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Abstract 

We investigate finite-rank intersection type systems, an- 
alyzing the complexity of their type inference problems 
and their relation to the problem of recognizing seman- 
tically equivalent terms. Intersection types allow some- 
thing of type ~1 A r2 to be used in some places at type 
71 and in other places at type ~2. A j&de-rank intersec- 
tion type system bounds how deeply the A can appear 
in type expressions. Such type systems enjoy strong 
normalization, subject reduction, and computable type 
inference, and they support a pragmatics for implement- 
ing parametric polymorphism. As a consequence, they 
provide a conceptually simple and tractable alternative 
to the impredicative polymorphism of System F and its 
extensions, while typing many more programs than the 
Hindley-Milner type system found in ML and Haskell. 

While type inference is computable at every rank, we 
show that its complexity grows exponentially as rank in- 
creases. Let K(0, n) = n and K(t + 1, n) = 2K(t,n); we 
prove that recognizing the pure X-terms of size n that 
are typable at rank k is complete for DTIME[K(k- I, n)]. 

We then consider the problem of deciding whether two 
,&terms typable at rank Ic have the same normal form, 
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generalizing a well-known result of Statman from simple 
types to finite-rank intersection types. We show that 
the equivalence problem is DTIME[K(K(k - 1, n), 2)]- 
complete. This relationship between the complexity 
of typability and expressiveness is identical in well- 
known decidable type syste.ms such as simple types and 
Hindley-Milner types, but seems to fail for System F 
and its generalizations. The correspondence gives rise 
to a conjecture that if 7 is a predicative type system 
where typability has complexity t(n) and expressiveness 
has complexity e(n), then t(n) = s2(log* e(n)). 

1 Introduction 

With intersection types, something of type rl A ~2 must 
satisfy both types, so it can be used in some places 
at type rl and in other places at type 72. Most prior 
work has obtained this kind of type polymorphism with 
universal quantifiers, where something of t;ype VQ.T sat- 
isfies the instantiated type T[(Y:=~‘] for every type 7’ 
and hence can be used at each instantiated type. Poly- 
morphism of types is essential for code reuse, e.g., in 
implementing operations on generic containers such as 
lists, trees, etc. 

It is well known that it is undecidable whether a X- 
term M is typable with intersection and function types, 
because this holds exactly when M is strongly normal- 
izable. However, the rank-2 restriction of intersection 
types, studied by van Bake1 [vB93] and Jim [Jim96], has 
computable type inference, and recognizes strictly more 
typable terms than the Hindley-Milner system at the 
core of ML and Haskell type inference. The finite-rank 
restriction on intersection types bounds how deeply the 
A can appear in type expressions, counting nesting in 
the left arguments of the --+ type constructor. Recently 
it has been shown that finite-rank intersection types 
have computable type inference for any rank [KW99]. 
As such, they provide a conceptually simple alternative 
to the impredicative polymorphism of System F and 
its extensions, supporting a pragmatics for implement- 
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ing parametric polymorphism. Finite-rank intersection 
types are being investigated in the context of the Church 
Project’s experimental flow-type compiler.’ 

We analyze the complexity of two decision problems 
concerning the rank-k-bounded intersection type system 
for the X-calculus: 

Typability: Given a pure X-term of size n, can it be 
typed? 

Expressiveness: Given two typable pure X-terms of 
size n, do they have the same normal form? (This 
is a simple form of detecting program equivalence.) 

The Kalmar-elementary functions K(t, -) are defined so 
that K(O, n) = ti and K(t + 1, n) = 2K(t1n). We prove 
that rank-k typability is DTIME[K(~ - 1, n)]-complete 
and that rank-k expressiveness is DTIME[K(K(~ - 
1, n), 2)]-complete.’ 

The upper bound on typability is proven purely syn- 
tactically, by giving a simplifier Simplify(k) such that 
the pure X-term M is typable at rank lc iff the X-term 
Simplify(k)(M) satisfies a polynomial-time test, where 
size(Simplify(k)(M)) < K(k - l,p(size(M))), and p is 
a polynomial function. The upper bound is comple- 
mented by a tight lower bound, borrowing techniques 
for proving bounds on typability for F,, where compu- 
tation time bounded by Kalmar-elementary functions is 
simulated by any correct type-inference algorithm. 

The bounds on expressiveness are both good and 
bad, because as the expressiveness of a language grows, 
so does the difficulty of reasoning about it. Enormous 
lower bounds for expressiveness means that the lan- 
guage really is expressive. Enormous lower bounds on 
typability indicates computation that we think of as be- 
ing at runtime can be simulated at compile time. 

These results are interesting from the perspectives 
of theory as well as practice. Obviously, the results on 
typability make clear that the delineation between “de- 
cidable” and “undecidable” type inference is hardly the 
place to draw the line-computations taking K(lO,n) 
steps are no more desirable than ones that do not termi- 
nate. However, similar complexity bounds on typability 
in ML are not in agreement with the practical expe- 
rience of ML programmers, who experience ML type 
inference as being efficient. The precise impact of these 
astronomical bounds in practice remains to be seen. 

What becomes very clear in this analysis is how 
bounds on typability and expressiveness are intimately 
related. In particular, the key unifying idea is the con- 
struction of large polymorphic iterators which, while 
minimizing the initial program size, maximize the num- 
ber of times they can compose a function with itself. 
These iterators are polymorphic in that each iteration 
can use a different type. We can give identical exam- 
ples of this relationship for well-known decidable type 
systems, such as simple types and ML types, but the 

l(URt:http://www.cs.bu.edu/groups/church/). 
of ~~~~~~~~~~~~~~2~ig=h.10’Q~500, thus K(K(4,2), 2) is a stack 

relationship seems to fail for System F and its ex- 
tensions. The correspondence gives rise to a conjec- 
ture3 concerning the essential relationship between de- 
ciding typability and language expressiveness: if 7 is a 
predicative type system where typability has complex- 
ity t(n) and expressiveness has complexity e(n), then 
t(n) = R(log* e(n)).” 

2 Intersection Type Systems 

Untyped Contexts and Terms: 

w, Z, y, z E TermVar 
I C E Context ::= q 1 x ) (X2.C) 1 (Cl C2) 

M, N, P, Q E Term = {C E Context 1 
C does not mention Cl) 

Untyped Notions of Reduction 
(contextually closed in the usual manner): 

(Xx.M)N +@ M[x:= N] 
[r.;l$Q -+T (Xx.NQP 

2. +pr M[z := N] 
(XKZ.M)N +oK M 

Syntactic Sugar: 

(X1z.M) 
(AKZ.M) 
(let y = N in P) 

where z E FV(M) 
where z $Z FV(M) 

(let1 y = N in P) E (Acry.P)N 
(1etK y = N in P) z (XK~.P)N 

Figure 1: Untyped calculus. 

In figure 1, we define the X-calculus (untyped) and an 
additional notion of reduction, T, the purpose of which 
is explained in section 3. We call the terms of the A- 
calculus untyped to indicate they contain no type an- 
notations. Note that terms are defined as holeless con- 
texts. The notation C[Mr, . . . , n/i,] denotes the term 
that results from filling the 72 holes of context C from left 
to right. We ignore issues of variable capture, renam- 
ing, and o-conversion by following Barendregt’s con- 
ventions [Bar84]. 5 Let FV(M) denote the set of free 
variables of term M. Notice our conventions for distin- 
guishing I- and K- abstractions and redexes. 

The syntax for types appears in figure 2. There are 
two mutually defined type domains: 7’ includes type 
variables and function types between 7” and 7’ , while 
7” includes intersection types, which are sets of ele- 
ments in 7’. This restricted grammar simplifies type 

3This conjecture was advanced informally by one of us (Mair- 
son) several years ago. It may well need modification and amend- 
ments, and it may even be false. But the results of this paper 
show it is a reasonable first guess as to how one relates typability 
and expressiveness in complexity-theoretic terms. 

