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ABSTRACT 
Aircraft conflict detection plays a main role in the air traffic 
controller's task to maintain flight safety. Due to the impact of 
uncertainty on the aircraft motion, in particular, stochastic winds, 
the actual trajectory differs from the planned trajectory which 
makes aircraft conflict detection more challenging. A probabilistic 
approach can be less conservative and more efficient than the 
deterministic or the worst-case approaches. However, this 
approach resorting to a large number of actual trajectories is 
intensive computationally. In order to tackle this problem, a fast 
algorithm based on Computational Geometry for Probabilistic 
Conflict Detection (CG-PCD) is proposed combining the 
advantages of both deterministic and probabilistic approaches. At 
first place, the ellipsoidal reach sets are computed offline and 
adopted to describe the uncertainty affecting aircraft motion with 
some probabilistic guaranteeing. Then, an approximate 
computational geometry algorithm is introduced to determine the 
intersection between ellipsoids to reduce computational time. 
Specifically, the external ellipsoid of the Minkowski sum of two 
ellipsoidal reach sets are calculated analytically. Some numerical 
experiments are used to verify the efficacy and efficiency of the 
presented algorithm while comparing with a standard Monte Carlo 
based Probabilistic Conflict Detection (MC-PCD) algorithm. The 
results show that it takes about -55.60 10×  seconds with CG-PCD 
instead of 4.26 hours with MC-PCD to detect a conflict instance 
maintaining no less than 95% probabilistic level on a standard 
personal computer. 

CCS Concepts 
•Theory of computation →  Numeric approximation 
algorithms 

Keywords 
Aircraft conflict detection; Reach set computation; Scenario 
approach; Computational geometry. 

 

1. INTRODUCTION 
An aircraft conflict occurs when the prescribed safe separation 
distance between two aircraft is violated which is one of the most 
dangerous events on route. The priority for flight safety of air 
traffic controller is to detect the potential conflict in advance and 
then resolve it [1], [2]. In the task of conflict detection, the 
contribution of the different sources of uncertainty (mainly, the 
stochastic winds) affecting the predicted aircraft motion cannot be 
neglected [3], [4], [5], [6]. Probabilistic Conflict Detection (PCD) 
[2], [7] thus becomes a suitable approach since it avoids the 
conservativeness of the worst case approach while being more  
effective than the deterministic approach. 

The state-of-the-art PCD approaches are characterized by repeated 
simulations of the aircraft trajectories according to the model 
describing their motion and corresponding uncertainty, and the 
fraction of trajectories that generate a conflict is then an unbiased 
estimate of the probability of conflict, including Monte Carlo 
based PCD (MC-PCD), and its variants, such as, Markov Chain 
Monte Carlo or Sequential Monte Carlo based PCD [3], [4], [5], 
[6], [7], [8], [9], [10], [11], [12]. These approaches avoid the 
difficult task to analytical compute the probability of conflict in 
which some complex model of aircraft motion can be adopted. 
However, they are intensive computationally resorting to a large 
number of aircraft trajectory realizations, which makes the 
resulting PCD algorithms hardly be applied in real time. 

In this paper, we present a fast algorithm based on Computational 
Geometry for PCD (CG-PCD) combining both the advantages of 
deterministic and probabilistic viewpoints. Firstly, the 
probabilistic reach set to account for the uncertainty (mainly, the 
stochastic winds) with some prescribed probabilistic guaranteeing 
( 1≥ − �, where � is the violation probability) is introduced 
[13], [14]. In particular, the deviations of an aircraft from its 
planned reference trajectory are confined within ellipsoidal reach 
sets. As   grows to 1, the size of ellipsoid grows and the 
probabilistic approach resembles the worst-case approach, thus 
becoming conservative. Note that, the computations of the 
parameterized reach sets with different   can be performed 
offline based on some realizations of aircraft trajectory. Then, 
PCD is formulated as the determination of the interaction between 
two ellipsoids (the same probabilistic levels 1≥ − � are adopted) 
in a deterministic form with the probabilistic guaranteeing of 

1 2c ≥ − �for the detected results. The computational geometry 
algorithm is presented based on the concept of Minkowski sum, 
where the externally approximate ellipse of the Minkowski sum is 
obtained analytically so as to reduce computational time. The 
theoretically proof of this reformulation is also given in this paper. 
Some numerical examples are given to show the efficacy of the 
proposed CG-PCD approach. The results are also compared with 
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MC-PCD approach using the air traffic simulator developed 
within the group of Prof. J. Lygeros, ETH Zürich [9]. 

