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Abstract. Closed product-form queueing networks are considered. Recursive schemata are proposed for the 
higher moments of the number of customers in the queues, called “moment analysis”. As with mean value 
analysis (MVA) , in general no state probabilities are needed. Approximation techniques for these schemata 
similar to those existing for MVA are introduced. 
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0. Introduction Product-form queueing networks are introduced ‘in [J,GN,BCMP]. Their queues have 
the M=+M-property [M,TZ]. Th ere are two important techniques to analyze closed queueing networks: the 
convolution method [B], and mean value analysis (MVA) [RI. 

Because of their computational complexity, both methods are not applicable to large systems having several job 
classes and a large number (> 100) of jobs. To overcome this difficulty, heuristic methods to approximate MVA 
are proposed by Chandy and Neuse (CN], Chow [CH], Lavenberg [RL], Pittel (P], Reiser [R,RZ,RL], Schweitzer 
(SCHWE], Zahorjan [Z], and others. There are other approximation techniques, not confined to MVA which 
are based on aggregation [CHW,Z]. 

This paper proposes recursive schemata that extend the MVA technique in that they enable the determination 
of higher moments of the total number of jobs in the queues of BCMP queueing networks. The method, which 
we call “moment analysis”, can also be used to calculate joint moments such as covariances, and can handle 
state-dependent service rates. In order to be able to treat large systems, we consider approximation techniques 
for moment analysis. 

Similar recursive formulae are proposed in [HI. Higher moments of the number of jobs of a given class in a 
queue and of the waiting time in FCFS nodes with state-independent service rates can be obtained. However, 
joint moments are not treated, and only a very special kind of state-dependent service rates is considered. 
Furthermore, the given formulae are inapplicable to large systems because of their computational complexity. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish. requires a fee and/or specific permission. 

0 1986 ACM 0-89791-184-9/86/0500-0129 $00.75 

129 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F317499.317546&domain=pdf&date_stamp=1986-05-01


In Section 2 of this paper, we prove a differential equation for the normalizing constant of a closed queueing 
network. It is linear and of first order. The linear coefficient is E(Nk), the expected number of jobs in any 
specified queue k. The independent variable is zk, a quantity proportional to the expected service time in queue 
k. zk can be regarded as the reciprocal of the capacity, defined as the service time per unit of work of the 
servers in queue k. The service time of a job depends on the amount of work it requires, the queue’s state, and 
on the reciprocal of the capacity zk. In the differential equation, the reciprocal of the capacity is variable. This 
differential equation is used to prove the main theorem of this paper. A similar differential equation is applied 
in [SCHWA], p.253. 

In Section 3, recursive schemata are presented to calculate the variances oLi, the covariances cov(ZVi,, Ni,), and 
higher moments of ZVi, the number of jobs in queue i. In general, neither state probabilities nor the normalizing 
constant are needed. In this regard, the schemata are similar to MVA, to which they are a supplement. They 
can be regarded as an application of the previously described differential equation which is used to derive them. 
Higher moments can be used to approximate the state probabilities; a new method based on the principle of 
maximum entropy is presented by Shore [S] and Tzschsch [T]. 

In Section 4, heuristic techniques are treated for the approximation of the higher moments. They are 
generalizations of the techniques of Schweitzer and Chandy-Neuse. 

1. Product-form queueing networks and mean value analysie We consider closed product-form 
queueing networks in statistical equilibrium. The network has k queues, and a total job population n 2 0. 
A job leaving queue i proceeds with probability qi,j to queue i, 1 5 i,i 5 k. This determines relative arrival 
rates Ci, 1 I i I k, at queue i. 

We allow for r different job classes, each having its own routing probabilities. Each job belongs to a particular 
class; changes are not allowed. Therefore, we have relative arrival rates ei(r), 1 5 i 5 k, 1 5 I 5 r of class- 
l-jobs at queue i. Queueing networks that allow jobs to change their class can be transformed into equivalent 
ones without class changes, see [ST]. 