‘The expression log* n is the minimal natural number m such 
that log(“‘I n < 1, where log(‘) . 1s the i-fold self-composition 
of the log fur&on. The function log’ serves as an inverse to 
KC-7 2). 

‘For example, in the definition of T-reduction in figure 1, 
these conventions guarantee that z does not appear free in Q. 
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Types: 

Type Environments: 

a, P, y E TyVar 
7, p E r-’ 
U,PEP 

::= a ) (u + 7) 
::= A{Tl ,..a ,Tn} where n 2 1 

A E TypeEnv = ?(TermVar x F) 
d(x)=A{71,... ,Trt} 
d/a:={(y:r)j(y:7)Edandy#z} 

where {q,... ,:rn) = {T I(3: 

Dom(d)={z~(z:~)Ed} 
Ran(d) = {u 12 E Dam(d), d(a) = a} 

Syntax for Type-Annotated Contexts and Terms: 

Cr E PreTContext ::I= q !’ 1 2’ 1 (XZ~.&)~ 1 (CT0 {C;l,. . . , Cnn})r 
M’, iV’ E PreTTerm =: {CT E PreTContext 1 C’ does not mention [I!} 

System Z (Typing Rules): 

VAR 
du{z:7}t-z,z?:7 

HOLE 
dk0,UT:7 

ABS A t C, dr’ : T’; u = d(z) if x E Dam(d); 7 = (u --t T’) 

d/x t- (kc), (AZ-.&‘)’ : 7 

APP dkC,&O:T,,; V”- d.tC’ CT’. i-1’ 2 ) z . l-i; TO = (A(71 ,a*- ,Tn) + 7) 

dudlu . ..ud.,l-(CC'),(&O{(Cy ,..., c:n})T:7. 

t’ype-Annotated Contexts, Terms, and Parallel Contexts: 

TContext = {C? E PreTContext 1 A t- C, & : 7 derivable in System Z} 
TTerm ={@~PreTTermIdt-M,M * T : -r derivable in System 1) 

Cpr E ParContext = { dr E TContext 1 A I- C, er : 7 derivable in System 1, C has one hole } 

t’yped Notions of Reduction: 

Redex/contractum relations (PI and 0~ handled like p): 

((xx”.Mqr’{N;1;... ,N&;})r -tp MT [x11 :=NF ) . . . ) x?m :=Ngp] 

(((XZ?N~~)~~{P~ ,. . . ,P,‘-})rl{Q;il,. . . ,Q;;})- -q- ((Xx”.(NT’{Q;il,. I. ,Q$})“)‘“““‘{P~, . . . ,P$})r3 

Contextual closure, for X E {P,T}: 

MT -+x NT _ MT G Cp’[M;‘,... , Mjr’], NT = Cpr[N;‘, . . . ,Nij], and V!=,. M,T’ -+x N,7’ 

Recovering the Type Environment: 

TEnv(zT) = {x : 7) 

TEnv((kf.M’)“) = TEnv( M’)/z 
TEnv((M’ {N;‘, . . . , Nkm))I’) = TEnv(M’) UTEnv(Ny) U ... UTEnv(NA-) 

Figure 2: System Z. 
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inference but does not reduce the expressive power of 
the intersection type system. Instead of the traditional 
71 A . ..Arn.wewrite/\{rl,... ,rm}toaidintreatingA 
in an associative, commutative, and idempotent (ACI) 
manner. We say that members of 7’ are -+-types and 
members of 7” are A-types. Note that -+-types in- 
clude type variables in addition to function types. We 
identify A-types that differ only in the order of their 
members. By convention, whenever an intersection type 
A{Tl,. . . , rn} appears in a formal statement, we require 
all of 71, . . . . r, to be distinct. Let TV(X) denote the 
set of type variables occurring in X, where may be a 
type or something containing types. 

A A-type is trivial if it contains exactly one +-type. 
We may omit the A( } notation for trivial intersection 
types when the context can distinguish them from +- 
types. Thus, the type A{A{a} + p} --+ cx can be ab- 
breviated as LY + /3 + o. 

Type environments are sets of bindings, where each 
binding associates a term variable with a +-type. The 
same term variable can be associated with multiple 
types. The lookup function d(z) returns a A-type con- 
taining all the bindings of z in A. This representation 
simplifies type inference. 

Figure 2 also introduces a syntax for typed 
(pre)contexts and (pre)terms. As in the untyped case, 
(pre)terms are holeless (pre)contexts. As in most explic- 
itly typed syntaxes, variables are annotated with their 
types. For convenience, we also annotate all subterms 
with their derived type. Sometimes, we will omit some 
of the type annotations when the types are not relevant 
or can be uniquely reinserted. 

An unusual feature of the explicitly typed term syn- 
tax is that the syntax for applications allows repeat- 
ing the argument many times. This is necessary to 
account for the finitary polymorphism of intersection 
types, where a polymorphic function explicitly lists the 
different types at which its argument will be used. For 
each argument type, we need a typing derivation prov- 
ing the argument to be of that type. Our explicitly 
typed presentation merely gives a term syntax for these 
multiple typing derivations of the argument. As an ex- 
ample, consider the term A?& below, in which two dis- 
tinct type-annotated versions of Xx.z are provided as 
the argument to a type-annotated version of Xw.ww: 

?dl = /\{a} + Ct 
Td2 = A{Tidl} + cdl 
ra = A{%z, ‘Qdl} + Ed1 
$fTa = ((~~A~Tid2rridl~~(~Tid2{~ridl})ridl)ra 

((~~Atridl~~~Tidl Td2 
1 

(Xx 
AfQ).$QL)ridl ))7idl 

As with intersection types, we will sometimes omit the 
{} for singleton argument sets. 

A context (resp. term) is a pre-context (resp. pre- 
term) that is typable in System Z, the unrestricted 
system of intersection types. In the typing rules of 
System Z (see figure 2) the judgements are quadruples 
instead of the usual triples because the typing rules work 
simultaneously on both untyped and explicitly typed 

terms. We define all of the following when a judgement 
A t M, A? : r is derivable in System 1. 

1. The untyped X-term M is typable with type envi- 
ronment A and derived type r. 

2. The (explicitly) typed term A? is well typed with 
the same type environment and derived type. 

3. The type erasure of &, written l&f’I, is the un- 
typed term M. 

Here are two examples of System Z judgements, using 
ridi, 7;d2, ra, and tin from above: 

if.0 : ?-idl, W : T-j&!} t WW, (W7id2{W~d1})~a’ : r,dI 

0 b (Aw.ww)(Xx.x), A@ : Ta 

It is easy to extract (triple-based) derivations in either 
the implicit or explicit typing style from a System Z 
derivation. 

In System 2, A-introduction only occurs at argu- 
ments of applications, and so it is folded into the APP 
rule. This is consistent with both the type syntax, 
where the A is only used to the left of the +, and 
the ABS rule, where the parameter must have a A- 
type. Elimination of A-types only occurs at X-term 
variables, and so is absorbed into the VAR rule. The re- 
stricted placement of A-introduction and A-elimination 
simplifies type inference, but types the same set of (un- 
typed) terms as other intersection type systems, the set 
of strongly P-normalizing terms [CDCV80, CDCV81, 
RDRV84, vB93]. 

The APP rule requires each of the alternatives in the 
argument of an application to be a typed version of the 
same untyped A-term. This is similar to the formulation 
of XcIL, the flow typed intermediate language being used 
in the Church Project [WDMTSX]‘. Key differences 
are that (1) A in /\‘rL is not ACI and (2) XciL allows 
intersection introduction and elimination at arbitrary 
positions. 

In the VAR rule, the use of A permits the introduc- 
tion of unused bindings, which are necessary for subject 
reduction to hold.’ In the ABS rule, if x $Z Dam(d), 
then it may be assigned an arbitrary A-type. In the 
absence of unused bindings, the test x E Dam(d) dis- 
tinguishes between Xr and xx abstractions. 