The rest of the paper is organized as follows. Section 2 introduces 
the proposed CG-PCD scheme for conflict detection issue, 
specifically, the probabilistic reach set and the computational 
geometry algorithm. Section 3 describes the numerical results. 
Finally, some conclusions and future directions are given in 
Section 4. 

2. ALGORITHM 
Suppose that aircraft i  and j  are tracking some flight plan, and 
denote by ( )ip t , ( )jp t  their reference positions along their 

planned trajectories during the lookahead time horizon [ ],s dt t , 

where =0st  represents the current time instant. The aircraft future 
positions are uncertain due to the stochastic winds. We then 
denote by [ ]( ), ,i s dp t t t td ∈ , [ ]( ), ,j s dp t t t td ∈  the aircraft actual 

positions, where δ  represents the stochastic uncertainty and takes 
values in the set ∆  of all possible realizations of the stochastic 
winds. Then, the goal of PCD is to determine the loss of safe 
separation sd  between the actual positions of any two aircraft 
with probability at least 1− �, where (0,1)∈  is the violation 
parameter, and the 1{ } sn

k kt =  are time instants of [ ],s dt t , as follows: 

{ }{ }: ( ) ( ) , 1, , 1c i k j k s sp t p t d k nd dd − ≤ ∈ ≥ − �   (1) 

where, the probabilistic distribution δ ∈∆  is unknown or too 
complex. Thus, one can resort to randomized method for an 
approximate solution. 

In this paper, we adopt some ellipsoidal reach set 
( ( ), ( ))i k kp t S tθ and ( ( ), ( ))j k kp t S tθ  for aircraft i  and j  to 

describe the set of possible actual position with the probabilistic 
level 1 i− � and 1 j− � satisfying i j≥ +��� centering on ( )i kp t and 

( )j kp t  respectively with the shape matrix ( ) ( ) ( )T
k k kA t S t S tθ θ= . 

Then, conflict detection is reformulated as the problem of 
determining the separation of two ellipsoids deterministically with 
the following condition: 

{ }( ( ), ( )) ( ( ), ( )) , 1, ,i k k j k k s sp t S t p t S t d k nθ θ− ≤ ∈      (2) 

Note that, the probabilistic reach set can be obtained offline, the 
computational time of the proposed CG-PCD is thus only 
dependent on the latter part which does not involve computing 
any probability but just set intersection. A fast algorithm based on 
computational geometry is introduced to further reduce the 
computational time via the approximate analytical computation of 
the Minkowski sum of two ellipsoids. Here, sd  is set to 0 without 
losing the generality. The details of the CG-PCD is shown in the 
following subsections. 

2.1 Probabilistic Reach Set 
The probabilistic reach set of aircraft i� is computed as the 
Chance-Constrained Optimization Program (C-COP): 

1
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where the cost function is to obtain the smallest region containing 
all possible realizations of the aircraft trajectories except for a set 
of probability at most i  with some confidence probability no less 
than 1-β . 

Then, the scenario approach, as proposed earlier in [15], [16] is 
adopted to replace the probabilistic constraint with a finite number 
N  of deterministic constraints, which  are obtained by 

independently extracting N  ''scenarios'' ( ) , 1, ,l l Nδ =  , of the 
uncertainty δ . The proper selection of N  can assure the 
probabilistic guaranteeing [15], [16]. 

The scenario version of problem (3) then becomes the following 
convex optimization program [13], [14]: 
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which is always feasible since it consists in determining the 
minimum area set composed by sn  ellipses, each one covering a 
finite number of points [17]. 

We adopt a 4-dimensional parametrization 4θ ∈ℜ for
( ) , ,k sS t j k nθ =，   in the reach set so that the number of 

optimization variables is 4d =  and the computational load is 
significantly reduced with respect to the fully parameterized case 
where all matrices ( ) , ,k sS t j k nθ =，   have free elements, as 
follows (the constant value 1.3C = −  is selected via numerical 
experiments): 

1 2 3

3 4
( ) 1, ,

C

k s
kS t k nθ

θ θ θ
θ θ

 ⋅ +
= = 
  

，       (5) 

where it accounts for the case that the heading angle is 0ψ =  , 

and 4
1 2 3 4( , , , )θ θ θ θ θ= ∈ℜ . If we set 3 0θ = , the axes of the 

ellipses are parallel to the axes of the reference coordinate system. 
The shape matrix of the ellipsoid is then given by 

