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This paper incorporates some of the discussions by the 
ACMlSIGAda Working Group on Ada Numerics, the 
ISO/TC97/SC22/WG9 Rapporteur Group on an elementary 
functions package, and the Ada-Europe Ada Numerics 
Working Group. This is not a report from any one of those 
groups nor does it attempt to reflect all the discussions or 
potential resolutions of the issues. This paper is the author’s 
attempt to provide information on the current thinking of 
these groups about a standard specification for an elementary 
functions package for Ada so that a broader group can assess 
the utility and trade-offs involved in such standard 
specifications and libraries. 

The following people have been involved in developing and 
influencing the ideas presented here: Jim Cody, Paul Cohen, 
Sandy Cohen, Ken Dritz, Brian Ford, Graham Hodgson, Jan 
Kok, Gil Myers, Brian Smith, Jon Squire, and Bill Whitaker. 
Any confusion or inaccuracies are the author’s. These people 
represent a combination of interests in the Ada language 
ranging from numerical analysis to embedded application 
development. 

The SIGAda Numerics Working Group (SIGAda NUMWG) 
has met at the SIGAda meetings in Pittsburgh, PA (July, 
1986), Charleston, WV (November, 1986), Fort 
Lauderdale, FL (January, 1987), and Seattle, WA (August, 
1987), several times at Argonne National Laboratory near 
Chicago, IL and at various locations in the Washington, DC 
area. The Numerics Working Group of Ada-Europe has met 
many times on this and related topics. 

A number of proposals for elementary functions in Ada 
([FIRTH 19821, [WHITAKER & EICHOLTZ 19821, 
[WITTE 19831, [SYMM, WICHMANN, KOK g, WINTER 
19841, [KOK & SYMM 19841, and [KOK 19871) have been 
studied by the SIGAda NUMWG. These were considered 
along with recent work in numerical analysis about the 
calculation of the elementary functions and about the 
properties of floating point arithmetic. Various aspects of 
Ada’s real arithmetic, type mechanism, generic packages, 
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and library structures have also been considered as they relate 
to the specification and implementations of a potentially 
widely used package. 

The proposed package specification is given at the very end of 
the paper as a convenient reference point. 

1 Background 

From the very beginning of the development of the 
requirements that lead to Ada, the HOLWG and other 
advisors rationalized that such standard packages would be 
early natural developments. Thus elementary functions were 
left out of the requirements for the language. There was also 
some hope that by motivating people to develop such standard 
elementary packages in Ada rather than using packages that 
had been developed from FORTRAN, the perspective of the 
programmer would be altered. The SIGAda NUMWG set 
itself the two challenges of developing an Ada-oriented 
specification and being at least a step better than most 
previous approaches to implementing the elementary 
functions. This has lead to an attempt to specify more 
precisely the results and behavior of the routines in an 
Ada-oriented machine-independent way. 

Ada has a number of features which make it well suited for 
numeric software. The most important of these features is 
user declared precision in floating point types. The 
FORTRAN 77 concepts of REAL and DOUBLE PRECISION 
correspond roughly to the Ada predefined types of FLOAT 
and LONG-FLOAT. In both languages, their direct use leads 
to a number of problems in transporting numeric software; 
but Ada’s user declared floating point types have predictable 
properties on different implementations. It was the intention 
of the language designers that user declared types be 
efficiently handled by the underlying hardware. This means 
an Ada program relying on the properties of these user 
declared floating point types should be both transportable and 
efficient. 

The set of elementary mathematical functions seem a natural 
candidate for a standard library for Ada. These functions 
exist in other programming languages and are widely used. 
They are relatively well understood in terms of functionality. 
That is not to say, however, that the construction of such a 
library is well understood. Many issues are involved in 
specifying a math library. Which functions to provide, what 
arguments those functions should use, in what ways the 
functions can be generalized or customized, how to fit these 
general functions with the type and generic mechanisms of 
Ada, the level of integration of these routines into the 
language, and how various errors are to be handled - these 
are among the choices facing the designer. 
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The Numerics Working Groups have thought of the 
elementary functions as being in the support base of the 
transportability of numeric programs. The specification of the 
package MATHEMATICAL-CONSTANTS is a good 
example. The values of the constants pi and e are known to 
more digits than any implementation of floating point uses. 
The only way to express them in Ada is by explicitly listing 
the digits. They need to be given lo at least as many digits as 
SYSTEM.MAX-DIGITS, but this varies. The suggestion for 
MATHEMATICAL-CONSTANTS is therefore m.inimal. 

