
Elementary Functions Packages for Ada

bY
Robert F. Mathis

9712 Ceralene Drive, Fairfax, VA 22032-1704

(703)425-5923, Mathis@C.ISI.EDU

This paper incorporates some of the discussions by the
ACMlSIGAda Working Group on Ada Numerics, the
ISO/TC97/SC22/WG9 Rapporteur Group on an elementary
functions package, and the Ada-Europe Ada Numerics
Working Group. This is not a report from any one of those
groups nor does it attempt to reflect all the discussions or
potential resolutions of the issues. This paper is the author’s
attempt to provide information on the current thinking of
these groups about a standard specification for an elementary
functions package for Ada so that a broader group can assess
the utility and trade-offs involved in such standard
specifications and libraries.

The following people have been involved in developing and
influencing the ideas presented here: Jim Cody, Paul Cohen,
Sandy Cohen, Ken Dritz, Brian Ford, Graham Hodgson, Jan
Kok, Gil Myers, Brian Smith, Jon Squire, and Bill Whitaker.
Any confusion or inaccuracies are the author’s. These people
represent a combination of interests in the Ada language
ranging from numerical analysis to embedded application
development.

The SIGAda Numerics Working Group (SIGAda NUMWG)
has met at the SIGAda meetings in Pittsburgh, PA (July,
1986), Charleston, WV (November, 1986), Fort
Lauderdale, FL (January, 1987), and Seattle, WA (August,
1987), several times at Argonne National Laboratory near
Chicago, IL and at various locations in the Washington, DC
area. The Numerics Working Group of Ada-Europe has met
many times on this and related topics.

A number of proposals for elementary functions in Ada
([FIRTH 19821, [WHITAKER & EICHOLTZ 19821,
[WITTE 19831, [SYMM, WICHMANN, KOK g, WINTER
19841, [KOK & SYMM 19841, and [KOK 19871) have been
studied by the SIGAda NUMWG. These were considered
along with recent work in numerical analysis about the
calculation of the elementary functions and about the
properties of floating point arithmetic. Various aspects of
Ada’s real arithmetic, type mechanism, generic packages,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1987 ACM 0-89791-243~8/87/0012/0095 $1.50

and library structures have also been considered as they relate
to the specification and implementations of a potentially
widely used package.

The proposed package specification is given at the very end of
the paper as a convenient reference point.

1 Background

From the very beginning of the development of the
requirements that lead to Ada, the HOLWG and other
advisors rationalized that such standard packages would be
early natural developments. Thus elementary functions were
left out of the requirements for the language. There was also
some hope that by motivating people to develop such standard
elementary packages in Ada rather than using packages that
had been developed from FORTRAN, the perspective of the
programmer would be altered. The SIGAda NUMWG set
itself the two challenges of developing an Ada-oriented
specification and being at least a step better than most
previous approaches to implementing the elementary
functions. This has lead to an attempt to specify more
precisely the results and behavior of the routines in an
Ada-oriented machine-independent way.

Ada has a number of features which make it well suited for
numeric software. The most important of these features is
user declared precision in floating point types. The
FORTRAN 77 concepts of REAL and DOUBLE PRECISION
correspond roughly to the Ada predefined types of FLOAT
and LONG-FLOAT. In both languages, their direct use leads
to a number of problems in transporting numeric software;
but Ada’s user declared floating point types have predictable
properties on different implementations. It was the intention
of the language designers that user declared types be
efficiently handled by the underlying hardware. This means
an Ada program relying on the properties of these user
declared floating point types should be both transportable and
efficient.

The set of elementary mathematical functions seem a natural
candidate for a standard library for Ada. These functions
exist in other programming languages and are widely used.
They are relatively well understood in terms of functionality.
That is not to say, however, that the construction of such a
library is well understood. Many issues are involved in
specifying a math library. Which functions to provide, what
arguments those functions should use, in what ways the
functions can be generalized or customized, how to fit these
general functions with the type and generic mechanisms of
Ada, the level of integration of these routines into the
language, and how various errors are to be handled - these
are among the choices facing the designer.