( )2 2
1 2 4( ) ( ) ( ) ,T C

k k kA t S t S t diag kθ θ θ θ θ = = ⋅ + 
 

, and its 

eigenvalues are ( )2
1 1 2( ) C

kt kζ θ θ= ⋅ +  and 2
2 4( )ktζ θ= . Here, the 

semi-axis of length ( ) 11 2
1 1 2( ) C

kt kζ θ θ
−− = ⋅ +  corresponds to the 

along-track error, whereas the semi-axis of length 1 2 1
2 4( )ktζ θ− −=  

corresponds to the cross-track error. Note that 1 2
2( )ktζ −  is 

growing as a function of time, which models the fact that the 
along-track error increases with lookahead time, whilst the cross-
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track error term is weakly dependent on lookahead time and hence 
it is modeled through a constant, see e.g. [18] and the references 
therein to justify this choice. 

Generally, for any heading angle 0ψ ≠   of the aircraft i�, we can 
simply rotate clockwise both the reference and the actual sampled 
trajectories ( )i kp t  and ( ), 1,...,i k sp t k nδ = , of an angle ψ  through 
the rotation matrix 

cos sin
sin cos

Rψ
ψ ψ
ψ ψ

 
=  − 

       (6) 

so that we can still use the same parametrization of matrix ( )kS tθ  
in (5) and just modify the optimization problem (4) by replacing 

( )i kp tδ  and ( )i kp t  with ( )i kR p tδ
ψ  and ( )i kR p tψ , respectively. 

2.2 Computational Geometry Algorithm 
Given two aircraft i  and j  with headings iψ  and jψ  at some 

lookahead time horizon , 1,...,k st k n= , and the corresponding 
ellipsoidal reach sets ( ( ), ( ))

i i k kR p t S tψ θ  and 

( ( ), ( ))
j j k kR p t S tψ θ  with the probabilistic levels 1- i  and 1- j . 

Where, the corresponding confidence levels are set 1 iβ−  and 
1 jβ−  respectively. 

We firstly introduce the definition of Minkowski sum. Let the 
vector set i  and j  consisting of any possible vectors originated 
from the center to any point belonging to the disc of ellipsoids 

( ( ), ( ))
i i k kR p t S tϕ θ and ( ( ), ( ))

i i k kR p t S tϕ θ . Then, the 
Minkowski sum between two ellipsoids can be written as 
{ | , }i j i j i i j jc c c c⊕ = + ∈ ∈    . 

Based on the concept of Minkowski sum, the intersection of two 
ellipses is equal to fact that the center of one ellipse is covered by 
the Minkowski sum centered on the center of another ellipse. 
Therefore, the key idea of computational geometry algorithm is to 
determine the relationship between the center of ellipse and the 
Minkowski sum in the Euclidean space. The theoretical proof of 
this statement is given as follows. 

Proof. The sufficient necessary condition of the intersection of 
two ellipsoids is then transformed as: 

, ( )i j i j k i jp t∩ ∉∅⇔ ∈ ⊕    , where , ( )i j kp t  is the vector 

originated from ( )i k ip t ∈ to ( )j k jp t ∈ 。 

:⇒  Suppose that the intersection point is ( )m kp t , then, 

, ( )i m k ip t ∈  and , ( )j m k jp t ∈ . Due to the symmetry of the vector 

set, the vector , ,( ) ( )m j k j m kp t p t= −  and , ( )m j k jp t ∈ . Thus, 

, , ,( ) ( ) ( )i j k i m k m j kp t p t p t= + , where , ( )i m k ip t ∈ , , ( )m j k jp t ∈ , 

so that , ( )i j k i jp t ∈ ⊕  . 

:⇐  Suppose that the i j∩ ∈∅   and given any point 
2( )m kp t ∈ℜ , the vector , ( )i j kp t  can be expressed as 

, , ,( ) ( ) ( )i j k i m k m j kp t p t p t= +  and there are three cases should be 
discussed as follows: 

(1) If ( )m k ip t ∈ , then , ( )i m k ip t ∈  and ( )m k jp t ∉ . Thus, 

, ( )m j k jp t ∉  so that , ( )i j k i jp t ∉ ⊕  . 

(2) If ( )m k jp t ∈ , then , ( )m j k jp t ∈  and ( )m k ip t ∉ . Thus, 

, ( )i m k jp t ∉  so that , ( )i j k i jp t ∉ ⊕  . 

