
A

A Domain-Specific Language and Editor for Parallel Particle Methods

SVEN KAROL1, TOBIAS NETT1, JERONIMO CASTRILLON1 and IVO F. SBALZARINI1,2,
1: Technische Universität Dresden, Faculty of Computer Science, Dresden, Germany
2: Center for Systems Biology Dresden, Max Planck Institute of Molecular Cell Biology and Genetics,
Dresden, Germany

Domain-specific languages (DSLs) are of increasing importance in scientific high-performance computing
to reduce development costs, raise the level of abstraction and, thus, ease scientific programming. How-
ever, designing DSLs is not easy, as it requires knowledge of the application domain and experience in
language engineering and compilers. Consequently, many DSLs follow a weak approach using macros or
text generators, which lack many of the features that make a DSL comfortable for programmers. Some of
these features—e.g., syntax highlighting, type inference, error reporting—are easily provided by language
workbenches, which combine language engineering techniques and tools in a common ecosystem. In this
paper, we present the Parallel Particle-Mesh Environment (PPME), a DSL and development environment
for numerical simulations based on particle methods and hybrid particle-mesh methods. PPME uses the
Meta Programming System (MPS), a projectional language workbench. PPME is the successor of the Par-
allel Particle-Mesh Language, a Fortran-based DSL that uses conventional implementation strategies. We
analyze and compare both languages and demonstrate how the programmer’s experience is improved using
static analyses and projectional editing, i.e., code-structure editing, constrained by syntax, as opposed to
free-text editing. We present an explicit domain model for particle abstractions and the first formal type
system for particle methods.

CCS Concepts: •Software and its engineering→ Application specific development environments;
•Computing methodologies→ Agent / discrete models; Simulation languages; •Mathematics of com-
puting→ Solvers;

Additional Key Words and Phrases: language workbenches, mathematical software, MPS, particle methods,
scientific computing

ACM Reference Format:
Sven Karol, Tobias Nett, Jeronimo Castrillon and Ivo F. Sbalzarini. 2017. A Domain-specific Language and
Editor for Parallel Particle Methods ACM Trans. Math. Softw. V, N, Article A (November YYYY), 33 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The emergence of massively parallel hardware architectures, such as different kinds
of multi- and many-cores, general-purpose GPUs, and FPGAs in scientific high-
performance computing (HPC) has led to the development of new (or the reno-
vation of old) programming models, paradigms, languages, and standards. Stan-
dardized interfaces such as the Message Passing Interface (MPI) [The MPI Forum
2012], OpenMP [OpenMP Architecture Review Board 2013], OpenACC [OPENACC-
STANDARD.ORG 2012], or hardware-specific low-level programming languages such
as CUDA [nvidia 2015] made their way into HPC programming as libraries, language
extensions, or compilers. However, using these tools efficiently in scientific program-

Preprint. This work is partly supported by the German Research Foundation (DFG) within the Cluster of
Excellence “Center for Advancing Electronics Dresden” (EXC 1056).
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY Copyright held by the owner/author(s). Publication rights licensed to ACM. 0098-3500/YYYY/11-

ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.

ar
X

iv
:1

70
4.

00
03

2v
2 

 [
cs

.M
S]

  1
7 

Se
p 

20
17



A:2 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

ming requires in-depth knowledge of the underlying HPC architecture, the develop-
ment of parallel applications, and numerical simulation methods. Hence, the achiev-
able level of abstraction remains rather low, which is a well-known problem in scien-
tific programming [Hannay et al. 2009; Wilson 2006], causing the “knowledge gap” in
program efficiency [Sbalzarini 2010].

To address this gap, scientific libraries and domain-specific languages (DSLs) have
evolved into an important tool set in scientific HPC. However, most of the scientific
DSLs are built on rather conventional technology such as macros, templates, and/or
parser generators. In recent years, more sophisticated tools have been proposed, fre-
quently referred to as language workbenches [Fowler 2005; Erdweg et al. 2013], which
enable developers to more easily create and integrate DSLs following a model-centric
approach. A main driver behind the rising interest in such tools is the paradigm of
language-oriented programming [Ward 1994], where DSLs are created to describe and
solve software problems instead of using general-purpose languages, with the goal
of increased productivity and better maintainability through abstraction. Models are
the central paradigm that is edited by users and automatically transformed or inter-
preted by the workbench tooling. From this integrative idea, major advantages over
conventional approaches arise. Most language workbenches provide configurable fea-
tures known from professional programming environments, such as automatic code
completion, refactoring, and syntax highlighting. Moreover, they typically provide a
collection of internal, tailor-made specification languages that address common con-
cerns in language development, e.g., languages for pretty-printing, rewriting, parsing,
and code analysis or generation.

These tools were not used when designing the Parallel Particle Mesh library (PPM)
and the Parallel Particle Mesh Language (PPML) as a library and a DSL for large-scale
scientific HPC using particle-mesh abstractions [Sbalzarini et al. 2006; Sbalzarini
2010; Awile 2013; Awile et al. 2013]. Instead, PPML was implemented conventionally
as an internal DSL, embedded into Fortran 2003. However, as PPML does not have
a completely integrated language model, it is difficult to maintain, debug, extend, or
optimize PPML programs [Karol et al. 2015]. To improve on these issues, we developed
the PPM Environment (PPME) as an Integrated Development Environment (IDE) for
particle-mesh methods. Based on the Meta Programming System (MPS) [Dmitriev
2004; MPS - 3.2 - Documentation 2015b], a language workbench that closely follows
the ideas of language-oriented programming, PPME provides an additional layer of
abstraction on top of the PPML stack (cf. Figure 11 in Section 5). In contrast to text-
based language workbenches, MPS relies on projectional editing where users directly
operate on a rendered, form-like “projection” of the program [Feiler and Medina-Mora
1981]. This enables advanced rendering of tables and mathematical equations inlined
with normal program code. Due to its underlying principles, we believe that MPS is an
excellent platform to design languages that address the “knowledge gap” and raise the
level of abstraction in scientific programming.

In this paper, we present PPME as the first IDE for high-performance particle sim-
ulations. We introduce a complete language model that provides the corresponding
abstractions and paves the way for further domain-specific analyses. As an important
first analysis, we implement a static type-inference engine, supported by a formal type
system. Furthermore, we demonstrate the advantages of this approach and of using
language workbenches for numerical optimizations by integrating a mechanism for
error-reduction in floating-point expressions.

The remainder of this paper is structured as follows: Section 2 briefly introduces
the background of particle methods. Section 3 provides a more detailed overview and
analysis of the current PPML implementation and tool flow. The language model and
type system of PPME are discussed in Section 4. Section 5 gives an overview of PPME’s

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A Domain-Specific Language and Editor for Parallel Particle Methods A:3

coarse-grained architecture and implementation, and presents three case studies. In
Section 6, we show how optimizations can be added by integrating an external analysis
tool using domain-specific information. A qualitative evaluation of our work is given
in Section 7. Finally, we discuss related work in Section 8, and Section 9 concludes the
paper.

2. PARTICLE METHODS
Particle methods provide a universal approach for numerical simulations in scientific
computing. In contrast to other simulation frameworks, such as finite element meth-
ods (FEM) or Monte-Carlo methods, particle methods can simulate models of all four
kinds: discrete/deterministic, discrete/stochastic, continuous/deterministic, continu-
ous/stochastic [Sbalzarini 2013]. In case of continuous models, particles correspond
to discretization points. When discrete models are simulated, entities in a model are
directly represented by particles. In deterministic simulations, particle positions and
properties evolve according to deterministic interactions between particles, whereas in
stochastic models, these interactions are probabilistic.

In general, particles are zero-dimensional point-like objects characterized by a col-
lection of properties of arbitrary types and a position in any space given as a vector
whose length corresponds to the dimension of that space. While a particle always has
a position, its list of properties may grow or shrink in the course of a simulation. As
an example of a discrete particle, consider a car on a street. The car’s position may
correspond to its GPS coordinates on a map while its properties could be velocity, the
driver’s age, number of passengers, or the color of the car. Other examples may be a
pixel of an image (i.e., in a discrete space) or a discretization point of a continuous
mathematical field, where the space is continuous.

Particles can interact pairwise with other particles and they can evolve. Evolving
means that a particle’s position and/or properties change due to its own state and/or
the states of other particles in the domain. The influence of other particles is due to
the interactions, which may yield a contribution to the change. Hence, in pseudo code,
the essential ingredients of particle objects can be described as shown in Figure 1.

class PARTICLE {
vector(space-dimension) :: position ~x, positionChange ∆~x
struct :: properties ~ω, propertiesChange ∆~ω

method [vector ~Kx, struct ~Kω] interact(PARTICLE q)
method evolve()

} Fig. 1. Particle declaration and properties in pseudo code.

Using this very basic interface, the evolution of a particle may depend on the position
vector ~x and the list of properties ~ω of the particle itself, as well as the values of all
other particles in the system. If we assume that all particles influence each other, in
the most general form, the changes for any particle p in the system can be described
abstractly by Eq. 1: [

∆~xp
∆~ωp

]
=

N∑
q=1

[
~Kx

~Kω

]
=

N∑
q=1

~K(~xp, ~xq, ~ωp, ~ωq) . (1)

Here, N is the total number of particles in the system, which may change over time
(e.g., depending on a boundary condition). ~K represents the interaction kernel that
encapsulates the computational model and corresponds to a mathematical representa-
tion of the interact method. Applied on position vectors ~xp, ~xq and properties ~ωp, ~ωq,

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A:4 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

the kernel produces the elementary changes ~Kx and ~Kω of the pairwise interactions
between particles p and q. The cumulative change for particle p due to all interactions
with other particles is represented by two deltas, ∆~xp and ∆~ωp, which are used by
evolve to update the property values and position of p.

In numerical simulations, updates of particle properties and positions occur at each
time step. Thus, it is important to evaluate the pairwise interactions efficiently. In the
worst case, each particle interacts with each other particle, which leads to quadratic
time complexity. However, typically, a particle only needs to interact with its “neigh-
bors” within a finite range. In such cases, optimized data structures such as cell
lists [Hockney and Eastwood 1988] exist, which allow for computing particle interac-
tions in linear time (average complexity if particles are uniformly distributed). Nev-
ertheless, the worst-case complexity remains quadratic if all particles are located
within the interaction range or the interaction range is the size of the domain. In
these cases, efficient approximation algorithms are available, e.g., the Barnes-Hut al-
gorithm [Barnes and Hut 1986] and Fast Multipole Methods [Greengard and Rokhlin
1987]. Another way to address this problem is to use a hybrid particle-mesh approach,
where interactions of finite range are computed using particles, whereas interactions
of infinite range are evaluated using mesh-based approaches [Hockney and Eastwood
1988].

The range of the particle–particle interactions is defined by the support of the in-
teraction kernel ~K. This kernel is the mathematical representation of the system to
be simulated and encapsulates all application-specific details. When simulating dis-
crete models, ~K corresponds to the pairwise interaction potential between the entities
in the model, e.g., the inter-atomic force fields in a molecular-dynamics simulation.
When simulating continuous models, such as partial differential equations (PDEs), ~K
contains the discretized continuous or differential operators. In this case, the parti-
cles as discretization/colocation points at which the value of the continuous function is
sampled.

Particle discretizations of differential operators in PDEs (i.e., the kernel ~K) can be
determined using a variety of classical approaches from numerical analysis [Lucy
1977; Liu et al. 1995; Belytschko et al. 1994; Lancaster and Salkauskas 1981; Broom-
head and Lowe 1988; Degond and Mas-Gallic 1989; Eldredge et al. 2002] that are
generic to arbitrary linear differential operators. They all have in common that the
kernel ~K is pre-computed, usually analytically by hand, and then implemented in
the discrete form. To free the scientific programmer from this analytical calculation,
we here implement a method known as Discretization-Corrected Particle Strength Ex-
change (DC-PSE) [Schrader et al. 2010]. DC-PSE is a general particle discretization
framework where the discrete kernels are automatically computed at runtime. In addi-
tion, DC-PSE also shows superior stability and accuracy properties compared to other
mesh-free discretization methods [Schrader et al. 2010; Reboux et al. 2012; Schrader
et al. 2012; Bourantas et al. 2016].

3. THE PARALLEL PARTICLE MESH LANGUAGE PPML
The Parallel Particle-Mesh Language (PPML) [Awile 2013; Awile et al. 2013] provides
domain-specific abstractions to ease the development of distributed-memory particle-
mesh simulations with the PPM HPC library [Sbalzarini et al. 2006; Sbalzarini 2010;
Awile et al. 2010]. The language is smoothly embedded into Fortran2003—the imple-
mentation language of PPM. The major advantage of relying on PPML over using the
PPM library directly is that complex library protocols and parallelization code are hid-
den from the user. Instead, PPML provides first-class concepts for particle program-
ming such as particles, neighbor lists (with optimized implementations in PPM), par-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A Domain-Specific Language and Editor for Parallel Particle Methods A:5

A
P
ar
am

et
er
s

1 client grayscott
2 integer, dimension(6) :: bcdef = ppm_param_bcdef_periodic
3 real(..), dimension(:,:), pointer :: displace
4 ...
5
6 add_arg(k_rate,<#real(mk)#>,1.0_mk,0.0_mk,’k_rate’,’..’)
7 add_arg(F,<#real(mk)#>,1.0_mk,0.0_mk,’F_param’,’..’)
8 add_arg(D_u,<#real(mk)#>,1.0_mk,0.0_mk,’Du_param’,’..’)
9 add_arg(D_v,<#real(mk)#>,1.0_mk,0.0_mk,’Dv_param’,’..’)