The random variable Ni,l denotes the number of class-l-jobs in queue i, and 

the total number of jobs in queue i. The state of queue i, l<iLk, 1 5 1 5 r, is given by 

a= (&,...,&) 
is the state of the whole queueing network. 

Let ?Zi,l 1 0, integer, 

ni = ni.1 + ' * * + nit,, ai = (ni,l,. . . ,tt;,r) and ~5 = (AI,. . . ,~k). 

The state probability pa = P(R = A) has the form 

130 



with the pseudo probabilities 

the normalizing constant 

and the state space 

04 

k 

1 1. i < k, Cn;,l = n(Z), 
i=l 

Here n(r) is the number of class-l-jobs in the queueing network, and A = (n(l), . . . , n(r)) the population vector. 
n = n(l) + - -- + n(r) denotes the total number of jobs in the queueing network. 

For the four types of queues in [BCMP], we define the reciprocal of the capacity Zi in queue i in the following 
way. Let Zi7i,ni,l be the expected value of the service time S. 7 i,ni,l expresses its dependence on the number 
ni of jobs in queue i and on the job class. For some zi, 0 < 2j < 00, let 

7i,ni,l = E(S)/zi, 15I5t; 

then for the &,si we have one of: 
1) S is exponentially distributed and may depend on ni; the queueing discipline is FCFS. There may be 

several servers. 

P. *,ni = %! fi Ti,j,l I-J (ei(I)""'/tZi,l!) 
j=l lcR(i) 

where R(i) denotes the set of classes whose members visit queue i, 1 5 i 5 k. 

2) The distribution of S is arbitrary, but with a rational Laplace transform, and may depend on the job 
class. The discipline is processor sharing and there is one server. 

Pi,ni = w! n ((ei(~)7i,l,r)ni"/n;,II). 
IcR(i) 

3) S is distributed as under 2), and there is an infinite number of servers 

Pi,% = n ((ei(f)7i,l,,)"i'i/ni,,!). 
fcR(i) 

4 S is distributed as under 2). The discipline is LCFS preemptive resume, and there is one server. Bi,a* 
is as in 2). 

For the marginal probabilities in queue k, 

pk(D, il) = P(& = P) 

with 
G= (Vl,...,V,) 

we have 

( I component-wise). Here Qn--P,k-r is the normalizing constant of a modified queueing network: node k is 
discarded, and the population is il - D. 
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The marginal distribution of the remaining queues can be obtained by altering the numbering, or by the 
introduction of special auxiliary functions, see (BB]. 

The mean value analysis by Reiser [R] avoids numerical problems in calculating the normalizing constant gn,k. 
Here the expected vahs mi = E(Ni), 1 < a’ 5 k, of the number of jobs in queue i are computed recursively, 
delivering also the expected value E(Wi) of the residence time R’i of jobs in queue i, and the throughput. 

Let there be one job class, and the service times Si state-independent. With 2i = E(Si) and pi = Z;e; we have 

(0) = 0 
mi , 

wl!n) = pi 
I 

l 
for queue i of type 3), 

1 + &--‘1 I otherwise, 

A(“) = n, &nJ, 
j=l 

my = A(“) 1 5 i 5 k, n = 1,2,. . . . (1.3) 

Here m!“) is the expected number of jobs in queue i if there are n jobs in the queueing network, E(Wi) = w!“)/ei, 
and X(“)ei the th roughput at queue i, 1 5 i I k. 

In [RL] MVA is generalized to 
- multiple job classes, no class transitions, 
- state-dependent service rates. 

We present the formulas for the first generalization but with state-independent service rates, yi,r,l = yi,z,l = . . . . 
Let P = (v(l), . . . , u(r)) a population vector, 

S(1) the set of queues visited by class-l-jobs, 1 5 1 5 r, 
R(i) the set of job classes whose members visit queue i, 1 5 i 5 k, 
iI = (0.. -0, 1,O.. . 0) the vector with r - 1 components 0 and the I-th component 1, 
0 = (O,...,O), r components, and 

Pi(I) = WYi,l,lei(~) 1 

Then we have 
(a) = 0 

mi , lIi<k, 
for v(Z) = 0, 
for queue i of type 3), 
4) ’ 0, 

icS(Z), 1<15r, 

otherwise, 

lcR(i) 

otherwise, lll<r, 

llilk, bID<ft, o-4 

and the expected value 
m!‘)(l) = E(Ni,l) = AWN”) (14 

of the number of class-l-jobs in queue i. 