(3) If 2( ) \ { }m k i jp t ∈ℜ ∪  , then , ( )i m k ip t ∉  and 

, ( )m j k jp t ∉ , thus, , ( )i j k i jp t ∉ ⊕  . 

In a word, there is no ( )i k ip t ∈  and ( )j k jp t ∈  satisfying 

, ( )i j k i jp t ∈ ⊕   under the assumption of i j∩ ∈∅  . Thus, if 

there is a vector , ( )i j k i jp t ∈ ⊕  , then it concludes i j∩ ∉∅ 

□. 
Furthermore, due to that the Minkowski sum of two ellipses is 
some complex polygon should be addressed via numerical 
algorithm, we introduce a new ellipse * * *( ( ), ( ))k kp t S t  as the 
externally approximation of the Minkowski sum in an analytical 
form. Here, the shape matrice for the ellipsoidal reach sets are 
denoted as ( ) ( )

i i

T T
i k kA R S t S t Rψ θ θ ψ= and 

( ) ( )
j j

T T
j k kA R S t S t Rψ θ θ ψ= . The formulas of the shape matrix of 

the external ellipse is then given as follows (the proofs can be 
seen in [16], [10]): 

*

1 2 1 2 1 2

1 2 1

( )

((( ( ) ) ( ( ) ) )(( ( ) ) ( )

( ( ) ) ( )))

k
T T T

i k j k i k i k

T
j k j k

A t

r A t r r A t r r A t r A t

r A t r A t

−

− −

=

+ +   (7) 

Thus, the obtained parameters of ellipse * * *( ( ), ( ))k kp t S t  are 
* * *( )= ( ) ( )T

k k kA t S t S t  and *( )kp t  can be ( )i kp t  or ( )j kp t . If the 
following condition is satisfied, then there will be a conflict at 
time kt . Note that the result is guaranteed with a probability level 
1 i j− −   and a confidence level 1 i jβ β− − . 

*(( ( ) ( )) ( )( ( ) ( ))) 1T
i k j k k i k j kp t p t A t p t p t− − ≤   (8) 

3. Numerical Results 
We adopt the air traffic simulator described in [4] and [6], and 
available for download at http://people.epfl.ch/cgi-bin/people? 
id=234671\&op=bio\&lang=en\&cvlang=en. The calculations are 
performed using Matlab R2013b, 64-bit, on a personal computer 
with an Intel (R) Core (TM) i5-6600K CPU 3.50GHz processor, 
8.00 GB RAM, and Windows 7 64-bit as operating system. 

3.1 Examples of Probabilistic Reach Set 
Here, 3 different probability levels 1− � with parameters 

0.025,0.050,0.100=�  are considered to describe the set of actual 
trajectories. The reach sets at 10 minutes predicted time instance 
are shown in Figure 1, 2, and 3, where the area is reduced as � 
grows. Moreover, as the lookahead time increases, the area grows 
so as to depict the growing uncertainty. Note that, the confidence 
parameter is set as 810β −=  for this probabilistic reach sets. 
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3.2 Results of Computational Geometry 
Algorithm 
Some conflict detection examples using CG-PCD are shown 
where the two aircraft are heading on to each other parallel to the 
X axis. In Figure 4, the two ellipsoidal reach set at the lookahead 
time of 8 minutes with probability levels 1− � where 0.025=�  
are separated. We can see that the reference position of aircraft at 
left is outside of the ellipsoidal Minkowski sum marked as the 
black dotted line. It means that it is conflict-free at this time 
instance with a probability guaranteeing more than 95%. In Figure 
5, the conflict is then detected because that the reference position 
of aircraft at right is inside of the ellipsoidal Minkowski sum 
centered at the reference position of aircraft at left at the 
lookahead of time of 11.5 minutes. This result is also guaranteed 
with a probabilistic level of 95%. Note that, the CG-PCD 
algorithm can be ran iteratively with different probabilistic reach 
sets so as to obtain the detected results with different probabilistic 
guaranteeing via using the preexisting parameters of reach sets. 

 
Figure 1. The reach set of 0.025=�  at the lookahead time of 

10 minutes. 

 

Figure 2. The reach set of 0.050=�  at the lookahead time of 
10 minutes. 

 
Figure 3. The reach set of 0.100=�  at the lookahead time of 

10 minutes. 