95

http://crossmark.crossref.org/dialog/?doi=10.1145%2F317500.317513&domain=pdf&date_stamp=1987-12-08

The Numerics Working Groups have thought of the
elementary functions as being in the support base of the
transportability of numeric programs. The specification of the
package MATHEMATICAL-CONSTANTS is a good
example. The values of the constants pi and e are known to
more digits than any implementation of floating point uses.
The only way to express them in Ada is by explicitly listing
the digits. They need to be given lo at least as many digits as
SYSTEM.MAX-DIGITS, but this varies. The suggestion for
MATHEMATICAL-CONSTANTS is therefore m.inimal.

Programs using the packages suggested here need to be
transportable in the usual Ada sense, but the bodies of the
routines implementing the elementary functions need not
themselves be transportable. Our goal is to have a small set of
flexible specifications which make simple things
straightforward for casual users and provide a framework
within which more sophisticated users can develop specialized
variants.

The work of the group has been in three main areas -
functionality, packaging, and accuracy. Functionality
concerns which functions to provide and for what units of
measuring angles. In the packaging area various
organizations for the library and its use were considered
including how to handle generics, types (for precisions,
ranges, and names), exceptions, constants, user
implementations, and user enclosing shells. In the area of
accuracy, the group has investigated what can be expected
from the best available algorithms and how that can be
specified in machine independent Ada terminology. Test
cases and validation procedures for implementations have
also been considered.

2 Choice of Functions
One of the first decisions in the design of an elementary
functions package is which functions should be provided and
the units or bases on which they should work. The SIGAda
NUMWG decided to concentrate initially on the traditional
elementary functions - square root, logarithm, exponential,
power, basic trigonometric circular functions (sine, cosine,
tangent, and cotangent), their inverses (or “arc” functions),
the corresponding hyperbolic functions, and their inverses.
These are basically the same functions suggested in various
European proposals ([SYMM, WICHMANN, KOK &
WINTER 19841, [KOK & SYMM 19841, and [KOK 19871).
This resulted in the twenty basic functions which are shown in
the specification of the package.

Left for later were other standard mathematical and
numerical analysis functions - construction utilities, random
number generators, complex arithmetic, elementary functions
for complex numbers, matrix manipulation, and other topics.
We felt that if the general approach for the real-valued
elementary functions could be agreed on, then these others
would follow. We also decided to work initially with only
floating point types.

After deciding on the functions to include, names had to be
chosen. Over the years, various abbreviations have been used
for the names of these functions and even the FORTRAN
names for these functions have not remained fixed. Seventeen
circular functions and more than fifty-five possible names for
them were considered. The chosen names are conservative

and well known to people who have previously used
mathematical functions. We decided not to use underscores
(“-“) in the names. But while we chose to retain the full
prefix “arc” rather than just “a” as in some other languages,
we elected to designate the hyperbolic functions traditionally,
i.e., with the suffix “h”.

The names for the arguments were also chosen
conservatively. In environments where named parameter
associations are used, it would be appropriate to consider
renaming. In one instance the names were chosen to have a
particular meaning. The tangent of an angle can be thought
of as the slope (Y/X) of a line through the origin making that
angle with the X-axis. If X=1 then the value of the tangent is
the corresponding value of Y. The arc-tangent function takes
the Cartesian (X, Y) coordinates of a point on the line as two
arguments, or the slope of the line as a single argument, and
returns the corresponding angle. In Ada this can be
accomplished in a single function specification by giving a
default value of 1.0 for the argument corresponding to X. To
be able to call this function with positional notation and take
advantage of the default value, Y has to be the first argument.
Since the cotangent corresponds to X/Y, the X comes first in
that case and Y has the default value of 1.0.

We concluded that the other trigonometric functions (secant,
cosecant, haversine, and so forth) need not be included since
they are traditionally defined in terms of the more common
functions. The proposed list was chosen as a compromise
similar to the ones taken by other programming languages.
The working group considers this a minimal package.