In this case, the number of arithmetic operations is of order 

upper bound. The space required is of order 0 (k,fiIn(l)). 

see e.g. [RL]. 4kT,fiI(n(l) + 1) is an 
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Now let the service time in queue i depend on ni, the number of jobs. In this case, state probabilities are needed 
for all populations i9, 0 5 P 5 % They are evaluated recursively. In the corresponding generalization of (1.4) 
the second equation is replaced by 

W!D)(Z) = CjXiri,j,lCi(Z)pi(j - 1, li - I,), IfAt( (1.4’) 
j=l 

see [RL]. The state probabilities pi(j) 0) = P(Ni = i) are calculated by 

Pi(O,o)= 1, 

pi(j, 6) = 0 for j > 0 , 

pi(j,P) = ~X"'(I)ei(l)zi7i,j,,pi(j- 1,li - iI) { :li if queue i of type 3), 
1 I j I 14, 

I=1 otherwise, 

pi(O,P) = 1 - Epi(j,D)* 
j=l 

(1.4”) 

These equations are valid for all queue types. 

2. A Differential Equation for the Normaliaing Constant In this short section, we prove a differential 
equation for the normalizing constant which will be used to prove Theorem 3.1, the key of our method. Here 
we consider the normalizing constant aa a function of zk, the reciprocal of the capacity of queue k, and write 
9n,k = gn,k:(xk)- 

Theorem 2.1 The normalizing constant g&k(zk) satisfies the differential equation 

gn,;;xk) &‘f&) = mk(zk)* (24 

Proof Differentiating (1.2) with respect to Zk, multiplying by zkl and dividing by ga,k, one gets 

(2.1) follows. Qed. 

3. Higher Moments of the Number of Jobs in the Queues The MVA technique allows the computation 
of E(Ni) recursively without the use of normalizing constants or - in general - the state probabilities (1.1). Here 
we present similar recursive schemata for higher moments. 

In the following theorem, we state a relation between the moments of the numbers of jobs in the nodes and the 
derivatives of mi with respect to xh, 1 5 i, h 5 k. 

Theorem 3.1 In BCMP queueing networks, the moments of the numbers of jobs in the queues obey the 
following recursive formula: 

l<aSk, 1 5 j0 for 1 5 0 5 a, 

15i,Ikandi,#i,forlIa,?1CLando#r, (3.1) 
with 
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Ni” = I. 

Before 
5 +i2 

proving the theorem, we remark that E(Ni: N/i.. . Nib’) contains derivatives of m; up to the order 
+ . ..+jp- 1. These can be computed from the derivatives of the recursive formulas of the MVA scheme. 

Proof Let 

We calculate 

p(A) = IfI(X:iS;,f$i)* 
i=l 

$-E(N/-‘Ni;. . . N{z) = & cni j-1 ia 
i 

nit.. .nkp(ii)/g,,a 
‘ AcZ 

with ny = 1 for tti = 0. The last equation follows from the differential equation (2.1). (3.1) follows. Qed. 

From (3.1), we can obtain formulae for the numbers of jobs in the nodes of BCMP queueing networks, in 
particular the variances and covariances, 

a 
Ugi = Xi-W&i, 

aXi 
cov(NiNj) = xj&mi, lSi,jlk, 

i 

and 

E(Nf) = Oi&mi + mf, 
i 

E(NiNj) 
a = mimj + XiGmj 

a 
= t?li??Xj + X'-m;, 

' axj 

a= a 
E(N;3) = +Gmi + (Zi + 3Zimi)-mi + mf, aXi 

i # i, ;<i,j<k. (3.2) 

In order to evaluate such expressions, we need the derivatives of the expected job numbers E(Ni) with respect 
to the reciprocals of the capacities. These can be calculated by schemata which we get by differentiating the 
MVA equations. 