10
11 ppm_init(1)

P
ar
ti
cl
es

an
d
fi
el
ds

12 U = create_field(1, "U")
13 V = create_field(1, "V")
14 topo = create_topology(bcdef)
15 c = create_particles(topo)
16
17 ...
18 call c%apply_bc(info)
19
20 global_mapping(c, topo)
21 discretize(U,c)
22 discretize(V,c)
23 ghost_mapping(c)

In
it
ia
l
va
lu
es

25 foreach p in particles(c) with ... sca_fields(U,V)
26 U_p = 1.0_mk
27 V_p = 0.0_mk
28 if (((x_p(1)-0.5)**2+(x_p(2)-0.5_mk)**2).lt.0.01) then
29 call random_number(noise)
30 U_p = 0.5_mk + 0.01_mk*noise
31 call random_number(noise)
32 V_p = 0.25_mk + 0.01_mk*noise
33 end if
34 end foreach

O
p
er
at
or
s 35 n = create_neighlist(c,cutoff=<#4._mk * c%h_avg#>)

36
37 Lap = define_op(2,[2,0,0,2],[1.0_mk,1.0_mk],"Lap")
38
39 W = discretize_op(Lap, c, ppm_param_op_dcpse,
40 [order=>2,c=>1.0_mk])

T
im

el
oo

p

41 o,nstag = create_ode([U,V],gc_rhs,[U=>c,V],rk4)
42 interval = 1
43 t = timeloop()
44 do istage=1,nstag
45 ghost_mapping(c)
46 ode_step(o, t, time_step, 1)
47 end do
48 print([U=>c, V=>c],interval)
49 end timeloop
50
51 ppm_finalize()
52 end client

R
ig
ht
-h
an

d
si
de

53 rhs gc_rhs(U=>parts,V)
54 get_fields(dU,dV)
55
56 dU = apply_op(W, U)
57 dV = apply_op(W, V)
58
59 foreach p in particles(parts)
60 with sca_fields(U,V,dU,dV)
61 dU_p = D_u*dU_p - U_p*(V_p**2) + F*(1.0_mk-U_p)
62 dV_p = D_v*dV_p + U_p*(V_p**2) - (F+k_rate)*V_p
63 end foreach
64
65 end rhs

Legend: First-class PPML construct Macro call

Fig. 2. PPML program to numerically solve the 2D Gray-Scott reaction-diffusion system on distributed-
memory computer systems.

ticle properties like vector and scalar fields, and differential-operator definitions. Fur-
thermore, particle-specific foreach loops are supported, as well as loops over discrete
time steps. For high-performance parallelization, PPML supports distributed memory
with message passing based on MPI. Several macro commands are provided to help
handle the MPI setup, create topologies (i.e., decomposing the domain and assign sub-
domains to processes), distribute particles over these topologies, and exchange data at
subdomain boundaries (cf. [Sbalzarini et al. 2006]).

3.1. A Simple Application Example
To illustrate how parallel simulations can be implemented in PPML, we discuss an
example of a Gray-Scott reaction-diffusion system, taken from the PPML paper [Awile
2013]. A Gray-Scott reaction-diffusion system describes the concentrations (in normal-
ized dimensionless units) of two chemicals u and v that react with each other and
diffuse [Gray and Scott 1983]. The process can be described by a system of two partial
differential equations that define the evolution of the chemicals’ concentrations, u and
v, over time:

∂u

∂t
= Du∆u− uv2 + F (1− u) (2)

∂v

∂t
= Dv∆v + uv2 − (F + k)v . (3)

Equation 2 describes the time derivative of u as a sum of three terms: First is the
diffusion term Du∆u, where Du is a predefined diffusion constant and ∆u the Lapla-
cian (divergence of the gradient) of u. Second is the reaction term −uv2 defining how
much of u is converted to v by the reaction. The last term in Eq. 2 is the replenishment
term, defining how much of fresh u is added to keep the reaction alive, depending on
a constant feed rate F . Equation 3 describes the time derivative of v also as a sum
of reaction, diffusion and, instead of a replenishment term, a diminishment term. Dv

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A:6 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

t = ∅ t = 0 ti >> t0 tj >> ti

Fig. 3. Some intermediate results produced by the PPML Gray-Scott program.

is the constant diffusion rate of v and −(F + k)v defines how much of v is taken out
(consumed) from the system, depending on F and a removal rate k.

This continuous model can be solved numerically using particle methods and PPML.
To do so, u and v are discretized as particle properties and particles are distributed over
the entire domain. Furthermore, the differential operators (i.e., the Laplacians) need
to be discretized according to the used method. After providing initial values of u and
v at particles, an approximate solution can be computed for a series of time steps.

Figure 2 shows the corresponding PPML client program as a multi-part listing that
highlights the different ingredients of the program. The first part on the left-hand side
of the figure contains variable and constant declarations, the boundary condition, as
well as declarations of external arguments allowing users to parametrize the simula-
tion. The second part declares u and v as scalar fields U and V and discretizes them over
particles. Furthermore, a topology is created to distribute the particles on a computer
cluster. In the third part, the initial values of U and V are set using a PPML foreach
loop that iterates over all particles in the domain, by default assigning U a value of 1
and V a value of 0. However, within a radius of

√
0.1 around the center, a small random

amount of v is added to start the reaction. The fourth part (on top of the right-hand side
of Figure 2) contains the definition and discretization of the Laplace operator and ini-
tializes a particle neighbor list with a specific cutoff. The cutoff (i.e., the range of the
particle–particle interactions) is set such that each particle interacts with all neighbor-
ing particles that are closer than four times the average inter-particle distance. The
remaining two portions of the figure specify the timeloop, which sequentially loops
over the specified range of time steps, in each step evolving the solution by calling
the PPM solver with the specified right-hand side, updating the particle properties,
exchanging data at inter-process boundaries, and printing the intermediate results
to the file system. The right-hand side specification contains the reaction-diffusion
equations to be solved with an explicit invocation of the discretized Laplacian over
both fields yielding respective vectors of intermediate results. Another PPML particle
foreach loop computes the contributions of each individual particle using LATEX-like
formula expressions, where underscores access individual particles. Figure 3 shows
some intermediate results over a small domain at different time steps that have been
produced by this PPML program, choosing k = 0.051, F = 0.015, Du = 2 · 10−5, and
Dv = 10−5. For these parameters, the Gray-Scott system forms spatial patterns that
are hypothesized since Alan Turing to be the chemical basis of biological growth and
morphogenesis [Turing 1952].

3.2. Advantages over Conventional Programming
The program shown in Figure 2 nicely demonstrates some of the major benefits of DSLs
in scientific HPC. Most of the boilerplate code for instantiating PPM and managing
parallelism with MPI is hidden from the developer. It is automatically generated by
the PPML source-to-source compiler, emitting a plain Fortran program, which is then
compiled and linked with the PPM library by a standard Fortran compiler. The size

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A Domain-Specific Language and Editor for Parallel Particle Methods A:7

ratio of the PPML source and the generated Fortran program is 85:668, which means
that the developer is freed from the burden of writing an extra 583 lines of boilerplate
code.

The improved program readability is a further advantage of PPML over writing a
plain Fortran program. Thanks to built-in domain-specific concepts and other special-
ized constructs, such as particle loops and underscore accessors, the program is more
declarative and thus more readable, so that other domain experts can easily under-
stand it. Finally, PPML was designed as an extensible language, apparently embedded
into Fortran as a host language. This way, it circumvents one of the major obstacles
of using closed, stand-alone DSLs, namely a lack of expressiveness that may prevent
facets of a problem to be described using the abstractions at hand. If a problem cannot
be described properly using PPML, developers can always use plain Fortran (e.g., lines
28, 29, and 31) or they may define additional PPML macros. However, since PPML
lacks a well-defined interface between the DSL and its host language, it is difficult to
properly analyze the code and derive context information from it. This lack of context
largely prevents automatic compile-time code optimization in PPML. Such optimiza-
tions are easier with non-embedded DSLs, where language interfaces need not to be
considered.

3.3. Limitations in the Current PPML Design
The current design and implementation of PPML has some limitations that hamper
code optimization and debugging. The most important limitation is that the language
is not based on a formal domain model, which would enable reasoning about PPML
programs to automatically check consistency, e.g., using a formal type system. More-
over, the language syntax is underspecified. Similar to an island grammar [Moonen
2001], only some parts of the language are modeled explicitly, while others remain
undefined. Consider Figure 2 again. Parts of the program that are recognized by the
PPML source-to-source compiler are highlighted in either gray (macro calls includ-
ing list of arguments) or blue (first-class language constructs). These are the struc-
tural “islands” in the sense of an island grammar, while the non-highlighted parts
are “water”, i.e., parts of the program that are treated as a list of characters that
do not provide any additional information to the PPML compiler. This fragmentary
view on the code allows for only shallow analyses of input programs during the pre-
processing phase, leaving most syntax and type errors undetected so that these are
inherited by the generated program. If such a program is then fed into a Fortran com-
piler to produce an executable, the compiler will detect these issues and associate them
with the preprocessed code. However, the developer has neither seen nor written this
automatically generated Fortran code and can therefore not trace back the errors to
his PPML program. Debugging PPML programs is therefore unpractical. Even worse,
some problems manifest only during or after execution by causing unintended results,
e.g., through an unsuitable argument or wrong arrangement of calls.

By leveraging domain knowledge, one can define a complete domain model for the
language implementation so that syntactic elements and semantic relations can be
identified and used in a compiler. This way, syntactic problems and problems related to
the language semantics can be detected early when processing DSL code (e.g., differen-
tial operators that are not used in an equation or have the wrong type of operand). This
further provides the groundwork for improving user experience by adding features
known from integrated development environments (IDEs) (e.g., syntax highlighting
and code completion) and from compilers (e.g., optimizations such as tiling, program
variants, or expression rewrites that only become possible through the additional in-
formation). This is enabled here by formulating a domain metamodel and a formal
type system for the application domain of particle methods.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A:8 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

- name

Module

StatementList

Stmt

1

VarDecl

Expr

- step

TimeLoopParticleLoop

*

- npart

CreateParticles
Binary

Vector
Access

Unary

Literal Particle
Access

TypePrimType

Container

Boundary

Property

Field
Displacement

Particle

Topology

componentType

right

left

- method

ODEStmt

body

Variable
Access

decl

reference

derived
Type

iterable

expression

- boundary
- decomposition

CreateTopology

declaredType

ExprStmt

decl

particle
property

vector

index

DiffOp

operand

Vector

componentType

Matrix

ParticleList

Fig. 4. A metamodel to describe the domain of particle methods.

4. A DOMAIN METAMODEL AND TYPE SYSTEM FOR PARTICLE METHODS
A crucial step to overcome the current shortcomings of PPML is to develop a meta-
model that structurally represents the domain of particle methods. This “domain
model” enables compile-time reasoning by providing a structural basis for develop-
ing PPM programs. In this section, we describe such a model for particle methods,
resulting in a static type system.

4.1. Domain Metamodel
The current PPML only supports a small fraction of the concepts that constitute a
complete model. For instance, it provides constructs for defining computations over
properties of particles in a domain, as well as loops for defining numerical simulations
over a series of discrete time steps. However, since these concepts are only specified
partially in PPML, it is not possible to reason about the actual computation steps.

In contrast to PPML, we propose a complete metamodel for particle methods that
captures particles, particle data and computations over these data. More precisely, it
provides a means to specify particle data structures and properties. It supports high-
level statements that group transformations of particle data, which allow modifying
data within a certain scope. Furthermore, the model includes mathematical expres-
sions to describe the actual governing equations. Finally, our metamodel defines the
set and structure of potential data types supported in PPME.

Figure 4 shows an excerpt of the model as a UML class diagram. We derived its major
ingredients from our experience of developing HPC applications with PPML. A single
top-level concept Module contains a list of statements that describe a particle-based
simulation. A statement, for instance, can be a composite Timeloop or an elementary
command for creating a topology. Single computation steps are described using ex-
pression statements (ExprStmt). Expressions are binary or unary arithmetic and log-
ical expressions that access constants, particle properties, and collections of particles.
Furthermore, expressions can define differential operators (DiffOps) evaluated over
particle properties, e.g., the Laplacian. Our model also provides a simple Type hierar-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A Domain-Specific Language and Editor for Parallel Particle Methods A:9

chy with a set of primitive types (e.g., integers) and built-in domain-specific types. The
domain-specific types can be atomic (e.g., Particle or Topology) or container types
such as Vector or ParticleList.

When considering the model in Figure 4, it is evident that it only provides structural
information, since it is limited to potential relations between objects and types, such
as inheritance, composition, and reference. Hence, while an instance of this model
(i.e., a concrete specification of a particle method) may be syntactically correct, it may
not fulfill requirements that are not specified in the model. Properties that impose
such additional constrains need to be formulated as supplementary rules that derive
additional information or check consistency of a specification [Bürger et al. 2011]. As
an example of where additional information needs to be derived, consider the decl
reference that associates an access of a variable with a corresponding declaration.
This is required because users would not “draw” the corresponding connection but
just “use” the variable via its name. Another important analysis computes the types of
expressions, as, for instance, represented by the derivedType reference in the model,
which associates an expression with a specific type. The rules that define this analysis
can be captured conveniently using a formal type system [Plotkin 1981].

4.2. Types and Dimensions
Based on the domain model, we present a static type-inference mechanism, which re-
lies on a formal type system for particle abstractions. The error detection capabilities
resulting from the hierarchy of types and inference rules are key to constructively im-
prove code quality of simulations written in PPME, as it detects errors at compile time
and provides meaningful feedback to the developer. In addition, we present an optional
unit calculus extension to the type system. This can be used to perform automatic con-
sistency checks of expressions.

4.2.1. Type Hierarchy. The type hierarchy is built around the metamodel shown in Fig-
ure 4, i.e., all types derive from Type as a common supertype. The type system can be
divided into two parts: a base type system and a domain-specific extension.

The base type system consists of a set of primitive types P =
{String ,Boolean,Real , Integer} and type-inference rules over this set. Addition-
ally, C = {Vector〈X 〉,Matrix 〈X 〉} represents a set of container types for matrices (i.e.,
tensors of rank 2) and vectors (i.e., tensors of rank 1) with components of type X. The
set of base types TBase = P ∪ C is composed of primitive types P and container types C.

These basic types are complemented by domain-specific types for particle methods,
i.e., types that represent particles, particle lists, and different kinds of particle proper-
ties. These are: D = {Particle,ParticleList ,Field ,Property ,Displacement}. Furthermore,
the boundary of the simulation domain and the data-distribution topology of the un-
derlying PPM framework are captured in the set O = {Topology ,Boundary}. The set
TPPM = D ∪O of domain-specific types is then composed of D and O.