The syntax for typed applications, which allows 
multiple representatives of what is a single argument 
subterm in the untyped version, makes it impossible 
to use the ordinary definition of reduction on explic- 
itly typed terms. For example, the untyped X-term 
M = (Xz.w(x Pr)(z Pz))(Xz.(Ay.y)z) ,&reduces in one 
step to N = (~x.w(x4)(xP~))(~z.a). However, the 

‘Contains a discussion of various approaches to explicitly 
typed systems of intersection types. 

7E.g. consider {y : a,z : y} k (Xz.y)z, (Xz7.ya)z7 : (Y and 
(xz’.y”)%7 +p y-. If VAR did not allow unused bindings, then 
wecouldshow{y:a}Cy,y”:abutnot{y:or,z:~)t-y,y”: 
cr. But the latter’s unused binding (z : 7) is needed for subject 
reduction. 
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typed term corresponding to M might be (including 
only the important types): 

n;r= (Xx ACAtrl}~rl,ACT2}~T2},~(~~~)(~~*)) 

{(xz"~"?(xy.y)z), (Xz"W(Xy.y)z)} 

It takes tzuo ordinary P-reduction steps to transform &f 
into the term which corresponds to N: 

Furthermore, if these steps are performed sequentially, 
the intermediate result is ill-typed and corresponds to 
no untyped X-term. To solve this problem, in fig- 
ure 2 parallel contezts (members of the set ParContext) 
are used in defining the contextual closure of reduc- 
tion to force each reduction step at the typed level 
to correspond to a reduction step at the untyped 
level [KW94, WDMTSX]. Additionally, the typed p- 
reduction rule models a single untyped p step by simul- 
taneously substituting each typed argument represen- 
tative into the occurrences of the bound variable that 
share the same type. 

An explicitly typed term contains the entire infor- 
mation of a derivation which proves it to be well typed 
except for any unused type assumptions in the type en- 
vironment . This result is formalized in the following 
theorem, which uses the TEnv function defined in fig- 
ure 2 to recover a type environment from a term. 

Theorem 2.1 (Typed Terms are Derivations). If 
A? E TTerm, then TEnv(&) I- Ii6i’l, fir : T is deriu- 
able in System Z. cl 

Theorem 2.1 allows us to identify typed terms with typ- 
ings in which every type assumption is used. System Z 
also enjoys other important properties: 

Theorem 2.2 (Subject Reduction). Let X range 
over {/3,T}. If A I- M, A? : r holds then (I) M +X iV 
implies the existence of an fi such that Ii?’ -+x fir 
and A I- N, fir : r holds; (2) &lr -)x fiTI implies that 
r’ = T, A k f$“l, p : 7, and I&f’1 +X IA7l. 0 

Theorem 2.3 (Strong Normalization is Typabil- 
ity). M is typable in System Z iff M is strongly /3- 
normalizing, i.e., there are no infinite P-reduction paths 
starting at M. cl 

By Theorem 2.3, the term (Xw.ww)(Xz.z) is typable in 
System Z because its only ,0-reduct is (X~.Z); we saw a 
typing for this term above. But (Xw.ww)(Xx.xx) is not 
typable in System Z because it has no P-normal form. 

We introduce the definitions for the rank of types 
and explicitly typed terms in figure 3. The rank of 
a type measures how “deeply” non-trivial A-types are 
nested to the left of -+‘s. The rank of a +-type is 0 if 
all A-types occurring within it are trivial. The rank of a 
A-type is 0 if it is a set containing a single -+-type with 
rank 0, and it is 1 if it is a set containing two or more 
+-types each with rank 0. Otherwise, the rank of either 

Auxiliary FunctIona: 

inc(0) = 0 clec(0) = 0 
inc(n) = n + 1 , if n 2 1 dlec(n) = n - 1 , if n 2 1 

Rank of Types: 

rank(l) = 0 
rank(a + T) = max{inc(rank(cr)), rank(r)} 

rank(l\{T}) = rank(T) 
rank(A{q ,*.. ,rn)) = 

max{l,rank(71), . . . , rank(r,)} , if n 2 2 
rank((al,. . . ,un}) = max,(rank(al), . . . ,rank(cn)} 

Extracting Variable Types from Typed Terms: 

bind-types(z7) = 0 

bind-types((Xz”.&fr’)7) = {u} U bind-types!&‘) 

bind-types((i@ (87,. . . , I?$’ })‘) = 

bind-types(&‘) U U l.,,<m bind-types(&%ri) -- 
env-types(&) = bind-types(@) U Ran(TEnv(@)) 

Eank of Typed Terms: 

rank(A?) = inc(rank(env-types(&V))) 

Figure 3: Definitions of rank used for System zk. 

a +-type or a A-type is one more than the maximum 
number of “lefts” taken at arrows in all paths from the 
root of the type to non-trivial A-types occuring within 
the type. Rank 0 types correspond to the traditional 
notion of simple types. The notion of rank extends to 
typed terms. Given a typed term I’&~, the environment 
rank of a bound variable is the rank of the A-type anno- 
tating the abstraction parameter binding the variable, 
and the environment rank of a free variable .z is the rank 
of the A-type containing all the -+-types at which z is 
used in &. The environment rank of & is the maxi- 
mum of the environment ranks of all its free and bound 
variables. The rank of I& is 0 if its environment rank is 
0, and otherwise is one more than its environment rank. 
Note that the rank of a typed term is never 1. Ralik 
0 terms correspond to the traditional notion of simply 
typable terms. It can be shown that if p is a A-type or 
+-type occurring in A?, then rank(p) 5 ranlc(A?). 

Given an untyped term M, define minrank(M) as the 
rank of the minimum rank typing for M (if one exists). 
For example: 

Our definition of rank is equivalent to others found in 
the literature [Lei83, Jim96, vB93, KT92], except that 
we consider the rank of typed terms instead of the rank 
of derivations, and the rank of a typed term is not af- 
fected by unused type assumptions. 

94 



The restriction of System Z to finite-rank k, called 
System Zk, is the restriction deriving only judgements 
of the form A t M, ii? : 7 where rank(&) 5 k. The- 
orems 2.1 and 2.2 carry over to System Zk, but theo- 
rem 2.3 does not. 

3 A Kalmar-elementary Upper Bound for System Zk 
Typability 

This section establishes a Kalmar-elementary upper 
bound for the complexity of type inference in System zk 
(for every k). The type inference problem for System zk 
is as follows: given an untyped term M of size n, ei- 
ther find a typed term &lr in System zk such that 
I&‘[ = M or determine that such a term does not exist. 

Theorem 3.1 (Upper bound for System zk Ty- 
pability). The type inference problem for System zk 
is in DTIME[K(IC - l,p(n))], where n is the size of th; 
given term, and p is a polynomial function. 

We prove the theorem by developing a naive type infer- 
ence algorithm. Our main criteria for this algorithm is 
that we can analyze its time complexity and show that 
it has a Kalmar-elementary upper bound. 

Our type inference algorithm for System zk is in- 
spired by the following idea. The let-style polymor- 
phism supported in Hindley-Milner type systems is 
equivalent to inlining the let-bound definitions and typ- 
ing the resulting program with simple types. Because 
this expands the program at most exponentially [Mit96] 
and type inference for simple types takes polynomial 
time, this implementation of Hindley-Milner polymor- 
phism gives an exponential-time type inference algo- 
rithm and thus an upper bound on the complexity of 
Hindley-Milner type inference. We extend this strat- 
egy to type inference for finite-rank intersection types. 
Along the way, we encounter a few snags, but the basic 
approach works. 