In the simplest case one gets the derivatives of E(Ni) by applying 

Theorem 3.2 Suppose that all jobs belong to the same class. Let Zi = E(Si,,i) be state-independent. Then 

a (01 = 0 
a+hmi 9 

a 
pw’n) = 

6;,hei for queue i Of type 3) 

axh * (bi,h(l + mj”-‘I) + x;&m!“-‘))ei otherwise, 
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l<i,h<k, n=l,2,..., 

where 
for i = h, 
otherwise. 

(3.3) 

Proof Differentiation of (1.3). Qed. 

Example 3.1 A queueing network consists of k type-l-queues. There is one job class, let Zi be the expected 
service time, and n = 1 the population. We get 

wi 
(I) = pi, A(‘) = l/8, $) = Pi/a, 

-eh/b’, 
a -&) = 

aXh ' 
-ehpi/02 + bi,h’%/oy 

and the variances 

with 

& 
a z---m (1) 

azh 
h zh= -pi Jo” + ph/u, 1 I i, h I k, 

k 
u= c Pi. 

i=l 

Example 3.2 We consider a queueing network Q with one job class, 12 queues, and three jobs: 

Queue i Type 
l-9 1 
10 and 11 1 
12 1 

ei 

~fO215 9.333 
0.104 10.5 
0.019 10s 

This central-server-model is due to Kobayashi, see (KO], p. 178ff. Queue 12 models the CPU, queues l-9 model 
logical drum sectors, queue 10 and 11 disks with channels. All secondary storage supports demand paging. 
There are n = 3 jobs in the queueing network. When a page fault OCCUIU in the CPU, the job goes to the 
according queue, and after being served, beck to the CPU-queue, 

We computed the variances ~7%~ for all i, 1 5 i < 12, applying (3.2) and Th eorem 3.2. Results are given in the 
following table: 

Q ueue i 

1-9 
10,ll 
12 

E( Ni) 
n=3 
0.07606 
0.53316 
1.24917 

for 
n=2 
0.05835 
0.36327 
0.74835 

n=l 
0.03353 
0.18246 
0.33334 

u&i for 
n= 3 n= 2 
0.07893 0.05873 
0.57689 0.34341 
1.02546 0.56250 

Tk= 1 
0.03240 
0.14917 
0.22222 

In order to calculate the variance for one queue i, MVA must be performed, and (3.3) must be evaluated for 
that i. The required time is of order kn, the same as for the MVA algorithm. 

Another way to calculate the variance a$< is to evaluate the marginal distribution using (1.4”). This requires 
time of order n2. Thus, our technique is superior when the number of jobs is larger than k, the number of 
queues. On the other hand, (1.4”) may lead to numerical problems because on occasion nearly equal quantities 
are subtracted, see [CS]. This problem is addressed in [R3]. 
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If there are several job classes and nodes with state-dependent service rates, the derivatives can be calculated 
according to 

Theorem 3.3 Let the service time be state-independent. Then we have the recursive schema 

LP’(l) 

0 for Y(l) = 0 

aq i 
z-y; 1, 6i,hei(l) for queue i Of type 3), V(l) > 0 

I 1 
ei(l) (6i,h( I + miP-ir)) + Zi &mi(“-i’)) otherwise, “‘(‘)’ 

’ & “D)(1) = { ~~)~~~~l”,,)(i)) / (JI w!“‘(r)) 2 otherwise, 

(3.4) 

For a node i with statedependent service rates, the second equation must be replaced by 

IDI 
&wj"'(I) = ~j7i,j,P%(l)(&,kPi(j - 1,P - iI)+ Xi -&Pi(j - 1, P - II)), w(i), (3.4’) 

j=l 

with 

&Pi(j,a) = 0, 

&?Ji(j, fi) = kci(l)7i,j,[ 
I=1 

zipi(j - 1, li - ir)&dD)p) 

+A(D)(UPi(j - I,@ - ir)di,h + A’“)(l)Ci&pi(j- 1,P - I,) > 
, 1 L j I 14, 

l<h<k. (3.4") 

Proof Differentiation of (1.4), (1.4’), (1.4”). Qed. 