Finally, T = TBase ∪ TPPM denotes the set of all types in PPME. Note that this
way of constructing T indicates the flexibility of language implementations in modern
language workbenches like MPS and language-oriented programming in general. This
fundamental type hierarchy can be extended in the future, adding new domain-specific
concepts.

4.2.2. Syntax of Expressions. In PPME the standard set of expressions well-known by
programmers is extended by domain-specific operations and expressions tailored for
the domain. Figure 5 presents the syntax of expressions in PPME as production rules
of a context-free grammar. Note that some domain-specific expressions (e.g., differen-
tial operators) are only available in a specific context.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A:10 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

〈expr〉 ::= 〈expr〉 ( ‘&&’ | ‘||’ ) 〈expr〉
| 〈expr〉 ( ‘==’ | ‘!=’ ) 〈expr〉
| 〈expr〉 ( ‘<’ | ‘>’ | ‘<=’ | ‘>=’ ) 〈expr〉
| 〈expr〉 ( ‘+’ | ‘-’ ) 〈expr〉
| 〈expr〉 ( ‘*’ | ‘/’ | ‘^’ ) 〈expr〉
| 〈unaryExpr〉

〈unaryExpr〉 ::= ‘-’ 〈unaryExpr〉
| ‘!’ 〈unaryExpr〉
| ‘√’ 〈unaryExpr〉
| 〈primaryExpr〉

〈varAccess〉 ::= Identifier

〈primaryExpr〉 ::= 〈literal〉
| ‘(’ 〈expr〉 ‘)’
| 〈varAccess〉
| 〈particleAccess〉
| 〈arrayAccess〉

〈literal〉 ::= IntegerLiteral
| RealLiteral
| StringLiteral
| BooleanLiteral

〈particleAccess〉 ::= 〈expr〉 ‘→’ Identifier

〈arrayAccess〉 ::= 〈expr〉 ‘[’ 〈expr〉 ‘]’

Fig. 5. Syntax of expressions in PPME.

booleans b b ∈ B = {true, false}
strings s e.g., s = ”PPME”
integers n,m n,m ∈ N
reals r e.g., r = 3.14 or r = 6.62E−34
variables v v ∈ V ar = {a, b, . . . , x, x2, . . . }

Fig. 6. Basic syntactic sets and their notation.

Basic Syntactic Sets. The basic syntactic sets in PPME are comprised mainly of liter-
als for primitive types and variables (cf. Figure 6). Literals are typed in a natural way,
e.g., integers have type Integer and decimals have type Real. More complex sets can
be derived from the basic syntactic sets for variables and literals. The abstract syntax
of these derived syntactic sets is given by the form of expressions in PPME.

Unary Expressions (	(e), with 	 ∈ {−, !,√}). PPME supports three unary opera-
tions, the unary minus −e, the logical not !e, and the square root

√
e. Obviously, this

definition alone allows for “nonesense” expressions such as taking the square root of a
string. The remainder of this section therefore presents rules for well-formedness and
type conclusion to prevent erroneous phrases.

Binary Expressions (e1 ⊗ e2, where ⊗ ∈ ⊗arith ∪ ⊗logi ∪ ⊗rel ). Various binary oper-
ations are supported. First, PPME allows for typical arithmetic operators ⊗arith =
{+,−, ∗, /, ˆ} Second, there are operators for the logical and and or (⊗logi = {&&, ||}).
Third, the common relational operators are available (⊗rel = {==, !=, <,>,<=, >=}).
As for unary operations, the type system will check well-formedness of binary expres-
sions and decide on the resulting type.

Domain-specific Operations. A strength of PPME is that domain-specific operations
are seamlessly integrated into the language. They allow for concise notation of mathe-
matical concepts, preserving the expressiveness of the mathematical notation. Follow-
ing the domain model, fields and particle properties are defined on particle lists, and
the language offers the syntactic concept particle list access (PLA) to access these fields
and properties. In a similar manner, the value of a field discretized over particles, or
any other property of a specific particle, can be accessed via a particle access (PA) op-
eration. Given a particle list ps, a particle p from this list, a field f and a property x
both defined on ps, the access operations of field f and property x are represented by
an arrow:

ps→f, ps→x, p→f, p→x
Intuitively, the result of a PLA is the whole field or property over the particle list.

Additionally, PPME allows the developer to access the default properties of a parti-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A Domain-Specific Language and Editor for Parallel Particle Methods A:11

cle, e.g., its position: p→pos. Finally, there are notations for differential operators in
the context of right-hand side statements. Simulation developers can use these opera-
tors when simulating continuous models (e.g., PDEs), staying close to the mathemat-
ical notation. This includes, for example, the Laplacian (∇2e) used in the Gray-Scott
reaction-diffusion example.

Access Operations (v[i], m[i][j]). The language also offers means to access elements
of array-like structures such as matrices and vectors. Access operations are denoted
by square brackets containing the index to access. Similarly, elements of non-scalar
particle properties can be accessed using the same notation. Let ps be a particle list
with a non-scalar field f , and p ∈ ps a particle from ps, then p→f [i] denotes the access
of the ith element of f on particle p.

4.2.3. Formal Type System. Every literal and variable in PPME has an associated type,
and the type of derived expressions often depends on their arguments’ types. The for-
mal type system describes the conclusions that can be drawn from a PPME program
over its types, by defining rules for well-formedness of typed expressions. For instance,
the PLA operator can only be used on particle lists, which is ensured by the static
type-inference mechanism. Overall, the type rules ensure that expressions behave as
expected in the context of particle methods.

A typing environment Γ associates variable names x and types τ as a set of pairs
〈x, τ〉, commonly written as x : τ . A lookup of a variable’s type is denoted by Γ(x), where
Γ(x) = τ if and only if the environment contains an entry for the variable 〈x, τ〉 ∈ Γ.
Otherwise, Γ(x) is undefined. We further define the subtype relationship: if T and S
are types, then T < S denotes that T is a (direct) subtype of S, and S is a supertype
of T . T<∗S is the reflexive transitive closure of <, that is, S can be reached from T in
the type hierarchy. In the remainder, we use ≤ to refer to <∗. We follow the notation
of [Clément et al. 1986]. That is, each type-inference rule defines the conclusion that
can be drawn if all n premises hold:

premise1 . . . premisen

conclusion

As premises, we allow typings as well as other predicates, e.g., for specifying a subtype
relation.

Figure 7 shows the type rules for expressions implemented in PPME. The type of a
variable is given by the typing environment Γ (rule VAR). A variable declaration adds
a new entry to the typing environment (rules VARDECL and VARINIT). Type rules for
unary (UNARY) and binary operations (BIN*) can be defined with a general scheme,
where the derived type information depends on the operation (	 or ⊗) and the types of
the operand(s). This also simplifies the implementation of the type system and makes
it extensible.The type inference for unary operators 	 ∈ {−,

√
, !} can be summarized

as follows: The logical not ! can be applied only to boolean arguments e : B and its
result is boolean as well. The unary minus is applicable for numerical expressions
with τ ∈ {Z,R} and will not change their types. Similarly, the square root operator
can be applied to arguments of numerical type and the result will be a real number
(or a runtime exception if the result would be a complex number, which is not included
in the current static type system). The more detailed type-inference tables for binary
arithmetic expressions τ⊗ can be found in Figure 8. In the tables, abbreviated forms
for the types are used, where E denotes a particle property or discretized data from
a field. The integers n are m denote the size of the data (i.e., the number of elements
in the vector). Additionally, ↑ (τ1, τ2) denotes the least common super-type of τ1 and
τ2. Note that, for the sake of brevity, we did not include the inference tables of the
remaining expressions. If τ⊗ is undefined it is denoted by ⊥. Moreover, the rules that

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A:12 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

VAR
Γ(v) = τ

Γ ` v : τ
VARDECL

Γ ` τ x : Γ ∪ {x = τ}
VARINIT

Γ ` e : τ ′ τ ′ ≤ τ
Γ ` τ x = e : Γ ∪ {x = τ}

PAREN
Γ ` e : τ

Γ ` (e) : τ
ASSIGN

Γ ` x : τ Γ ` e : τ ′ τ ′ ≤ τ
Γ ` x = e : τ

VECACC
Γ ` v : V〈τ〉 Γ ` i : Z i ≥ 0

Γ ` v[i] : τ
MATACC

Γ ` m : M〈τ〉 Γ ` i, j : Z i, j ≥ 0

Γ ` m[i][j] : τ

PARTSCAACC
Γ ` p : P Γ ` f : E〈τ, 1〉

Γ ` p→f : τ
PARTVECACC

Γ ` p : P Γ ` f : E〈τ, n〉, n ≥ 2

Γ ` p→f : V〈τ〉

UNARY
Γ ` e : τ τ	(τ) 6= ⊥

Γ ` 	 e : τ	(τ)
BINLOG

Γ ` e1 : B Γ ` e2 : B
Γ ` e1 ⊗log e2 : B

BINREL
Γ ` e1 : τ1 Γ ` e2 : τ2 τ⊗(τ1, τ2) 6= ⊥

Γ ` e1 ⊗rel e2 : B
BINARI

Γ ` e1 : τ1 Γ ` e2 : τ2 τ⊗(τ1, τ2) 6= ⊥
Γ ` e1 ⊗arith e2 : τ⊗(τ1, τ2)

ERRUNARY
Γ ` e : τ τ	(τ) = ⊥

Γ ` 	(e) : E
ERRBIN

Γ ` e1 : τ1 Γ ` e2 : τ2 τ⊗(τ1, τ2) = ⊥
Γ ` e1 ⊗ e2 : E

	 ∈ {−, !,
√
}, ⊗arith ∈ {+,−, ∗, /, ab}, ⊗log ∈ {&&, ||}, ⊗rel ∈ {==, ! =, <,>,<=, >=}

B = Boolean, Z = Integer , R = Real , P = Particle, E = Error

V = Vector , M = Matrix , E = Field/Property,

Fig. 7. Type rules for expressions in PPME.

τ+|−(τ1, τ2) Z R V〈X〉 E〈X,n〉

Z Z R V〈↑ (Z, X)〉 E〈↑ (Z, X), n〉
R R R V〈↑ (R, X)〉 E〈↑ (R, X), n〉

V〈Y 〉 V〈↑ (Y,Z)〉 V〈↑ (Y,R)〉 V〈↑ (Y,X)〉 ⊥
E〈Y,m〉 E〈↑ (Y,Z),m〉 E〈↑ (Y,R),m〉 ⊥ E〈↑ (Y,X), n〉†

† if n = m

τ∗(τ1, τ2) Z R V〈X〉 E〈X,n〉

Z Z R V〈↑ (Z, X)〉 E〈↑ (Z, X), n〉
R R R V〈↑ (R, X)〉 E〈↑ (R, X), n〉

V〈Y 〉 V〈↑ (Y,Z)〉 V〈↑ (Y,R)〉 ⊥ ⊥
E〈Y,m〉 E〈↑ (Y,Z),m〉 E〈↑ (Y,R),m〉 ⊥ ⊥

τ/(τ1, τ2) Z R V〈X〉 E〈X,n〉

Z R R V〈τ/(I,X)〉 E〈τ/(I,X), n〉
R R R V〈τ/(R,X)〉 E〈τ/(R,X), n〉

V〈Y 〉 V〈τ/(Y,R)〉 V〈τ/(Y,R)〉 ⊥ ⊥
E〈Y,m〉 E〈τ/(Y,R),m〉 E〈τ/(Y,R),m〉 ⊥ ⊥

τ
ab(τ1, τ2) Z R V〈X〉 E〈X,n〉

Z Z R ⊥ ⊥
R R R ⊥ ⊥

V〈Y 〉 V〈τ
ab (Y, I)〉 V〈τ

ab (Y,R)〉 ⊥ ⊥
E〈Y,m〉 E〈τ

ab (Y,R),m〉 E〈τ
ab (Y,R),m〉 ⊥ ⊥

Fig. 8. Type inference tables for binary operations ⊗ ∈ {+,−}, ⊗ = ∗, ⊗ = /, and exponentiation ab.

end on ACC (*ACC) define the type inference for scalar and vector access to particle
properties, which is a core task of the system.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A Domain-Specific Language and Editor for Parallel Particle Methods A:13

Type Errors. All expressions matching one of the rules presented above are well-
formed, and their type can be inferred by the system. However, it may occur that
the user enters a faulty expression for which no type inference is possible, yielding
a typing error. In this case, PPME has to communicate the error to the developer and
provide meaningful information on where the error is located. To formalize this, we
introduce an error type E used as a result for non-well-formed expressions [Plotkin
1981; Plotkin 2004]. There are different causes for typing errors, e.g., incompatible
types or undefined behavior. For instance, the exponentiation of a scalar with a string
is not a meaningful mathematical operation and should yield a typing error in the
corresponding expression. Error detection is not limited to arithmetic expressions, but
covers domain-specific concepts as well. Furthermore, errors might be propagated, in-
validating the parenting expression. To support this in the type system, we add two
extra rules ERRUNARY and ERRBIN. A typing error E occurs when type resolution
fails, i.e., if τ	(τ ′) and τ⊗(τ1, τ2) are undefined.

4.3. Dimension Annotations
Adding the notion of measurement units to a programming language benefits software
developers in many ways, especially in checking the physical consistency of equations.
Verifying dimensional integrity prevents errors in expressions that may be hard to
detect otherwise. The language and type system extension for dimension annotations
hence adds an additional level of analysis to detect inconsistencies at compile-time.
Early work by [Karr and Loveman 1978] presented a “units calculus”, a method to
manage relationships and conversions of units, to be incorporated in programming
languages. In [Cmelik and Gehani 1988] and [Umrigar 1994] the authors extended
the idea of measurement units to general dimensional analysis, covering dimensional
classes of units, e.g., length or mass, meaning that quantities with the same dimension
but different units differ only by a conversion factor. Dimensional analysis fits neatly
into the concept of type inference in functional languages, establishing the base for
units and dimensions in functional languages [Wand and O’Keefe 1991; Kennedy 1994;
Kennedy 1997; Hayes and Mahony 1995].

