includes a framework for code generation, including a graph
reducing algorithm for pipeline simplification. From modern high-
level languages, we borrowed the idea of metaprogramming to
perform offline expressions calculation, reducing the burden of
calculating them at run-time.

Our architecture performs as well as the state-of-the-art while
reducing latency and LUT usage. The latency is reduced by 45% and

the LUT consumption is reduced by 40%. Our proposed method-
ology allows a throughput scalability ranging from 10Gb/s up to
160Gb/s, with moderate increasing in logic resources usage.

ACKNOWLEDGMENTS
The authors thank A. Abdelsalam, M. D. Souza Dutra, I. Benacer,
T. Stimpfling, and T. Luinaud for their comments. This work is
supported by the CNPQ-Brazil.

REFERENCES
[1] Michael Attig and Gordon Brebner. 2011. 400 Gb/s Programmable Packet Parsing

on a Single FPGA. In Proceedings of the 2011 ACM/IEEE Seventh Symposium
on Architectures for Networking and Communications Systems (ANCS ’11). IEEE
Computer Society, Washington, DC, USA, 12–23. https://doi.org/10.1109/ANCS.
2011.12

[2] P. Benácek, V. Pu, and H. Kubátová. 2016. P4-to-VHDL: Automatic Generation
of 100 Gbps Packet Parsers. In 2016 IEEE 24th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). 148–155. https:
//doi.org/10.1109/FCCM.2016.46

[3] Pat Bosshart et al. 2013. Forwarding Metamorphosis: Fast Programmable Match-
action Processing in Hardware for SDN. SIGCOMM Comput. Commun. Rev. 43, 4
(Aug. 2013), 99–110. https://doi.org/10.1145/2534169.2486011

[4] Pat Bosshart et al. 2014. P4: Programming Protocol-independent Packet Pro-
cessors. SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95. https:
//doi.org/10.1145/2656877.2656890

[5] G. Gibb. 2013. Network Packet Parser Generator . https://github.com/grg/
parser-gen. (2013).

[6] G. Gibb et al. 2013. Design principles for packet parsers. In Architectures for
Networking and Communications Systems. 13–24. https://doi.org/10.1109/ANCS.
2013.6665172

[7] N. Gude et al. 2008. NOX: towards an operating system for networks. SIGCOMM
Comput. Commun. Rev. 38 (2008), 105–110.

[8] Viktor Pus, Lukas Kekely, and Jan Korenek. 2012. Low-latency Modular Packet
Header Parser for FPGA. In Proceedings of the Eighth ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS ’12). ACM, New
York, NY, USA, 77–78. https://doi.org/10.1145/2396556.2396571

[9] Haoyu Song. 2013. Protocol-oblivious Forwarding: Unleash the Power of SDN
Through a Future-proof Forwarding Plane. In Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN ’13).
ACM, New York, NY, USA, 127–132. https://doi.org/10.1145/2491185.2491190

[10] The Open Networking Foundation. 2012. Software-Defined Networking: The
New Norm for Networks. (April. 2012).

[11] The Open Networking Foundation. 2014. OpenFlow Switch Specification. (Dec.
2014).

https://doi.org/10.1109/ANCS.2011.12
https://doi.org/10.1109/ANCS.2011.12
https://doi.org/10.1109/FCCM.2016.46
https://doi.org/10.1109/FCCM.2016.46
https://doi.org/10.1145/2534169.2486011
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://github.com/grg/parser-gen
https://github.com/grg/parser-gen
https://doi.org/10.1109/ANCS.2013.6665172
https://doi.org/10.1109/ANCS.2013.6665172
https://doi.org/10.1145/2396556.2396571
https://doi.org/10.1145/2491185.2491190

P4-compatible HLS of Low Latency 100Gb/s Streaming Packet Parsers in FPGAs FPGA’18, February 2018, Monterey, California USA

[12] The P4 Language Consortium. 2017. P4 Compiler. https://github.com/p4lang/p4c.
(2017).

[13] Xilinx Inc. 2017. P4-SDNet Translator User Guide. https://www.xilinx.com/
support/documentation/sw_manuals/xilinx2017_1/ug1252-p4-sdnet-translator.
pdf. (2017).

[14] S. Zhou, W. Jiang, and V. K. Prasanna. 2014. A flexible and scalable high-
performance OpenFlow switch on heterogeneous SoC platforms. In 2014 IEEE 33rd
International Performance Computing and Communications Conference (IPCCC).
1–8. https://doi.org/10.1109/PCCC.2014.7017053

https://github.com/p4lang/p4c
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug1252-p4-sdnet-translator.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug1252-p4-sdnet-translator.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug1252-p4-sdnet-translator.pdf
https://doi.org/10.1109/PCCC.2014.7017053

	Abstract
	1 Introduction
	2 Related Work
	3 Design Methodology
	3.1 High-Level Architecture
	3.2 Microarchitectural Aspects
	3.3 Pipeline Layout Generation

	4 Experimental Results
	5 Conclusion
	Acknowledgments
	References