Our type inference algorithm Infer-Z(k) for Sys- 
tem ZI, proceeds in three stages. First, we reduce 
the problem of System zk type inference for an arbi- 
trary untyped term to a restricted form of type infer- 
ence for a “simplified” (and potentially much larger) 
term. Given a untyped term M of size n, we apply 
a transformation Simplify(lc) to obtain a untyped term 
N whose size is less than K(k - l,p(n)), where p is 
a polynomial function. This transformation preserves 
System zk typability (with any derived type and type 
environment). Furthermore, the minimal-rank typing 
p of N satisfies a predicate B-Simpler, iff M is ty- 
pable in System zk. Second, we apply a polynomial- 
time type inference algorithm B-Typing to N that yields 
(if it exists) a System zk typing p for N such that 
B-Simplek(p). If B-Typing fails on N, then M is not 
typable in System zk. Finally, if B-Typing yields a typ- 
ing P, then the typing can be pulled back through 
Simplify(k) to yield a System zk typing for M. This 
algorithm runs in time O(K(k - l,p(size(M)))). Sec- 
tion 4 shows that this bound is tight: there are terms 

for which type inference must take Kalmar-elementary 
time. 

3.1 The Simplification Stage 

Intuitively, a term typable in System zk harbors a cer- 
tain “potential” for finitary polymorphism that can be 
reduced whenever a p reduction copies a polymorphic 
argument. For example, consider the reduction se- 
quence MI -fp Mz -p MS, with Ml, MS, and MS 
as follows: 

Ml E (Af.v(fXx.x)(f(Xy.XZ.y)))(Aur.zuw) 
A42 E v((xw.ww)(xx.x))((hJ.ww)(Ay.xz.y)) 
MS E v((xx.x)(xx.x))((xy.Az.y)(xy.xz.y)) 

It holds that minrank(M1) = 3, minrank(M2) = 2, 
and minrank(Ma) = 0. In this example, the minimum 
rank shrinks with each reduction as polymorphic func- 
tions like Xw.ww, Xx.x, and Xy.Xz.y are duplicated into 
monomorphic copies. 

We will construct Simplify(k) out of a sequence of 
simpler Simplify1 transformations. Simplify1 takes ad- 
vantage of the above-described decrease in polymor- 
phism due to P-reduction. Because ,&reduction alone 
is insufficient, the Simplify1 algorithm has two major 
components: (I) reducing to normal form w.r.t. the let- 
lifting transformation T and (2) performing the com- 
plete development of all ,&-redexes. 

Let us first review the notion of complete develop- 
ment. A development of a family 3 of redexes in a term 
M is a reduction sequence beginning with M contract- 
ing only redexes which are in 3 or are residuals of re- 
dexes in 3. This can be viewed as marking the redexes 
in 3 and then only allowing contractions of marked re- 
dexes. A complete development of a redex family leaves 
no marked redexes in its result. It is well known that the 
complete development of any ,&redex family 3 in’the 
X-calculus ends in a uniquely determined term [Bar84]. 
Let CD@, be the function such that CD@,(M) is the re- 
sult of a complete development of the family of all @I- 
redexes in M. 

The notion of T-reduction is necessary because 
merely performing a complete development of all 
Pi-redexes in a term will not always lower the 
minimal rank. For example, consider M = 
((X~.~y.~yy)w)(X~.a), which has minrank(M) = 2, 
and N = CDp,(M) = (Xy.wyy)(Az.z), which aho 

has minrank(N) = 2. In this case, it is neces- 
sary to perform a second complete development, P = 
CDp,(N) = w(Az.z)(Xz.z), to reduce the minimal rank 
to minrank(P) = 0. The problem in this example is that 
M has an “implicit” redex of (Xy.zyy) applied to (Xzz) 
that is blocked until the outermost redex of M is con- 
tracted. The function and argument of such an implicit 
redex are companions. 

The purpose of the let-lifting transformation 
((Xx.N)P)Q +T (Xx.NQ)P is to join the companions 
of an implicit P-redex in an explicit one. It works by 
moving Q, the potential argument companion of an 
implicit redex, through the blocking redex (Xx.. . . )P 
to become the argument of N, where it is closer to 
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any function companion that might be in N. It is 
easy to show that T-reduction is both confluent and 
strongly normalizing, so that repeated T-reductions will 
eventually expose all implicit redexes. Let T-nf de- 
note the function such that T-nf(M) is the (unique) 
T-normal form of M. See [KW95] for a discussion of 
similar notions of reduction in the literature. There 
is a close connection with notions of generalized p- 
reduction which can contract the implicit redexes di- 
rectly [Kam96, KRW98]. 

Making all implicit redexes into explicit redexes 
serves two major purposes in System zk type infer- 
ence: (1) it allows postponing @K-redexes forever, 
and (2) it makes a subsequent complete development 
of all &redexes reduce (a component of) the rank 
Of a system zk typing. Purpose (1) is important 
because contracting ,&-redexes can alter typability 
by discarding an untypable argument. For example, 
(&y)(&u.ww) is not typable in System Z, but it Pk- 
reduces to the simply-typable term y. As an exam- 
ple of purpose (2), reconsider the term M from above. 
Observe that T-nf(M) = M’ = (Xz.(Xy.zyy)(Xz.z))w 
and CDo,(M’) = N’ = w(xz.z)(xz.r) and notice that 
minrank(M’) = 2 but ,minrank(iV’) = 0. 

Define Simplify1 = CDpI o T-nf. Because Simplify1 
is composed out of a- and T-reduction steps, it is de- 
fined on both untyped and typed terms. Based on the 
above discussion, we might hope that Simplify1 lowers 
the minimal rank of a term. Unfortunately, free vari- 
ables, AK abstractions, and unapplied XI abstractions 
contribute to the rank of a typed term but are not re- 
moved by Simpiifyl. For example, Simplify1 acts as the 
identity on the following terms, even though they have 
non-zero minimal rank: 

M4 = (Xw.ww) minrank(M4) = 2 
Ms = (~~.y)(~w.ww) minrank(M5) = 3 
MS = w(Xz.z)(w(Xy.Xz.y)) minrank(Ms) = 2 

Extracting Types of Variables from a Typed Term: 

AB(i,a:) = 0 
AB(0, (X~~.n;r~‘)~) = {(B, a)} u AB(0, &‘) 
AB(i + 1, (&z”&~‘)~) = ((A, a)} u AB(i, &F’) 
AB(i + 1, (XK~“.l\;ll’)T) = {(B, a)) U AB(i, liir’) 
AB(i,(&@‘{tip,... ,&“‘})‘) = 

AB(i + 1, I&‘) u Ul<i<m AB(0, fi*“) -- 

As(i@) = {u 1 (A, 0) E AB(0, tiT) } 
Bs(I?l) = { u 1 (B, o) E AB(0, I&) } U Ran(TEnv(&)) 

Rank of Typed Terms: 

A-rank(@) = inc(rank(As(fiT))) 
B-rank(&) = inc(rank(Bs(I@))) 

Figure 4: Definitions of A-rank and B-rank. 

To show that Simplify1 somehow makes type infer- 
ence simpler, we decompose the rank of a typed term 
into components we call A-rank and B-rank, computed 
by functions A-rank and B-rank defined in figure 4. The 

A-rank of a typed term summarizes the contribution of 
(possibly implicitly) letr-bound variables to the rank, 
while the B-ran’k summa&es the contribution of all 
other variables. The types of A-bound variables are par- 
titioned by the function A@;, which maintains a count 
of potential unpaired argument companions as it de- 
scends into a term. Any ,41 abstraction encountered 
while the count is a non-zero is the opc:rator of an 
explicit or implicit PI redex, and its parameter type 
is marked as contributing to the A-rank, All other 
variable declarat,ions and free variables contribute to 
the B-rank. It holds that the A-rank and B-rank of 
a typed term are preserved by T-reduction and that 
rank(&) = max(A-rank(d’), B-rank(&)}. Here 
are some examples of terms with their minimal ranks 
and the A-ranks and B-ranks of their minimally ranked 
typings: 

term minrank A-rank B-rank 
z = (Xzx) 0 0 0 

R1 = (Xw.ww) 2 0 2 

R2 = (Ay.yRl) 4 0 4 

(XY.YWI 3 3 2 

(Xz.z(ZRl)&) 4 4 3 

(XZ.~(ZR~)R~) 5 5 4 

The following lemma shows that A-rank, not rank, 
is the real measure of the polymorphic ‘potential” of a 
derivation reduced by every application of Simplifyl. 