In PPME, we consider dimensions and units as additional annotations to types and
expressions that are processed by an extended type system, with I the set of dimen-
sions supported by this system. Dimensions without specification, such as length l,
mass m, or time t, are called a fundamental. We denote fundamental dimensions with
δ̌ and the set of fundamental dimensions as Ǐ ⊆ I. Additional derived dimensions δ,
such as acceleration or force, can be composed from others by means of multiplication
and exponentiation, e.g., for acceleration a = l·t−2. While all derived dimensions can be
composed from fundamental dimensions only, PPME also allows definitions from other
derived dimensions to simplify notation. This is described by the following grammar:

δ ::= δ̌ | δ1 · δ2 | δn ,

where δ̂ ∈ Î, n ∈ Z, and derived dimensions δ1, δ2, and δ. To make dimensions compa-
rable, they are represented in base form, i.e., as a combination of k > 0 fundamental
dimensions δ̌i raised to some integer exponent ni where each δ̌i occurs at most once. A
base form of δ can be constructed by recursively replacing all derived dimensions in δ
by their declaration, and grouping all occurrences of the same fundamental dimension
δ̌i in a single equivalent power representation δ̌ni

i . We denote the expansion and base
form of δ by dδe with

dδe := {δ̌n1
1 , δ̌n2

2 , . . . , δ̌nk

k } .
Based on this definition, two dimensions δ1 and δ2 match if dδ1e = dδ2e, denoted by
δ1 ≡ δ2,.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A:14 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

VAR
Γ(v) = [τ ; δ]

Γ ` v : [τ ; δ]
VARDECL

Γ ` τ{δ}x : Γ ∪ {x = [τ ; δ]}
VARINIT

Γ ` e : [τ ′; δ′] τ ′ ≤ τ δ′ ≡ δ
Γ ` τ{δ}x = e : Γ ∪ {x = [τ ; δ]}

ASSIGN
Γ ` x : [τ ; δ] Γ ` e : [τ ′; δ′] τ ′ ≤ τ δ′ ≡ δ

Γ ` x = e : [τ ; δ]
UNARY

Γ ` e : [τ ; δ] τ	(τ) 6= ⊥ I	(δ) 6= ⊥
Γ ` 	 e : [τ	(τ); I	(δ)]

BINOP
Γ ` e1 : [τ1; δ1] Γ ` e2 : [τ2; δ2] τ⊗(τ1, τ2) 6= ⊥ I⊗(δ1, δ2) 6= ⊥

Γ ` e1 ⊗ e2 : [τ⊗(τ1, τ2); I⊗(δ1, δ2)]

ERRDIM
Γ ` e1 : [τ1; δ1] Γ ` e2 : [τ2; δ2] τ⊗(τ1, τ2) 6= ⊥ I⊗(δ1, δ2) = ⊥

Γ ` e1 ⊗ e2 : E

Fig. 9. Type rules for dimension-annotated expressions in PPME.

Γ ` p→v : [R, v]

Γ ` 0.5 : [R, ∅]

Γ ` p→a : [R, a]

Γ ` p→F : [R,m · a] Γ ` mass : [R,m]
(1)

Γ ` p→F/mass : [R, a]
(2)

Γ ` p→a + p→F/mass : [R, a]
(3)

Γ ` 0.5 ∗ (p→a + p→F/mass) : [R, a] Γ ` delta_t2 : [R, t2]
(4)

Γ ` 0.5 ∗ (p→a + p→F/mass) ∗ delta_t2 : [R, a · t2]
(E)

Γ ` p→v + 0.5 ∗ (p→a + p→F/mass) ∗ delta_t2 : E

(1) τ/(R,R) = R, I/(m · a,m) = a (2) τ+(R,R) = R, I+(a, a) = a (3) τ∗(R,R) = R, I∗(∅, a) = a

(4) τ∗(R,R) = R, I∗(a, t2) = a · t2 (E) τ+(R,R) = R, I+(v, a · t2) = ⊥

Fig. 10. Example deduction using the extended type system. The applied type inference rule τ⊗ and di-
mension inference rule I⊗ for respective steps (1) to (4), and (E) are shown in the box. The failing dimension
inference rule is marked in red.

Dimensions can be easily integrated into the PPME type system by extending it
with dimension-specific rules and retaining the original inference mechanism. Given
a type τ and a dimension δ, we denote the annotated type by τ̂ = [τ ; δ]. In particular,
any type τ can be annotated with the empty dimension ∅ without changing semantics
by using e : [τ ; ∅] instead of e : τ . The annotation of metadata to types or literals is
denoted by curly braces, i.e., τ{δ} : [τ ; δ], and e{δ} : [τ ; δ] instead of e : τ . Moreover, for
dimension inference, we use a notation similar to the type inference table in Figure 8.
For instance, δ = I⊗(δ1, δ2) denotes that δ is inferred from the operand dimensions δ1
and δ2 and the operation ⊗.

Finally, the original type rules shown in Figure 7 need to be adapted. As this adap-
tation is mostly straightforward, we only show the most relevant rules in Figure 9.
The rules for handling variable references (VAR) and variable declarations (VARDECL
and VARINIT) have been expanded with annotated dimensions. Assignment expres-
sions (ASSIGN) now take the annotated dimension into account. The general scheme
for unary (UNARY) and binary operations (BINOP) is, likewise, extended for annotated
types. Besides type inference (τ	 and τ⊗), dimensions are inferred through I	 and I⊗.
The rule ERRDIM exemplary shows the additional potential for error detection intro-
duced by dimensions: even if types match, a dimension error is still detectable.

As an example for applying the type system, consider the following PPME expression
that has been modified from the Lennard-Jones case study discussed in Section 5.3:

p→v + 0.5 ∗ (p→a+ p→F/mass) ∗ delta_t2 .

Here, p refers to a particle whose properties v (velocity) and a (acceleration), and the
force field F are used together with the free variables mass and delta_t (time) to com-
pute an update in a larger simulation. We introduced a small error into the expression:
delta_t has an exponent of 2 instead of 1. Since this does not have an impact on the
overall type of the expression (R), a conventional type system cannot detect this error.
However, using dimensions, the problem becomes discoverable, as shown by the de-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A Domain-Specific Language and Editor for Parallel Particle Methods A:15

PPM language

PPM core PPM numerics

single processordistributed memoryshared memoryvector

Message Passing Interface (MPI) PETSc METIS FFTW

PPM Environment

Fig. 11. PPME: New access layer to the underlying PPML.

ppme.modules

ppme.statements ppme.expressions

ppme.core

extensions

JetBrains MPS  
code generation 

PPML/Fortran

ppme.physunits ppme.analysis

Fig. 12. Modular architecture of PPME.

duction depicted in Figure 10. In step (1), the type and dimension of the subexpression
p→F/mass is deduced from its compartments ([R, a]). Step (2) deduces the type of the
enclosing addition of p→a and p→F/mass (again [R, a]). In step (3), the type remains
the same because of multiplication with the constant 0.5. Step (4) computes the type
of the multiplication with delta_t2 as [R, a · t2]. Finally, in step (E), the type system
discovers that the outermost sum is infeasible since [R, v] and [R, a · t2] are incompati-
ble, deducing error type E. In contrast, if the expression would have been correct, the
calculus would have derived [R, v] as the overall type.

5. THE PPM ENVIRONMENT: ARCHITECTURE AND IMPLEMENTATION
The productivity of scientific programmers can be increased by providing high-level
abstractions for computational models, such that the developer is not bothered with
details of the programming language or the underlying hardware architecture. While
quality is hard to measure, an IDE can check for common errors up-front and present
the developer with meaningful warnings and error messages. Additionally, static pro-
gram analysis, paired with domain knowledge, can be used to improve performance,
accuracy, and/or efficiency of simulations. Incorporating third-party applications al-
lows to reuse established tools for analysis and program transformation instead of
reimplementing their features. Full access to the underlying language and implemen-
tation enables advanced scientific programmers to leverage their knowledge to add
new language-level features and to have full control over program performance. All of
these features are available in PPME.

5.1. Internal Structure of PPME
Based on the Meta Programming System (MPS), PPME adds an additional layer on
top of the existing PPML stack [Sbalzarini et al. 2006; Awile et al. 2013] and does
not require any adaptation in the underlying framework. It generates source code
against PPML, and therefore makes use of the established workflow, using PPML
as an intermediate representation. Figure 11 illustrates how PPME fits between the
user program and the PPM middleware. Application developers interact with the de-
velopment environment to implement particle methods and the related configuration
files. PPML’s original purpose of hiding technical details, specific realizations, and the
explicit target platform is preserved. However, PPME offers a more consistent DSL
syntax and incorporates domain-specific elements as first-class concepts.

In PPME, the domain metamodel of Section 4.1 is organized in language packages,
called solutions in MPS. The clean separation between different sub-languages enables
a good separation of concerns. The lower layers form a base DSL with general language
constructs such as expressions, literals, and statements. These concepts are reused in
the upper layers to define domain-specific language concepts for particle-mesh meth-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A:16 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

ods on top of the base language. Reusing lower layers and their extension is key in the
design of PPME, enabling easier maintenance and custom extensions for specific cases
as plug-ins.

Figure 12 provides a schematic view of PPME’s internal language stack. The bottom
layers form the main DSL while sub-languages are used to keep the implementation
modular and maintainable. At the interface to the underlying PPM library, MPS man-
ages code transformation and generation. The top layer is open to new application-
specific extensions, e.g., for particle-based image processing [Afshar and Sbalzarini
2016]. The languages packages of PPME (cf. Figure 12) are:

ppme.expressions. This package provides general expressions as can be found in
most programming languages, e.g., mathematical and logical expressions, and literals
for integer and floating-point numbers. Moreover, the base types available in PPME
are defined in this package, as well as essential parts of the type system introduced in
Section 4.2. As already mentioned previously, the main purpose of the static type sys-
tem is to detect illegal expressions early, at compile time or while editing. The PPME
editor therefore instantaneously analyzes the program using the type-inference rules.
When an error type E is derived, the editor displays an error mark and a cause-related
error message, if the cursor is hovered over the erroneous expression.

ppme.statements. The statements sub-language contains a basic set of impera-
tives, such as expression statements, if-else clauses, and loops. Furthermore, variable
declarations and references are part of this package. The type system is enriched with
variable support where necessary (cf. Section 4.2.3). Overall, the elements of this lan-
guage are universal since they are independent of the domain they are used in.

ppme.core. The core package contains most elements specific to particle meth-
ods. It extends the solutions for expressions and statements by adding new domain-
specific types, expressions, and statements. Selected constructs of PPML are reflected
in PPME while remaining consistent with the base language’s concepts. For instance,
the timeloop construct of PPML is available in this package.

ppme.modules. A module in PPME is the top-level structure for client programs
written in PPME. It contains the simulation code and optional specifications for im-
ported control parameters. A module translates to a PPML client, but the IDE can
use additional knowledge about the domain better than PPML, e.g., by referencing
external control files and inspecting the code.

ppme.lang. This package is an MPS devkit that contains the above base languages
of PPME (not shown explicitly in Figure 12). In MPS, devkits group interconnected
languages as one unit. Hence, to get the base functionality of PPME’s language it
suffices to include the devkit in an MPS project, covering all language dependencies.

In addition to these base languages, PPME provides optional solutions that add di-
mensions and physical units into program specifications, and for the integration of
external analysis tools. Both serve as examples for further extensions tailored to spe-
cific use-cases:

ppme.physunits. The optional physical-units integration enables developers to an-
notate further meta information to variables and constants. This includes means for
adding dimensions and physical unit specifications as an additional extensible layer
in the type system (cf. Section 4.3).

ppme.analysis The analysis language consists of an exemplary binding of Herbie
as an external analysis tool for improving floating-point expressions [Panchekha et al.
2015]. We elaborate a general framework enabling the access of custom tools in the
environment. More details on this tool integration will be given later in Section 6.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A Domain-Specific Language and Editor for Parallel Particle Methods A:17

ppme.modules

ppme.core

create...

PPME Module PPME Module 
+ Annotationsexpand

PPML Client

Executable

timeloop

init

<macro>

rhs
extract

Fortrantimeloop

T

G

P

C

Fig. 13. Domain-specific abstractions in a PPME module are transformed (T) into lower-level representa-
tions. From this enriched module, PPML client code is generated (G) which is subsequently processed (P) to
Fortran code and compiled (C) to a binary linking against the PPM Library.

5.2. Code Generation
The code-generation process in PPME involves an integrated transformation and anal-
ysis chain. This process is sketched subsequently, followed by two concrete example
transformation steps.

5.2.1. Transformation Process. Code generation in PPME is implemented via several
model-to-model transformations refining the program, and a final text-generation
stage that produces source code in the PPML target language. Models in MPS are di-
rected graphs with type annotations derived from the metamodel. The graphs have a
distinct spanning tree, which in general corresponds to an abstract syntax tree. Model-
to-model transformations map an input graph to an output graph, where the output
graph may use the same or different type annotations given by the same or another
metamodel. Models must adhere the structural constraints defined by their metamod-
els. An excerpt of the PPME metamodel is given in Figure 4. During the transforma-
tion process, the internal graph-based representation of the program is enriched with
additional information that is explicitly required to generate the output in the target
language, e.g., a list of variables accessed in a loop can be derived from the loop’s body
and made available explicitly for further processing. In general, the concept of staged
language processing is advantageous, for example to yield different output represen-
tations of an input program, or for transformation chaining.

Dependencies between transformation steps are resolved automatically so that a
global transformation sequence for a given program can be computed. This allows
adding new features and further transformations to extend PPME without affecting
other components.

To avoid unnecessary overhead during the generation phase, textual output is pro-
duced in only two cases: (a) when the final output in the target language is generated,
and (b) when external tools and analyses require textual input. This restriction en-
ables full control of the transformation phase within MPS, taking into account the
enrichments of various transformations and results of external components, such as
Herbie and other tools. The produced source code can then be compiled using a regular
compiler.