Programs using the packages suggested here need to be 
transportable in the usual Ada sense, but the bodies of the 
routines implementing the elementary functions need not 
themselves be transportable. Our goal is to have a small set of 
flexible specifications which make simple things 
straightforward for casual users and provide a framework 
within which more sophisticated users can develop specialized 
variants. 

The work of the group has been in three main areas - 
functionality, packaging, and accuracy. Functionality 
concerns which functions to provide and for what units of 
measuring angles. In the packaging area various 
organizations for the library and its use were considered 
including how to handle generics, types (for precisions, 
ranges, and names), exceptions, constants, user 
implementations, and user enclosing shells. In the area of 
accuracy, the group has investigated what can be expected 
from the best available algorithms and how that can be 
specified in machine independent Ada terminology. Test 
cases and validation procedures for implementations have 
also been considered. 

2 Choice of Functions 
One of the first decisions in the design of an elementary 
functions package is which functions should be provided and 
the units or bases on which they should work. The SIGAda 
NUMWG decided to concentrate initially on the traditional 
elementary functions - square root, logarithm, exponential, 
power, basic trigonometric circular functions (sine, cosine, 
tangent, and cotangent), their inverses (or “arc” functions), 
the corresponding hyperbolic functions, and their inverses. 
These are basically the same functions suggested in various 
European proposals ([SYMM, WICHMANN, KOK & 
WINTER 19841, [KOK & SYMM 19841, and [KOK 19871). 
This resulted in the twenty basic functions which are shown in 
the specification of the package. 

Left for later were other standard mathematical and 
numerical analysis functions - construction utilities, random 
number generators, complex arithmetic, elementary functions 
for complex numbers, matrix manipulation, and other topics. 
We felt that if the general approach for the real-valued 
elementary functions could be agreed on, then these others 
would follow. We also decided to work initially with only 
floating point types. 

After deciding on the functions to include, names had to be 
chosen. Over the years, various abbreviations have been used 
for the names of these functions and even the FORTRAN 
names for these functions have not remained fixed. Seventeen 
circular functions and more than fifty-five possible names for 
them were considered. The chosen names are conservative 

and well known to people who have previously used 
mathematical functions. We decided not to use underscores 
(“-“) in the names. But while we chose to retain the full 
prefix “arc” rather than just “a” as in some other languages, 
we elected to designate the hyperbolic functions traditionally, 
i.e., with the suffix “h”. 

The names for the arguments were also chosen 
conservatively. In environments where named parameter 
associations are used, it would be appropriate to consider 
renaming. In one instance the names were chosen to have a 
particular meaning. The tangent of an angle can be thought 
of as the slope (Y/X) of a line through the origin making that 
angle with the X-axis. If X=1 then the value of the tangent is 
the corresponding value of Y. The arc-tangent function takes 
the Cartesian (X, Y) coordinates of a point on the line as two 
arguments, or the slope of the line as a single argument, and 
returns the corresponding angle. In Ada this can be 
accomplished in a single function specification by giving a 
default value of 1.0 for the argument corresponding to X. To 
be able to call this function with positional notation and take 
advantage of the default value, Y has to be the first argument. 
Since the cotangent corresponds to X/Y, the X comes first in 
that case and Y has the default value of 1.0. 

We concluded that the other trigonometric functions (secant, 
cosecant, haversine, and so forth) need not be included since 
they are traditionally defined in terms of the more common 
functions. The proposed list was chosen as a compromise 
similar to the ones taken by other programming languages. 
The working group considers this a minimal package. 

In all these cases about choosing names it was felt that the 
choices made would have been high on anyone’s list of 
options (even if not necessarily first) and that they would 
therefore be relatively obvious guesses by anybody looking for 
routines with these functionalities. Ada provides for renaming 
which should make it possible for projects and individuals to 
adapt these packages to their preferences. 

3 Units, Bases, Domains and Ranges 
The next question concerns the choice of units for the 
functions (radians or degrees for the trigonometric functions, 
base ten or natural logarithms, for example). Radian measure 
is so commonly used in mathematics and numerical 
programming, it was decided that this should be the simplest 
to use. Early in their discussions the Numerics Working 
Groups of both SIGAda and Ada-Europe decided that it 
should also be possible to call the trigonometric functions for 
different angular measures. This was expressed by a second 
parameter, CYCLE, which gave the measure of a full circle in 
the units being used for the first parameter. For example, 

SIN ( X, CYCLE => TWO-PI ) 

for angles measured in radians and 

SIN ( X, CYCLE => 360.0 ) 

for angles measured in degrees. One way of thinking about 
the measure of an angle is to consider it as some fraction of a 
full circle; the ratio of the first parameter to the second gives 
this fractional measure. 