In all these cases about choosing names it was felt that the
choices made would have been high on anyone’s list of
options (even if not necessarily first) and that they would
therefore be relatively obvious guesses by anybody looking for
routines with these functionalities. Ada provides for renaming
which should make it possible for projects and individuals to
adapt these packages to their preferences.

3 Units, Bases, Domains and Ranges
The next question concerns the choice of units for the
functions (radians or degrees for the trigonometric functions,
base ten or natural logarithms, for example). Radian measure
is so commonly used in mathematics and numerical
programming, it was decided that this should be the simplest
to use. Early in their discussions the Numerics Working
Groups of both SIGAda and Ada-Europe decided that it
should also be possible to call the trigonometric functions for
different angular measures. This was expressed by a second
parameter, CYCLE, which gave the measure of a full circle in
the units being used for the first parameter. For example,

SIN (X, CYCLE => TWO-PI)

for angles measured in radians and

SIN (X, CYCLE => 360.0)

for angles measured in degrees. One way of thinking about
the measure of an angle is to consider it as some fraction of a
full circle; the ratio of the first parameter to the second gives
this fractional measure.

We considered a number of different units for measuring
angles and cycles (360.0 degrees, 400.0 grads, 6400.0 mils.

96

1 .O hams, and so on). Although this short list might seem to
cover all possibilities, it does not. There always seem to be
cycles that are not included in a short list and so we decided
that separate functions for different units was not a
reasonable approach.

If all of the potentially useful cycles (two pi radians, 360.0
degrees, etc.) were equally likely to be encountered in
practice, we might be content to put them on an equal fooling
by endowing the trigonometric functions with two required
parameters (X and CYCLE). But since radian measure (cycle
of two pi radians) occurs far more frequently than other
cycles, we decided to make the use of radians more
convenient by making the CYCLE parameter optional, with
the understanding that when it is omitted a cycle of two pi
radians is implied.

There are two good ways of presenting the Ada user with the
appearance of a function that can be calIed with one
argument or two, the behavior in the former case being as if a
particular value of the second argument were implicitly
provided. The most obvious of these two ways, illustrated
with the sine function, is to use the Ada mechanism of a
default value for a parameter:

function SIN (X : FLOAT-TYPE;
CYCLE : FLOAT-TYPE := TWO-PI)

return FLOAT-TYPE ;

This method was used in [SYMM, WICHMANN, KOK dc
WINTER 19843. Somewhat less obvious is to use subprogram
overloading to declare two different, but similarly named,
functions

function SIN (X : FLOAT-TYPE)
return FLOAT-TYPE;

function SIN (X, CYCLE : FLOAT-TYPE)
return FLOAT-TYPE;

with the Implied cycle of two pi radians built into the body of
the one-argument function. After considerable debate, The
SIGAda NUMWG chose this latter method, which is
illustrated in the proposed package specification. It is the
method employed in [KOK 19871. (The BASE parameter of
the LOG function has a similar history.)

Why this choice? It has to do, essentially, with the
recognition that the one-argument forms of the trigonometric
functions, with a built-in cycle of two pi radians, have
qualitatively different properties from the two-argument forms
(with a user-suppiied cycle), and that to extract the
maximum practical accuracy from both sets of functions
requires different argument-reduction techniques. The
resulting two sets of implementations are accommodated by
the chosen specification method with the fewest risks and
compromises.

Note that all of the usual user-supplied alternate cycles are
exactly representable in typical floating point systems. It is
therefore possible to perform exact argument reduction for
any of these user-supplied cycles. beginning with the
calculation of the exact remainder of X and CYCLE. The
remainder will range from zero up to (but not including)
CYCLE. At the cost of one roundoff error in the entire
ar-gument reduction step, this can be reduced to the range 0.0
to I .O by dit*iding by cyc!e. and transformed uithout further

loss of accuracy to the appropriate principal domain for each
function’s reduce argument. No domain restrictions are
necessary.