The code generation process is illustrated in Figure 13. It starts with a simulation
program implemented using the domain metamodel introduced in Section 4.1. The
module contains domain-specific concepts such as a timeloop and various constructs to
define particle-based simulations. In Figure 13, the timeloop statement is analyzed in
the first transformation stage and a PPML right-hand side specification (cf. Figure 2,
Lines 53–65) is extracted. Similarly, the creation of particles is expanded to several
initialization and macro calls in the representation of the module, which is closer to
the target language.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A:18 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

A
p
op

ul
at

eR
H

S

1 foreach deqn in module do
2 diffOps ← deqn.descendants(DiffOp).distinct
3 macro ← new RHSMacro {
4 name := module.name + "_rhs_" + deqn.index,
5 diffOps := diffOps,
6 loop := new ParticleLoop
7 }
8
9 foreach stmt in deqn.body do

10 transform(stmt, macro)
11 end do
12
13 macro.vars.addAll(
14 loop.sca_fields,
15 loop.sca_props,
16 loop.vec_fields,
17 loop.vec_props
18 )
19
20 deqn.containing root._rhs.add(macro)
21 end do

RHSMacro

name
plist
vars
differentials
diffOps
loop

ParticleLoop

var
body
sca_fields
vec_fields
sca_props
vec_props

Legend:

all accessed fields
and properties

applied differential
operators

tr
an

sf
or

m
(s

tm
nt

,m
ac

ro
)

1 switch (stmt)
2 case RHSStatement as rhs:
3 node left ← new Differential{
4 arg:=(macro.loop.var→rhs.arg.op)
5 }
6 macro.differentials.add(left)
7
8 list partAcc ← rhs.expression.descendants(ParticleAccess)
9 .where(it ⇒ it.operand == macro.loop.var)

10
11 foreach acc in partAcc do
12 decl(var, τ) ← acc.decl
13 node ref ← VarRef(var)
14 switch (τ)
15 case <Field, n = 1> : macro.loop.sca_fields.add(ref)
16 case <Field, n > 1> : macro.loop.vec_fields.add(ref)
17 case <Prop, n = 1> : macro.loop.sca_props.add(ref)
18 case <Prop, n > 1> : macro.loop.vec_props.add(ref)
19 end switch
20 end do
21
22 rhs.replace with(new AssignExpr{
23 left := left,
24 right := rhs.expression
25 })
26
27 case default:
28 foreach eq in stmt.descendants(RHSStatement) do
29 transform(eq, macro)
30 end do
31 end switch

Fig. 14. Excerpts from the script that composes a PPML RHSMacro from a PPME deqn specification.

The majority of the model-transformations are part of the top-level package
ppme.modules. Various mapping scripts are used to pre-process the input-model for
collecting information required in later transformation steps. To produce the inter-
mediate code (i.e., PPML code), MPS’ text gen capabilities are used (cf. [MPS - 3.2 -
Documentation 2015a]). For each language concept, a text generation component can
be specified, defining its textual representation, e.g., printing the name of a variable
(VariableReference), or emitting the code for a loop statement.

We use several transformation scripts to prepare the text-generation phase. There-
fore, we have defined multiple intermediate models resembling the macros and first-
class language constructs in PPML to stepwise refine the input model. This includes
collecting information about the differential operators used in equations, adding ex-
plicit discretization statements for them, creating and populating right-hand side
declarations of PPML, adding ODE declarations, managing control files, expanding
random-number initialization, deriving field and property declarations, transforming
foreach loops into their PPML counterparts, and adding PPML-specific type annota-
tions. Exemplarily, we discuss the construction of right-hand-side declarations.

5.2.2. Example Transformation. The populateRHS transformation is responsible for ex-
tracting right-hand-side definitions from deqn statements, which model differential
equations. In PPME, these equations can be written directly in code. To transform
them into PPML, we use RHSMacros, which represent the right-hand side definitions in
the target language and, in turn, can be transformed into PPML macro code. The deqn
statements are matched and extracted by the code generator using transformation
scripts in MPS’ built-in scripting language. The scripting language is statically typed
and borrows ideas from object-oriented and functional programming that are well-
suited for model transformations, including higher-order functions, and type-based se-
lectors on trees and lists. For example, the descendants selector visits a tree or list
and collects references to nodes of a given type, like iterators in an object-oriented
language. In addition, higher-order functions such as map or where allow developers to
map or filter lists by applying a given (anonymous) function, like in a functional pro-
gram. The left panel of Figure 14 shows the script that implements the populateRHS
transformation. It iterates over all blocks of deqn statements in a program, and derives

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A Domain-Specific Language and Editor for Parallel Particle Methods A:19

A
P
P
M

E

1 deqn method "rk4" on c

2 ∂c→U
∂t

= constDu * ∇2 c→U - c→U * c→V2 + F * (1.0 - c→U)

3 ∂c→V
∂t

= constDv * ∇2 c→V + c→U * c→V2 + (F + kRate) * c→V

4 end deqn
P
P
M

L
1 rhs grayscott_rhs_0(U=>c, V)
2 get_fields(dU, dV)
3
4 dU = apply_op(L, U)
5 dV = apply_op(L, V)
6
7 foreach p in particles(c) with positions(x) sca_fields(U, V, dU, dV)
8 dU_p = constDu * dU_p - U_p * (V_p**2) + F * (1.0 - U_p)
9 dV_p = constDv * dV_p + U_p * (V_p**2) - (F + kRate) * V_p

10 end foreach
11 end rhs

Fig. 15. PDE specification in PPME (top) and the generated right-hand side in PPML (bottom).

corresponding RHSMacros. A key issue in this process is to identify the used differential
operators contained in a deqn statement (l. 2) and the accessed variables (ll. 13–18).
A PPML particle-loop, evaluating the differential operators over these variables, is as-
sembled by transforming each statement in the deqn via delegation to transform (ll.
9–11). Finally, the created macro object is added to the model root and then used for
generating the PPML right-hand side.

The script excerpt in the right panel of Figure 14 shows the body of the recur-
sive transform() function. It takes a statement of a differential equation and en-
riches the given macro with information. For each differential equation statement
∂c→f
∂t = e (stmt), the affected particle attribute (f ) is extracted (ll. 2–6). Subsequently,

the accessed particle fields and properties are extracted and explicitly added to the
RHSMacro (ll. 11–20). Finally, the differential equation is translated to an assignment
expression that replaces the original definition in the model and is later translated to
PPML statements for the generated code of the right-hand side.

Figure 15 shows a comparison of the original PPME block and the resulting PPML
code for the Gray-Scott example (cf. Section 3). It integrates the governing equations
discretized over the particle list c using the 4-th-order Runge-Kutta method (“rk4”)
for time integration. In PPME, a developer conveniently defines equations over at-
tributes of a particle list c. The IDE automatically extracts the required information.
First, two applications of differential operators, ∇2c→U and ∇2c→V, are identified.
The local variables dU and dV are inserted to hold the intermediate result of applying
the operators. Both the particle loop and the right-hand-side block itself hold derived
information about the accessed particle fields, U and V. Furthermore, dU and dV are
treated like other scalar fields. Note that the access of particle list attributes (c→U)
is transformed to access of particle attributes by inserting a loop over particles and
accessing attributes of the loop variable U_p. The example demonstrates some of the
key benefits of our approach over the original PPML code: since all required informa-
tion is extracted by the PPME compiler, redundant statements such as get_fields,
apply_op and sca_fields are avoided, which leads to less code, less compile-time er-
rors, and an improved readability. Readability is further improved by the PPME editor
natively supporting basic mathematical notation, such as the Nabla operator ∇ and
the partial derivative ∂.

5.3. Case Studies
To demonstrate the capabilities of PPME, we use the same two simulations as case
studies that were already considered for PPML [Awile et al. 2013]. The first one, the
Gray-Scott reaction-diffusion system as presented in Section 3.1, is an example of a
simulation of a continuous deterministic model. The second one, Lennard-Jones molec-
ular dynamics is an example of a simulation of a discrete deterministic model. An N-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A:20 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

Fig. 16. Gray-Scott simulation program in PPME.

body simulation as a third example further illustrates the initialization of particles
from external data.

5.3.1. Gray-Scott Reaction-Diffusion System. The PPME program for the Gray-Scott sim-
ulation is shown in Fig. 16. It follows the typical structure of a particle-based simu-
lation, starting with the initialization of topology and particles, followed by the sim-
ulation loop. The notation in PPME is concise and close to the domain idiom. The
program starts with the module definition and the referenced runtime constants. At
the beginning of the simulation, topology, particles, and neighbor lists are set up. The
time steps are contained in the timeloop and are solely defined through the differen-
tial equations to be solved. For the equation block, the developer has to specify the
particle list the equations are working on, and the time-stepping method. Note that
the continuous fields U and V are automatically discretized on the particle list during
code generation.

5.3.2. Lennard-Jones Molecular Dynamics. Lennard-Jones is an instance of molecular dy-
namics [Frenkel and Smit 2001], an item-based simulation to study molecular pro-
cesses. The atoms are directly represented as particles, located in continuous space.
Pairwise potentials between atoms define the continuous forces acting on them. While
the basic algorithm for the simulation, i.e., computing pairwise interactions of parti-
cles and updating their positions and properties, remains the same, the exact defini-
tion of the forces is specific to the application. A classical force definition is given by
the Lennard-Jones potential, which is suitable for describing inert gases. The pairwise
force between atoms depends on the distance between them (r), the depth of the poten-
tial well (ε), and the fall-off distance (σ) of the interaction potential. Particle proper-
ties such as acceleration (a) or velocity (v) change according to the forces, causing the
particles to move. Additionally, a cutoff radius to ignore negligibly small long-range
interactions is applied.

The essential part of simulating the potential is located in the timeloop depicted
in Figure 17. Therein, the force acting on the particles due to pairwise interactions is

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A Domain-Specific Language and Editor for Parallel Particle Methods A:21

1

3

4

2

Fig. 17. The simulation loop body for the Lennard-
Jones dynamics.

Fig. 18. Dimensions annotated to particle proper-
ties in the Lennard-Jones example.

Fig. 19. Declarations of base dimensions (length,
mass, and time) with velocity and acceleration as
derived dimensions.

Fig. 20. User notification of an error caused by in-
compatible dimensions.

computed and applied. The loop can be divided into four sections ( 1 – 4 ). First, the
particle positions (p→pos) are updated based on the values of velocity (p→v) and accel-
eration (p→a) (cf. 1 ). After the particle positions change, the boundary condition must
be imposed, followed by updating the mappings and neighbor list (cf. 2 ). The block of
two nested particle loops implements the actual particle–particle interactions (cf. 3 ).
For each particle p the pairwise interaction with all nearby particles q, retrieved via
neighbors(p, nlist), is computed. The force F = −∇E acting between two particles
and the potential (or energy) E are given by

~F (r) = 24εr

(
2
σ12

r7
− σ6

r4

)
, E(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(4)

This corresponds to the lines with assignments to dF and p→E, respectively, where
r_s_pq2 corresponds to the squared distance r2 between p and q. The last update on
the particle list modifies the velocity as a consequence of the new force (cf. 4 ).

In this example, we also use dimensions to further improve static error detection.
A dimension declaration in PPME resides in a special file owned by a model, where
each declaration contains an identifier <d>, an optional specification <spec>, and an
optional suggestive name <desc>. Figure 19 shows the declaration of fundamental and
derived dimensions. From the three fundamental dimensions length (l), time (t), and
mass (m), convenient notations for velocity (v) and acceleration (a) are derived. Note
that this specification is not bound to this example and can be reused in any other
PPME project.

Figure 18 shows the annotated particle properties, which are used by PPME’s type
system to derive expression types. The type system corresponds to the formalization in-
troduced in the previous section. It enables capturing type and dimension errors right
in the editor. Errors are reported to the user where they occur, as shown in Figure 20
using the deduction in Figure 10. The outer addition is highlighted, and the informa-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A:22 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

Fig. 21. Particle initialization using PPML inline code.

tion states that the operation cannot be applied to operands with given (annotated)
types [R, v] and [R, a · t2].

5.3.3. N-body Simulation. As a third case study, we implement an N-body simulation of
two galaxies using particle methods. As the model structure of this example is similar
to the Lennard-Jones example above, we skip the corresponding details of the code and
focus on another important aspect of PPME: its interface with the underlying Fortran
language.

PPME is designed as a standalone DSL, nevertheless unanticipated use cases can
be supported by inline code statements. In the N-body simulation, the initial particle
data need to be loaded from an external data source data.tab. As PPME has no built-
in functionality to import data from this type of file, it has to be specified using custom
code. This can be achieved through an InlineCodeStatement, which supports inlin-
ing arbitrary Fortran or PPML code directly into the program. Figure 21 shows how
data.tab is read and into PPME’s data structures. The PPML code is located within
a pair of squared brackets, which demarcate it from the rest of the program. The code
has direct access to the matrix parts_data as well as to the declared fields v and m.
During this custom initialization, the data are first loaded into the matrix (which cor-
responds to a Fortran array) and afterwards copied to the corresponding fields.

Notice that the inlined PPML code is not analyzed by PPME. Errors may therefore
be introduced by the developers that propagate to later stages in the compile chain.
However, such code can be conceptualized easily by extending the language and con-
verting it into an MPS generator, which is one of the central ideas in language-oriented
programming.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A Domain-Specific Language and Editor for Parallel Particle Methods A:23

6. NUMERICAL OPTIMIZATIONS AND TOOL INTEGRATION
Applications in science and engineering often depend on floating-point arithmetic in
calculations to approximate real arithmetic. In this section, we therefore introduce an
accuracy optimization for floating-point expressions that is integrated into PPME. This
serves as an example of how to extend PPME by existing tools, thereby demonstrat-
ing the possibilities offered by the high-level expressions of the language. In a similar
way, other common optimizations can be added in the future, for example loop trans-
formations to improve data locality and performance [Lam and Wolf 1991; Luporini
et al. 2015]. Loop optimizations are orthogonal to the floating-point transformation
described in this section.

