
Verification of Erlang Programs using

Abstract Interpretation and Model Checking

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-

Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Frank Günter Huch

aus Neuss

Berichter:

Universitätsprofessor Dr. Klaus Indermark

Universitätsprofessor Dr. Michael Hanus

Tag der mündlichen Prüfung: 2. November 2001

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar

To Birgit and Annika

Abstract

The functional programming language Erlang is successfully used for the development
of distributed systems. We present an approach for the formal verification of Erlang
programs using abstract interpretation and model checking. Therefore, we define a
framework for abstract interpretations of Erlang programs. In this framework it is
guaranteed that the abstract operational semantics is safe with respect to the standard
semantics of Erlang. In this context, safe means that it contains all paths of the
standard semantics. Applying this framework to a finite domain abstraction, many
system properties (e.g. the absence of deadlocks and lifelocks or mutual exclusion)
can automatically be proven by model checking. Since the framework guarantees
safeness of the abstraction the properties proven for the abstraction also hold for the
real execution of the Erlang program.

In this theses, we develop the framework for abstract interpretations of Erlang
programs for formal verification by model checking. We show how the framework can
be used in model checking for Linear Time Logic. For Erlang programs containing
non-tail recursive function calls data abstraction covered by our framework is not
sufficient. Therefore, we extend the framework by abstraction of the control-flow.
All presented techniques are prototypically implemented in a verification tool. We
demonstrate the practical usability of our approach and the verification tool by the
verification of a database server.

Zusammenfassung

Die Funktionale Programmiersprache Erlang wird erfolgreich zur Entwicklung Verteil-
ter Systeme eingesetzt. Wir präsentieren einen Ansatz zur formalen Verifikation von
Erlang Programmen mittels abstrakter Interpretation und Model Checking. Im allge-
meinen ist Model Checking für Temporallogiken und Erlangprogramme unentscheid-
bar. Deshalb definieren wir ein Rahmenwerk für abstrakte Interpretationen von Er-
langprogrammen. Dieses Rahmenwerk garantiert, daß die abstrakte operationelle
Semantik sicher bezüglich der Standardsemantik von Erlang ist. In diesem Zusam-
menhang bedeutet sicher, daß alle Pfade der Standardsemantik auch in der abstrak-
ten operationellen Semantik enthalten sind. Wird dieses Rahmenwerk auf eine ab-
strakte Interpretation mit endlichem Wertebereich angewendet, so können viele Sys-
temeigenschaften (wie z.B. Verklemmungsfreiheit, Lebendigkeit oder wechselseitiger
Ausschluß) mittels Model Checking automatisch bewiesen werden. Da das Rahmen-
werk eine sichere Abstraktion garantiert, gelten bewiesene Eigenschaften auch für die
tats”achliche Ausführung des Erlangprogramms.

In dieser Arbeit entwickeln wir das Rahmenwerk für Abstrakte Interpretationen von
Erlang Programmen zur formalen Verifikation mittels Model Checking. Wir zeigen,
wie das Rahmenwerk zum Model Checking für die Linearzeitlogik (Linear Time Logic)
verwendet werden kann. Bei Erlangprogrammen mit nicht-endrekursiven Funktion-
saufrufen, reicht die Datenabstraktion des Rahmenwerks nicht aus. Deshalb erweit-
ern wir das Rahmenwerk um eine Abstraktion des Kontrollflusses. Alle präsentierten
Techiken sind prototypisch in einem Verifikationstool implementiert. Wir zeigen die
praktische Verwendbarkeit unseres Ansatzes und des Verifikationstools anhand der
Verifikation eines Datenbankservers.

Contents

1 Introduction 1

2 The Programming Language Erlang 7
2.1 Sequential Programming . 7

2.1.1 Data structures . 8
2.1.2 Modules . 10

2.2 Concurrent Programming . 11
2.3 Distributed Programming . 14

2.3.1 Creating Remote Processes . 15
2.3.2 Open Systems . 15

2.4 Robust Programming . 17
2.4.1 Exception Handling . 17

2.5 Process Linking . 18

3 Core Erlang – A Fragment of Erlang 19
3.1 Syntax . 19
3.2 Semantics . 22

4 Abstraction 33
4.1 The Idea of Abstraction . 34

4.1.1 Abstraction of Constructors 37
4.1.2 Abstraction of Matching . 38
4.1.3 Abstraction of Branching . 40
4.1.4 Abstraction of receive . 41
4.1.5 Abstraction of pids . 42

4.2 A Framework for Abstract Interpretations 42
4.3 Example Abstractions . 49

4.3.1 The Operational Semantics 49
4.3.2 A Finite Domain Abstraction 50

4.4 Galois Insertions . 58

x Contents

4.5 Finiteness of Abstract Semantics . 59
4.5.1 Renaming of variables . 60
4.5.2 Hierarchical Core Erlang . 61

4.6 Deadlocks . 65

5 Verification of Core Erlang Programs 69
5.1 Core Erlang with Propositions . 69
5.2 Linear Time Temporal Logic . 71

5.2.1 Abstraction of Propositions 73
5.3 Semantics of Propositions . 76
5.4 Proving LTL Formulas . 78
5.5 Verification of the Database . 80

5.5.1 Liveness of the database . 81
5.5.2 Mutual exclusion . 84
5.5.3 More precise Abstractions . 85

5.6 Fairness Properties . 87

6 Extensions and Optimizations 89
6.1 A Simplified Framework . 89
6.2 Reducing the State Space . 92

7 Abstraction of Recursive Function Calls 99
7.1 Simulation of Turing Machines . 101
7.2 Graph Semantics . 103
7.3 Abstracting from the Context-Free Structure 108
7.4 Abstract Graph Representation . 114
7.5 Verification . 119

8 Towards the Verification of Erlang Programs 123
8.1 The Module System . 123
8.2 Branching . 124
8.3 Higher-Order Functions . 125
8.4 Distributed Systems . 126
8.5 Timeouts . 128
8.6 Exception Handling . 129
8.7 Linking . 129

9 Related Approaches for Software Verification 133
9.1 Theorem Provers . 133
9.2 Model Checkers for other Programming Languages 134

10 Conclusions 137

Chapter 1

Introduction

Growing requirements of industry and society impose greater complexity of software
development. Consequently, understandability, maintenance, and reliability of soft-
ware systems becomes harder. Nowadays an increasing amount of applications are
distributed which is not only a result of the boom of the Internet but also of the
requirements of our information society. Especially for the development of these ap-
plications, we want to contribute to the quality of software development.

In distributed systems several programs are executed in a network of computers.
Synchronization and the exchange of information between programs is provided by
communication over the network. Therefore, communication protocols are usually
defined by describing the chronological order of the messages exchanged. An example
for a distributed system is (mobile) telephony: Telephones and relay stations form
a distributed network. Components of this network must communicate with each
other to provide services like phone calls. Other examples are cash dispensers in
combination with a bank server, chat rooms, or web browsers.

In contrast to parallel programming (e.g., by the Message Passing Interface (MPI)
[Pac97]), the objective of distributed programming is not gaining speed up of a compu-
tation. The application itself is distributed and needs a distributed implementation.

The software crisis, which started in the seventies and still is an actual problem
in software development, shows the problems of ensuring maintenance and reliability
of large software applications. This already holds for large sequential systems. In
distributed applications additional problems occur: A sequential system is executed
deterministically for a given input. In contrast, a distributed system can behave non-
deterministically even for identical inputs. In the concrete Erlang implementation this
non-determinism is solved by a scheduler. Aside from the users inputs, it depends on
the kind of scheduler (e.g., round-robin scheduling [Tan92]), the number of processes
and the network connectivities used. Adding processes to the system or changing the
used hardware can modify this scheduling and new errors can occur. Avoiding this

2

can only be guaranteed, if all possible executions (schedules) behave correct.
The theory of formal methods proposes the following approach to this task:

• Define the protocol for the communication of the programs in a specification
formalism. Possible formalisms are the Calculus on Communicating Systems
(CCS) [Mil80], LOTOS [Hog89] (an extension of CCS), or the Specification and
Description Language (SDL) [Bro91].

• Specify the properties a system should have in a mathematical logic, usually in
temporal or modal logic. We will discuss such logics later.

• Verify the properties by model checking. This is an algorithm which checks
whether a formula (describing a property) is satisfied in a model (representing
the semantics of the specified protocol).

• Refine the protocol without modifying the communication structure until this
refinement yields the executable program.

However, this approach cannot be used in practice because of the following problems:

1. The specification formalisms do not fulfill the software engineering requirements
for the development of the sequential parts of the application. Here, expressive
formalisms like the Unified Modeling Language (UML) [BJR99] are used. Most
of these formalisms do not even have a formalized semantics and it is not clear
how to check properties for these specifications.

2. For the specification of many protocols it is necessary to specify data depen-
dencies. Simple specification formalisms like CCS do not support this. As
a solution, more expressive formalisms like LOTOS and SDL are developed.
However, the semantics of these formalisms usually yields an infinite model in
this case and in general, model checking is undecidable for these infinite models.

3. This strict distinction between specification of the protocol and its refinement
is not possible in practice. Programmers implement the specifications by hand.
There is no guarantee that the communication behavior of the implementation
respects the specified protocol. Furthermore, during the implementation defi-
ciencies in the protocol specification can be detected. Hence, the specifications
might be changed so that all properties must be checked again for the modified
specification.

To solve these problems, several approaches are possible. The first problem can be
solved by the development of new specification formalisms, including a formal seman-
tics. These formalisms should provide both sequential and protocol specifications. As
a solution of the second problem, a combination of abstraction and model checking for
protocols by means of data dependencies is proposed [CGL94b, KP98]. The idea is the
construction of a finite model which abstracts the infinite model of the semantics. If
a formula holds in the finite model, then it also holds in the infinite model. However,
for the third problem no satisfactory solution exists yet. A particular reason for this is

Chapter 1. Introduction 3

that many people are involved in the development of a system. Software development
is a very complex process. Automatic code generation from the specification could
help but these approaches lack in expressiveness. The existing tools are more or less
graphical programming environments without support for formal verification.

We propose another approach for the formal verification of distributed systems.
By exploiting the idea of abstraction, we extend model checking to programs written
in real programming languages. This is the only way to guarantee that a system really
satisfies a property.

Related to distributed programming is the notion of concurrency. Already on one
computer it can be useful to execute several concurrent processes. For instance, with-
out concurrency a reactive program (e.g., a graphical user interface) must iterate over
all possible inputs (e.g., buttons) to react on inputs (e.g., clicks), which is known as
“busy waiting”. Concurrency allows the creation of multiple processes which are exe-
cuted “in parallel”. For every possible source of input a process can be created which
suspends on this possible input. Each concrete input event awakes the corresponding,
suspended process. The execution of the non-suspended processes is performed by a
scheduler.