We considered a number of different units for measuring 
angles and cycles (360.0 degrees, 400.0 grads, 6400.0 mils. 
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1 .O hams, and so on). Although this short list might seem to 
cover all possibilities, it does not. There always seem to be 
cycles that are not included in a short list and so we decided 
that separate functions for different units was not a 
reasonable approach. 

If all of the potentially useful cycles (two pi radians, 360.0 
degrees, etc.) were equally likely to be encountered in 
practice, we might be content to put them on an equal fooling 
by endowing the trigonometric functions with two required 
parameters (X and CYCLE). But since radian measure (cycle 
of two pi radians) occurs far more frequently than other 
cycles, we decided to make the use of radians more 
convenient by making the CYCLE parameter optional, with 
the understanding that when it is omitted a cycle of two pi 
radians is implied. 

There are two good ways of presenting the Ada user with the 
appearance of a function that can be calIed with one 
argument or two, the behavior in the former case being as if a 
particular value of the second argument were implicitly 
provided. The most obvious of these two ways, illustrated 
with the sine function, is to use the Ada mechanism of a 
default value for a parameter: 

function SIN ( X : FLOAT-TYPE; 
CYCLE : FLOAT-TYPE := TWO-PI ) 

return FLOAT-TYPE ; 

This method was used in [SYMM, WICHMANN, KOK dc 
WINTER 19843. Somewhat less obvious is to use subprogram 
overloading to declare two different, but similarly named, 
functions 

function SIN ( X : FLOAT-TYPE ) 
return FLOAT-TYPE; 

function SIN ( X, CYCLE : FLOAT-TYPE ) 
return FLOAT-TYPE; 

with the Implied cycle of two pi radians built into the body of 
the one-argument function. After considerable debate, The 
SIGAda NUMWG chose this latter method, which is 
illustrated in the proposed package specification. It is the 
method employed in [KOK 19871. (The BASE parameter of 
the LOG function has a similar history.) 

Why this choice? It has to do, essentially, with the 
recognition that the one-argument forms of the trigonometric 
functions, with a built-in cycle of two pi radians, have 
qualitatively different properties from the two-argument forms 
(with a user-suppiied cycle), and that to extract the 
maximum practical accuracy from both sets of functions 
requires different argument-reduction techniques. The 
resulting two sets of implementations are accommodated by 
the chosen specification method with the fewest risks and 
compromises. 

Note that all of the usual user-supplied alternate cycles are 
exactly representable in typical floating point systems. It is 
therefore possible to perform exact argument reduction for 
any of these user-supplied cycles. beginning with the 
calculation of the exact remainder of X and CYCLE. The 
remainder will range from zero up to (but not including) 
CYCLE. At the cost of one roundoff error in the entire 
ar-gument reduction step, this can be reduced to the range 0.0 
to I .O by dit*iding by cyc!e. and transformed uithout further 

loss of accuracy to the appropriate principal domain for each 
function’s reduce argument. No domain restrictions are 
necessary. 

On the other hand, two pi is not exactly representable. To 
proceed as in the user-supplied cycle case wi!h the nearest 
representable value to two pi would introduce unacceptable 
error in the argument reduction step for argument only a few 
cycles away from zero. Better techniques are known ([CODY 
& WAITE 19801 and [MILLER 19841) for this unique 
problem, having the benefits of calculating in higher precision 
without actually doing so (higher precision than that used for 
FLOAT-TYPE might not be available). These techniques 
have the property that as much precision as desired may be 
achieved in the argument reduction step, but at a rapidly 
escalating cost. Since the precision needed to accurately 
reduce the argument increases with the magnitude of the 
argument, practicality ultimately dictates a limit on the 
domain of the function if meaningful results are to be 
obtained. Thus, the one-argument and two-argument forms 
of the functions have very different usable domains and 
somewhat different accuracy requirements (i.e., achievable 
accuracy), and these are most appropriately attached to 
separate specifications for the two versions of each 
trigonometric function. (Another difference between the 
one-argument and two-argument cases is that, while the 
two-argument case accommodates a variety of cycles by 
dividing by CYCLE in the argument reduction step, the 
one-argument case has a single value of the cycle to handle 
and can therefore omit the canonicalization of dividing by the 
cycle. The different range of reduced argument values that 
results in this case calls for a different.approximation method 
with coefficients tailored to this case.) 