Lemma 3.2. 

1. If h? is a typed term in System X, then 
A-rank(kT) 2 inc(A-rank(Simplifyl(@))), 
B-rank(It?) 2 B-rank(Simplifyl(A?)), and 

size(Simplifyl(LP)) < 2p(si”(ti7)), where p is a 
polynomial function. 

2. IfSimplifyl(M) = N, fir is a typed term in System 
2, and Ia’1 G N, then there is a well typed term 
I@ such that I&f’1 G A4 and Simplifyl(@) = fir. 
Moreover, &fT can be constructed in time polyno- 
mial in the size of I?. 0 

Let the predicate B-Simplek(tir) hold iff 
A-tank(Ib?) = 0 and B-rank(Gr) <E k. Let 
Simplify(k) = Simplifyl”-’ (the (k -. 1)-fold self- 
composition of Simplifyl). Because Simplify(k) is 
composed out of PI- and T-reduction steps, it is defined 
on both untyped and typed terms. The reason for 
k - 1 rather than k in the definition of Simplify(k) is an 
artifact of arithmetic on ranks - simplifying a rank-2 
derivation reduces the A-rank to 0 in one step. 

Theorem 3.3. 

Z. If A? is a typed term in System 2, then (f) 
B-Simplek(Simplify(k)(&)) ifl iI? is a term in 
System zk and (2) size(Sitnplify(k)(@)) < K(k - 
l,p(size(it?))), where p is a polynom#ial function. 

96 



2. If Simplify(lc)(M) = N, fiT is a typed term in 
system Zk, Ifi”1 = N, and B-Simpk!k(+), then 
there is a typed term iI? in System zk such that 
I&f71 = M and Simplify(/c)(@) = fir. Moreover, 

I& can be constructed in time polynomial in the 
size of fir. cl 

This theorem justifies the use of Simplify(k;) in 
System ZI, type inference. M is typable in System Zk 
iff the expanded term Simplify(L)(M) has a System zk 
typing that is B-Simplek. Morever, any typing in- 
ferred for Simplify(k)(M) can be pulled back through 
Simplify(k) to get a typing for N. - 

3.2 The Type Inference Stage 

We have developed an algorithm B-Typing that, for a 
given k, is a type inference algorithm for the subset 
of untyped terms with typings in System zk that sat- 
isfy the predicate B-Simplek. Given a term M in T-nf, 
the invocation B-Typing(M, k) either succeeds with a 
System zk typed term whose erasure is M or it fails. 

Space limitations preclude us from presenting the 
algorithm in detail. Instead, we give a brief sketch of 
the algorithm and summarize its properties. 

3.2.1 Sketch of Algorithm B-Typing 

B-Typing(M, kc) is defined in terms of the auxiliary al- 
gorithm BT(N, e, d, k), whose parameters have the fol- 
lowing meaning: 

l N is a subterm of the term M. 

l e is a rank environment that maps each free vari- 
able in N to the upper bound on the rank that 
can be inferred for the binding type of the vari- 
able. We shall call this quantity the env-rank of 
the variable. If e(z) = 0, then all occurrences of 
x are constrained to have the same simple type. 
If e(x) = 1, then all occurrences of x must have 
simple types, but they need not be the same. If 
e(x) = h > 2, then all occurrences of z must have 
types whose rank is less than h. The initial rank 
environment einit binds all free variables of the top- 
level term M to dec(k). 

l d is an upper bound on the rank of the derived 
type inferred for N. 

l k is the upper bound on the B-rank of N, as well 
as on the whole term M. This parameter never 
changes. 

The call BT(N, e, d, k) either fails, or it succeeds by re- 
turning a typed term NT whose erasure is N and which 
satisfies the following properties: (1) rank(r) 5 d; and 
(2) rank(TEnv(tiT’)(z)) 5 e(a), for all x in FV(M) 

The BT algorithm extends the bottom-up type infer- 
ence algorithm for simple types (such as algorithm PT 
in [Mit96]) to handle non-zero B-rank. At an applica- 
tion site (including leti and l&K), the types inferred for 

free variables whose env-rank is 0 and that also appear in 
both the operator and operand must be unified, just as 
in the algorithm for simple type inference. However, the 
types inferred for a free variable z having an env-rank 
rank greater than 0 are not unified; instead, they are 
implicitly unioned together in the resulting typed term, 
and later appear as components of an intersection type 
in the enclosing AIX binding construct. 

3.2.2 Properties of Algorithm B-Typing 

The important properties of algorithm B-Typing are 
summarized in the following theorem: 

Theorem 3.4. 

1. B-Typing(M, k) succeeds with a System zk typed 
term A? such that [A?[ = M iff B-Simplek(M) 
holds. 

2. B-Typing(M, k) succeeds or fails in time polynomial 
in size(M) . 0 

B-Typing runs in polynomial time because it is a 
monovariant analysis, i.e., it analyzes each subterm at 
most once. The intuition behind why B-Typing can 
be monovariant is the following. If B-Simplek(G’) 
holds, then there is a well typed term NT such that 
B-Sirnplek($) holds, 1&C’] E IN”], and every use of 
the APP rule in deriving i? can be replaced by a use 
of the following restricted rule: 

Au A’ k (MN), (tiT {firl})7~ : ~2 

In other words, even though the typing p may mention 
non-trivial A-types, each application argument need be 
typed with only one subderivation. For example, the 
types of the terms RI, and R2 introduced at the end 
of Section 2 can have typings inferred by B-Typing even 
though they are not simply typable. 

The fact that System 21, type inference takes poly- 
nomial time for B-Simplek terms but can take Kalmar- 
elementary time in general indicates that requiring an 
A-rank of 0 is a strong constraint and that the high 
compkxity of general type inference for System zk re- 
sults from performing multiple typing derivations for 
the terms that are letI-bound to variables. 

4 Recognizing Typable System 21, Terms is Kalmar- 
elementary 

Given an untyped X-term of size n, how hard is it to 
determine whether the term has a type in System zk? 
We prove that this problem is DTIME[K(k - 1, n)]-hard, 
by showing the following: 

Theorem 4.1 (Hardness). Let M be a determinis- 
tic Luring Machine accepting or rejecting its input x of 
size n in K(k - 1, n) steps. Then we can construct in 
O(logn) space a closed, typed term PM,,: in System zk, 
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Such thd PM,, reduces to true = Ax.Ay.x : CI + /3 + (Y 
if M accepts 2, and reduces to false = Xx.Xy.y : (Y + 
p -+ p if M rejects x. In addition, there exists a fixed 
context 6’ not depending on M or x such that ~[PM,~] 
is typable in System Zk iff M accepts x. Cl 

Following the earlier, similar proof for ML and 
bounded-kind generalizations of System F [KHMQ4, 
HM94], we are thus able to simulate computations faith- 
fully “in the types.” The key idea is that, in the X- 
calculus simulation of circuits, the terms are essentially 
linear-arguments are not used more than once. The 
correspondence with linear logic is most likely more than 
surface-deep, since the idea of fanout, implemented by 
explicit copying, is simulating the function of exponen- 
tials and sharing. 