 
Figure 4. The conflict-free instance applied CG-PCD at the 

lookahead time of 8 minutes. The approximated Minkowski 
sum, the reach set and the reference trajectory are marked 
with black dotted line, black solid line, and black stars, 
respectively. 

 
Figure 5. The conflict instance applied CG-PCD at the 

lookahead time of 11.5 minutes. The approximated 
Minkowski sum, the reach set and the reference trajectory are 
marked with black dotted line, black solid line, and black 
stars, respectively. 

 
Figure 6. The CPU computational time as the function of 

conflict detection counts applied CG-PCD. 

3.3 Comparison of Computational Efficiency 
In order to verify the computational efficiency of the proposed 
algorithm, we adopt some symmetrical configurations where 
starting way-points of n  aircraft are symmetrically distributed on 
a circle of radius 141.70 km centered at (148.16,148.16) and the 
corresponding destination way-points are on the circle as well 
along a lookahead time horizon [ ] [ ], 0,20s dt t =  minutes. 
Reference trajectories pass through the center of the circle at the 
lookahead time 10t =  minutes in all considered conflicts. Here, 
the counts of conflicts are ( 1) / 2sn n n −  and 41sn =  with a 
sampling interval 0.5∆ =  minutes. 

The CPU computational time shown in Figure 6 is the average 
value of 100 runs of the repeated numerical experiments where 
the number of aircraft n  grows from 2 to 36. From this plot, we 
can see that it takes less than 1.40 seconds for all 25000 
applications of CG-PCD. Thus, it needs about -55.60 10×  seconds 
for each conflict detection and the result is with a probabilistic 
guaranteeing of 95% and confidence of 81 2 10β −= − × . Note that, 
more efficient parallel implementations and a better performing 
platform could be adopted to further reduce computational time. 

Furthermore, the MC-PCD is used as the alternative contrastive 
algorithm. Here, the required number of simulations MC PCDN −  
with the same parameter sets ( 0.025,0.050,0.100=�  and 

810β −= ) are given by the Chernoff bound of Monte Carlo 

approach 2
1 1ln

2MC PCDN
β− ≥

�
[2] and reported in Table 1. Based 

on the air traffic simulator, the CPU computational time of one 
actual trajectory simulation for one aircraft flying 20 minutes is 
0.50 seconds by averaging 10000 times of repeated numerical 
experiments. Thus, we can estimate that the CPU computational 
time CPUt  by simply calculations with the parameter sets, see the 
Table 1 for reference. If aiming to obtain the detected results with 
the same probabilistic guarantee as the above one with CG-PCD, 
we need to generate 15291 simulations of trajectories for each 
aircraft and it takes about 4.26 hours which is far more than the 
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CPU computational time with CG-PCD. Note that, the confidence 
81 10−−  with CG-PCD here is slightly surpass, however some 

reach set with higher confidence (such as, 91 10−− ) can be 
adopted in CG-PCD without increasing the CPU computational 
time. Additionally, even if the probabilistic guarantee is lowered 
to (80%), it still needs about 959.19 seconds. Thus, the proposed 
CG-PCD has some obvious advantage to reduce the CPU 
computational time by combining the strengths of both 
probabilistic and deterministic and probabilistic viewpoints. 

Table 1. The required simulations MC PCDN −  for each 
aircraft and the estimated CPU computational time CPUt  for 
one conflict detection applied MC-PCD with different values 
of �. 

� MC PCDN −  CPUt  

0.025 15291 4.26h 

0.050 3823 1.07h 

0.100 956 959.19s 

4. CONCLUSIONS AND FUTURE WORKS 
A fast algorithm for probabilistic conflict detection based on 
computational geometry was proposed in this paper, in which the 
probabilistic ellipsoidal reach set computed offline was adopted to 
describe the uncertainty affecting aircraft motion, and an 
approximate computational geometry algorithm was introduced to 
determine the intersection between ellipsoids so as to reduce the 
computational time while maintain some probabilistic 
guaranteeing. The theoretically proof of the computational 
geometry algorithm was also given. The results of some numerical 
experiments showed the efficacy and efficiency of the proposed 
algorithm. Based on the same computer platform, the CPU 
computational time for each conflict detection with CG-PCD 
algorithm is about -55.60 10×  seconds to maintain a 95% 
probabilistic level, in contrast, it takes about 4.26 hours to apply 
the standard MC-PCD algorithm. In the future, the congestion 
detection in the multi-aircraft network with the presence of 
uncertainty should be addressed to enhance the flight safety in a 
long-term lookahead time horizon. 
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