There has been considerable Investigation into the calculation 
of the values of these elementary functions. There have 
evolved two different approaches - one for angles measured 
in terms of radians and another for angles measured as 
rational fractions of a circle. The one-argument function 
should work with the best of the radian oriented techniques 
and the two-argument function with the best of the rational 
fraction approaches. 

The committee realized that the differences between the 
one-argument and two-argument forms described above 
could be accommodated in a single function body, thus 
permitting the other choice of specification method to be 
made. We decided against this, however, because it would 
have necessitated certain compromises (not detailed here) 
and entailed certain risks (elaborated on below), the latter 
being the more serious. Since Ada gives a function body no 
way of distinguishing between a call in which the default value 
of an optional argument was used and a call in which the 
same value was explicitly passed, the specialized behavior 
desired for the one-argument case would have to be inferred 
whenever the function body detects the CYCLE parameter to 
have the value given by the default expression in the 
specification. There is a slight risk that the high-precision 
named number representing two pi 

TW’O-PI : constant := 
2.0 ’ MATHEMATICAL-CONSTANTS. PI ; 

will be converted to the precision of FLOAT-TYPE 
differently in the two contexts where it is used (the language 
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only requires that the results of both conversions lie in the 
same “safe interval,” which may contain several machine 

numbers). Even worse, the user may not understand the 
default mechanism and optional arguments and may call a 
trigonometric function with an explicit CYCLE which is some 
other approximation of two pi than the one given in the 
default expression. In either of these cases, the function body 
will likely fail to recognize the call as one corresponding to the 
default cycle and the desired specialized behavior will not be 
provided. 

Some consideration was also given to requiring only 
one-argument versions of the trigonometric functions. 
Providing an exact remainder function (“rem”) were made 
available to users, alternate (non-radian) measures could still 
be obtained (at a cost of a single roundoff error during 
argument reduction). The user would essentially have to 
perform the argument reduction before calling the 
trIgonometrIc function, as in (for degrees) 

RESULT := SIN ( ( X rem 360.0 ) * 
MATHEMATICAL-CONSTANTS. PI/180.0 ) ; 

Since this is burdensome, prone to error, hard to understand, 
and no better than the primary choice, it was rejected. It 

does, however, illustrate a reIevant general principle - users 
can usually do better argument reduction outside of the call to 
the standard function because of special knowledge about the 
problem situation. 

In the arc-tangent and arc-cotangent functions the second 
parameter is optional and has an explicit default value of 1.0. 
In both cases this second parameter corresponds to the 
denominator in a fraction. The third parameter, CYCLE, is 
optional as discussed above, a value needing to be supplied in 
the call only for cycles of other than two pi radians. To 
specify another value for CYCLE and to take advantage of the 
default value for the second parameter requires explicit use of 

a named parameter association, for example 

ARCTAN ( Y, CYCLE => 360.0 ) 

Named parameter associations are appropriate for the other 
function calls where alternate values are being specified. In 
particular, if a program segment uses two different types of 
angular measure, the code will be clarified by making the 
different cycles explicit. 

4 Packaging and Generics 
After the question of what functionality to provide comes the 
question of how to make that available in the language. The 
SIGAda NUMWG considered a number of possibilities, but 
finally settled on the specification given at the end of this 
paper. This is a relatively cohesive, single-level, generic 
package. 

There are a number of roughly equivalent ways to write some 
packages. The following examples show how a simple 
package containing only a sine function might be done. The 
packages are not explicitly generic to make the examples a 
little cleaner. The conclusion is that the package 
specifications should be written to provide the capabilities 
needed by the programmer. Actual implementations may be 

provided through other means. It is also possible for a 

programmer to use a general package in a way more suitable 
to his own application. 

In the following examples it is assumed that the type names 
are visible. These packages would normally be written as 
generic over the types involved and then there would have to 
be instantiations of the generics being used. 