Combining the lower bound of the hardness result 
with the upper bound of the previous section yields: 

Theorem 4.2 (Completeness). Recognizing Ihe un- 
typed terms of size n that are typable in System. 21, is 

complete for DTIME[K(k - 1, n)]. cl 

4.1 The Polymorphic Iteration Lemma 

The central problem in deriving this result is to transfer 
the simulations in [HM94] for pk, the generalization of 
System F with k-th order type constructors, to the much 
simpler intersection type discipline. The key technical 
construction needed to derive this lower bound is the 
following: 

Lemma 4.3 (Polymorphic Iteration). Let N = 
K(k - 1, n), Ei denote the Church numeral Xs.Xz.smz, 
and let @ be a simply-typable term that can be ge’ven any 
of the simple types 7(i) + ~(i -f 1) for 0 < i < N, where 
the r(i) are arbitrary. Let poly&,k = (&.Tnz) 29; .T. 

k-2 

Then the term (polyit,,, a) normaEizes to XX.@~X, and 
has simple type r(O) -+ r(N) in System zk. Cl 

The finite-rank intersection type systems satisfy 
subject reduction, and observe that term ii zz; .?a, 

-- 
k-l 

which reduces to (Xz.~z) ,2 2 ,. .% 9 = polyit,-, % by 

k-2 

contracting ;iz?! to Xz.??z, further reduces to Xx.aNx, 
where each polymorphic instance of Cp has a differ- 
ent type. By substituting a term coding the transi- 
tion function of a Turing Machine for a, we can sim- 
ulate any computation in DTIME[K(~ - l,n)] dually 
in terms and in the type system. By substituting 
the exponentiation function Xx.x2 for @, we note that - -. 
polyit,,, (Xz.x2) 2 1s a term of size O(n) that reduces 

to the astronomical K(K(k - 1, n), 2)-a number that 
would have made even Carl Sagan blush. By instead 
substituting the powerset function for 9, we can (af- 
ter a little technical work) simulate any computation 
in DTIME[K(K(k - 1, n), 2)] by a term having the sim- 
ple type Bool = Q + (Y -+ a; our later expressiveness 
results follow from this construction. 

Proof Some abbreviations: if g’ = /\{rr , . . . , TV}, we 
write u +- cr’ for A(c7 -+ 71,. . . ,u -+ rm}; we write 
A{Ul * a;, . . . ,un =P uk} for A(717 E oi * oj, 1 < 
i 5 n}; we say closed term hf has type ~{rl,. . . , rm) 
if t M, h;l” : ri is derivable for each ri. 

To prove the lemma, we lbegin by defining the fol- 
lowing rank-l types: 

u(l, 0) = A{ T(0) -+ 1-(1),7(l) + T(2), 
. . . ) r(N - 1) + 7.(N)} 

. . . 

a(l,j) = A{ 7(O) 4 7(297(29 -+ 7(2 * 2j), 
. . . , r(N - 23) -+ T(N)} 

. . . 

u(l, log N) = A{r(O) + T(N)} 

Observe that @ has type o(l,O) and that for ev- 
ery 0 < j < log N, the Church numeral 2 has type 
A{a(l,?) + o(I,j + l)}. Inductively, we then define a 
set of rank t + 1 types u(t + 1,j) for 1 5 t 5’ k - 2: 

u(t + 1,O) = A{ c(t, 0) => a(t, I), 
u(t, 1) * s(t, 2), I.. ) 
a(& log@) iv - 1) =+ o(t, log@) Iv)} 

. . . 

o(t + 1,j) = A( u@,O) * a(t, zq, 
cr(t,23) G-,(t,2.2j) )... , 
u(i, log(t) N - 29 * u(t, log@) N)} 

. . . 

u( t+1, = /\(a(& 0) =+ a(& log(t) N)} 

Iog@+‘) N) 

(We write logci) for the i-th iterated logarithm.) Notice 
that by induction, Zhas typea(t+l,O). Finally, at rank 
k, we define only 

a(k,O) = A{ u(k-l,O)+n(k-l,l), 
u(k - 1,l) * o(k - 1,2), . , 
u(k - 1, n - 1) * u(le - 1, n)} 

u(k,logn) = A{a(k - 1,O) 3 u(k - l,n)} 

(Recall that log ckbl) N = n.) Again, .z has type 
u(k,O). Now we make the following straightforward 
observations: that E has rank k + 1 type u(k,O) =+ 
a(k, log n), and that 

u(lc,logn) = a(k - 1,0) 4 u(k - 2,0) --+ +a* 
-+ o(l,O) + T(0) -i r(N) 

We then derive that ?i?2 a . . ?!@ has type r(O) -+ r(N). 
This term has a type of rank k + 1, since Z takes an 
argument of rank k&but we can decrease the rank by 
reducing ii-i to X2.2 ZZ; the latter term takes an argu- 
ment of rank k - 1, and is then typable in rank k. Note 
that this trick of reducing a term M to M’, where the 
rank of the type derivation for M’ is less than that for 
M, is the fundamental technique used in proving upper 
bound. In this case, it only makes the term size of the 
iterator grow by a constant factor. 0 
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4.2 The Polymorphic Iteration Lemma Makes Typa- 
bility Bounds Easy 

Now it is fairly straightforward to prove Theorem 4.1. 
Let 6 be the simply-typable term encoding the transi- 
tion function of Turing Machine M, IDo be the simply- 
typable term encoding of the initial ID, and accept? be 
a simply-typable term extracting a Boolean value from 
the final ID indicating whether M accepted its input, 
as in [HM94]. (Due to space limitations, we do not 
present the encodings here.) Then using the polymor- 
phic iteration lemma, 

P/M,= = accept? (polyit,,k 6 f&) 

reduces to true = Ax.Xy.x : cy + /3 + cy if M accepts 
x, and reduces to false = Ax.Xy.y : (1: + /3 + p if M 
rejects x. By losing an exponential, we can then derive a 
very easy lower bound for DTIME[K(~ - 1, n)]-hardness, 
by using the term PM,% to choose between a strongly 
normalizing computation typable in rank k + 1, and a 
divergent computation that is not typable in any rank: 

C[P,,,] z (XZ.ZZ)(PA4,~ (Aw.w) (Azo.ww)) 

(An exponential is lost because Xw.ww has rank-2 type 
A{a,a -+ b} + b, driving up the rank of PM,, by 1.) 

A tighter bound comes from the following construc- 
tion. Let I = Xx.x, K = Xx.Xy.x, and (xc, y) = Xw.wxy. 
Define B = Xx.Ay.Ky(y(xIK),yI). Notice that B true 
has rank-0 type /\{a + U} where (T = A{(a + a) + b}, 
and Bfalse has rank-2 type /\{a’ =+ CT’}, where cr’ = 
A{(a + a) + b, (c + d + c) + e). 

Now we can use a gadget that drives the minimal 
rank of B false up to k + 1 but leaves the minimal rank 
of B true at 0. Define G1 = I and G+ = (Gi-11), i > 
1. Suppose the minimal rank typing of a term Q is 
@, where rank(o) = k and rank(T) = j. Then it 
turns out that minrank(G,Q) is max{k,inP(j)}. So 
minrank(Gk-1 (BPM,,)) is k if PM,~ normalizes to true’ 
and is k + 1 if PM,= normalizes to false. Thus, the term 
Gk--l (BPM,~) is typable in System zk iff PM,, normal- 
izes to true. 

5 Polymorphic Iteration and Expressiveness Theo- 
rems 

Given two X-terms of size n that are both typable in 
System zk, how hard is it to decide if they have the 
same normal form? In this paper, we omit many tech- 
nical details relating to the complexity analysis of this 
decision problem; see [Sta79, Mai92, AM98]. Instead, 
we outline the analysis at a high level. The technical 
details are not difficult, and amount to a fairly mun- 
dane form of functional programming. 