On the other hand, two pi is not exactly representable. To
proceed as in the user-supplied cycle case wi!h the nearest
representable value to two pi would introduce unacceptable
error in the argument reduction step for argument only a few
cycles away from zero. Better techniques are known ([CODY
& WAITE 19801 and [MILLER 19841) for this unique
problem, having the benefits of calculating in higher precision
without actually doing so (higher precision than that used for
FLOAT-TYPE might not be available). These techniques
have the property that as much precision as desired may be
achieved in the argument reduction step, but at a rapidly
escalating cost. Since the precision needed to accurately
reduce the argument increases with the magnitude of the
argument, practicality ultimately dictates a limit on the
domain of the function if meaningful results are to be
obtained. Thus, the one-argument and two-argument forms
of the functions have very different usable domains and
somewhat different accuracy requirements (i.e., achievable
accuracy), and these are most appropriately attached to
separate specifications for the two versions of each
trigonometric function. (Another difference between the
one-argument and two-argument cases is that, while the
two-argument case accommodates a variety of cycles by
dividing by CYCLE in the argument reduction step, the
one-argument case has a single value of the cycle to handle
and can therefore omit the canonicalization of dividing by the
cycle. The different range of reduced argument values that
results in this case calls for a different.approximation method
with coefficients tailored to this case.)

There has been considerable Investigation into the calculation
of the values of these elementary functions. There have
evolved two different approaches - one for angles measured
in terms of radians and another for angles measured as
rational fractions of a circle. The one-argument function
should work with the best of the radian oriented techniques
and the two-argument function with the best of the rational
fraction approaches.

The committee realized that the differences between the
one-argument and two-argument forms described above
could be accommodated in a single function body, thus
permitting the other choice of specification method to be
made. We decided against this, however, because it would
have necessitated certain compromises (not detailed here)
and entailed certain risks (elaborated on below), the latter
being the more serious. Since Ada gives a function body no
way of distinguishing between a call in which the default value
of an optional argument was used and a call in which the
same value was explicitly passed, the specialized behavior
desired for the one-argument case would have to be inferred
whenever the function body detects the CYCLE parameter to
have the value given by the default expression in the
specification. There is a slight risk that the high-precision
named number representing two pi

TW’O-PI : constant :=
2.0 ’ MATHEMATICAL-CONSTANTS. PI ;

will be converted to the precision of FLOAT-TYPE
differently in the two contexts where it is used (the language

9;

only requires that the results of both conversions lie in the
same “safe interval,” which may contain several machine

numbers). Even worse, the user may not understand the
default mechanism and optional arguments and may call a
trigonometric function with an explicit CYCLE which is some
other approximation of two pi than the one given in the
default expression. In either of these cases, the function body
will likely fail to recognize the call as one corresponding to the
default cycle and the desired specialized behavior will not be
provided.

Some consideration was also given to requiring only
one-argument versions of the trigonometric functions.
Providing an exact remainder function (“rem”) were made
available to users, alternate (non-radian) measures could still
be obtained (at a cost of a single roundoff error during
argument reduction). The user would essentially have to
perform the argument reduction before calling the
trIgonometrIc function, as in (for degrees)

RESULT := SIN ((X rem 360.0) *
MATHEMATICAL-CONSTANTS. PI/180.0) ;

Since this is burdensome, prone to error, hard to understand,
and no better than the primary choice, it was rejected. It

does, however, illustrate a reIevant general principle - users
can usually do better argument reduction outside of the call to
the standard function because of special knowledge about the
problem situation.

In the arc-tangent and arc-cotangent functions the second
parameter is optional and has an explicit default value of 1.0.
In both cases this second parameter corresponds to the
denominator in a fraction. The third parameter, CYCLE, is
optional as discussed above, a value needing to be supplied in
the call only for cycles of other than two pi radians. To
specify another value for CYCLE and to take advantage of the
default value for the second parameter requires explicit use of

a named parameter association, for example

ARCTAN (Y, CYCLE => 360.0)

Named parameter associations are appropriate for the other
function calls where alternate values are being specified. In
particular, if a program segment uses two different types of
angular measure, the code will be clarified by making the
different cycles explicit.

