
C H I ' 8 5 P R O C E E D I N G S A P R I L 1 9 8 5

CHI'85 Panel Discussion

Identifying and Designing Toward New User Expectations
in a Prototype Text-Editor

Robert Mack
User Interface Institute

IBM Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, New York 10598

Introduction
Learning to use a text-editor can be difficult for

novice users: extensive instruction is typically
required and much t r ia l -and-error (e.g., Mack,
Lewis & Carroll, 1983; Seybold, 1979). How can
we design an editor interface that requires much less
training and minimizes user difficulties? This paper
discusses the design and initial evaluation of an
editor prototype which tries (a) to get novices
started doing meaningful work relatively quickly
(e.g., in a half hour) with no explicit s tep-by-step
instruction, and (b) minimize serious problems as
novices master basic text-editing operations. The
approach taken to achieve these goals was to try to
be t te r accommodate empir ical ly ident i f ied
expectations on the part of novices about how
editing operations should work, and avoid
problematical design features. Two lines of
research contributed to identifying expectations and
problems, and hence specifying a more intuitive
interface design.

Identifying Text-Editor Interface
Problems

The first line of research involved "think aloud"
studies of commercially available word processors.
Computer naive office temporaries were asked to
learn basic word processing skills using self-study
manuals. We observed many problems both with the
instructional materials and with the computer
interface (see Lewis & Mack, 1982; Mack, Lewis &
Carroll, 1983). One notable problem was that
novices generalized from typewriting, and were not
readily able to understand novel text-edit ing
operations or possibilities.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, .'he ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or.to republish, requires a fee and/or specific permission.

© 1 9 8 5 A C M 0 - 8 9 7 9 1 - 1 4 9 - 0 / 8 5 / 0 0 4 / 0 1 3 9 $00.75

For example, novices did not readily understand
why familiar operations like Carrier Return modify
text rather than simply move the typing point (see
also Douglas & Moran, 1983). They also did not
readily understand how reflowing of text that
accompanies operations like inserting or deleting or
reformatt ing was managed. And they did not
readily understand such abstract concepts as blank
areas of a document window where text entry is not
permit ted (so-called non-typing areas) or how
familiar objects like blank lines are often
represented by embedded (sometimes invisible)
formatting symbols.

The second line of research tried to more
directly probe possible novice expectations by
staging demonstrations of text-editing activities and
asking novices to (a) predict how to accomplish the
goal behind the activity, and (b) describe what they
thought they saw after the demonstrat ion (see
Mack, 1984). These observations point beyond
expectations about typewriting, and towards a
general expectation we might describe as actions are
simple: i.e., a tendency to assume that an action is
associated with one outcome. Operat ions that
seemingly involve more than one outcome are
assumed to require more actions than is typically
the case. For example, there is evidence that
participants analyzed multiple effects of operations
like inserting or deleting into component actions
like "make space" followed by typing, in the case of
inserting, or erasing and "getting rid of gaps", in
the case of deleting.

Designing the Editor Prototype
These empirical observations do not in

themselves provide c lear-cut funct ional
specifications for a text-editing interface. However,
they provide a basis for analyzing existing editor
implementations and how these might be modified
to more closely approximate novice expectations.
For example, the observation that participants did
not readily understand embedded format symbols,
or the association of these symbols with familiar

139

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1165385.317482&domain=pdf&date_stamp=1985-04-01

C H I ' 8 5 P R O C E E D I N G S A P R I L 1 9 8 5

typewriter-like operations like Carrier Return led to
the challenge to eliminate such symbols and find
more concrete and direct ways for specifying and
manipulating text objects (like new blank lines),
and the properties of these text objects,

Similarly, the observation that automatic
reflowing of text as it accompanies various activities
like deleting or inserting or reformatting conflicts
with the expectation that actions are simple and
need to be explicitly managed led to the challenge
to implement reflowing of text in its various guises
as an explicitly managed operation, at least for
novices.

The attempt to solve these problems led to the
design of an editor prototype in which text-editing
objects and actions refer to more familiar and
concrete elements of the paper office, and users
have more explicit control over operations involving
reflowing. For example there are function keys that
refer explicitly to concrete text objects like Word,
Line, Paragraph and Page. These functions can be
used in combination with actions like Delete, Insert,
Format and Adjust to specify the scope of these
editing and formatting actions. Inserting a line, for
example, involves pressing the Line function
followed by Insert. Similarly, to delete a line, one
uses Line and Delete. Lines which contain gaps due
to deletions, or paragraphs whose lines are rendered
uneven from revision changes, can be explicitly
reflowed using an Adjust key. One version of an
Insert function allows users to make space and then
type (vs. initiate an insert mode). These changes
were intended to give users more explicit control
over editing changes, in some cases matching what
novices expect (e.g., "make space" to insert or "get
rid of gaps" following erasures). Familiar
typewriter operations like Carrier Return, Space and
Backspace work similarly to their typewriter
counterparts. And the prototype eliminated
unfamiliar features like embedded formatting
symbols or non-typing areas (within the margins of
the document).