The use of concurrency is also necessary in distributed systems. Distributed pro-
grams must react on messages from different other programs. These messages are
different possible inputs as in the concurrent case, discussed above. Furthermore, it
is possible that the program interacts with a user “in parallel”. Again, concurrency
is useful.

Many programming languages have been extended for the development of dis-
tributed systems. For imperative languages, the technique of remote procedure calls
(RPC) [Wei90] has been developed. The same technique is used in distributed object-
oriented systems where it is called remote method invocation (RMI) [Gro01]. By
means of both techniques it is possible to evaluate procedures on a remote computer.
During its evaluation a remote procedure call has access to the resources of the remote
computer. Its result is sent back through the network to the program which initiated
the procedure call. The program suspends until the result is evaluated. To avoid
a blocking of the whole program, multiple concurrent processes should be executed.
Exactly this is a big disadvantage of RPC and RMI. Synchronization and communica-
tion between concurrent processes must be implemented by shared variables. This is
a low-level mechanism and no comfortable communication abstractions are provided.
Hence, concurrent programming still has a flavor of assembler programming in these
languages. Another problem is the fact that a programmer has to learn two different
mechanisms for communication. RPC/RMI for distributed programming and shared
variables for concurrent programming. Furthermore, the developed systems do not
provide scalability. If something is implemented concurrently (by communication over
shared variables), then this code cannot easily be distributed to a network, e.g., to
eliminate a bottleneck in the communication protocol. The communication using
shared variables must be replaced by RPC/RMI.

A different approach was chosen in the functional programming language Erlang
[AVWW96]. Erlang was developed by Ericsson and the Elemental Telecommuni-

4

cation Systems Laboratories. It has been successfully used for the development of
many telecommunication applications like Ericsson’s ATM switch AXD 301. Unlike
imperative languages using RPC or RMI, Erlang provides processes which only com-
municate by message passing. They are executed concurrently on one computer or
distributed in a network. This guarantees scalability of the developed systems be-
cause parts of the system can easily be distributed without any modification of the
communication structure between the processes. Furthermore, programmers must
only learn one mechanism for communication between concurrent and distributed
processes. Another advantage of Erlang is the use of pattern matching for functions
operating on algebraic data structures as well as for dispatching messages. Further-
more, Erlang provides powerful mechanisms for robust programming, which is a gist
in the implementation of distributed systems.

On the other hand, there are also some disadvantages of Erlang (perhaps resulting
from the fact that Erlang was developed in industry). Results of research on functional
programming, like the λ-calculus [Cur63] have not been considered in its development.
This leads to the absence of scoping. As an alternative, Erlang provides bind-once
variables which are more difficult to formalize. Higher-order functions have not been
integrated in the language from the beginning. Their syntax is very complicated and
there is, in contrast to the rest of the language, a kind of scoping for anonymous
function definitions. Therefore, their use in Erlang programs is uncommon. Finally,
the largest disadvantage of Erlang is the absence of a type system. As a result, for
example typos in the source code often do not yield an error but result in a deadlock.

There also exist extensions of other functional languages for concurrent and dis-
tributed programming. Concurrent ML [PR97] is an extension of Standard ML
[MTH89] for concurrent programming. This language is further extended for dis-
tributed programming with FACILE [TLK96, TLK97]. Conceptually, FACILE is
much clearer than Erlang but it does not support fault tolerant programming. It is
not widespread and we think that there is more interest in the verification of Erlang
than of FACILE.

We have also worked on the extension of the lazy functional programming lan-
guage Haskell [J+98] for robust distributed programming. The result is Distributed
Haskell [HN00], an extension of Concurrent Haskell [JGF96]. In contrast to Erlang,
our approach is based on Haskell’s powerful type system. Distributed Haskell contains
even more powerful mechanisms for robust programming than Erlang. We think that
it could be a valuable alternative to Erlang. However, at the moment its implementa-
tion is still on research level and no larger systems have been developed in Distributed
Haskell.

As a quintessence, we have chosen Erlang for formal verification using abstraction
and model checking. It is a stable programming language used in practice. Large
applications are implemented in Erlang and our results can be valuable for a large
community of Erlang developers.

Applying the techniques of abstract interpretation [CC77a, JN94, SS98] to Er-
lang shows the need of some extensions of these techniques. The contribution of this
thesis is the development of a framework for abstract interpretations of Erlang pro-

Chapter 1. Introduction 5

grams. This framework guarantees that the model defined by the abstract operational
semantics (AOS) includes all paths of the standard operational semantics (SOS). Un-
der some assumptions to the program, the AOS yields a finite transition system for
finite domain abstract interpretations.

In linear time logic (LTL) [LP85] a formula is satisfied in a model if all paths of
the model satisfy the formula. Therefore, we can conclude: if the AOS satisfies the
formula, then also the SOS satisfies it. Successful proofs in the abstraction are safe
for the concrete system. Model checking for LTL and finite models is decidable. The
existing algorithms are efficient enough for practical verification.

Since the abstraction has sometimes more paths than the SOS it is not possi-
ble to verify existential properties, like there exists a behavior of the process which
leads to a deadlock. These properties can be specified in branching time logics, e.g.,
CTL [Eme90]. However, in contrast to specifications, real systems implemented in
programming languages behave deterministically (with the exception of interleaving).
Therefore, existential properties will usually not be used in the formal verification of
implemented distributed systems (in contrast to non-deterministic specifications, like
using the choice operator in CCS). Furthermore, LTL is an expressive logic. Safeness,
liveness and fairness properties can be specified and verified.

The presented work is implemented as a prototype, written in Haskell. For LTL
model checking we implemented the automata-based algorithm of Vardi [Var96]. Us-
ing this prototype we are able to verify some small examples.

Structure of the Thesis

In Chapter 2 we introduce the main concepts of the programming language Erlang.
This includes sequential, concurrent, distributed, and robust programming. In Chap-
ter 3 we restrict Erlang to a core fragment which we will use for formal verification.
We formalize its syntax and semantics. Chapter 4 contains the central contribution
of this thesis. We motivate our approach for the abstraction of Erlang. This leads
to the definition of a framework for abstract interpretations. The framework is used
in two example abstractions and we present finiteness results for the abstract seman-
tics. Chapter 5 puts the verification of Erlang programs by LTL model checking and
abstraction in concrete terms. Therefore, we first extend Erlang programs to state
propositions. Finally, we present the verification of different system properties by
the example abstraction of Chapter 4 and our approach. We discuss some extensions
and optimizations of the approach in Chapter 6. For the abstract semantics of case
and receive we define a simplified framework and discuss the possibilities for state
space reduction. The context-free structure of non-tail recursive function calls allows
the verification by model checking for only a subclass of Erlang programs. In Chap-
ter 7 we present an abstraction of the control flow of Erlang programs. Using this
abstraction it is possible to verify a larger class of Erlang programs in our approach.
Chapter 8 presents how the results can be used for the verification of real Erlang
applications. Then we discuss other work related to our approach in Chapter 9. We
conclude in Chapter 10 with the prospects of our work.

6

Chapter 2

The Programming Language Erlang

This chapter provides a gentle introduction to Erlang. We informally introduce the
main concepts with examples. Readers familiar with Erlang can skip this chapter and
proceed with Chapter 3.

Erlang [AVWW96] is a functional programming language developed by Ericsson.
Its evaluation strategy is call-by-value. Erlang has no static type system. Only simple
predefined types like integer are checked at runtime. It provides additional features
for concurrent, distributed, and robust programming.

The development of Erlang started on the basis of Prolog [SS94]. The developers
eliminated backtracking and replaced predicates by functions. The result is a strict
functional programming language with “bind-once” variables instead of scoping.

2.1 Sequential Programming

Variables in Erlang start with a capital letter, like in Prolog. A program is a set of
function definitions. As an example, the square function can be defined as follows:

square(X) -> X * X.

Branches can be defined using a case expression:

fac(X) -> case X of

0 -> 1;

N -> N * fac(N-1)

end.

Alternatively, we can define a function by several rules and pattern matching. Two
rules are separated with a semicolon and the complete definition is terminated with
a dot:

8 2.1. Sequential Programming

fac(0) -> 1;

fac(N) -> N * fac(N-1).

The scope of a variable is restricted to the right-hand side of a rule.
In Erlang, it is possible to define several functions with the same name. They

are distinguished with respect to their arity. For example, it is possible to define a
tail-recursive version of the factorial function as follows:

fac(0,R) -> R;

fac(N,R) -> fac(N-1,N*R).

fac(N) -> fac(N,1).

Here we use an accumulator as a second parameter. We write fac/1 respectively
fac/2 to distinguish the functions. The same notation is used in Erlang’s module
system as we will see in Section 2.1.2.

Repeated computations of subexpressions can be avoided with new variables in the
right-hand side of a rule. These variables can be bound to the result of subexpressions.
Then they can be used in the following expressions. As an example the exponentiation
with four can be defined as:

exp4(X) -> Y = X * X,

Y * Y.

First the square of X is computed. The variable Y is bound to this value and the result
is the square of Y. This use of variables resembles imperative programming but Erlang
only provides so called bind-once variables. If a variable is bound to a value, then
it cannot be overwritten in other words bound to another value. For instance, the
sequence Y=3,Y=4 yields a runtime error. This relates to let expressions in functional
languages. Bindings of variables are valid for the whole right-hand side.

2.1.1 Data structures

Erlang provides atoms, lists, and tuples for structuring data. Atoms start with a
lower case letter and can be seen as constructors with arity zero. For example, the
boolean values are the atoms true and false. It is also possible to use arbitrary
strings (including special characters like blanks) as atoms. In this case the atom has
to be put into single quotes (e.g., ’EXIT’ or ’Model Checking Erlang !’).

Lists

Lists are written in the same way as in Prolog. The empty list is denoted by []. An
element e can be added to a list l with [e|l]. As in Prolog it is also possible to use
the comma notation [e1,. . .,en|l] as an abbreviation for [e1|[e2|. . .[en|l]. . .]] and
[e1,. . .,en] for [e1|[e2|. . .[en|[]]. . .]]. Erlang is untyped and there is no restriction
that ei must be an element and l must be a list. For example, it is also allowed to
write [[]|4]. However, as a convention l should always be a list. All predefined
functions require this.

Chapter 2. The Programming Language Erlang 9

Lists (and all other data structures) can also be used in patterns. Patterns may
contain variables. The matching of a pattern against a value succeeds if there exists
a binding for the variables of the pattern such that the application of the binding to
the pattern is identical to the value. Then the binding from a successful match is
applied the succeeding expression. We will formalize this in the next chapter.