The above decision problem is a simple form of de- 
tecting program equivalence. We can use the polymor- 
phic iteration lemma to get lower bounds on the prob- 
lem by reworking certain technical machinery in the 

*This is k rather than 0 because PM.2 contributes k to the 
minimal rank. 

analysis of a closely related problem, called the deci- 
sion problem for type theory, due to Rick Statman and 
Albert Meyer [Mey74, Sta79j: 

Let Do = {trUe,fake}, and define Dk+l = 
powerset( Let xk, y”, .zk be variables allowed 
to range over 2)k; we define the prime formulas as 
z”, true E yl, false E yl, and xk E y”+l. Now 
consider a formula @ built up out of prime formu- 
las, the usual logical connectives V, A, +, 1, and 
the quantifiers V and 3: is @ true under the usual 
interpretation? 

Define the length of a formula to be the number of vari- 
ables, logical connectives, and quantifier symbols in it; 
Statman and Meyer proved the following: 

Theorem 5.1. For any Turing Machine M that ac- 
cepts or rejects its input x of length n in K(t, n) steps, 
there is a logspace constructible formula +,M,M,+ of length 
O(n(t + log’ n)), using only variables x3 where j 5 
t + c + log* n for some small integer constant c, such 
that @M,r is true iff M accepts x. cl 

(The Boolean universe Dt+c+log* n is just big enough 
to code such a complex computation.) Statman went 
on to show that in the simply typed X-calculus, one 
could use P-reduction to implement quantifier elimina- 
tion for this logic, a point clarified in [Mai92], where the 
quantifier elimination uses a style of primitive recursion 
that is obvious to any functional programmer. As a 
consequence, deciding if two simply-typed terms of size 
n (including type annotations) have the same normal 
form was not Kalmar-elementary-the decision problem 
was DTIME[K(t, n)]-hard for any integer constant t 2 0. 
The two terms were of type Bool; one term coded a 
Turing Machine computation via a short formula that 
said “D oes M accept x in K(t,n) steps?” and the 
other term coded “true.“’ When we consider typed A- 
calculi with more sophisticated type systems, like finite 
rank intersection types, it becomes possible to imple- 
ment more powerful quantifier elimination procedures- 
that is, shorter terms that implement quantifier elimi- 
nation over bigger Boolean universes. As a warmup, 
we consider the problem of detecting the equivalence 
of two Core ML terms, consisting of the simply-typed 
X-calculus with a polymorphic let construction. 

Theorem 5.2. Given two core ML terms, where we 
augment X-terms with a polymorphic let, but do not 
add fixpoints, deciding if the terms have the same nor- 

mal form is DTIMEIK(snf ,2)]-hard for every integ; 
t 2 0. 

Proof. (sketch) The main technical problem is to im- 
plement quantifier elimination in Dj by terms of size 
O(log j). In the X-calcuIus simulation of the logic, sets 

‘This bound can be improved to DTIME[K(~,~)]- 
hardness for any fixed integer t. The main technical difficulty 
is that the univkrse Vj is coded by a type having size 0((2j)!), 
which under a logspace transduction must be polynomial in TX. 
The explosion in type size can be handled properly by a trans- 
ducer if we use sharing (Le., directed acyclic graphs) to code 
types. 
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are represented as lists, abstracting over the construc- 
tors (“Church lists”), and functions on sets are imple- 
mented via primitive recursion. Here is how to co:nstruct 
large Boolean universes: 

let insert = Xx.Xs.Xc.Xn.(c x (s c n)) in 
let double = Ax.M.Ac.An.t! (Ae.c (insert 2 e)) (1 c n) in 
let powerset = XL.L double (Xc.Xn.c(Xc’.Xn’.n’)n~) in 
let pl = Xy.powerset(powerset y) in 
let p2 = ~y.m(my) in 
. . . 
let Pb,j = bPbgj-~(Plogj-~~) in 
let Dj = plogj (Xc.h.c true (c false TZ)) in D.i 

The double function takes element z and list of sets 
C, and constructs the new set C U {e U {CE} 1 e f 47); 
powerset iterates this over elements of a set, starting 
with a set containing the empty set. (Doubling is to 
exponentiation as double is to powerset.) Similarly, here 
is how to implement equality at level j: 

let eqo x y = or (and 3: y) (and (not x) (not y)) in 
let member eq x e = e (Xy.or (eq 2 y)) false in 
let subset mem x y = x (Xx’.and (mem x’ y)) true in 
let neweq subs x y = and (subs x y) (subs y z) in 
let lifteq, eq = neweq (subset (member eq)) in 
let lifteq, eq = lifteqo (lifteqo eq) in 
let lifteq, eq = lifteq, (Jifteq, eq) in 
. . . 
let lifteql,, j eq = Iifteq,,gj- 1 (lifteq,,sjml eq) in 
let eqj = lifteq,,, j eqo in eqj 

In the above construction, eq, implements equality over 
Vo = {true, false}. The definition of member for Vi 
needs as input eq for Vi-1 ; similarly, subset for Vi needs 
member for Vi, and eq for l3i needs subset for Vi. Then 
lifteqo can define eq for Vi given eq for Vi- 1, and by 
polymorphic composition, lifteq? can define eq for Vi+zj 
given eq for Vi. 0 

We can let-reduce any core ML term of size n to a 
simply-typed term of size 2”. A well-known theorem of 
Schwichtenberg [Sch81] states that a simply-typed term 
of size C has a normal form of size at most K(C,2); we 
then have a corresponding upper bound for the core ML 
equivalence problem: 

Theorem 5.3. Given two core ML terms of size n, de- 
ciding if the terms have the same normal form can be 
determined in O(K(2”, 2)) steps. q 

The above lower bound for ML generalizes easily to 
finiterank intersection type systems: 

Theorem 5.4. Let M be a Turing Machine that ac- 
cepts or rejects its input x of size n in K(K(L - 1, n), 2) 
steps. Then there is a closed, typed term in System xk 
of type Bool, constructible in U(logn) space, that nor- 
malizes to true = Xx.Xy.x when M accepts x, and nor- 
malizes to false = Xx.Xy.y otherwise. 0 

Proof. (sketch) The same proof techniques from the ML 
case carry over, except a different and more powerful 
kind of polymorphic iteration is used. For example, to 
construct Di where j = K(k - l,n), we use the X-term 
Dj E pdyit,,k p owerset (Xc.Xn.c true (c false 7~)); to 

implement equality for this iterated Boolean universe, 
we use eqj E polyit,,, lifteq, eq,. 0 

By standard diagonalization arguments used to prove 
time-hierarchy theorems, we then have the following ex- 
pressiveness theorem: 

Theorem 5.5. Let El and .E2 be two terwGs of size n 
typable in System xk. Then deciding if El and Ez have 
the same normal form is DTIME[K(K(L- 1, nt), 2)]-hard 
for every integer t 1. 0. cl 

In the case of ML, an upper bound on expressive- 
ness came from let-reduction, a finite development in- 
creasing term size at most exponentially. In System xk, 
the analogous operation is given by Simplify(A) from 
the upper bound construction; this generalization of fi- 
nite developments increases terms of size n to at most 
size K(k - l,n). By removing the XK-redexes and 
again applying Schwichtenberg’s analysis to the resul- 
tant simply-typed term, we can derive a nor:mal form of 
size at most K(K(lc - 1, n), 2). From this bound on the 
size of normalized terms, we have: 

Theorem 5.8. Given two terms of size n typable in 
System xk, deciding if they have the same normal form 
is DTIME[K(K(k - 1, nt), 2)]-complete for every dntegg 
t 2 0. 

5.1 Relating the Complexity of Typability and Expres- 
siveness 

What is the biggest Church numeral that can be ex- 
pressed as a typable X-term of size n? Or put more 
crudely, what is the largest number that can be speci- 
fied in n bits? This question is central in understanding 
bounds on the decidability of program equivalence. In 
the simply-typed X-calculus, a term of size n can nor- 
malize to the Church numeral for K(n, 2); in ML, a 
term of size n can normalize to the Church numeral for 
K(2”, 2); in System xk, a term of size n can normalize 
to the Church numeral for K(K(k - 1, n), 2). 