Assume that we wanted to implement either a single or double 
argument style package in terms of the other. For the 
purposes of this example, assume the following simplified 
package specifications: 

package SINGLE-PARM Is 
function SIN ( X: FLOAT-TYPE ) return 

FLOAT-TYPE; 
end SINGLE-PARM; 

package DOUBLE-PARM is 

function SIN ( X, CYCLE: FLOAT-TYPE ) return 
FLOAT-TYPE; 
end DOUBLE-PARM; 

Then the body of either of these packages could be 
implemented in terms of the other one, but of course not 
simultaneously, as follows: 

-- DOUBLE-PARM in terms of SINGLE-PARM 
with SINGLE-PARM, 

MATHEMATICAL-CONSTANTS; 
package body DOUBLE-PARM is 

function SIN ( X, CYCLE: FLOAT-TYPE ) 

return FLOAT-TYPE is 
begin 

-- there are better argument reduction and 
-- conversion methods, 
-- but this illustrates the relationship 
return SINGLE-PARM.SIN (( X I CYCLE ) * 

2.0*MATHEMATICAL-CONSTANTSPI ); 
end SIN; 

end DOUBLE-PARM; 

-- SINGLE-PARM in terms of DOUBLE-PARM 
with DOUBLE-PARM, 

MATHEMATICAL-CONSTANTS; 
package body SINGLE-PARM is 

function SIN ( X: FLOAT-TYPE ) 
return FLOAT-TYPE is 

begin 

return DOUBLE-PARM.SIN ( X, CYCLE => 
2.O*MATHEMATICAL-CONSTANTS. PI ) ; 

end SIN; 
end SINGLE-PARM; 

In much the same way, it is also possible to write packages 
with two sine functions, or which have different types for the 
arguments and return values, or which have default cycles for 
units other than radians, or which have special argument 
reduction, or which have various forms of error handling. 
This is the way the standard functions will likely be used - as 
a conceptual basis for packages actually used. This standard 
specification can be implemented in terms of vendor supplied 
routines or the vender supplied routines can be thought of as 
implemented in terms of this standard package. 

5 Exceptions 
There was general agreement to use exceptions rather that 
TEXT-IO messages to indicate problems, as this gives the 
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user the most flexibility (albeit at the risk of failing to handle 
the exception). It appears most implementations provide an 
indication to the user of the line where an unhandled 
exception was raised. Many installations further provide a 
traceback of the sequence of callers and the line that did the 
calling. This means that most implementations will provide 
textual output automatically for users who do not include 
exception handlers in their code. It is also possible for users 
or implementations to provide versions of these elementary 
functions that produce textual error messages. Functions with 
textual error messages can be derived from or built on the 
ones described here, but not the other way around. 

Besides the existing predefined exceptions, it was decided that 
all other exceptions arising during the execution of these 
routines were ultimately due to an improper or out of domain 
argument. There was some discussion about the possibility of 
another exception for loss of significance internally in the 
calculation of the value of the function. There were numerous 
examples of where it would be difficult to distinguish between 
these two types of problems. Hence there needs to be only one 
exception - ARGUMENT-ERROR. This exception is 
defined in a separate package and then used in the generic 
elementary functions package. 

The generic package for the elementary mathematical 
functions uses this exception ARGUMENT-ERROR which is 
defined in the separate package through a renames clause. 
If there should be two instantiations of the generic package 
named in use clauses, the exception name will be hidden 
rather than overloaded. The single exception which is raised 
by either package can still be referenced by its full name, 
MATHEMATICAL-EXCEPTIONS.ARGUMENT-ERROR. 
This requires that the exceptions package be named in a with 
clause by any program segment that has an exception handler 
for ARGUMENT-ERROR. This technique is similar to what 
is used in IO-EXCEPTIONS and is better than having 
different names for the exceptions in each package and for 
each instantiation. 

6 Accuracy Specifications and Testing 
Another major emphasis in our discussions has been on 
validation of implementations against accuracy requirements 
rather than imposing a standard implementation. We felt this 
was in keeping with the Ada philosophy. These accuracy 
specifications are in Ada terms rather than machine terms. 
We are also working on a set of test routines. These accuracy 
specifications and other details about the expected 
performance of the implementing routines will be described in 
a separate paper. 

As an indication of some of the issues involved, consider the 
computation of EXP(X) and the desire to compute the value 
for very negative X. Mathematically exp(x) can never return 
zero, but depending on how underflow is handled there may 
be a value for which EXP(X) returns a zero (or the function 
may be flat after some point). A symmetric limit expressed in 
terms of the Ada model may be too conservative and a useful 
bound may not be expressible in terms of the Ada model. 

As another example, consider the sine funclion which is very 
smooth. Most computation methods have good error 
characteristics except near multiples of two pi radians. 
[MILLER 19841 How should the error bounds on the sine be 

expressed so that they are useful to the majority of 
programmers while at the same time being accurate and tight 
enough to require good implementations? 