As an example for programming with lists, a function for the concatenation of two
lists can be defined as follows:

append([X|Xs],Ys) -> [X|append(Xs,Ys)];

append([],Ys) -> Ys

Tuples

The second kind of data structures are tuples of any arity which are enclosed in curly
brackets. Firstly, tuples can be used in functions which yield more than one value. A
division function which yields the integer division and the rest can be programmed as

division(X,Y) -> {X div Y, X rem Y}.

where div and rem are predefined functions for the integer division and its remainder.

Secondly, they can be used to combine a fixed number of values. For example,
a dictionary can be implemented as a list of tuples representing key-value pairs. A
function for searching the value of a given key can be programmed as:

lookup(Key,[{Key,Value}|Rest]) -> {value,Value};

lookup(Key,[Pair|Rest]) -> lookup(Key,Rest);

lookup(Key,[]) -> fail.

If the key is not found in the dictionary, then lookup yields the atom fail. Otherwise,
it yields the value stored previously. The function yields a tuple consisting of the flag
value and the value. Otherwise, fail could not be stored as a value in the dictionary.
The successful lookup of this value would yield fail which cannot be distinguished
from a failed lookup.

This definition also shows some Erlang specific features. The definition of lookup
has a non-linear pattern in the first rule. We use the variable Key twice in the pattern.
This corresponds to an explicit test of equality between two keys. Furthermore,
overlapping patterns as in the first two rules are commonly used. The patterns are
matched one after the other and the first one matching is chosen.

Thirdly, tuples can be used to implement algebraic data types: we use nested
tuples such that

• the application of a constructor to n arguments is expressed by an n+ 1 tuple

• the constructor is represented by an atom

The convention in Erlang is that the atom which represents the constructor is placed
in the first component of the tuple. Its arguments are placed in the remaining tuple
components. As an example, a tree can be represented in Erlang as

10 2.1. Sequential Programming

• {leaf,value} for the tree only containing one value and

• {node,tl,tr} for a node with two subtrees tl and tr.

Then the size of a tree can be computed by

size({leaf,_}) -> 1;

size({node,Tl,Tr}) -> size(Tl)+size(Tr).

The wildecard (_) can be used as an anonymous variable.
Tuples make lists superfluous as the following tuple based implementation of the

append function shows. The two list constructors are represented by the atoms nil

and cons.

append(nil,Ys) -> Ys;

append({cons,X,Xs},Ys) -> {cons,X,append(Xs,Ys)).

For convenient programming, Erlang also provides the special list syntax. This syn-
tax also allows abbreviations as discussed before. Another advantage of the explicit
list representation is its more efficient implementation. Erlang also provides built-in
functions for the conversion from lists to tuples and vice versa.

2.1.2 Modules

Erlang has a simple module system which allows dividing larger programs into a set of
modules. Each module has its own name space for the defined functions. Functions
can be exported by a module and imported from other modules. The name of a
module and it’s filename must match. The file begins with the module declaration:

-module(moduleName).

The exported functions are declared with

-export([f1/n1,. . .,fm/nm]).

The list contains m functions. Every function fi with arity ni must be defined in the
module file.

There are two methods for calling functions of another module. Firstly, they can
be integrated in the local name space of functions:

-import(moduleName,[f1/n1,. . .,fm/nk]).

The listed functions from the module moduleName are imported and can be used
inside the module.

Secondly, a function of another module can be called explicitly. With

moduleName:f(arg1,. . . ,argn)

the function f with arity n from module moduleName is applied to the arguments.

Chapter 2. The Programming Language Erlang 11

2.2 Concurrent Programming

In addition to the functional language features described in the previous section,
Erlang provides features for concurrent programming. The Erlang runtime system
allows the concurrent execution of several processes. They can communicate via mes-
sage passing for which Erlang provides explicit expressions for sending and receiving
values.

New processes can be created by the expression

spawn(m,f,[v1, . . . , vn])

The evaluation of a newly created process starts with the term m : f(v1, . . . , vn),
where f is an exported function of the module m and the arguments v1, . . . , vn are
values. If spawn is called with non-evaluated arguments, then these arguments are
evaluated eagerly before the new process is spawned. In reactive systems, the newly
created process will often loop. In case of termination, the result of its evaluation is
discarded. The functional result of the execution of spawn is the process identifier
(pid) of the created process. Process identifiers are unique and can be used as any
other value. For example, it is possible to store pids in data structures or to send them
to other processes. A process can also access its own pid with the built-in function
self/0.

Processes can communicate via asynchronous message passing. Every process has
a mailbox, in which all incoming messages are stored1. A process sends a message to
another process using the construct p!v, where p is the pid of the other process and
v is the value to be sent.

For receiving values Erlang provides convenient access to mailboxes using pattern
matching. With the expression

receive

p1->e1;
...

pn->en
end

a process can select messages in its mailbox. The elements of the mailbox of a
process are successively matched against the patterns p1, . . . , pn: The first element of
the mailbox matching a pattern pi with a substitution ρ is removed from the mailbox
and the receive expression evaluates to ρ(ei). If no mailbox entry matches a pattern,
then the process suspends until a new value is sent to the process.

This method for accessing the elements of the mailbox makes concurrent program-
ming very simple. The messages of interest can be picked out from the mailbox. All
other messages are stored in the mailbox and can be handled later. Therefore, the
mailbox is not just a queue. For example, consider a process executing the following
receive expression:

1Since no mails but messages are sent it would be better to use message-box instead of mailbox.
However, mailbox is established in the Erlang community.

12 2.2. Concurrent Programming

receive

stop -> e1;

error -> e2

end

If its mailbox contains the messages

fail : [4,5] : {value,7}2

the receiving process suspends, until one of the messages stop or error is sent to the
process.
If its mailbox contains the messages

fail : error : {value,7} : stop

then the error message is extracted from the mailbox and the evaluation of the
process continues with e2.

If we extend the receive expression in the example by a wildcard rule X -> e3 as
a third pattern, then the first message of the mailbox is extracted. If this element
is stop or error, then e1 respectively e2 is performed. Otherwise, X is bound to the
first message of the mailbox and the evaluation continues with e3.

To support the development of robust applications it is necessary to use timeouts.
Therefore, Erlang provides an after expression for receive:

receive p1->e1; . . . ; pn->en after t->e end

The integer t specifies the time in milliseconds in which the receive expression tries
to match incoming messages against the patterns. If none of the patterns matches a
message during this time, then it proceeds with e. The receive expression does not
suspend. If t is zero, then the patterns are matched against the values in the mailbox
only once. If t is the atom infinity, then the receive-after expression behaves
like receive.

As an example for a concurrent Erlang program we consider a database process.
The entries of this database are unique keys with values. A client process can allocate
a key and add the corresponding value, if the key is not yet allocated. Naturally, a
client can also lookup the value of a given key. In this thesis we will often return to
this example and also verify some properties of this program.

The internal state of the database is a list of pairs containing keys and values.
The database keeps this state as argument during recursive calls. For the access of a
value corresponding to a key we use the function lookup from Section 2.1.1.

-module(database).

-export([start/0]).

start() -> database([]).

2We separate the messages of a mailbox with colons and notate the messages in chronological
order. This means fail is the oldest message the process has received.

Chapter 2. The Programming Language Erlang 13

database(L) ->

receive

{allocate,Key,P} -> case lookup(Key,L) of

fail -> P!free,

receive

{value,V,P} ->

database([{Key,V}|L])

end;

{succ,V} -> P!allocated,

database(L)

end;

{lookup,Key,P} -> P!lookup(Key,L),

database(L)

end.

Using this module, database processes can be started by calling or spawning the
function start. The initial interface of a database process are messages consisting of
a triple with the flags allocate or lookup, a key, and the pid of the requesting process.
When an allocation message is received, the key is looked up in the database. If the
key is already allocated, then the message allocated is returned to the requesting
process and the database proceeds in its initial state. Otherwise, it answers that the
requested key is free and waits for the corresponding value to be stored.

The main point of the implementation of the database is that it guarantees mutual
exclusion when several clients allocate new keys. In the absence of mutual exclusion,
entries could disappear or the values of wrong clients could be inserted to the database,
if two clients try to allocate the same key. To guarantee mutual exclusion, we use two
common programming techniques of Erlang:

1. After receiving an allocation request, we proceed in the inner receive expression.
There we only consider messages with the flag value. We ignore other messages
like {allocate,k,p}. These messages are stored in the mailbox of the database
process and can be considered later.

2. We check if the pid sent together with the message is the same as the pid
in the allocation message. Therefore, we use the dynamic character of pattern
matching and the bind-once variables of Erlang. In the pattern matching against
the pattern {value,V,P}, the variable P is not newly introduced. P is already
bound to a value (a pid). The matching only succeeds if a triple is received
consisting of the atom value, any value and the same pid as the one received
before. Values with other pids in the third component are ignored.

However, the database process can only guarantee mutual exclusion, if all accessing
clients respect this protocol and send respectively receive the messages in the expected
order.

In a fault tolerant system we would extend this receive expression with a timeout
to prevent deadlocks when clients crash after allocating a key. We would also add

14 2.3. Distributed Programming

synchronization messages to guarantee the execution of updates. To keep the example
small, these extensions are not presented here.

A simple client defining a user interface to the database can be programmed as
follows:

-module(client).

-export([loop/1]).

loop(DB) ->

case io:read(’(l)ookup/(i)nsert >’) of

{ok,i} -> DB!{allocate,read(’Key >’),self()},

receive

free -> V = read(’Value >’),

DB!{value,V,self()};

allocated -> write(’Key allocated’)

end;

{ok,l} -> DB!{lookup,read(’Key >’),self()},

receive

R -> write(R)

end;

_ -> nop

end,

loop(DB).

Just like the database, the client is programmed as a loop. As a parameter it holds
the pid of the database process. The built-in function read of the module io prints its
argument as a prompt and reads a string from the keyboard. This string is converted
into an atom. If this succeeds, then a tuple of the atom ok and the atom read is
the result. Otherwise, it yields a parse error message. In correspondence to the user
input the client sends allocate respectively lookup messages to the database. With
respect to the protocol of the database it regards corresponding answer messages. If
the newly allocated key is free, then the user is asked for the corresponding value.
Then this value is sent to the database.

Notice that several clients can be executed concurrently and communicate with the
database. Certainly, in a concurrent system with only one terminal the clients write
to and read from, a concurrent execution of these clients is senseless. However, this
client is just an example for possible clients. Other clients can be defined similarly.
They only have to respect the protocol structure.

2.3 Distributed Programming

For distributed programming Erlang uses the same process concept as for concurrent
programming. In a distributed Erlang system several nodes are executed on several
computers in the Internet. Especially, it is also possible to execute several nodes on

Chapter 2. The Programming Language Erlang 15

one computer. On an Erlang node, several processes can be executed concurrently.
To distinguish nodes located on the same computer, every node gets a name when
it is started. Communication between processes executed on different nodes is done
using the same constructs as in concurrent programming. Therefore, the pid of a
process internally also contains the node on which it is executed. The only differences
to concurrent programming are the creation of processes on other nodes and the
communication between two independently started Erlang processes.