Evaluating the Editor Prototype
The editor prototype is being designed and

evaluated iteratively. To date, two evaluations have
been carried out. In both evaluations participants
were given a half day to accomplish as many of
seven letter typing tasks as possible, given no
step-by-step instruction, but only a set of reference
cards. The cards briefly define word processing,
how to turn the computer on, the two general ways
to use the word processor (select items from menus,
press function keys) and provide general definitions
of basic functions grouped according to typical
text-editing tasks. Participants were encouraged to
think aloud as they worked, and the experimenter
occasionally asked questions about what the
participants wcre thinking about.

In the first evaluation, six computer-naive office
temporaries required about an hour to complete
their first job which consisted of creating, typing,
printing and finishing a simple one page memo
(time to respond to experimenter questions is
factored out of all times). Examination of the first
two hours indicated that participants completed an
average of four of the seven letter typing tasks,
attempting in the process about 383 subtasks (i.e.,
goal-related tasks like create a new document,
delete a word, adjust a paragraph, print a document,
etc.). Participants experienced problems in about
20 percent of these subtasks (i.e., two or more
attempts were needed to accomplish the goal, or
they failed completely).

Based on problems identified in this evaluation,
modifications and a second evaluation were
undertaken. In this case, six participants were able
to get started doing meaningful work within a half
hour, again, with no explicit (step-by-step)
instruction and, indeed, a reduced set of reference
cards. In the first two hours, participants were able
to accomplish four typing tasks, attempting a total
of 486 subtasks for which about 20 percent led to
problems (i.e., two or more attempts to accomplish
a subtask).

Overall, both versions of the prototype avoided
many of the problems observed in commercially
available text-editors, involving familiar
typewriter-like operations like Carrier Return or
unfamiliar features like formatting symbols or
non-typing areas. While overall performance was
comparable for the two evaluations an examination
of performance on, and problems with, specific
types of operations indicate both cases of
improvements in the second prototype version,
relative to the first, but also cases where problems
remain in finding intuitive implementations of more
advanced text-editing operations. In particular,
while participants do not seem to find it unusual
that they need to explicitly manage reflowing, and
did better doing so for the second iteration, key
aspects of how reflowing operations are
implemented still create problems for these users.
These problems are being solved by further iterative
evaluation and modification.

Key Design Approaches
Three design approaches are illustrated in this

prototype research. First the prototyping effort has
been driven by extensive qualitative information
about problems novices having using editors, and
insight into the causes of those problems. This
included an adaptation of the verbal protocol
technique to directly probe new user expectations.

Second, these expectations have driven an
analytical process of identifying an interface design.
to better accommodate these expectations. Think
aloud protocols and evidence for expectations do

140

C H I ' 8 5 P R O C E E D I N G S A P R I L 1 9 8 5

not necessarily provide direct or unique
specifications for a user interface, and other
considerations entered into the prototype
specifications. But novice expectations pointed
towards two key interface design requirements: (a)
user control over reflowing and (b) more concrete
representation of text objects involved in
operations.

Third, the prototype itself is being designed
iteratively through user testing and modification
aimed at achieving key behavioral goals of getting
novices started doing meaningful work relatively
quickly, and minimizing serious problems as they
progress further into the editor's capabilities.

References

Douglas, S. and Moran, T. Learning text editor
semantics by analogy. In Proceedings CHI'83
Human Factors in Computing Systems (Boston,
December 12-15, 1983). ACM, New York.

Lewis, C. and Mack, R. Learning to use a
text-editor: Evidence from "Thinking Aloud"
protocols. Proceedings of Human Factors in
Computing Systems Conference, National Bureau
of Standards, Gaithersburg, Maryland, 1982.

Mack, R., Lewis, C. and Carroll, J. Learning to use
word processors: Problems and prospects. ACM
Transactions in Office Information Systems, 1 (3),
1983, 254-271.

Mack, R. Understanding text editing: Evidence from
predictions and descriptions given by
computer-naive people. IBM Research Report RC
10333, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, 1984.

Seybold, J. Training and support: Shifting the
responsibility. Seybold Report on Word
Processing. 1981, 4.

141