4 Packaging and Generics
After the question of what functionality to provide comes the
question of how to make that available in the language. The
SIGAda NUMWG considered a number of possibilities, but
finally settled on the specification given at the end of this
paper. This is a relatively cohesive, single-level, generic
package.

There are a number of roughly equivalent ways to write some
packages. The following examples show how a simple
package containing only a sine function might be done. The
packages are not explicitly generic to make the examples a
little cleaner. The conclusion is that the package
specifications should be written to provide the capabilities
needed by the programmer. Actual implementations may be

provided through other means. It is also possible for a

programmer to use a general package in a way more suitable
to his own application.

In the following examples it is assumed that the type names
are visible. These packages would normally be written as
generic over the types involved and then there would have to
be instantiations of the generics being used.

Assume that we wanted to implement either a single or double
argument style package in terms of the other. For the
purposes of this example, assume the following simplified
package specifications:

package SINGLE-PARM Is
function SIN (X: FLOAT-TYPE) return

FLOAT-TYPE;
end SINGLE-PARM;

package DOUBLE-PARM is

function SIN (X, CYCLE: FLOAT-TYPE) return
FLOAT-TYPE;
end DOUBLE-PARM;

Then the body of either of these packages could be
implemented in terms of the other one, but of course not
simultaneously, as follows:

-- DOUBLE-PARM in terms of SINGLE-PARM
with SINGLE-PARM,

MATHEMATICAL-CONSTANTS;
package body DOUBLE-PARM is

function SIN (X, CYCLE: FLOAT-TYPE)

return FLOAT-TYPE is
begin

-- there are better argument reduction and
-- conversion methods,
-- but this illustrates the relationship
return SINGLE-PARM.SIN ((X I CYCLE) *

2.0*MATHEMATICAL-CONSTANTSPI);
end SIN;

end DOUBLE-PARM;

-- SINGLE-PARM in terms of DOUBLE-PARM
with DOUBLE-PARM,

MATHEMATICAL-CONSTANTS;
package body SINGLE-PARM is

function SIN (X: FLOAT-TYPE)
return FLOAT-TYPE is

begin

return DOUBLE-PARM.SIN (X, CYCLE =>
2.O*MATHEMATICAL-CONSTANTS. PI) ;

end SIN;
end SINGLE-PARM;

In much the same way, it is also possible to write packages
with two sine functions, or which have different types for the
arguments and return values, or which have default cycles for
units other than radians, or which have special argument
reduction, or which have various forms of error handling.
This is the way the standard functions will likely be used - as
a conceptual basis for packages actually used. This standard
specification can be implemented in terms of vendor supplied
routines or the vender supplied routines can be thought of as
implemented in terms of this standard package.

5 Exceptions
There was general agreement to use exceptions rather that
TEXT-IO messages to indicate problems, as this gives the

98

user the most flexibility (albeit at the risk of failing to handle
the exception). It appears most implementations provide an
indication to the user of the line where an unhandled
exception was raised. Many installations further provide a
traceback of the sequence of callers and the line that did the
calling. This means that most implementations will provide
textual output automatically for users who do not include
exception handlers in their code. It is also possible for users
or implementations to provide versions of these elementary
functions that produce textual error messages. Functions with
textual error messages can be derived from or built on the
ones described here, but not the other way around.

Besides the existing predefined exceptions, it was decided that
all other exceptions arising during the execution of these
routines were ultimately due to an improper or out of domain
argument. There was some discussion about the possibility of
another exception for loss of significance internally in the
calculation of the value of the function. There were numerous
examples of where it would be difficult to distinguish between
these two types of problems. Hence there needs to be only one
exception - ARGUMENT-ERROR. This exception is
defined in a separate package and then used in the generic
elementary functions package.