2.3.1 Creating Remote Processes

Erlang provides an extended spawn expression:

spawn(n@host,m,f,[v1, . . . , vn])

with a similar behavior as spawn, except that the new process is started on the node
n on host. n is the name of the node and host the hostname of the computer on which
the node is located.

For instance, it would be possible to start the database process on a remote node
with:

spawn(’server@io.informatik.rwth-aachen.de’,database,start,[])

The system is distributed to a network without any further changes of the source
code.

With this extension it is very easy to distribute processes, developed in a concur-
rent environment, for example to provide scalability of an application or to guarantee
fault tolerance to the failure of one node.

2.3.2 Open Systems

Creating processes on different nodes is an expressive mechanism for distributed pro-
gramming. However, many applications are inherently distributed and a (hierar-
chical) distribution with spawn/4 is not possible. Examples are telephony, chats,
name-servers, or cash dispensers. In these open systems processes are started inde-
pendently and communication between the processes has to be initiated at runtime.
In Erlang this can be realized with a global registration of processes on a node. With
the expression

register(name,p)

the pid p is globally registered as the atom name on the local node. If another pid is
already registered with the same name, then the execution of register yields a run-
time error. An arbitrary process executed on the same node can delete a registration
with:

unregister(name)

For the communication between two independently started processes on different
nodes we can use the extended send operation:

16 2.3. Distributed Programming

{name,node}!v

The message v is sent to the process registered as name on node. For flexibility, this
kind of communication is usually chosen for the first contact only. Then the pids are
exchanged and all further messages are sent to pids, as in concurrent programming.
With this technique scalable systems can easily be implemented. For example, a
server can administrate several sub-servers. Only this server is globally registered
and clients can contact it with its registered name. Then the server answers with a
pid of a sub-server which may be executed on a different computer. For subsequent
communication with the server, the pid of the sub-server is used. Hence, all further
interaction between client and server is redirected to the sub-server. Scalability can
easily be provided, by adding new computers, on which more sub-servers can be
executed. Communication with pids yields more flexibility than communication with
registered names.

As an example for an open system we modify our database example to a distributed
version. When a database process is started, it registers itself globally on its node. In
addition, it gets another interface for the connection of remote processes and answers
with its own pid:

-module(database).

-export([start/0]).

start() -> register(database,self()),

database([]).

database(L) ->

receive

{allocate,Key,P} ->

...

{lookup,Key,P} ->

...

{connect,P} -> P!{connect,self()},

database(L)

end.

A corresponding client can connect to the database in its initial part and then proceed
as before, without any changes of the code.

-module(client).

-export([start/1]).

start(Node) -> {database,Node}!{connect,self()},

receive

{connect,DB} -> loop(DB)

end.

Chapter 2. The Programming Language Erlang 17

2.4 Robust Programming

Modern programming languages must provide exception mechanisms allowing the
programmer to catch exceptions and to throw own exceptions. For concurrent and
distributed programming this does not suffice: Mechanism for the controlling or mon-
itoring of processes, especially if they crash, are needed.

2.4.1 Exception Handling

In Erlang exceptions can be thrown for several reasons:

• A match operation fails.

• None of the patterns in a function definition or a case expression matches a
given value.

• A built-in function is called with an incorrect argument (e.g., []+3).

The expressions catch and throw provide a mechanism for controlling the evaluation
of an expression. With catch e it is possible to protect the expression e from errors,
as the following example shows:

demo(X) -> catch X+39.

If the function demo is called with a number, e.g., demo(3), then the result is 42. No
exception is thrown and hence catch does not effect the result. On the other hand,
in the call demo(a) the application of + yields an exception. This exception is caught
and the result of the function is the value:

{’EXIT’,{badarith,{erl_eval,eval_op,[’+’,a,39]}}}

The atom ’EXIT’ indicates that the exception is a built-in exception which is specified
in more detail by the second component of the tuple.

The programmer can also generate his own exceptions with the function throw/1:

fourtyTwo(X) -> case X of

42 -> 42;

_ -> throw({myError, notAnswerToEverything})

end.

User defined exceptions can also be caught with catch. To distinguish our exception
from predefined exceptions, we use the flag myError in the first tuple component
instead of ’EXIT’. However, this is just a convention. Internally, other exceptions are
also generated with throw({’EXIT’,...}).

18 2.5. Process Linking

2.5 Process Linking

For concurrent and distributed programming, catch and throw do not provide pro-
grammers in the development of robust applications. However, especially in a dis-
tributed setting robustness is needed. In a network, some computers can crash or
some components can loose their connection to the network. Nevertheless, a crash of
the entire system should be avoided in this case. For example, it should be possible to
use a mobile phone, although one of the nodes in the telephone network has crashed.
The phone call can be redirected via other nodes.

In Section 2.2 we have already introduced programming with timeouts. The
receive expression can be extended with a timeout (after). It is possible to wait
for a message for only a restricted time. However, this is not sufficient for conve-
nient programming. For more convenience, Erlang also provides a powerful linking
mechanism. With

link(p)

it is possible to establish a (bidirectional) link between the process executing this
function and the process with pid p. If one of the linked processes terminates or
crashes, then the other one crashes, too. For example, processes of a graphical user
interface need not be terminated explicitly if the control process terminates. They
can be terminated automatically with linking.

In many other cases this behavior is impractical. With the built-in function
process_flag/2 it is possible to change this behavior. After performing

process_flag(trap_exit,true)

a process does not crash, if another linked process crashes. Instead a message of the
form {’EXIT’,p,reason} is sent to the process. p is the pid of the process which termi-
nated or crashed. For example, reason can be normal if the other process terminated.
If the linked process crashes with an exception, then reason is this exception.

This mechanism works independently of the location of the processes. If a remote
computer crashes and hence a linked process crashes, then this is also observed by
linking.

Chapter 3

Core Erlang – A Fragment of Erlang

In the last chapter we have presented the programming language Erlang in an informal
way. However, for the verification of Erlang programs we need a formal syntax and
semantics. To make the task of defining a formal semantics feasible, we restrict Erlang
to a core fragment without the module system and the aspects of distribution and
linking. We will later discuss how these aspects can be taken into consideration.

3.1 Syntax

Erlang is an untyped functional programming language. To distinguish the different
arities of function symbols, we introduce signatures.

Defintion 3.1 (Signature)

A signature Σ = (Σ(0),Σ(1), . . .) is a family of sets of function symbols with their arity.
We write f/n ∈ Σ instead of f ∈ Σ(n). �

In the rest of this thesis we use two fixed signatures:

• F is the signature of all predefined Core Erlang function symbols. For instance
+/2 ∈ F .

• C is the signature of constructors. It contains atoms as constructors of arity zero.
The set Atoms contains all constants which may occur in a program including
numbers. E.g. 1, 2, fail, succ ∈ Atoms.

Defintion 3.2 (Core Erlang Constructors)
The signature of Core Erlang constructors is defined as:

C := {[.|.]/2, []/0} ∪ {{ . . .}/n | n ∈ IN} ∪ {a/0 | a ∈ Atoms}

20 3.1. Syntax

These are the constructors for building lists, constructors for building tuples of any
arity, and the atoms as constructors with arity zero. �

Defintion 3.3 (Σ-Terms)
The set of Σ-terms over a set S is defined as the smallest set TΣ(S) with

S ⊆ TΣ(S),
c/n ∈ Σ and t1, . . . , tn ∈ TΣ(S) =⇒ c(t1, . . . , tn) ∈ TΣ(S)

For n = 0 we will usually omit the brackets and simply write c instead of c(). �

In the following we consider constructor terms TC(S). The constructor terms for lists
and tuples will usually be written in mixfix notation. We use the comma notation
[e1, . . . , en] as an abbreviation for the constructor term [e1|[e2| . . . [en|[]] . . .]] and
[e1, . . . , en| l] for [e1|[e2| . . . [en| l] . . .]].

We will use these constructor terms as values in the operational semantics but we
can also use them for the definition of patterns in a Core Erlang Program. We distin-
guish the constructors for building terms from those used as values in the semantics
because a different treatment of them will be necessary in the abstraction. Therefore,
we use an underlined variation of constructors

C := {c/n | c/n ∈ C}.

In the programs we will use the type-writer font for the constructors of C and the
bold roman font for the constructors of C.

Patterns in Core Erlang can also contain variables Var := {X, Y, Z, . . .}.

Defintion 3.4 (Program Patterns)
The set of program patterns is defined as

PPat := TC(Var). �

With the definition of program patterns we can now define Core Erlang programs and
expressions.

Defintion 3.5 (Core Erlang Programs)
A Core Erlang program is a non-empty finite set of definitions of the form

f(X1, . . . ,Xn) -> e.

where for all X1, . . . , Xn ∈ Var holds Xi 6= Xj for i 6= j and e ∈ E(∅) a Core Erlang
expression which will be defined in the next definition.

All defined functions of a program p are collected in the family

F(p) = (F (0)(p), . . . ,F (n)(p))

where 0, . . . , n are the arities of the defined functions. In every Core Erlang program
a main function is defined: main/0 ∈ F(p). �

Chapter 3. Core Erlang – A Fragment of Erlang 21

The Core Erlang expressions are defined over an arbitrary set S which is empty in
the syntax. In the semantics S will be the set of possible values of the evaluation.

Defintion 3.6 (Core Erlang Expressions)
The set of Core Erlang Expressions E(S) over a set S is the smallest set with:

• S ⊆ E(S) | values
• Var ⊆ E(S) | variables
• self ∈ E(S) | the own pid
• φ/n ∈ Σ ∪ C ∪ F(p), f/n ∈ F(p),

e1, . . . , en ∈ E(S), p1, . . . , pn ∈ PPat
=⇒ ◦ φ(e1, . . . ,en) ∈ E(S) | application

◦ p1 = e1 ∈ E(S) | pattern matching
◦ e1,e2 ∈ E(S) | sequence
◦ e1!e2 ∈ E(S) | send
◦ case e of p1->e1; . . . pn->en ∈ E(S) | branch
◦ receive p1->e1; . . . pn->en ∈ E(S) | receive
◦ spawn(f,e1) ∈ E(S) | spawn �

Note that variables occurring in the right-hand side of a function definition are not
restricted to the variables of the left hand side: Erlang has no scoping (see Section 2.1).
New variables can be introduced everywhere. We will often refer to the variables
occurring in an expression. This is possible by means of the function

vars : E(S) −→ Var

yielding all functions of an expression.
The defined core fragment is still complex. We do not want to restrict it to a

smaller language because we want to work as close as possible to a real programming
language. The main concepts of Erlang are represented in Core Erlang.