In the case of floating-point computations, a compiler can trade accuracy for perfor-
mance. Such optimizations often rely on abstract interpretation for preserving seman-
tics. The abstract semantic can be used to build program equivalent graphs, inspect
them with regard to the desired optimization target, and enable efficient detection of
appropriate rewrites [Ioualalen and Martel 2012]. As an example of such optimiza-
tions, we adopt Herbie1 as a recent approach to automatically improve floating point
expressions [Panchekha et al. 2015]. Herbie relies on heuristics to estimate and local-
ize rounding errors at sample points. Once low accuracy (e.g., numerical extinction) is
detected, Herbie attempts to improve the program by rewriting inaccurate expressions
using a rule database. Thereafter, if possible without loss of accuracy, the expressions
are simplified. Finally, Herbie may apply series expansions for inputs around zero or
near infinity to better approximate the result. This process is repeated iteratively so
that new candidate expressions are yielded after each iteration, keeping only the pro-
grams which achieve the best accuracy at least at one sample point. Finally, Herbie
uses one or more candidates to achieve an improvement of accuracy over all sample
points.

6.1. Tool Integration
We integrated Herbie as a plugin into PPME. MPS provides convenient configuration
languages to define plugin solutions and to specify their behavior. The solution of our
Herbie plugin comprises a preference page, an action object that executes Herbie in
a separate process, and a mapping script that collects references to expression nodes
in the PPME program. Since the algorithms for accuracy optimization are computa-
tionally expensive, expressions are not inspected automatically but must be flagged
for evaluation by the user. Users can trigger the analysis and transformation process
for the active PPME editor and the result is then annotated to the corresponding frag-
ments in the code.

Expression annotation works via the MPS intentions dialog (Alt + Enter). A small
icon indicates that an expression is marked for analysis (cf. first line in Figure 23). All
marked expressions are transformed into a prefix notation that matches Herbie’s input
language Racket, built-in operations and data types. PPME maintains the translated
expression as a string, a reference to the original expression node and its identifier, as
well as a table of variables. For the expression highlighted in Figure 23 the following
test case is generated:

(herbie-test (p_pos p_a delta_t p_v) "2430378650379961582"
(+ (+ p_pos (* p_v delta_t)) (* (* 0.5 p_a) (expt delta_t 2))))

where the herbie-test macro is called with a list of variables, a unique name, and
the actual translated expression.

1https://github.com/uwplse/herbie

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.

https://github.com/uwplse/herbie


A:24 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

Expr HerbieAction ExprTranslator HerbieRunner
fetch node to test

exp:Expression

convertExpr(exp)

config:HerbieConfig

run(config)

res:HerbieRunResult

annotate result

Fig. 22. Sequence diagram for the execution
of a Herbie analysis for a single expression.

Fig. 23. Inspection view of an annotated expression with
the results reported by Herbie.

Input Error Output Error

7.1231523 0.08203125

∂c→ U

∂t
= Du · ∇2c→ U − c→ U · c→ V 2 + F · (1.0− c→ U)

< dU_p = D_u∗dU_p − U_p∗(V_p∗∗2) + F∗ (1 .0_mk−U_p)
−−−
> dU_p = ( ( ( constDu ∗ dU_p) − ( ( U_p ∗ V_p) ∗ V_p) ) + ( ( 1 . 0_mk − U_p) ∗ F) )

Fig. 24. Exemplary improvements for an expression taken from the Gray-Scott example.

Figure 22 illustrates the whole process (steered by HerbieAction) responsible for
fetching the nodes to test, analyze the node, and write the result back as a UML se-
quence diagram. The result of a Herbie execution is summarized and displayed to the
user in the inspection view as shown in Figure 23. The original expression is anno-
tated with additional information, i.e., the error of the input and output expressions,
and the optimized computation regime for the arithmetic expression. This allows in-
specting the result generated by Herbie, and it keeps the original expression in place
without modifying it. Instead, PPME users are responsible for replacing the annotated
node by the optimized one before the text generation phase. This prevents unwanted
expression rewriting. Note that the generic design of the execution model and the re-
sult container allow reusing the same setup for other tools by extending the existing
framework. Moreover, analysis and code generation remain separate processes.

6.2. Accuracy Optimization
We investigate the improvements in accuracy for two of the case-studies presented in
Section 5.3, the Lennard-Jones simulation (LJ) and the Gray-Scott reaction-diffusion
system (GS). We annotate several expressions in each program, and execute them with
and without optimization. Figure 24 shows the analysis result for ∂U

∂t for the GS ex-
ample, including input and output error, the original expression, and the difference
in the generated source code. The input expression has an average error of seven bits
(cf. [Panchekha et al. 2015]), and Herbie was able to nearly remove inaccuracies by ex-
panding and redistributing terms. We compare the numerical results for simulations
with tstart = 0, tend = 4000 and ∆t = 0.5. The computed values for U and V differ in
the last four to seven of seventeen significant digits, which confirms that the changes
have an impact. In our visualization (cf. Figure 3), the differences are not noticeable.
However, a longer simulation time may yield visible differences.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A Domain-Specific Language and Editor for Parallel Particle Methods A:25

Fig. 25. Runtime comparison for the Gray-
Scott example with tend = 2000. The median
runtime for both simulations is nearly identi-
cal, which indicates that Herbie’s optimization
have no impact on the program’s runtime perfor-
mance.

Fig. 26. Runtime comparison for the Lennard-
Jones example. The execution of the program
modified by Herbie was approximately 20 %
faster than the original implementation.

For the LJ case study, we investigate several expressions, this time with and without
considering known restrictions on input values. For example, consider Equation 5.

dF = (24.0 · ε · rpq)

(
2.0 · σ

12

r7spq
− σ6

r4spq

)
, where rspq > 0, σ ∈ [10−2, 10−1], ε ∈ [10−14, 10−13] (5)

In the case without value-range restrictions, the analysis found an improvement of
34.0 7→ 15.6 bits. However, this theoretical potential is not reasonable when consid-
ering actual variable ranges, since the algorithm checks the whole domain of input
values instead of optimizing over a small feasible interval only. Consequently, only
one of the analyzed expressions yielded an actual improvement after accounting for
additional constraints using range annotations (e.g., parameters with constant val-
ues) obtained from PPME’s code analysis. As a consequence, the analysis did not find
significant improvements2. Hence, additional information about variables may be re-
quired to generate reliable results. A DSL like ours may help extract such information
automatically.

6.3. Impact on Runtime Performance
Since the optimization modifies expressions and, in some cases, replaces a simple as-
signment with a complex one containing several conditional branches, its influence on
runtime performance might be of concern. Therefore, we investigate the impact on ex-
ecution time for the GS and LJ case studies. We compare the runtime of the original
program for each use case with the optimized versions. To factor out disk-I/O from the
measurements, the simulations are modified so that no output is generated. The tests
were run on a system with an Intel Core i3-4160 CPU, 16 GB random-access memory
and Ubuntu Linux with kernel 4.2.0.

We executed the GS use case 100 times per variant with 4000 steps (tstart = 0.0,
tend = 2000.0, ∆t = 0.5). Figure 25 shows the variation of the execution times as a box
plot. The median of both variants is nearly identical while the data are less scattered
for the original simulation with a few outliers at approximately the minimal execution
time of the modified program. For GS there is therefore no significant performance
impact due to the accuracy optimizations.

2In fact, the analysis increased the error from 5 7→ 11 (5 7→ 20) bits on Racket version 6.4 (6.7) using
seeds 2808995595, 415209655, 1218262282, 3135925998, 2713258581, 1066853958 and Herbie commit hash
f6ebaea. In contrast, in version 1.0 of the tool, input and output error remained at around 4 bits.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A:26 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

PPME PPME* PPML Fortran

Gray-Scott (complete) 46 28 53 623
Gray-Scott (RHS) 4 4 9 103

Lennard-Jones (complete) 88 72 75 480

N-Body (complete) 69 51 58 469
PPME*: Written Lines of Code (WLOC)

Fig. 27. Comparison of lines of code for PPME, PPML, and PPM/Fortran.

In the case of LJ, we compared the runtime of the original program to a variant with
several transformed expressions, including Equation 5 without range restrictions. The
simulation is executed for n = 5000 particles, end time tend = 0.2, and ∆t = 1.0 · 10−6

(200, 000 steps). The results are summarized in Figure 26, both variants were run 25
times. The accuracy-optimized version runs nearly 20 % faster than the original im-
plementation. However, this can be attributed to over-simplifications of some of the
expressions due to the missing range restrictions. Considering the actual numbers
produced by the simulation, the two variants visibly differ in their results, with the
optimized version being less accurate, yielding force values that are two orders of mag-
nitude lower. This is the result of Herbie removing a complete subterm from the force
equation. When taking parameter value ranges into account, only one expression could
be improved through a simple restructuring of its terms. In this case, we can not detect
any impact on the program’s execution time, but the results remain correct.

7. EVALUATION
One of PPME’s primary goals is to reduce the knowledge gap in scientific program-
ming. This is achieved by providing domain-specific abstractions at the language level
for particle-mesh simulations, based on those previously offered by PPML. This is com-
plemented with features of a modern IDE, such as code completion and syntax high-
lighting, guiding the scientific programmer using domain-specific notations that are
free of the overhead otherwise introduced by parallel programming. In addition, the
formal type system and its optional extensions considerably improve error detection.
They prevent a series of common errors at development-time and provide developers
with meaningful feedback. Errors are captured and reported at the DSL level, instead
of the level of the generated code. In comparison with PPML, PPME improves error
detection and handling of the following kinds:

— PPM instantiation errors. PPME inherently generates statements in the order that
is expected by the PPM call protocols. Frequently, such errors would otherwise only
be discovered at runtime.

— PPML redundant redeclaration errors. PPML requires a proper redeclaration of fields
and operators that are accessed in loops or right-hand-side specifications. A missing
or wrong declaration leads to compile-time or runtime errors. Since PPME analyzes
the code to derive the required information, such errors become impossible.

— Syntax errors in Fortran code. Except for explicitly inlined Fortran code, PPME has
its own expression language so that syntactic errors in Fortran expressions, as in
PPML, are impossible.

— Type errors in Fortran code. PPME has its own type checker so that static type errors
in the generated Fortran code are not possible.

— Dimension-related errors. Due to dimension support, PPME is capable of statically
detecting errors in expressions and differential equations. If not detected, such errors
can silently corrupt the simulation result, wasting HPC resources.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A Domain-Specific Language and Editor for Parallel Particle Methods A:27

Besides error detection, PPME achieves program sizes similar to PPML or even
smaller. Figure 27 compares the source lines of code (SLOC) of the implemented case
studies for PPME and the generated PPML and Fortran codes. Since PPME is not a
conventional editor but a projectional one, we use written lines of code (WLOC) as a
second metric in column PPME*. This takes into account that PPME programs typi-
cally contain some lines that have not been entered by the developer, but are generated
by the editor (e.g., optional configuration fields). Considering SLOC, in the Lennard-
Jones and N-body examples, the PPME programs are larger than the generated PPML
code with ratios of 88 : 75 (117 %) and 69 : 58 (119 %). In contrast, in the Gray-Scott ex-
ample, PPME requires less space with a ratio of 50 : 62 (81 %). The reduction in the
latter case is due to the built-in constructs for solving PDEs, which are not used in
the other examples. Considering WLOC, PPME reduces the code sizes in all examples.
In the Lennard-Jones and N-body examples, the corresponding ratios versus PPML go
down to 96 % and 88 %, respectively. For Gray-Scott, the code size goes down to 52 %.

In terms of performance, there is no difference between the execution time of code
generated from PPME and an equivalent hand-written PPML version. This is due to
the fact that the PPML output code generated from PPME is identical to the hand-
written PPML code. Any performance difference between PPML and plain Fortran
linked against the PPM Library was found to be less that 2 % in previous experi-
ments [Awile et al. 2010], whereas PPM Fortran was found to generally perform better
than hand-parallelized Fortran code that does not use the PPM Library [Sbalzarini
et al. 2006].

PPME also has some drawbacks. In comparison to PPML and other programming
languages, version control turns out to be more complicated. Since files are serialized
using XML, conventional text-based diff and merge operations are difficult to apply.
While MPS has built-in support for most of the established version-control systems,
the resulting workflow is different from the text-based approaches and not always as
efficient. For instance, even if the rendered program did not visibly change, or only a
small edit was applied, serialization may change a lot, causing more merge conflicts in
collaborative development scenarios.

Another difference between PPME and general-purpose languages is that conve-
nience support for user-defined functions and types is not built into the PPML lan-
guage. For the development of our current application examples, it was not necessary
to have these concepts in the language. However, this may change in the future, de-
manded by more complex applications. Language extension is one of the key features
of language-oriented programming in PPME/MPS, which was, in turn, not the case for
PPML.

8. RELATED WORK
An exhaustive overview of language workbenches, their features and use is given
in [Erdweg et al. 2013]. Here, we therefore only discuss a small selection of well-known
workbenches for textual languages.

Spoofax [Kats and Visser 2010] is a language workbench that builds upon term
rewriting with Stratego [Bravenboer et al. 2008], a high-level grammar language as
well as meta languages for name and type analysis. DSLs implemented in Spoofax can
be used via generated plugins for the Eclipse platform or from command line. Other
well-known workbenches for textual DSLs with similar capabilities on the basis of the
Eclipse Modeling Framework (EMF) are Xtext [Eysholdt and Behrens 2010] and EMF-
Text [Heidenreich et al. 2009]. These tools leverage the relation of context-free gram-
mars and the EMF (cf. [Alanen and Porres 2003]) to make grammarware available to
the field of model-driven software engineering. Xtext provides built-in languages for
code generation and semantic functions. Furthermore, an Xtext language for formal

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A:28 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

specifications of type systems has been developed [Bettini 2015]. EMFText, in contrast,
follows a convention-over-configuration approach, which tries to provide most language
features out of the box. In case that this is not sufficient to realize all intended behav-
ior, model-based attribute grammars or the object-constraint languages [Bürger et al.
2011; Heidenreich et al. 2013] are available.

Since MPS implements a projectional editing approach [Feiler and Medina-Mora
1981; Voelter 2013], no parsers or grammars are involved, as nodes are added, deleted,
and modified directly. While projectional editing is more restrictive than direct text
manipulation, it is less prone to errors and serializes models as data structures, i.e.,
when a model is saved and loaded again, the exact instance is restored. MPS has al-
ready proven its applicability in other domains. The mbeddr project instantiates MPS
in the embedded domain providing a projectional C frontend and several extensions
and domain-specific analyses, such as state machines and model checking [Voelter
et al. 2013]. Moreover, the authors of [Benson and Campagne 2015] used MPS to create
a language and editor for automated statistic analyses of biological data (bio markers),
which is designed for end-user programming and statistical visualization.