The generic package for the elementary mathematical
functions uses this exception ARGUMENT-ERROR which is
defined in the separate package through a renames clause.
If there should be two instantiations of the generic package
named in use clauses, the exception name will be hidden
rather than overloaded. The single exception which is raised
by either package can still be referenced by its full name,
MATHEMATICAL-EXCEPTIONS.ARGUMENT-ERROR.
This requires that the exceptions package be named in a with
clause by any program segment that has an exception handler
for ARGUMENT-ERROR. This technique is similar to what
is used in IO-EXCEPTIONS and is better than having
different names for the exceptions in each package and for
each instantiation.

6 Accuracy Specifications and Testing
Another major emphasis in our discussions has been on
validation of implementations against accuracy requirements
rather than imposing a standard implementation. We felt this
was in keeping with the Ada philosophy. These accuracy
specifications are in Ada terms rather than machine terms.
We are also working on a set of test routines. These accuracy
specifications and other details about the expected
performance of the implementing routines will be described in
a separate paper.

As an indication of some of the issues involved, consider the
computation of EXP(X) and the desire to compute the value
for very negative X. Mathematically exp(x) can never return
zero, but depending on how underflow is handled there may
be a value for which EXP(X) returns a zero (or the function
may be flat after some point). A symmetric limit expressed in
terms of the Ada model may be too conservative and a useful
bound may not be expressible in terms of the Ada model.

As another example, consider the sine funclion which is very
smooth. Most computation methods have good error
characteristics except near multiples of two pi radians.
[MILLER 19841 How should the error bounds on the sine be

expressed so that they are useful to the majority of
programmers while at the same time being accurate and tight
enough to require good implementations?

7 Conclusions

The SIGAda NUMWG, the ISO/TC97/SCZZ/WG9
Rapporteur Group, and the Ada-Europe Ada Numerics
Working Group will be presenting these suggested
specifications to the appropriate standards groups and
implementors of commercial function packages. We have
discussed ways to implement and use these specifications. We
hope that our goals of Ada-oriented, accurate, and easy to
use specifications have been met. We also hope that these
will lead naturally to standard specifications for other
packages and libraries of mathematical routines. We welcome
further comments from interested users.

8 References
[CODY & WAITE 19801 William J. Cody, Jr., and William
Waite, Software Manual for the Elementary Functions,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980.

[FIRTH 19821 Robert Firth, Preliminary Draft Specification
of a Basic Mathematical Library for the High Order
Programming Language Ada, Royal Military College of
Science, Shrivenham, Swindon, Wiltshire, England, March,
1982.

[FORD, KOK & ROGERS 19861 Brian Ford, Jan Kok, and
Mike W. Rogers, Scientific Ada, Cambridge University Press,
Cambridge, England, 1986.

[KOK 19871 Jan Kok, Design and Implementation of
Elementary Functions in Ada, Report NM-R8710, Centrum
VOOT Wiskunde en Informatica, Amsterdam, April, 1987.

[KOK & SYMM 19841 Jan Kok and George T. Symm, “A
Proposal for Standard Basic Functions in Ada,” Ada Letters,
Vol. IV, No. 3, Nov-Dee, 1984, pp. iv.3-44 to iv.3-52.

[MILLER 19841 Webb Miller, The Engineering of Numerical
Software, Prentice-Hall, Englewood Cliffs, NJ, 1984.

[SYMM, WICHMANN, KOK & WINTER 19841 George T.
Symm, Brian A. Wichmann, Jan Kok, and Dik T. Winter,
Guidelines for the Design of Large Modular Scientific
Libraries in Ada, Final Report for the Commission of
European Communities, Note NM-N8401, Centre for
Mathematics and Computer Science, Amsterdam,
Netherlands, March, 1984 (also available as NPL Report
DITC 37184, National Physical Laboratory, Teddington,
Middlesex, UK) (edited and reprinted as Chapter 10, pp.
209-319 in [FORD, KOK & ROGERS 19861).

[WHITAKER & EICHOLTZ 19821 William A. Whitaker
and T. C. Eicholtz, An Ada Implementation of the
Cody-Waite “Software Manual for the Elementary
Functions”, US Air Force Armament Laboratory, Eglin
AFB, FL, 1982.