Now consider the relationship between deciding ty- 
pability, and deciding the equivalence of typed terms. 
Let t 2 2 be some fixed integer. In the amply-typed 
&calculus, recognizing if a h-term of size n is typable 
can be decided in O(nt) time; deciding equivalence is 
DTIMEIK(nt, 2)]-hard. Recognizing if a core ML term of 

size n is typable can be decided in O(2n’) time; decid- 

ing equivalence is DTIME[K(~~~, 2)]-hard. In System Tk, 
recognizing if a &term of size n is typable can be de- 
cided in O(K(k - 1, n”)) time; deciding equivalence is 
DTIME[K(K(~ - 1, n*), 2)]-hard. It is not what happens 
in the case of System F and its higher-kinded generaliza- 
tion. Typability is undecidable, but nothing is known 
about the corresponding equivalence problem. 

As a consequence of these observations, we make the 
following conjecture. Let 7 be a predicative type sys- 
tem where typability has complexity t(n) and expres- 
siveness has complexity e(n); then t(n) = O(log* e(n)>. 
This conjecture may well need modification and amend- 
ments, and it may even be false. But it is a reasonable 
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first guess as to how one relates typability and expres- 
siveness in complexity-theoretic terms. 

If nothing else, the symmetry of these relationships 
confirm the comments in [MaiSO] that “lower bounds on 
deciding typability for extensions to the [simply] typed 
X-calculus can be regarded precisely in terms of this 
expressive capacity for succinct function composition,” 
and gives evidence in support of a long-held belief that 
studying the complexity of type inference is important 
because it is a measure of language expressiveness. 

6 Future Work 

Despite scary worst-case complexity results, type infer- 
ence for finite-rank intersection types may be acceptable 
in practice.We are implementing type inference algo- 
rithms for finite-rank intersection types and evaluating 
their tractability in practice. 

The Infer-Z(k) algorithm infers types for a type sys- 
tem with AC1 intersection types. In contrast, the finite- 
rank inference algorithm presented in [KW99] uses non- 
AC1 intersection types, which is not as flexible. How- 
ever, the system of [KWSS] is substitution/unification- 
based and guarantees principal typings. We are investi- 
gating an algorithm that has these advantages for AC1 
intersection types. 

[AM981 A. Asperti and H. G. Mairson. Parallel beta reduction 
is not elementary recursive. In Conference Record of 
POPL ‘98: The 25th ACM SIGPLAN-SIGACT Sym- 
posium on Principles of Programming Languages, pp. 
303-315, San Diego, California, 19-21 Jan. 1998. 

[vB93] S. van Bakel. Intersection Type Disciplines in Lambda 
Calculus and Applicative Term Rewriting Systems. 
PhD thesis, Catholic University of Nijmegen, 1993. 

[Bar841 H. P. Barendregt. The Lambda Calculus: Its Syntax 
and Semantics. North-Holland, revised edition, 1984. 

{CDCVSO] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. 
Principal type schemes and X-calculus semantics. In 
J. P. Seldin and J. Ft. Hindley, eds., To If. B. Curry: 
Essays on Combinatory Logic, Lambda Calculus, and 
Formalism, pp. 535-560. Academic Press, 1980. 

[CDCVSl] M. Coppo, M. Deeani-Ciancaglini, and B. Venneri. 
Functional characters of solvable terms. Zeitschrifi fiir 
Mathematiahche Logik und Grundlagen der Mathe- 
matik, 27:45-58, 1981. 

[HM94] F. Henglein and H. G. Mairson. The complexity of 
type inference for higher-order typed lambda calculi. 
J. Fun&. Prog., 4(4):435-478, Oct. 1994. 

[Jim961 T. Jim. What are principal typings and what are they 
good for? In Conf. Rec. POPL ‘96: 13rd ACM Symp. 
Principles of Prog. Languages, 1996. 

[Kam96] F. Kamareddine. A reduction relation for which post- 
oonement of k-contractions. conservation and nreserva- 
Gon of strong normalisation’hold. Technical Report TR- 
1996-11, Univ. of Glasgow, Glasgow G12 8&Q, Scot- 
land, Mar. 1996. 

[KHM94] P. C. Kanellakis, G. G. Hillebrand, and H. G. Mair- 
son. An analysis of the Core-ML language: Expressive 
power and type reconstruction. In Zlst Int’l Colloq. on 
Automata, Languages, and Programming, vol. 820 of 
LNCS, pp. 83-106, 1994. Invited paper. 

[KRW98] F. Kamareddine, A. Rfos, and J. B. Wells. Calculi of 
generalised O-reduction and explicit substitutions: The 
lype free and simply typed versions. J. Functional d 
Logic Programming, 1998(5), June 1998. 

[KT92] 

[KW94] 

[KW95] 

[KW99] 

[Lei83] 

[MaiSO] 

[Mai 

[MM41 

[Mit96] 

A. J. Kfoury and J. Tiuryn. Type reconstruction in 
finite-rank fragments of the second-order &calculus. 
hf. tY Comput., 98(2):228-257, June 1992. 

A. J. Kfourv and J. B. Wells. A direct algorithm for 
type inference in the rank-2 fragment of ihe second- 
order X-calculus. In Proc. 1994 ACM Conf. LISP 
Funct. Program., 1994. 

A. J. Kfourv and J. B. Wells. Addendum to “New no- 
tions of reduction and non-semantic proofs of &strong 
normalization in typed X-calculi”. Tech. Rep. 95-007, 
Comp. Sci. Dept., Boston Univ., 1995. 

A. J. Kfoury and J. B. Wells. Principality and decid- 
able type inference for finite-rank intersection types. In 
Conf. Rec. POPL ‘99: 26th ACM Symp. Principles of 
Prog. Languages, 1999. 

D. Leivant. Polymorphic type inference. In Conf. Rec. 
10th Ann. ACM Symp. Principles of Programming 
Languages, pp. 88-98, 1983. 

H. G. Mairson. Deciding ML tvpability is complete 
for deterministic exponent% time.- In C&f. Rec. -17th 
Ann. ACM Symp. Principles of Programming Lan- 
guages, pp. 382-401, 1990. 

H. G. Mairson. A simple proof of a theorem of Statman. 
Theoretical Computer Science, 103(2):387-394, Sept. 
1992. 

A. R. Mever. The inherent computational complexity 
of theories of ordered sets. In Proceedings of the Inter- 
national Congress of Mathematicians., pp. 477-482, 
1974. 

J. C. Mitchell. Foundations for Programming Lan- 
guages. MIT Press, 1996. 

{RDRV84] S. Ronchi Della Rocca and B. Venneri. Principal type 
schemes for an extended type theory. Theor. Comp. 
SC., Z&151-169, 1984. 

[SchBl] H. Schwichtenberg. Complexity of normalization in 
the oure tvoed lambda-calculus. In A. S. Troelstra 
and D. van Dalen, eds., Proceedings L. E. J. Brouwer 
Centenary Svmp., vol. 110 of Studies in Logic and 
the Founiati&s of Mathematics, pp. 453-457, Noord- 
wijkerhout, The Netherlands, JuneS-13, 1981. North- 
Holland, Amsterdam. Published in 1982. 

[Sta79] R. Statman. The typed lambda -calculus is not elemen- 
tary recursive. Theoretical Computer Science, 9(1):73- 
81, July 1979. 

[WDMT97] J. B. Wells, A. Dimock, R. Muller, and F. Turbak. 
A typed intermediate language for flow-directed compi- 
lation. In Proc. 7th Int’l Joint Conf. Theory d Prac- 
tice of Software Development, 1997. Superseded by 
[WDMTSX]. 

[WDMTSX] J. B. Wells, A. Dimock, R. Muller, and F. Tur- 
bak. A calculus with polymorphic and polyvariant flow 
types. J. Funct. Prog., 199X. To appear after revisions. 
Supersedes [WDMT97]. 

101 