7 Conclusions 

The SIGAda NUMWG, the ISO/TC97/SCZZ/WG9 
Rapporteur Group, and the Ada-Europe Ada Numerics 
Working Group will be presenting these suggested 
specifications to the appropriate standards groups and 
implementors of commercial function packages. We have 
discussed ways to implement and use these specifications. We 
hope that our goals of Ada-oriented, accurate, and easy to 
use specifications have been met. We also hope that these 
will lead naturally to standard specifications for other 
packages and libraries of mathematical routines. We welcome 
further comments from interested users. 
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-- Proposed Package Specifications 
package MATHEMATICAL-EXCEPTIONS is 

ARGUMENT-ERROR : exception ; 
end MATHEMATICAL-EXCEPTIONS; 

package MATHEMATICAL-CONSTANTS is 
PI : constant := 3.14159~26535~89793~23846_26433_83279_50288_47~11; 
NATURAL-E : constant := 2.71828_18284_59045_23536_02874_71352_66249_77572~47093~69996; 

-- to be specified to more digits than SYSTEM.MAX-DIGITS 
-- this package may contain additional definitions 

end MATHEMATICAL-CONSTANTS ; 

with MATHEMATICAL-EXCEPTIONS; 
generic 

type FLOAT-TYPE is digits 0 ; 
package GENERIC-ELEMENTARY_FUNCTiONS is 

function SQRT( X: FLOAT-TYPE ) return FLOAT-TYPE; 
Function LOG ( X: FLOAT-TYPE ) return FLOAT-TYPE; 
function LOG ( X, BASE: FLOAT-TYPE ) return FLOAT-TYPE; 
function EXP ( X: FLOAT-TYPE ) return FLOAT-TYPE; 
function ‘I**” ( X, Y: FLOAT-TYPE ) return FLOAT-TYPE; 

Function SIN ( X: FLOAT-TYPE ) return FLOAT-TYPE; 
Function SIN ( X, CYCLE: FLOAT-TYPE ) return FLOAT-TYPE; 
Function COS ( X: FLOAT-TYPE ) return FLOAT-TYPE; 
function COS ( X, CYCLE: FLOAT-TYPE ) return FLOAT-TYPE; 
Function TAN ( X: FLOAT-TYPE ) return FLOAT-TYPE; 
function TAN ( X. CYCLE: FLOAT-TYPE ) return FLOAT-TYPE; 
function COT ( X: FLOAT-TYPE ) return FLOAT-TYPE; 
function COT ( X. CYCLE: FLOAT-TYPE ) return FLOAT-TYPE; 

Function ARCSIN ( X: FLOAT-TYPE ) return FLOAT-TYPE; 
Function ARCSIN ( X, CYCLE: FLOAT-TYPE ) return FLOAT-TYPE; 
function ARCCOS ( X: FLOAT-TYPE ) return FLOAT-TYPE; 
function ARCCOS( X, CYCLE: FLOAT-TYPE ) return FLOAT-TYPE; 
function ARCTAN( Y: FLOAT-TYPE; X: FLOAT-TYPE := 1.0 ) return FLOAT-TYPE; 
function ARCTAN ( Y: FLOAT-TYPE; X: FLOAT-TYPE := 1.0; CYCLE: FLOAT-TYPE ) return FLOAT-TYPE; 
function ARCCOT ( X: FLOAT-TYPE; Y: FLOAT-TYPE := 1.0 ) return FLOAT-TYPE; 
Function ARCCOT ( X: FLOAT-TYPE; Y: FLOAT-TYPE := 1.0; CYCLE: FLOAT-TYPE ) return FLOAT-TYPE; 

function SINH ( X: FLOAT-TYPE ) return FLOAT-TYPE; 
Function COSH ( X: FLOAT-TYPE ) return FLOAT-TYPE; 
function TANH ( X: FLOAT-TYPE ) return FLOAT-TYPE; 
Function COTH ( X: FLOAT-TYPE ) return FLOAT-TYPE; 

function ARCSINH ( X: FLOAT-TYPE ) return FLOAT-TYPE; 
Function ARCCOSH ( X: FLOAT-TYPE ) return FLOAT-TYPE; 
function ARCTANH ( X: FLOAT-TYPE ) return FLOAT-TYPE; 
Function ARCCOTH ( X: FLOAT-TYPE ) return FLOAT-TYPE; 

ARGUMENT-ERROR : exception renames MATHEMATICAL-EXCEPTIONS.ARGUMENT-ERROR; 

end GENERIC-ELEMENTARY-FUNCTIONS; 