Example 3.7
As a first example we define a Core Erlang program for the database developed in
Section 2.2. The Core Erlang program pdb is defined as:

main() -> DB = spawn(dataBase,[[]]),

spawn(client,[DB]),

client(DB).

dataBase(L) -> receive

{allocate,Key,P} ->

case lookup(Key,L) of

fail -> P!free,

receive

{value,V,P} ->

dataBase([{Key,V}|L])

end;

22 3.2. Semantics

{succ,V} -> P!allocated,

dataBase(L)

end;

{lookup,Key,P} -> P!lookup(Key,L),

dataBase(L)

end.

lookup(K,L) -> case L of

[{K,V}|R] -> {value,V};

[Pair|R] -> lookup(K,R);

[] -> fail

end.

A problem is the translation of the pattern matching in the function definitions
but with the use of case this can be solved easily. We will later prove some properties
of this database combined with two accessing clients. The client can be translated
accordingly.

3.2 Semantics

The semantics of Erlang is informally described in [AVWW96]. For our aims we have
to formalize it.

In the theory of semantics of programming languages mainly two kinds of se-
mantics (denotational, operational) are considered [NN92, Win93]. The denotational
semantics is defined as the least fixed point of a system of equations induced by the
program. Some approaches define a denotational semantics for concurrent systems
[BZ82, Ros84]. The work closest to our’s is a denotational semantics for Concur-
rent ML [DB97]. However, the big disadvantage of all these approaches is their
technical effort. Unlike sequential programs, concurrent systems can behave non-
deterministically. Therefore, the denotational semantics is usually defined over sets
of possible results. Another problem is nontermination. Usually, denotational seman-
tics uses ⊥ to express nontermination. Different nonterminating evaluations cannot
be distinguished because they do not yield a result. Unfortunately, many concurrent
and distributed systems are reactive systems and nontermination is required. The
side-effects in the loops influence the system. In order to model this, the denotational
semantics can be extended to sets of possible runs, in other words infinite words of
actions which is an extravagant expense. Furthermore, it is just a simulation of the
operational semantics.

Therefore, we chose an operational interleaving semantics for Core Erlang. An ex-
ample for the advantage of this semantics can be seen in the operational semantics of
Concurrent ML [PR97] which is much clearer than the corresponding denotational se-
mantics. The operational semantics defines a non-deterministic relation representing
all possible behaviors of a system. The non-determinism in the parallel composition
of processes is simulated with interleaving: all possible execution sequences of the

Chapter 3. Core Erlang – A Fragment of Erlang 23

parallel processes are considered. A comparison of the two approaches for concurrent
systems can be found in [BW91].

The only disadvantage of an operational semantics is the lack of compositionality.
The semantics of two expressions e1 and e2 cannot be combined to the semantics
of their sequence e1,e2 or parallel composition e1‖e2. An approach to solve this
problem are natural semantics [Ast91]. Instead of a small step operational semantics
the natural semantics defines a big step semantics, i.e., the result is produced in one
step. Sub-evaluations are combined to one evaluation step which make the evaluation
more compositional. As with the denotational technique it is very difficult to define
the semantics of non-terminating programs.

Other possible models for concurrency are partial order based techniques. Their
aim is to prevent the state space explosion which is caused by the interleaving ap-
proach. Instead of using interleaving these approaches describe true concurrency. The
main approaches are event structures [BC89] and Mazurkiewicz traces [Maz84]. In
both approaches independent actions may be executed in parallel. The behavior of
a concurrent system is described with partial orders in which the possible schedules
of independent actions are not distinguished. This leads too much smaller models in
many cases.

In this thesis, the aim of the definition of a formal semantics is the formal verifica-
tion with model checking. Applying model checking to these partial order approaches
is more difficult than applying model checking to the transition systems resulting from
the interleaving semantics [Che97, BL01]. The price for the smaller models are less
efficient algorithms. Furthermore, many of the existing algorithms break down the
partial order structure and prove the properties with interleaving configurations of
the partial order models. Another point are the logics for partial order models which
are used for the verification of system properties. The dependency respectively inde-
pendency of actions influences the semantics of the formulas. Specifying properties
in these logics is not very intuitive.

We decided to define an interleaving semantics for Core Erlang. Later on, the
partial order techniques can be applied to this semantics as partial order reduction.
This technique is a successful optimization technique for model checkers which uses
the ideas of partial order semantics. In Section 6.2 we will present the application of
this technique for an optimization of our verification tool.

In [DF98] a formal semantics for Erlang, inspired by the structured operational
semantics of CCS and the π-calculus, is defined. A rewriting logic implementation
of this semantics can be found in [Nol01]. This semantics is complicated and asyn-
chronous communication is modelled as two synchronizations

• between the sending process and the receiving mailbox and

• the mailbox and the receiving process.

This semantics is used for the verification of Erlang programs with theorem proving.
In this context an inductive structure of an action can be helpful because proofs can
be performed by induction. Here we present a more direct approach in which the

24 3.2. Semantics

asynchronous communication and the mailbox are modelled directly. We describe a
sending action is one single step instead of dividing it into sub-steps.

During the execution of an Erlang program several processes run concurrently.
Every process is identified by a unique process identifier (pid). Pids can be stored
in data structures or sent to other processes. Therefore, we allow constructor terms
over pids as possible values of the evaluation (TC(Pid)) where Pid is an infinite set
of process identifiers, distinguishable from Atoms. Pids only occur in the semantics
of Erlang. Therefore, their internal representation is not relevant. However, in some
examples where we will discuss the semantics pids will explicitly occur. Therefore,
we define a representation of pids as:

Pid := {@n | n ∈ IN}

The semantics of the predefined functions is defined by an interpretation:

Defintion 3.8 (Σ-Interpretation)
Let A be a set of values, called domain, and ι a family of interpretation functions
ι = (ι(n) : Σ(n) → (An−→ A) | n ∈ IN+) for the functions of Σ. Then A = (A, ι) is
called a Σ-Interpretation.
We write ι(F/n) instead of ι(n)(F/n) and FA, if n is clear from the context. �

The interpretation fuinction ι applied to a function symbol yields a partial function
(An− → A) because not every function can be interpreted on the whole domain.
An example for such a partial function is the square root (

√
). In programming

languages, the domain of
√

usually is Float, although it is defined only for positive
numbers. In the untyped language Erlang this is even more important: We only have
one domain for all values and a predefined function is usually defined only on a subset
of this domain. For example, +/2 is not defined on atoms but on numbers.

In the interpretation for Core Erlang we use the constructor terms over Pid as
domain. Hence, we have A = (TC(Pid), ι) with ι = (ι(n) : F (n) → (TC(Pid)n−→
TC(Pid))) the interpretation functions for the predefined functions.

Example 3.9
The function +/2 ∈ F is interpreted as the function for adding two values and it is
defined only on the atoms representing numbers. For instance,

ι(2)(+/2) (17,25) = 42 and ι(2)(+/2) (-7,0) = -7

On the other hand, ι(2)(+/2) (17,{2, fail}) is undefined.

Defintion 3.10 (Mailbox, Process, State, and Label)
A state of the evaluation of a Core Erlang program is a finite set of processes

S tate := Pfin(Proc),

Chapter 3. Core Erlang – A Fragment of Erlang 25

where a process consist of a pid, a Core Erlang expression over TC(Pid) and a mailbox

Proc := Pid× E(TC(Pid))×Mb,

and a mailbox is a word over values of the evaluation

Mb := TC(Pid)∗.

States {π1, . . . , πn} ∈ S tate are usually not written in set notation. Instead, we write
π1‖ . . . ‖πn. Furthermore, we write Π, π for the disjoint union Π] {π}.

We will define a labelled transition system for operational semantics. The set of
possible labels is defined as:

Label := {!v | v ∈ TC(Pid)} ∪ {?v | v ∈ TC(Pid)}
∪ {spawn(f) | f/n ∈ F(p)} ∪ {ε} �

In Erlang patterns are not static. For instance, the pattern matching in the
function definition

f(X) -> {X,Y}={3,4},

Y.

is no matching against a tuple of variables. X is not a free variable in the right-hand
side of the rule. From the call of f it is bound to a value. This has to be considered
in matching. The matching only succeeds if X is bound to 3. Otherwise, we get a
runtime error. Hence, some parts of a pattern are statically defined and others are
added at runtime. Therefore, in the semantics it is not sufficient to consider program
patterns PPat. We must consider patterns which can also contain constructor terms:

Defintion 3.11 (Patterns)
The set of patterns is defined as

Pat := TC(Var ∪ TC(Pid)). �

Beside the two different kinds of constructors, these patterns can also contain pids
which are not allowed in program patterns.

For the definition of the leftmost innermost operational semantics of Erlang, we
use the technique of an evaluation contexts [FFKD87] which specifies where the next
step of an evaluation may take place.

Defintion 3.12 (Evaluation Contexts)
The set of evaluation contexts EC(S) for Core Erlang is defined as the smallest set
such that:

• [] ∈ EC(S)

• For all φ ∈ Σ ∪ C ∪ F(p), v, v1, . . . , vi ∈ S, e, e1, . . . , en ∈ E(S), f ∈ F(p),
p, p1, . . . , pn ∈ Pat, and E ∈ EC(S):

26 3.2. Semantics

– φ(v1, . . . ,vi,E,ei+2, . . . ,en) ∈ EC(S)

– E,e ∈ EC(S)

– p = E ∈ EC(S)

– spawn(f,E) ∈ EC(S)

– E!e ∈ EC(S)

– v!E ∈ EC(S)

– case E of p1->e1; . . . ;pn->en end ∈ EC(S)
�

The idea of an evaluation context is that the hole [] marks that position in an expres-
sion where the next evaluation will take place. Here, we have to consider the leftmost
innermost evaluation strategy. Therefore, in the function application, all expressions
on the left side of the evaluation context must be values. Only on the right side
unevaluated expressions are allowed. In a sequence, the next evaluation is located in
the first expression. Matching and spawn first evaluate the expression. The two rules
for sending values define in which order the two arguments of ! are evaluated: first
the destination, then the value. Finally, in the case expression the next evaluation is
located in the case expression.

The hole marks the point of the next evaluation. An evaluation context E matches
a Core Erlang expression e if e = E[e′]. E[e′] represents the Core Erlang expression,
in which the hole in the context E is substituted with e′. The semantics is then
determined by the different cases for e′.

In the standard operational semantics (SOS) we use S = TC(Pid) and expressions
and context over these values (E(TC(Pid)) and EC(TC(Pid))). Later we will use other
values, too.