In the case of r classes, the additional time needed to calculate the variance in one queue with state-independent 
service rate is of order O(tk n n(l)), th e same as for MVA. Computing the variance by the marginal 

lcR(i) 

distribution requires time of order O(tn’ n n(l)) with n’ = 
IcR(i) 

, &n(l). Time (and space) requirements are 
e s 

no lower than those of the MVA algorithm, which necessitates the use of approximation techniques. We were 
able to generalize the method of Schweitzer and Linearizer, and obtained ucurate results. In the following, we 
present these techniques and examples; more details are given in [D]. 
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4. Approximation Techniques for Large Systems There exist several heuristic methods to approximate 
MVA for large systems, such as the technique of Schweitzer, see [SCHWE], and Linearizer, see [CN]. 

Schweitzer’s technique can be derived from the MVA scheme by replacing in (1.4) the terms m!P-i’l by terms 
(D) containing only mi , and setting o = R : 

Here mtP)(f) = E(Ni 1) I I is th e expected number of class-l-jobs in queue i with miDl(Z) = X(‘l(l)urjD)(l). 

Equation (4.1) is based on the assumption that an additional class-l-job doea not affect the expected job numbers 
of the other classes, and that it increases the expected numbers of class-l-jobs in proportion to the old values. 

From the replacement according to (4.1), one obtains a system of nonlinear equations for the expected job 
numbers and the throughputs. The populations D < R need no longer be considered, as the method is no longer 
recursive. 

The nonlinear equations are solved by iteration, see [Z], though the existence of a unique solution and 
convergence cannot be assured. The results are accurate for small and large populations (Zahorjan). 

In order to explain Linearizer, we describe Schweitzer’s technique a bit differently. Let 

(4.2) 

The heuristic consists in equating these proportions for all populations D = R and B = R - iI, 1 5 1 5 r. 

Linear&r adds a term of higher order. Let 

a!“(v,q = yyio(q - JD) * i (0, 1 5 i 5 k, ir 5 D 5 R, 1 I Z,l’ 5 r; (4.3) 

this is a quantity that takes into account the differences of the proportions (4.2). The heuristic of Linearizer is 
to equate the differences for all populations li = ft and Y = A - il, 1 5 2 5 r. 

By (4.2) and (4.3) one gets 

m!D-i’J(l’) = ( P - il),# (VI’) (I’) + 65D) (d’, r)) 
and 

(4.4) 

m[D-‘l-ij)(lt) = (p - iI - ij)(, (uIDvii)(l’) + 6!D-ij)(lt,j)) (4.4’) 

w (P - iI - i j)r, ( yjDmfi) (1’) + QD)(l’, I)) (4.4”) 

We take the equations (1.4) with the populations P = A und 0 = ?I - ii, 1 5 j 5 r, -and replace 
,(‘-d = c 

1 m!‘-“)(V) in the following manner. 
I’eR(i) 

- for D = it according to (4.2), (4.3), (4.4) and 
- for 1 5 j 2 r according to (4.2) with li = ii - ij and (4.3) and (4.4”) with li = ii. 

Thus we obtain a system of nonlinear equations for the expected numbers of jobs and the throughputs. It is 
solved by iteration, which in our examples always converged. The initial values are determined by Schweitzer’s 
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technique applied for the populations P = R and Y = ft - II, 1 < 1 < r, delivering the mi’s,the vi’s) and the 
6i’s by (4.2) and (4.3). 

We developed approximation methods, one called “Sch”, based on Schweitter’s technique, and another called 
“Lin”, based on Linearizer. Details can be found in [D]; h ere we give a short description and examples. We 
found “Sch” to produce reasonably accurate results , and “Lin” to produce very good results, in general. 