[WITTE 19831 Bnmo Witte, “General Requirements for an
Elementary Math Functions Library, ” Report on Ada
Program Libraries Workshop, Naval Postgraduate School,
Monterey, CA, November l-3, 1983; Edited by Joseph A.
Goguen and Karl N. Levitt, SRI International, Menlo Park,
CA, 1983, pp. lOO.i-xii.

99

-- Proposed Package Specifications
package MATHEMATICAL-EXCEPTIONS is

ARGUMENT-ERROR : exception ;
end MATHEMATICAL-EXCEPTIONS;

package MATHEMATICAL-CONSTANTS is
PI : constant := 3.14159~26535~89793~23846_26433_83279_50288_47~11;
NATURAL-E : constant := 2.71828_18284_59045_23536_02874_71352_66249_77572~47093~69996;

-- to be specified to more digits than SYSTEM.MAX-DIGITS
-- this package may contain additional definitions

end MATHEMATICAL-CONSTANTS ;

with MATHEMATICAL-EXCEPTIONS;
generic

type FLOAT-TYPE is digits 0 ;
package GENERIC-ELEMENTARY_FUNCTiONS is

function SQRT(X: FLOAT-TYPE) return FLOAT-TYPE;
Function LOG (X: FLOAT-TYPE) return FLOAT-TYPE;
function LOG (X, BASE: FLOAT-TYPE) return FLOAT-TYPE;
function EXP (X: FLOAT-TYPE) return FLOAT-TYPE;
function ‘I**” (X, Y: FLOAT-TYPE) return FLOAT-TYPE;

Function SIN (X: FLOAT-TYPE) return FLOAT-TYPE;
Function SIN (X, CYCLE: FLOAT-TYPE) return FLOAT-TYPE;
Function COS (X: FLOAT-TYPE) return FLOAT-TYPE;
function COS (X, CYCLE: FLOAT-TYPE) return FLOAT-TYPE;
Function TAN (X: FLOAT-TYPE) return FLOAT-TYPE;
function TAN (X. CYCLE: FLOAT-TYPE) return FLOAT-TYPE;
function COT (X: FLOAT-TYPE) return FLOAT-TYPE;
function COT (X. CYCLE: FLOAT-TYPE) return FLOAT-TYPE;

Function ARCSIN (X: FLOAT-TYPE) return FLOAT-TYPE;
Function ARCSIN (X, CYCLE: FLOAT-TYPE) return FLOAT-TYPE;
function ARCCOS (X: FLOAT-TYPE) return FLOAT-TYPE;
function ARCCOS(X, CYCLE: FLOAT-TYPE) return FLOAT-TYPE;
function ARCTAN(Y: FLOAT-TYPE; X: FLOAT-TYPE := 1.0) return FLOAT-TYPE;
function ARCTAN (Y: FLOAT-TYPE; X: FLOAT-TYPE := 1.0; CYCLE: FLOAT-TYPE) return FLOAT-TYPE;
function ARCCOT (X: FLOAT-TYPE; Y: FLOAT-TYPE := 1.0) return FLOAT-TYPE;
Function ARCCOT (X: FLOAT-TYPE; Y: FLOAT-TYPE := 1.0; CYCLE: FLOAT-TYPE) return FLOAT-TYPE;

function SINH (X: FLOAT-TYPE) return FLOAT-TYPE;
Function COSH (X: FLOAT-TYPE) return FLOAT-TYPE;
function TANH (X: FLOAT-TYPE) return FLOAT-TYPE;
Function COTH (X: FLOAT-TYPE) return FLOAT-TYPE;

function ARCSINH (X: FLOAT-TYPE) return FLOAT-TYPE;
Function ARCCOSH (X: FLOAT-TYPE) return FLOAT-TYPE;
function ARCTANH (X: FLOAT-TYPE) return FLOAT-TYPE;
Function ARCCOTH (X: FLOAT-TYPE) return FLOAT-TYPE;

ARGUMENT-ERROR : exception renames MATHEMATICAL-EXCEPTIONS.ARGUMENT-ERROR;

end GENERIC-ELEMENTARY-FUNCTIONS;