Defintion 3.13 (Operational Semantics)
The operational semantics is defined as a relation =⇒ ⊂ S tate× Label × S tate. We

write s
a

=⇒ s′ for (s, a, s′) ∈=⇒ and s =⇒ s′ for s
ε

=⇒ s′. The definition is presented
in Figures 3.1–3.4. �

The rules for sequential evaluation are standard. A sequence evaluates to the second
argument, if the first one is a value. Predefined functions are evaluated with respect
to their interpretation. Constructor functions are interpreted freely. The expression
self evaluates to the corresponding pid and the application of defined functions yields
the corresponding right-hand side of the definition. To avoid conflicts between the
variables in the applied function and the context, we rename the free variables of
the inserted expression. The free variables of e are all occurring variables, except
X1, . . . , Xn. In contrast to other functional programming languages Erlang does not
provide scoping. Hence, we do not have bound variables which can be renamed with
α-conversion. Instead we rename free variables in the application of a defined function.
Exactly these variables correspond to the bound variables in other languages. It would
be sufficient to rename only the variables which occur in E and in e[X1/v1, . . . , Xn/vn].
However, for sake of simplicity we rename all variables in e[X1/v1, . . . , Xn/vn].

Chapter 3. Core Erlang – A Fragment of Erlang 27

−
Π, (π,E[v,e], µ) =⇒ Π, (π,E[e], µ)

F a predefined function

Π, (π,E[F (v1, . . . , vn)], µ) =⇒ Π, (π,E[FA(v1, . . . , vn)], µ)

−
Π, (π,E[c(v1, . . . , vn)], µ) =⇒ Π, (π,E[c(v1, . . . , vn)], µ)

−
Π, (π,E[self], µ) =⇒ Π, (π,E[π], µ)

f(X1, . . . , Xn)->e. ∈ p and {Y1, . . . , Ym} = vars(e) \ {X1, . . . , Xn} and
Z1, . . . , Zm /∈ vars(E) (Zi 6= Zj for i 6= j) and e′ = e[Y1/Z1, . . . , Ym/Zm]

Π, (π,E[f(v1, . . . , vm)], µ) =⇒ Π, (π,E[e′[X1/v1, . . . , Xn/vn]], µ′)

Figure 3.1: Operational Semantics — Sequential Evaluation

In the rules for pattern matching, case and receive (Figure 3.2) we use the
functions match, casematch and mbmatch to model Erlang’s mechanism of pattern
matching. Compared to other functional languages pattern matching in Erlang is
more complicated because non-linear patterns with multiple occurrences of the same
variables are allowed (see Chapter 2). These functions are defined in the following
definitions.

The result of the successful matching of a pattern against a value is a substitution:

Defintion 3.14 (Substitution)
A mapping σ : Var −→ TΣ(S) such that σ(X) 6= X for only finitely many X ∈ Var
is called TΣ(S)-substitution or simply substitution if the set of terms is irrelevant or
clear from the context.
The (finite) set of variables changed by σ is called the domain of σ: Dom(σ) :=
{X ∈ Var | σ(X) 6= X}. If Dom(σ) = {X1, . . . , Xn}, then we may write σ as
σ = [Xn/σ(X1), . . . , Xn/σ(Xn)].
The set of all TΣ(S)-substitutions will be denoted as Subst(S), or simply Subst.
A substitution σ is canonically extended to Core Erlang expressions, Core Erlang
contexts, patterns, and constructor terms: in the application of σ to these structures
all variables X are replaced by σ(X). �

28 3.2. Semantics

match(p, v) = ρ

Π, (π,E[p=v], µ) =⇒ Π, (π, ρ(E[v]), µ)

casematch((p1, . . . , pn), v) = (i, ρ)

Π, (π,E[case v of p1->e1; . . . ;pn->en end], µ) =⇒ Π, (π, ρ(E[ei]), µ)

mbmatch((p1, . . . , pn), (v1, . . . , vm)) = (i, j, ρ)

Π, (π,E[receivep1->e1; . . . ;pn->enend], (v1, . . . , vj, . . . , vm))
?vj
=⇒ Π, (π, ρ(E[ei]), (v1, . . . , vj−1, vj+1, . . . , vm))

Figure 3.2: Operational Semantics — Matching

Usually, for instance in term rewriting, the codomain of substitutions can also contain
variables (σ : Var −→ TC(Var)) [BN98]. However, in functional programming we are
only interested in bindings for the variables. Therefore, we restrict substitutions in
this way.

With the notion of substitutions, we can now define the function match for match-
ing a pattern against a value. Formalizing pattern matching, it is necessary to join
(]) two substitutions. Two substitutions can only be joined if the overlapping parts
are identical. We must consider this due to of the non-linear patterns of Erlang.
Otherwise, the result is Fail:

Defintion 3.15 (Join of Substitutions)

] : (Subst(TC(Pid)) ∪ {Fail})2 −→ Subst(TC(Pid)) ∪ {Fail}

Fail] σ = Fail
σ] Fail = Fail

σ1] σ2 =

{

σ1 ∪ σ2, if ∀X ∈ (Dom(σ1) ∩ Dom(σ2)) : σ1(X) = σ2(X)
Fail , otherwise �

Using this function, we can define the function match for matching a pattern against
a value:

Defintion 3.16 (Matching)

match : Pat× TC(Pid) −→ Subst(TC(Pid)) ∪ {Fail}
match(X, t) = [X/t]

Chapter 3. Core Erlang – A Fragment of Erlang 29

match(c(p1, . . . , pn), c(v1, . . . , vn)) = match(p1, v1)] . . .]match(pn, vn)
match(c(p1, . . . , pn), c(v1, . . . , vn)) = match(p1, v1)] . . .]match(pn, vn)
match(π, π) = []
match(,) = Fail, otherwise �

In the definition of match we must consider the two different kinds of constructors
and the pids which can occur in the patterns. Constructors c/n ∈ C from the source
code of the program and constructors c/n ∈ C which result from bindings applied to
the pattern are both handled in the same way. They only match the corresponding
constructors of the value, if also all sub-terms match. Later, in the abstraction we
will have to distinguish these two kinds of constructors. A pid π in the pattern only
matches the value π. In all other cases, the matching yields Fail.

In the operational semantics presented in Figure 3.2, the substitution which is the
result of a successful match is propagated to the whole expression. This is necessary
since Erlang has no scoping. It is also applied to the context where usually variables
of Dom(σ) occur again.

case evaluates to the expression corresponding to the first pattern that matches a
given value. The function casematch yields a pair consisting of the number of the first
matching pattern and the corresponding substitution. If none of the patterns match
the given value, then it yields Fail:

Defintion 3.17 (casematch)

casematch : Pat∗ × TC(Pid) −→ (IN× Subst) ∪ {Fail}

casematch((p1, . . . , pn), v) =

(i, σ), if match(pi, v) = σ and
match(pj, v) = Fail ∀j < i

Fail , otherwise �

According to the result of casematch, the case expression evaluates to the corre-
sponding expression. Again, the substitution is applied to the whole expression to
propagate the bindings from pattern matching.

receive evaluates in the same manner but all values in the mailbox have to be
considered. In Erlang the chronological order is:

• a pattern is successively matched against all values of the mailbox

• then the next pattern is matched

This is formalized by the function mbmatch which additionally yields the first match-
ing value of the mailbox:

Defintion 3.18 (mbmatch)

mbmatch : Pat∗ × TC(Pid)∗ −→ (IN× IN× Subst) ∪ {Fail}
mbmatch((p1, . . . , pn),(v1, . . . , vm))

=

(i, j, σ), if match(pi, vj) = σ and
match(pi, vk) = Fail ∀k < j and
match(pl, vh) = Fail ∀l < i, h ≤ m

Fail , otherwise �

30 3.2. Semantics

f(X1, . . . , Xn)->e. ∈ p and v1, . . . , vn ∈ CTPid and π′ a new pid

Π, (π,E[spawn(f, [v1, . . . , vn])], µ)
spawn(f)

=⇒ Π, (π,E[p′], µ), (π′, e[X1/v1, . . . , Xn/vn], ())

v1 = π′ ∈ Pid

Π, (π,E[v1!v2], µ), (π′, e, µ′)
!v2
=⇒ Π, (π,E[v2], µ), (π′, e, µ′ : v2)

Figure 3.3: Operational Semantics — Concurrent Evaluation

The complexity of the definitions of casematch and mbmatch is caused by Erlang’s
semantics.

The rules for concurrent evaluation (Figure 3.3) formalize the creation of a new
process and the sending action which extends the mailbox of the process π′ = v1.

Finally, we have to consider runtime errors (Figure 3.4). They can occur, if a
value is sent to a non-pid, e.g. a natural number, a non-instantiated variable should be
evaluated, or a matching fails. We have no rule for a receive expression, in which none
of the patterns matches a value of the mailbox. This is the case if the corresponding
mbmatch yields Fail. In this case the process does not crash but suspends. This is
expressed in the formal semantics by the fact that such a process does not have any
successor. If another process sends a value to this process, then this value is added to
its mailbox. The process is awoken, if this new message matches one of the patterns.
Formally, error is defined as the empty set of states.

As every interleaving semantics, our semantics is locally non-deterministic. For
instance, the order in which two processes perform a send action is not determined.
In combination with communication this local non-determinism can also result in
a global non-determinism which is usually called confluence in the context of term
rewriting systems [BN98]: if an expression (in our context a state) evaluates to two
different expressions, then these two different expression can be reduced to the same
irreducible expression (all processes are terminated).

Lemma 3.19
The operational semantics =⇒ is not confluent.

Proof: Consider the following program

main() -> spawn(sender,[42,self]),

spawn(sender,[43,self]),

receive

X -> X

end.

Chapter 3. Core Erlang – A Fragment of Erlang 31

F a predefined function and FA(v1, . . . , vn) is not defined

Π, (π,E[F (v1, . . . , vn)], µ) =⇒ error

v1 6∈ Pid

Π, (π,E[v1!v2], µ)
!v2
=⇒ error

X is a variable

Π, (π,E[X], µ) =⇒ error

match(p, v) = Fail

Π, (π,E[p=v], µ) =⇒ error

casematch((p1, . . . , pn), v) = Fail

Π, (π,E[case v of m end], µ) =⇒ error

Figure 3.4: Operational Semantics — Runtime Errors

sender(V,P) -> P!V.

Two sender processes are spawned. The functional result of the main function is the
value of the sender which sends the value first. Due to interleaving this can be any
sender. Hence, we have two terminating evaluations

(@0, main(), ()) =⇒∗ (@0,42, (43))‖(@1,42, ())‖(@2,43, ())

and
(@0, main(), ()) =⇒∗ (@0,43, (42))‖(@1,42, ())‖(@2,43, ()) 2

This is a usual behavior of concurrent systems. If only one process (including its
mailbox) is concideres the operational semantics =⇒ is deterministic:

Lemma 3.20 (Determinism of processes)
For all states Π, π ∈ S tate there exists at most one π′ ∈ Proc, a ∈ Label such that

Π, π
a

=⇒Π, π′.