In “Sch” we use 

1 Ii,j<k. (4.5) 

In order to get a system of nonlinear equations for the mi’s and their first derivatives with respect to 2j we 
- set 0 = R in (1.4) and (3.4), 
- replace rn!n-l’l according to (4.1) and 

- BErni i 
lnmi’l according to (4.5). 

The resulting equations consist of 
- Schweitzer’s equations and 

their derivatives with respect to Zj, l<jlk. 

Similarly, we developed m Lin” by differentiating Linearizer’s equations. Differentiating once more, we extended 
“Sch” and “Lin” for third moments. 

The resulting equations are solved by iteration, which always converged, starting with equal m!s)(I) for all 
queues. 

In the following example the mean values, variances, and third moments are calculated exactly by MVA and by 
Theorem 3.3 and (3.2), respectively, and approximately by “Sch” and “Lin”. 

Example We consider Network 1 of [Z], p. 146. There are three queues of type l), each having a state- 
independent server, two job classes, and the following relative utilization factors pi(Z): 

i 
Pi(l) 
Pi(2) 

Results: 

fi 

(54) 
WV) 
(20~5) 
(40,30) 
(W@ 
(160,120) 
(320,240) 

= 
= 
= 

t E rSch, 1 

0.53 12.03 
0.63 14.4 
0.95 9.9 
2.2 5.02 
7.2 2.5 
27 1.3 
105 0.62 

1 
1 
10 

‘Sch,s 

9.44 
18.6 
17.6 
9.4 
4.7 
2.4 
1.17 

2 
3 
1 

rSch,3 

9.71 
24.4 
24.2 
11.3 
2.3 

‘Lin.1 

0.06 
1.73 
1.52 
0.39 
0.1 
0.03 
0.006 

‘Lin,2 

1.3 
0.75 
3.65 
1.11 
0.27 
0.07 
0.018 

3 
5 
1 

Tin,3 

1.1 
1.1 
6.0 
2.7 
1.13 

Here t&c] denotes the CPU-time (IBM 376-168) to compute the exact results, r., .[%;I denotes an upper bound 
of the relative error, index 1 stands for “first moment”, index 2 for “variance”, and index 3 for “third moment”. 
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The CPU-time for “Lin” was always less than 2 sec. 

Queues 1 and 3 are bottle-necks for class-2 and class-l-jobs, respectively, and m2 is always less than 2. 
Cosequtntly, the relative errors here are comparatively high. To illustrate this, we present results for the 
population Q1 = (40,30): 

ml 
m2 

m3 

01 

02 

Q3 

Exact Schweitzer &Error Linearizer rel.Error 
33.083 33.029 0.17 33.081 0.008 
1.7222 1.6359 5.01 1.7155 0.39 
35.194 35.335 0.40 35.204 0.03 
14.873 14.488 2.59 14.858 0.10 
4.6882 4.2478 9.40 4.6364 1.11 
18.956 18.101 4.51 18.880 0.40 

In the case of example 3.2 we obtained 

rSch, 1 = 4.8%, rSch,2 = 9.6%, rLin,l = O*II%, fLin,z = o’15%* 

In four other examples with small populations, the results were 

r&h,, < 8.8% rSch,2 C 14%, rLin,l < 1.31%, fLin,2 < 2.3%. 

In [Z], an approximate method similar to Schweitzer’s technique is proposed. Here the heuristic is to equate 

w!“-lqq = wjp)(q - Pi(l) PI , -mi (j>, 
4 

lIi<k, 1 <l,jLr. 

We generalized this method by differentiating to the case of second moments, and obtained consistently better 
results than with Schweitzer’s technique. 

Condurion 

We proposed a “moment analysis” technique to compute higher moments of the numbers of jobs in the queues 
of BCMP queueing networks. Approximation techniques for moment analysis of queueing networks with state- 
independent service rates give accurate results while saving both time and space. In [KG], an improved Linearizer 
is developed which wvers the case of state-dependent service rates. We expect that this technique can be 
generalized to higher moments in the same manner as with the Schweitzer algorithm and Linearizer. 
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