Besides language workbenches and greenfield DSL development, another possibil-
ity is to hook into already existing extensible compiler infrastructures, e.g., relying
on their basic intermediate representations, default optimizations, and code genera-
tion facilities. Well-known examples for these infrastructures are the LLVM frame-
work [Lattner and Adve 2004] and Graal [Duboscq et al. 2013]. LLVM is used as a
compiler backend for various general-purpose languages, most notably C and C++.
It is centered around a universal intermediate language that is transformed through
several extensible phases, as well as various optimizations, allocations, and code se-
lection, down to platform-specific machine code. A DSL could rely on this infrastruc-
ture by generating code in the LLVM intermediate language, reusing and extending
compiler facilities. Graal is an extensible just-in-time compiler for the Java Virtual
Machine and a platform for testing new high-level optimizations. Further, it provides
support for integrating with new languages, language features, and domain-specific
optimizations [Wimmer 2015].

During the last years, the importance of DSLs for scientific computing has been
increasingly realized. This led to the emergence of a number of approaches of which
we mention a few notable examples. Blitz++ [Veldhuizen 2000] is a template-based
library and DSL for generating finite-difference operators (stencils) from high-level
mathematical specifications. Freefem++ [Hecht 2012] is a software toolset and DSL
for finite-element methods. This DSL allows users to define analytic as well as finite-
element functions using domain abstractions such as meshes and differential opera-
tors. Liszt [DeVito et al. 2011] extends Scala with domain-specific statements for defin-
ing solvers for partial differential equations on unstructured meshes with support for
parallelism through MPI, pthreads, and CUDA. The FEniCS project [Logg et al. 2012]
comprises a finite element library, the unified form language (UFL) [Alnæs et al. 2014],
and several optimizing compilers for generating code that can be used with the library.
Building upon FEniCS, the Firedrake project [Rathgeber et al. 2015] adds composing
abstractions such as parallel loop operations.

The idea of transforming or rewriting program code for optimization purposes is
not new. For example, a DSL optimizer could be implemented using program trans-
formations [Schordan and Quinlan 2003] or rewrite rules. However, research on using
graph-rewrite systems for such tasks [Aßmann 2000; Schösser and Geiß 2008] indi-
cates that the pattern language must be powerful enough to express context-sensitive
patterns. Furthermore, recent research shows that rewriting is a convenient technique
for implementing high-level optimizations on a restricted set of language constructs.
For instance, authors in [Panchekha et al. 2015] propose a method for automatically

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A Domain-Specific Language and Editor for Parallel Particle Methods A:29

improving the accuracy of floating-point expressions by rewriting such expressions ac-
cording to a set of harvested patterns. Further, the authors of [Steuwer et al. 2015]
apply rewriting to specific functional expressions for parallel computations to obtain
efficient GPU kernels. In the field of DSLs for scientific computing, domain-specific op-
timizations carry great potential since scientific codes often induce specific boundaries
on data access and numeric algorithms. In [Ølgaard and Wells 2010], the authors dis-
cuss different optimization strategies on representation code for element tensors in the
finite-element method. The representation code is written in UFL, a high-level math-
ematical DSL for variational forms. The proposed strategies yield significant runtime
speedups and leverage domain knowledge to automate nontrivial optimizations that
normally would have been developed manually by scientific programmers. Related to
that, the authors of [Luporini et al. 2016] discuss loop-level optimizations for finite-
element solvers in the COmpiler For Fast Expression Evaluation (COFFEE) [Luporini
et al. 2015]. Heuristics are used to predict local minima of operation counts at runtime,
using semantics-preserving transformations such as code motion, expansion, and fac-
torizations. The authors show that their domain-specific optimizations are superior to
those that are generally applied by standard compilers such as Intel’s ICC for opti-
mizing the operation count in nested loops. Similar optimizations could be provided as
extensions of PPME.

Also, the idea of adding dimensions or physical units to DSLs is not new. [Cook et al.
2006] presented an analysis technique checking correctness of units in programs with-
out extending the base language, aiming for a minimal effort of annotations for a de-
veloper. Furthermore, [Austin 2006] proposed unit annotations for linear-algebra and
finite-element calculations, which are similar to the dimension annotations in PPME.
However, adding units to programming languages frequently has flaws. For instance,
frameworks may use abstractions with boxing and unboxing of quantities and units,
which implies a runtime overhead. In our approach, the analysis is optional and does
not have an impact on runtime performance, since it is only used at compile-time for
consistency checking and does not persist in the simulation.

9. CONCLUSIONS
We have presented PPME, an adaptable and extensible programming environment en-
vironment with a domain-specific language for particle-mesh methods. It aims to sim-
plify the development of scientific simulations through domain-specific abstractions
and automatic generation of client code that links with the PPM library. Leveraging
the language workbench MPS, we earned features that are typical for modern develop-
ment environments (e.g., syntax highlighting, automatic code completion, etc.) and also
features that are due to the methodology of projectional editing (e.g., mathematical no-
tation). Furthermore, MPS provided us with a type-system language and a powerful
concept of arranging our environment in a modular way, which also is one of the key
enablers for extensible language design and implementation, one of the major goals of
PPME.

We demonstrated PPME’s capabilities in that respect in two ways: First, we devel-
oped a dimensional calculus on top of the original type system, including an extension
for checking and declaring dimensions, or even measurement units. Errors discovered
by the type system and the dimensional analysis are instantaneously reported to the
user at design time. Second, we added support for automatic accuracy improvements
of floating-point expressions by adopting Herbie as an external tool and integrating
additional value-range specifications into the language. Since both extensions are de-
signed as independent plug-in solutions, they do not interfere with the base language
and the framework can easily be adapted to other cases, and developers are free to use
the extensions only if desired.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.



A:30 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

Despite the obvious advantages of PPME, there are some obstacles that derive from
MPS’ basic principles of projectional editing and modular language specification. Due
to the complexity of MPS, it is not easy for scientific programmers to develop own
extensions for PPME (e.g., for loading data from a specific type of file). They have
to become familiar with the concepts of MPS, which re-iterates the problem of the
knowledge gap in scientific programming. PPME therefore allows the user to include
custom Fortran code as inline blocks. While strictly speaking this is a design breach in
a non-embedded DSL, it offers a pragmatic solution. Other issues with MPS come from
projectional editing itself, which leaves less freedom than text editing w.r.t. writing
comments or incomplete intermediate code. However, after some training, developers
normally get used to the tool (cf. [Voelter et al. 2013]). Another potential source of
problems is that programs are not stored as plain text, so that using version control
outside of PPME/MPS is difficult.

In the future, we will extend PPME to support more particle and mesh abstractions,
including inter-particle connections, neighbor lists, and meshes of different topology.
We also want to expand PPME to better support high-level parallelization constructs
and analyses to further improve code generation and runtime scalability by leveraging
the domain knowledge for more intelligent mapping and distribution of computations
onto underlying parallel hardware. Finally, we will improve PPME’s code generation
process by adding another layer of abstraction to better integrate the target language
and make the backend exchangeable. This way, we will be able to support the successor
of the PPM library, OpenFPM, which is currently developed in C++.

REFERENCES
Yaser Afshar and Ivo F. Sbalzarini. 2016. A Parallel Distributed-Memory Particle Method Enables

Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images. PLoS ONE 11, 4 (2016).
DOI:http://dx.doi.org/10.1371/journal.pone.0152528

Marcus Alanen and Ivan Porres. 2003. A Relation Between Context-Free Grammars and Meta Object Facility
Metamodels. Technical report. TUCS Turku Center for Computer Science, Åbo Akademi University.

Martin S. Alnæs, Anders Logg, Kristian B. Ølgaard, Marie E. Rognes, and Garth N. Wells. 2014. Unified
Form Language: A Domain-specific Language for Weak Formulations of Partial Differential Equations.
ACM Trans. Math. Softw. 40, 2 (2014), 9:1–9:37. DOI:http://dx.doi.org/10.1145/2566630

Uwe Aßmann. 2000. Graph Rewrite Systems for Program Optimization. ACM TOPLAS 22, 4 (2000), 583–
637. DOI:http://dx.doi.org/10.1145/363911.363914

Mark A. Austin. 2006. Matrix and Finite Element Stack Machines for Structural
Engineering Computations with Units. Adv. Eng. Softw. 37, 8 (2006), 544–559.
DOI:http://dx.doi.org/10.1016/j.advengsoft.2005.10.004

Omar Awile. 2013. A Domain-Specific Language and Scalable Middleware for Particle-Mesh Simulations on
Heterogeneous Parallel Computers. PhD Thesis, Diss. ETH No. 20959. ETH Zürich.

Omar Awile, Ömer Demirel, and Ivo F. Sbalzarini. 2010. Toward an Object-Oriented Core of the PPM Li-
brary. In Proc. ICNAAM, Numerical Analysis and Applied Mathematics, International Conference. AIP,
1313–1316.

Omar Awile, Milan Mitrović, Sylvain Reboux, and Ivo F. Sbalzarini. 2013. A Domain-specific Programming
Language for Particle Simulations on Distributed-Memory Parallel Computers. In Proc. III Intl. Conf.
Particle-based Methods (PARTICLES) (Particles 2013). Stuttgart, 436–447.

Josh Barnes and Piet Hut. 1986. A Hierarchical O(N logN ) Force-Calculation Algorithm. Nature 324 (1986),
446–449.

T. Belytschko, Y. Y. Lu, and L. Gu. 1994. Element-free Galerkin Methods. J. f. Num. Meth. in Eng. 37 (1994),
229–256. DOI:http://dx.doi.org/10.1002/nme.1620370205

Victoria M. Benson and Fabien Campagne. 2015. Language Workbench User Interfaces for Data Analysis.
PeerJ 3, e800 (2015). DOI:http://dx.doi.org/10.7717/peerj.800

Lorenzo Bettini. 2015. Implementing Type Systems for the IDE with Xsemantics. Log. and Algebr. Meth. in
Prog. (2015). DOI:http://dx.doi.org/10.1016/j.jlamp.2015.11.005

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.

http://dx.doi.org/10.1371/journal.pone.0152528
http://dx.doi.org/10.1145/2566630
http://dx.doi.org/10.1145/363911.363914
http://dx.doi.org/10.1016/j.advengsoft.2005.10.004
http://dx.doi.org/10.1002/nme.1620370205
http://dx.doi.org/10.7717/peerj.800
http://dx.doi.org/10.1016/j.jlamp.2015.11.005


A Domain-Specific Language and Editor for Parallel Particle Methods A:31

George C. Bourantas, Bevan L. Cheeseman, Rajesh Ramaswamy, and Ivo F. Sbalzarini. 2016. Using DC
PSE Operator Discretization in Eulerian Meshless Collocation Methods Improves their Robustness in
Complex Geometries. Computers & Fluids 136 (2016), 285–300.

Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. 2008. Stratego/XT 0.17. A Lan-
guage and Toolset for Program Transformation. Sci. of Comp. Prog. 72, 1-2 (2008), 52–70.

David S. Broomhead and David Lowe. 1988. Radial Basis Functions, Multi-variable Functional Interpolation
and Adaptive Networks. Technical Report. DTIC Document.

Christoff Bürger, Sven Karol, Christian Wende, and Uwe Aßmann. 2011. Reference Attribute Gram-
mars for Metamodel Semantics. In Proc. of the SLE 2010 (LNCS), Vol. 6563. Springer, 22–41.
DOI:http://dx.doi.org/10.1007/978-3-642-19440-5_3

Dominique Clément, Thierry Despeyroux, Gilles Kahn, and Joëlle Despeyroux. 1986. A Simple Applicative
Language: Mini-ML. Proceedings of the 1986 ACM Conference on LISP and Functional Programming
(1986), 13–27. DOI:http://dx.doi.org/10.1145/319838.319847

Robert F. Cmelik and Narain H. Gehani. 1988. Dimensional Analysis with C++. IEEE Software 5, May
(1988), 21–27.

Phil Cook, Colin Fidge, and David Hemer. 2006. Well-Measuring Programs. In Proc. of ASWEC’06, Vol. 54.
IEEE, Sydney, 253–261. DOI:http://dx.doi.org/10.1016/S0261-5177(02)00005-5

P. Degond and S. Mas-Gallic. 1989. The Weighted Particle Method for Convection-Diffusion Equa-
tions. Part 1: The Case of an Isotropic Viscosity. Math. Comput. 53, 188 (1989), 485–507.
DOI:http://dx.doi.org/10.1090/S0025-5718-1989-0983559-9

Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Medina, Mike Barri-
entos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy, and others. 2011. Liszt: A Do-
main Specific Language for Building Portable Mesh-based PDE Solvers. In Proc. of SC ’11. ACM, 9.
DOI:http://dx.doi.org/10.1145/2063384.2063396

Sergey Dmitriev. 2004. Language Oriented Programming: The Next Programming Paradigm. JetBrains
onBoard November (2004). http://ranger.uta.edu/

Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and Hanspeter
Mössenböck. 2013. An Intermediate Representation for Speculative Optimizations in a Dynamic Com-
piler. In Proc. of VMIL ’13. ACM, 1–10.

Jeff D. Eldredge, Anthony Leonard, and Tim Colonius. 2002. A General Deterministic Treatment of Deriva-
tives in Particle Methods. J. Comput. Phys. 180 (2002), 686–709.

Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi Bosman, William R.
Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh, Gabriël D. P. Konat, Pedro J.
Molina, Martin Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi,
Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido H. Wachsmuth, and Jimi van der Won-
ing. 2013. The State of the Art in Language Workbenches. In Proc. of SLE 2013. Springer, 197–217.
DOI:http://dx.doi.org/10.1007/978-3-319-02654-1_11

Moritz Eysholdt and Heiko Behrens. 2010. Xtext: Implement Your Language Faster Than the Quick and
Dirty Way. In Conference Companion of OOPSLA. ACM, 307–309.

Peter H. Feiler and Raul Medina-Mora. 1981. An Incremental Programming Environment. In Proc. of ICSE
’81. IEEE Press, 44–53.