Proof: A simple induction over the structure of the Core Erlang contexts respec-
tively expressions in π. 2

32 3.2. Semantics

Chapter 4

Abstraction

In the last section we have defined an operational semantics for Core Erlang as a
labelled transition relation over sets of processes. For the formal verification of a
concrete system we are only interested in the part of this transition relation which is
reachable from the initial state. We will use this part as the transition system for the
verification by model checking. Unfortunately, this labelled transition system has an
infinite state space because of the following facts:

1. arbitrarily many values may appear in the process expressions and the mailboxes
(e.g., natural numbers)

2. the expressions can grow arbitrarily because of non-tail recursive function calls

3. the mailboxes can hold arbitrarily many values

4. arbitrarily many processes can be spawned

In the abstraction we want to reduce the state space to finite size with the condition
that every path of the operational semantics is also represented in the abstraction. In
[NN97, ANN98] Amtoft, Nielson and Nielson present a method to analyze Concurrent
ML programs. They extract the behavior of a program, an abstraction, by type
inference and prove properties of the program using this behavior. Erlang is an
untyped language and we cannot transfer this technique to Erlang. We have to find
another approach, but we handle the possible reasons for the infinite state space in
the same way as Amtoft, Nielson and Nielson:

1. The posible values are represented by values of a finite domain. Therefore, we
use the technique of abstract interpretation [CC77a, JN94, SS98].

34 4.1. The Idea of Abstraction

2. We define a subclass of Core Erlang programs in which programs do not have
this property. This subclass covers a large part of practical applications. Addi-
tionally, in Chapter 7 we define an abstraction of the control flow which abstracts
the non-tail recursive function calls to a finite transition system.

3. and 4. We do not solve this problem here. However, other verification tools have
similar problems. For instance, a CCS specification can also have an infinite
state space (arbitrarily many processes can be created) and the model checking
problem for CCS and LTL is undecidable in general. Tools for the verification
of CCS specifications, such as the concurrency workbench [CPS90] only work
for the finite state case. If the CCS specification defines an infinite transition
system, then model checking does not terminate1. We use the same approach
and obtain a finite state transition system for Core Erlang programs that use
only finite parts of the mailboxes and create only finitely many processes.

In this section we focus on reducing the infinite set of values to a finite domain and
describe how to evaluate expressions on this abstract domain to simulate the SOS.
This yields the abstract operational semantics (AOS). In [NN97] this finite domain is
the set of types occurring in the program and the behavior is just a Concurrent ML
program evaluating on types.

4.1 The Idea of Abstraction

We consider the following Core Erlang program:

Example 4.1

main() -> f(21).

f(X) -> f(X*2).

The state space of the operational semantics spawned by this program is infinite:

(@0, main(), ()) =⇒ (@0, f(21), ()) =⇒ (@0, f(21), ()) =⇒ (@0, f(21 ∗ 2), ())
=⇒ (@0, f(21 ∗ 2), ()) =⇒ (@0, f(42), ()) =⇒ (@0, f(42 ∗ 2), ()) =⇒ . . .

Note that in the second and fourth reduction there is a modification. The constructors
(atoms) 21, 2 ∈ TC(∅) are evaluated to the atoms 21,2 ∈ TC(Pid).

The main idea of constructing a finite model for an Erlang program is the evaluation
on abstract values. We restrict the possible values to a finite domain ̂A, for instance
̂A = {even,odd}. The value even represents the values {2 · n | n ∈ ZZ} and odd

1Using on-the-fly algorithms it can in some cases terminate, if the property can be proven on a
sub-part of the transition system and by chance the model-checking algorithm verifies exactly this
subpart. However, for many properties like the absence of deadlocks the whole system must be
checked and model checking does not terminate.

Chapter 4. Abstraction 35

represents the values {2 ·n+ 1 | n ∈ ZZ}. Similarly, we can define how to calculate on
this abstract domain:

ι̂(2)(*/2)(even,even) = even
ι̂(2)(*/2)(odd, even) = even
ι̂(2)(*/2)(even,odd) = even
ι̂(2)(*/2)(odd, odd) = odd

The evaluation of the operational semantics by means of this abstract domain yields
the finite transition system

(@0, main(), ()) (@0, f(21)), ()) (@0, f(odd), ())

(@0, f(odd ∗ 2), ())

(@0, f(odd ∗ even), ())

(@0, f(even), ())

(@0, f(even ∗ even), ()) (@0, f(even ∗ 2), ())

To distinguish the abstract operational semantics from the SOS, we use the relation
−→ instead of =⇒. The infinite path in this system represents the infinite path from
above but this transition system is finite and contains a cycle.

However, the abstract domain ̂A = {even,odd} causes problems. For the division
of integers Erlang provides the built-in function div which yields the integer part of
the fraction. We cannot decide, if div, applied to two even values, yields an even or
an odd value:

ι(div/2)(42,2) = 21 and ι(div/2)(84,2) = 42

Therefore, we must add a value to the abstract domain which represents even and
odd values. We call this value num and can define

ι̂(2)(div/2)(x, y) = num ∀x, y ∈ ̂A

This new value num subsumes all numbers. It is less precise than the abstract values
even and odd. For the formalization of this fact we use a partial order: bigger values
are more precise. In our example the partial order (̂A,�) is defined as:

�:= {(even, even), (odd,odd), (num,num), (num, even), (num,odd)}

Usually, we present partial orders as their Hasse diagrams which omit the reflexive
and transitive parts of the relation:

even odd

num

In standard frameworks for abstract interpretations, usually complete lattices are
used. The orientation of the order in these lattices is usually chosen in the other way

36 4.1. The Idea of Abstraction

round (smaller values are more precise). For our approach a complete partial order
instead of a complete lattice is sufficient. Partial orders are usually defined with a
least element. Therefore, we use this orientation of the partial order with bigger
values representing more precise values. In Section 4.4 we will compare our approach
with other frameworks for abstract interpretation in more detail.

Lemma 4.2
〈{even,odd,num},�〉 is a complete partial order.

The proof is trivial because ̂A is finite. All directed sets are finite and the supremum
is the greatest element of the set.

Abstract interpretations of predefined functions cannot be defined arbitrarily.
They must be consistent with respect to the standard interpretation. Using the
defined ordering we can formalize the safeness of abstract interpretations. For the
connection between the concrete domain and the abstract domain we define an ab-
straction function2 α : A −→ ̂A.

In our example, we define:

α(v) =

{

even , if ∃n ∈ ZZ with v = 2 ∗ n
odd , if ∃n ∈ ZZ with v = 2 ∗ n+ 1

We have to guarantee that the result of the abstract interpretation of a function yields
a value which represents the abstraction of the concrete interpretation of the same
function. This means the result of the abstract interpretation is less precise than the
abstraction of the concrete representation. Formally, this can be expressed by the
following property:

(P1) For all f/n ∈ F , v1, . . . , vn ∈ TC(Pid) and ṽi � α(vi) it holds that

ι̂(f/n)(ṽ1, . . . , ṽn) � α(ι(f/n)(v1, . . . , vn))

The idea of this property can be illustrated by the following diagram:

v1, . . . , vn ∈ A v ∈ A

v̂1, . . . , v̂n ∈ ̂A v̂ ∈ ̂A

� �

ṽ1, . . . , ṽn ∈ ̂A ṽ ∈ ̂A

ι(f) : An −→ A

α : A −→ ̂A α : A −→ ̂A

ι̂(f) : ̂An −→ ̂A

2Often the abstraction function is defined as α : P(A) −→ ̂A combined with a concretization
function γ : ̂A −→ P . In this case both have to build a Galois insertion. We will discuss this
alternative in Section 4.4.

Chapter 4. Abstraction 37

The main point of ṽ � v̂ is that the two values must be comparable. Therefore,
in our example it would be wrong to define

ι̂(div/2)(x, y) = even ∀x, y ∈ ̂A

because α(ι(div/2)(42,2)) = α(21) = odd and even 6� odd.
On the other hand, it would not be sufficient to require that

ι̂(f/n)(α(v1), . . . , α(vn)) � α(ι(f/n)(v1, . . . , vn))

For example, it would then be possible to define

ι̂(div/2)(num, even) = odd

for our abstract interpretation. The property is satisfied because ∀v ∈ A : α(v) 6=
num. However, during the evaluation of a Core Erlang expression this value can
occur, as the following example shows:

main() -> X = 42 div 2,

X div 2.

With the semantics:

Concrete Abstract

(@0, main(), ()) (@0, main(), ())
=⇒3 (@0, X =42 div 2, X div 2, ()) −→3 (@0, X = even div even, X div 2, ())
=⇒ (@0,21, 21 div 2, ()) −→ (@0,num, num div 2, ())
=⇒2 (@0,21 div 2, ()) −→2 (@0,num div even, ())
=⇒ (@0,10, ()) −→ (@0,odd, ())

This is obviously wrong (odd 6� α(10) = even), although the property is satisfied.

4.1.1 Abstraction of Constructors

Erlang is untyped. Therefore, the domain defined above is not sufficient. We need
abstract representations for arbitrary values. In other words, also for non-numerical
values. Therefore, we use the value ? which is less precise than any other value (? � ṽ

for all ṽ ∈ ̂A).
Erlang also provides constructor terms. These terms can be built applying con-

structors to other values (see Section 2.1.1). In the concrete interpretation we have
interpreted these constructors freely. This is not possible in an abstract interpretation
with a finite domain because constructors could be applied arbitrarily often. Hence,
constructors need an abstract interpretation, too, and we have to claim an appropriate
property for them:

(P1’) For all c/n ∈ C, v1, . . . , vn ∈ TC(Pid) and ṽi � α(vi) it holds that

ι̂(c/n)(ṽ1, . . . , ṽn) � α(ι(c/n)(v1, . . . , vn))

An example for the abstraction of constructors will be presented in Section 4.3.2.

38 4.1. The Idea of Abstraction

4.1.2 Abstraction of Matching

At this point, standard frameworks for abstract interpretation [CC77a, JN94] are
entirely defined. The required properties relate the concrete and the abstract do-
main. These frameworks add non-determinism to branching in if-then-else, if the
condition is evaluated to an abstract value which is less precise than true and false.
Unfortunately, for Core Erlang this is not sufficient. Another problem appears in the
abstraction of matching, as the following program shows:

Example 4.3

main() -> snd({sense,42}).

snd(X) -> {Y,Z} = X,

Z.

We consider the abstract domain ̂A = {even,odd, ?} with the ordering

�: even odd

?