Martin Fowler. 2005. Language Workbenches: The Killer-App for Domain Specific Languages? (2005). http:
//martinfowler.com/articles/languageWorkbench.html

Daan Frenkel and Berend Smit. 2001. Understanding Molecular Simulation: From Algorithms to Applica-
tions (2nd ed.). Elsevier, Burlington, MA. 661 pages.

P. Gray and S.K. Scott. 1983. Autocatalytic Reactions in the Isothermal, Continuous Stirred Tank Reactor.
Chemical Engineering Science 38, 1 (1983), 29–43.

L. Greengard and V. Rokhlin. 1987. A Fast Algorithm for Particle Simulations. J. Comput. Phys. 73 (1987),
325–348.

Jo Erskine Hannay, Carolyn MacLeod, Janice Singer, Hans Petter Langtangen, Dietmar Pfahl, and Greg
Wilson. 2009. How Do Scientists Develop and Use Scientific Software? In Proceedings of the 2009 ICSE
workshop on Software Engineering for Computational Science and Engineering. IEEE Computer Soci-
ety, 1–8.

Ian J. Hayes and Brendan P. Mahony. 1995. Using Units of Measurement in Formal Specifications. Formal
Aspects of Computing 7, 3 (1995), 329–347.

Frederic Hecht. 2012. New Development in freefem++. J. of Num. Math. 20, 3-4 (2012), 251–266.
DOI:http://dx.doi.org/10.1515/jnum-2012-0013

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.

http://dx.doi.org/10.1007/978-3-642-19440-5_3
http://dx.doi.org/10.1145/319838.319847
http://dx.doi.org/10.1016/S0261-5177(02)00005-5
http://dx.doi.org/10.1090/S0025-5718-1989-0983559-9
http://dx.doi.org/10.1145/2063384.2063396
http://ranger.uta.edu/
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://dx.doi.org/10.1515/jnum-2012-0013


A:32 S. Karol, T. Nett, J. Castrillon and I. F. Sbalzarini

Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and Christian Wende. 2009. Derivation
and Refinement of Textual Syntax for Models. In Proc. of ECMDA-FA 2009 (LNCS), Vol. 5562. Springer,
114–129.

Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and Christian Wende. 2013. Model-Based
Language Engineering with EMFText. In Gen. and Trans. Techn. in Softw. Eng. IV. LNCS, Vol. 7680.
Springer, 322–345. DOI:http://dx.doi.org/10.1007/978-3-642-35992-7_9

R. W. Hockney and J. W. Eastwood. 1988. Computer Simulation Using Particles. Institute of Physics Pub-
lishing.

Arnault Ioualalen and Matthieu Martel. 2012. A New Abstract Domain for the Rep-
resentation of Mathematically Equivalent Expressions. Static Analysis (2012).
DOI:http://dx.doi.org/10.1007/978-3-642-33125-1_8

Sven Karol, Pietro Incardona, Yaser Afshar, Ivo F. Sbalzarini, and Jeronimo Castrillon. 2015. Towards a
Next-Generation Parallel Particle-Mesh Language. In Proc. of DSLDI’15. 15–18.

Michael Karr and David B Loveman. 1978. Incorporation of Units into Programming Languages. Commun.
ACM 21, 5 (1978), 385–391.

Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax Language Workbench. Rules for Declarative Speci-
fication of Languages and IDEs. In Proc. of OOPSLA 2010. ACM, 444–463.

Andrew Kennedy. 1994. Dimension Types. Esop 788 (1994), 348–362.
Andrew J. Kennedy. 1997. Relational Parametricity and Units of Measure. Proceedings of the 24th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’97 1, January (1997),
442–455.

Monica S. Lam and Michael E. Wolf. 1991. A Data Locality Optimizing Algorithm. In Proc. of PLDI ’91,
Vol. 39. ACM. DOI:http://dx.doi.org/10.1145/989393.989437

Peter Lancaster and Kes Salkauskas. 1981. Surfaces Generated by Moving Least Squares Methods. Math.
of Comput. 37, 155 (1981), 141–158. DOI:http://dx.doi.org/10.1090/S0025-5718-1981-0616367-1

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation. In Proc. of CGO 2004. IEEE, 75–.

Wing Kam Liu, Sukky Jun, and Yi Fei Zhang. 1995. Reproducing Kernel Particle Methods. J. f. Num. Meth.
in Fl. 20, 8-9 (1995), 1081–1106. DOI:http://dx.doi.org/10.1002/fld.1650200824

Anders Logg, Kent-Andre Mardal, and Garth Wells (Eds.). 2012. Automated Solution of Differ-
ential Equations by the Finite Element Method (1 ed.). Number 84 in LNCSE. Springer.
DOI:http://dx.doi.org/10.1007/978-3-642-23099-8

L. B. Lucy. 1977. A Numerical Approach to the Testing of the Fission Hypothesis. Astron. J. 82 (1977),
1013–1024. DOI:http://dx.doi.org/10.1086/112164

Fabio Luporini, David A. Ham, and Paul H. J. Kelly. 2016. An Algorithm for the Optimization of Finite
Element Integration Loops. Technical Report. arXiv.org.

Fabio Luporini, Ana Lucia Varbanescu, Florian Rathgeber, Gheorghe-Teodor Bercea, J. Ramanujam,
David A. Ham, and Paul H. J. Kelly. 2015. Cross-Loop Optimization of Arithmetic Intensity
for Finite Element Local Assembly. ACM Trans. Archit. Code Optim. 11, 4 (2015), 57:1–57:25.
DOI:http://dx.doi.org/10.1145/2687415

Leon Moonen. 2001. Generating Robust Parsers Using Island Grammars. In Proceedings of the
Eighth Working Conference on Reverse Engineering 2001. IEEE Computer Society, 13–22.
DOI:http://dx.doi.org/10.1109/WCRE.2001.957806

MPS - 3.2 - Documentation. 2015a. TextGen. (2015). https://confluence.jetbrains.com/display/MPSD32/
TextGen

MPS - 3.2 - Documentation. 2015b. User’s Guide. (2015). https://confluence.jetbrains.com/display/MPSD32/
MPS+User’s+Guide

nvidia. 2015. CUDA C Programming Guide v7.0. (2015).
Kristian B. Ølgaard and Garth N. Wells. 2010. Optimizations for Quadrature Representations of Finite

Element Tensors Through Automated Code Generation. ACM Trans. Math. Softw. 37, 1 (2010), 8:1–
8:23. DOI:http://dx.doi.org/10.1145/1644001.1644009

OPENACC-STANDARD.ORG. 2012. The OpenACC Application Programming Interface Version 2.0a.
(2012).

OpenMP Architecture Review Board. 2013. OpenMP Application Program Interface Version 4.0. (2013).
Pavel Panchekha, Alex Sachez-Stern, James R. Wilcox, and Zachary Tatlock. 2015. Automati-

cally Improving Accuracy for Floating Point Expressions. In PLDI’15, Vol. 50. ACM, 1–11.
DOI:http://dx.doi.org/10.1145/2813885.2737959

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.

http://dx.doi.org/10.1007/978-3-642-35992-7_9
http://dx.doi.org/10.1007/978-3-642-33125-1_8
http://dx.doi.org/10.1145/989393.989437
http://dx.doi.org/10.1090/S0025-5718-1981-0616367-1
http://dx.doi.org/10.1002/fld.1650200824
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1086/112164
http://dx.doi.org/10.1145/2687415
http://dx.doi.org/10.1109/WCRE.2001.957806
https://confluence.jetbrains.com/display/MPSD32/TextGen
https://confluence.jetbrains.com/display/MPSD32/TextGen
https://confluence.jetbrains.com/display/MPSD32/MPS+User's+Guide
https://confluence.jetbrains.com/display/MPSD32/MPS+User's+Guide
http://dx.doi.org/10.1145/1644001.1644009
http://dx.doi.org/10.1145/2813885.2737959


A Domain-Specific Language and Editor for Parallel Particle Methods A:33

Gordon D. Plotkin. 1981. A Structural Approach to Operational Semantics. Techreport DAIMI FN-19 (1981).
DOI:http://dx.doi.org/673965.html

Gordon D. Plotkin. 2004. The Origins of Structural Operational Semantics. Journal of Logic and Algebraic
Programming 60-61, SUPPL. (2004), 3–15. DOI:http://dx.doi.org/10.1016/j.jlap.2004.03.009

Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew TT McRae,
Gheorghe-Teodor Bercea, Graham R. Markall, and Paul HJ Kelly. 2015. Firedrake: Automating the
Finite Element Method by Composing Abstractions. arXiv preprint arXiv:1501.01809 (2015).

Sylvain Reboux, Birte Schrader, and Ivo F. Sbalzarini. 2012. A Self-organizing Lagrangian Particle Method
for Adaptive-Resolution Advection–Diffusion Simulations. J. Comput. Phys. 231 (2012), 3623–3646.

Ivo F. Sbalzarini. 2010. Abstractions and Middleware for Petascale Computing and Beyond. Intl. J. Distr.
Systems & Technol. 1(2) (2010), 40–56.

Ivo F. Sbalzarini. 2013. Modeling and Simulation of Biological Systems from Image Data. Bioessays 35, 5
(May 2013), 482–490.

Ivo F. Sbalzarini, J. H. Walther, M. Bergdorf, S. E. Hieber, E. M. Kotsalis, and P. Koumoutsakos. 2006. PPM -
A Highly Efficient Parallel Particle-Mesh Library for the Simulation of Continuum Systems. J. Comput.
Phys. 215, 2 (2006), 566–588. DOI:http://dx.doi.org/10.1016/j.jcp.2005.11.017

Markus Schordan and Dan Quinlan. 2003. A Source-To-Source Architecture for User-
Defined Optimizations. In Proc. of JMLC 2003 (LNCS), Vol. 2789. Springer, 214–223.
DOI:http://dx.doi.org/10.1007/978-3-540-45213-3_27

Birte Schrader, Sylvain Reboux, and Ivo F. Sbalzarini. 2010. Discretization Correction of General Integral
PSE Operators in Particle Methods. J. Comput. Phys. 229 (2010), 4159–4182.

Birte Schrader, Sylvain Reboux, and Ivo F. Sbalzarini. 2012. Choosing the Best Kernel: Performance Models
for Diffusion Operators in Particle Methods. SIAM J. Sci. Comput. 34, 3 (2012), A1607–A1634.

Andreas Schösser and Rubino Geiß. 2008. Graph Rewriting for Hardware Dependent Pro-
gram Optimizations. In Proc. of AGTIVE 2007 (LNCS), Vol. 5088. Springer, 233–248.
DOI:http://dx.doi.org/10.1007/978-3-540-89020-1_17

Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015. Generating Performance
Portable Code Using Rewrite Rules: From High-level Functional Expressions to High-performance
OpenCL Code. In Proc. of ICFP 2015. ACM, 205–217. DOI:http://dx.doi.org/10.1145/2784731.2784754

The MPI Forum. 2012. MPI: A Message-Passing Interface Standard, Version 3.0. (2012).
Alan Mathison Turing. 1952. The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal

Society of London B: Biological Sciences 237, 641 (1952), 37–72.
Zerksis D Umrigar. 1994. Fully Static Dimensional Analysis with C++. ACM SIGPLAN Notices 29, 9 (sep

1994), 135–139.
Todd L. Veldhuizen. 2000. Blitz++: The Library that Thinks it is a Compiler. In Advances

in Software Tools for Scientific Computing. Number 10 in LNCSE. Springer, 57–87.
DOI:http://dx.doi.org/10.1007/978-3-642-57172-5_2

Markus Voelter. 2013. Language and IDE Modularization and Composition with MPS. In Gen. and Trans.
Techn. in Soft. Eng. IV, Vol. 7680. Springer, 383–430.

Markus Voelter, Daniel Ratiu, Bernd Kolb, and Bernhard Schaetz. 2013. mbeddr: Instantiating a Language
Workbench in the Embedded Software Domain. Automated Software Engineering 20, 3 (2013), 339–390.
DOI:http://dx.doi.org/10.1007/s10515-013-0120-4

Mitchell Wand and Patrick O’Keefe. 1991. Automatic Dimensional Inference. Computational Logic - Essays
in Honor of Alan Robinson (1991), 479–483.

Martin P. Ward. 1994. Language Oriented Programming. Software Concepts and Tools 15, 4 (1994), 147–161.
DOI:http://dx.doi.org/10.1.1.35.6369

Gregory V. Wilson. 2006. Where’s the Real Bottleneck in Scientific Computing? American Scientist 94, 1
(2006), 5.

Christian Wimmer. 2015. Graal – Tutorial at CGO’15. (2015).

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: November YYYY.

http://dx.doi.org/673965.html
http://dx.doi.org/10.1016/j.jlap.2004.03.009
http://dx.doi.org/10.1016/j.jcp.2005.11.017
http://dx.doi.org/10.1007/978-3-540-45213-3_27
http://dx.doi.org/10.1007/978-3-540-89020-1_17
http://dx.doi.org/10.1145/2784731.2784754
http://dx.doi.org/10.1007/978-3-642-57172-5_2
http://dx.doi.org/10.1007/s10515-013-0120-4
http://dx.doi.org/10.1.1.35.6369

	1 Introduction
	2 Particle Methods
	3 The Parallel Particle Mesh Language PPML
	3.1 A Simple Application Example
	3.2 Advantages over Conventional Programming
	3.3 Limitations in the Current PPML Design

	4 A Domain Metamodel and Type System for Particle Methods
	4.1 Domain Metamodel
	4.2 Types and Dimensions
	4.2.1 Type Hierarchy
	4.2.2 Syntax of Expressions
	4.2.3 Formal Type System

	4.3 Dimension Annotations

	5 The PPM Environment: Architecture and Implementation
	5.1 Internal Structure of PPME
	5.2 Code Generation
	5.2.1 Transformation Process
	5.2.2 Example Transformation

	5.3 Case Studies
	5.3.1 Gray-Scott Reaction-Diffusion System
	5.3.2 Lennard-Jones Molecular Dynamics
	5.3.3 N-body Simulation


	6 Numerical Optimizations and Tool Integration
	6.1 Tool Integration
	6.2 Accuracy Optimization
	6.3 Impact on Runtime Performance

	7 Evaluation
	8 Related Work
	9 Conclusions