To satisfy property (P1’), the atom sense can only be interpreted as ? in this domain.
The same holds for the tuple constructor {}/2:

ι̂(2)({}/2)(x, y) = ? ∀x, y ∈ ̂A

Again, we consider the two operational semantics of the example:

Concrete Abstract

(@0, main(), ()) (@0, main(), ())
=⇒ (@0, snd({sense,42}), ()) −→ (@0, snd({sense,42}), ())
=⇒ (@0, snd({sense,42}), ()) −→ (@0, snd({?,42}), ())
=⇒ (@0, snd({sense,42}), ()) −→ (@0, snd({?,even}), ())
=⇒ (@0, snd({ sense,42}), ()) −→ (@0, snd(?), ())
=⇒ (@0, {Y, Z}={sense,42},Z, ()) −→ (@0, {Y, Z}=?,Z, ())
=⇒ (@0,{sense,42},42, ())
=⇒ (@0,42, ())

How can this pattern matching be evaluated with respect to our abstract domain?
The pattern matching in the concrete evaluation succeeds because the matching of the
pattern {Y,Z} against the value {sense, 42} yields the substitution [Y/sense,Z/42].
We have modelled matching by the function match in the concrete semantics. In the
abstract evaluation the tuple {sense, 42} is represented by the abstract value ?.
Therefore, we also need a successful pattern matching in our abstraction:

(@0, {Y, Z}=?,Z, ()) −→ (@0, ?,?, ()) −→ (@0, ?, ())

Chapter 4. Abstraction 39

We cannot use the function match on abstract values. The value ? also repre-
sents the value 42 and the abstract state (@0,{Y,Z}=?,Z,()) also the concrete state
(@0,{Y,Z}=42,Z,()). In the concrete semantics we have

(@0, {Y, Z}=42,Z, ()) =⇒ error

which has to be represented in the abstract semantics, too. Therefore, matching on
abstract values cannot only yield a substitution or Fail, as in the concrete case. It can
yield both. To formalize this, we distinguish three cases for the abstract matching:

1. it yields a substitution: for instance, the matching X=42 which will succeed for
arbitrary abstractions of 42.

2. it yields the value Fail: for instance, in the matching 42=odd with the domain
̂A from Example 4.3. We can be sure that no even value matches an odd value.

3. it can yield a substitution or Fail, as discussed before.

We represent these three cases as follows:

1. The matching is irrefutable. We indicate this by the flag Irref.

2. The matching fails, indicated by the value Fail.

3. The matching is possible but it can also fail, indicated by the flag Poss.

The match function cannot be fixed for arbitrary abstractions. It depends on the
concrete abstract domain. Therefore, we add an interpretation of match to the ab-
straction function:

ι̂(match) : ̂Pat× ̂A −→ ({Irref,Poss} × Subst(̂A)) ∪ {Fail}

In Erlang patterns also depend on values (e.g., pids). Therefore, we use an abstract

variation of patterns ̂Pat. E.g., pattern matching in the function definition

f(X) -> {X,Y}={3,4},

Y.

is no matching against a tuple of variables. X is not a free variable in the right-hand
side. From the call of f it is bound to a value. This has to be considered in matching.
It only succeeds if X is bound to 3. Otherwise we get a runtime error. Hence, some
parts of a pattern are statically defined and others are added at runtime. In the
abstract interpretation these are values of the abstract domain and we get:

Defintion 4.4 (Patterns)
The set of abstract patterns is defined as

̂Pat
̂A := TC(Var ∪ ̂A)

In the following, the abstract domain will usually be clear from the context. In this
case, we omit the index ̂A and write ̂Pat. �

40 4.1. The Idea of Abstraction

As an example, the function f could be applied to the abstract value even. Then the
abstract pattern would be {even, Y} ∈̂Pat.

These non-static patterns are often used in Erlang, as the patterns {value,V,P}
and [{K,V}|_] in the database process in Example 3.7. Using these patterns it is
possible to compare mailbox entries containing dynamic values without extracting
them from the mailbox. In the pattern {value,V,P} this is checking the equality of
the third component of a message and the variable P which is bound to a pid, received
before.

Again, we claim two properties for the safeness of the abstract interpretation:

(P2) For all p ∈ Pat and v ∈ A and for all p̃ � α(p) and ṽ � α(v) it holds that

a) if match(p, v) = σ then ι̂(match)(p̃, ṽ) = (, σ̃) and σ̃ � σ

b) if match(p, v) = Fail then ι̂(match)(p̃, ṽ) ∈ {(Poss,),Fail}

Successful and failed matches must be represented in the abstract interpretation, to
be safe with respect to the SOS.

In theses properties we compare abstract substitutions with respect to the ordering
� on values. This natural extension is defined as:

Defintion 4.5 (Extension of Orderings to Substitutions)

Let � ⊆ ̂A× ̂A be an ordering.

σ1 � σ2 iff Dom(σ1) = Dom(σ2) and σ1(X) � σ2(X) ∀X ∈ Dom(σ1) �

For readability we use � for this extension, too. The concrete instance of this over-
loading will be clear from the context.

In our concrete example we can define:

ι̂(match)({Y, Z}, ?) = (Poss, [Y/?, Z/?])

In the abstract operational semantics we have two successor states. One for the suc-
cessful matching and the error state for the failed matching. We add non-determinism
to be safe with respect to the concrete semantics.

4.1.3 Abstraction of Branching

In the case of branching we cannot always decide which branch has to be chosen. This
is illustrated by the following example:

f(X) -> case X of

0 -> 42;

Y -> 43

end.

Again, we consider the abstract even-odd-domain. If f is applied to the abstract
value odd, then it is safe that the second branch is chosen. The abstract result is

Chapter 4. Abstraction 41

odd. However, the abstract value even also represents the concrete value 0. Hence,
by means of this abstract value both branches can be chosen.

In the concrete semantics we use a function

casematch : Pat∗ × A −→ (IN× Subst(A)) ∪ {Fail}

which defines the successive matching of patterns against a value. The result is the
position of the first pattern which matches the value or Fail if none of the values
matches.

As for match, we extend the abstract interpretation function to an interpretation
of casematch because its behavior depends on the concrete abstraction. Not only one
position and number can be chosen. We allow a finite set of possible positions and
corresponding substitutions:

ι̂(casematch) : ̂Pat
∗
× ̂A −→ P((IN× Subst(A)) ∪ {Fail})

It is not sufficient to represent the value Fail by the empty set of positions and
substitutions. We have the same problem as for match before. If a matching is only
possible but not irrefutable, then we have to yield both results: the substitution and
the value Fail. Otherwise, we are not safe with respect to the SOS.

For safeness of the abstract interpretation we claim:

(P3) For all p1, . . . , pn ∈ Pat, v ∈ TC(Pid) and for all p̃j v α(pj) and ṽ v α(v)
it holds that:
a) if casematch((p1, . . . , pn), v) = (i, ρ),

then there exists ρ̃ v α(ρ) with (i, ρ̃) ∈ casematch
̂A((p̃1, . . . , p̃n), ṽ).

b) if casematch((p1, . . . , pn), v) = Fail,
then Fail ∈ casematch

̂A((p̃1, . . . , p̃n), ṽ).

Again, the abstract interpretation must preserve all possible results of casematch.

4.1.4 Abstraction of receive

The abstraction of mbmatch can be defined analogously:

ι(mbmatch) : ̂Pat
∗
× ̂A∗ −→ P((IN× IN× Subst(A)) ∪ {Fail})

As in the SOS we handle Fail in a different way then for casematch. If the result of
mbmatch is Fail, then the process does not yield an error. It just suspends. We have
to represent this behavior in the abstraction, too. Therefore, it would be sufficient
to claim a property similar to (P3a). However, as we will see in Section 4.6, we also
need a property similar to (P3b) to detect deadlocks. The prove of the absence of
deadlocks is one major goal in the verification of concurrent and distributed systems.
Therefore, we claim the following properties for an abstract interpretation although,
we will only need the first property here:

42 4.2. A Framework for Abstract Interpretations

(P4) For all p1, . . . , pn ∈ Pat, v1, . . . , vu ∈ TC(Pid) and for all p̃j v α(pj) and
ṽk v α(vk) it holds that:

a) if mbmatch((p1, . . . , pn), (v1, . . . , vu)) = (i, j, ρ),
then there exists ρ̃ v α(ρ)

with (i, j, ρ̃) ∈ mbmatch
̂A((p̃1, . . . , p̃n), (ṽ1, . . . , ṽu)).

b) if mbmatch((p1, . . . , pn), (v1, . . . , vu)) = Fail,
then Fail ∈ mbmatch

̂A((p̃1, . . . , p̃n), (ṽ1, . . . , ṽu)).

4.1.5 Abstraction of pids

Finally, we have to consider the pids represented by an abstract value. As an example,
we consider the sending of a value:

f(X) -> X!42.

This function sends the value 42 to the pid, the variable X is bound to. We consider
the even-odd domain extended by pids:

even odd @0 @1 @2 · · ·

?

If f is applied to the abstract values even or odd, then this should yield a runtime
error. These values do not represent any pid. If f is applied to one of the pids in
the abstract operational semantics, then this should exactly represent the concrete
sending to the process with this pid. Finally, f can be applied to ?. The abstract
value ? represents all values of TC(Pid). Therefore, possible paths must contain the
sending of the abstract value even (representing the concrete value 42) to all existing
processes. Furthermore, ? also represents non-pid values. Therefore, the abstract
semantics must also contain a runtime error.

We have not abstracted from the pids of the running processes. Due to this fact,
we need a concretization of the abstract values as concrete pids. As before, we add
this concretization to the abstract interpretation function:

ι̂(pid) : ̂A −→ P(Pid ∪ err)

Again, we claim a property for safeness:

(P5) a) For all p ∈ Pid and p̃ � α(p) it holds that p ∈ ι̂(pid)(p̃).
b) For all v 6∈ Pat and ṽ � α(v) it holds that err ∈ ι̂(pid)(ṽ).

4.2 A Framework for Abstract Interpretations

In the last section we have presented the idea of the abstract operational semantics
of Core Erlang programs. In contrast to standard frameworks for abstract interpre-
tation, it is not sufficient to relate the abstract and the concrete interpretation of the

Chapter 4. Abstraction 43

predefined functions and add non-determinism in branching. Erlang’s mechanism of
pattern matching must be considered. Therefore, we have extended the abstraction
by interpretations for match, casematch, and mbmatch. Finally, we have considered a
concretization of values as pids. For all these abstract interpretations we have claimed
properties to guarantee safeness of the abstract semantics with respect to the SOS.
Now, we summarize these results in a framework for abstract interpretations of Core
Erlang programs.

Defintion 4.6 (Abstract Interpretation for Core Erlang)

Let ̂A be a set of abstract values, called the abstract domain. Let ι̂ be a family of
abstract interpretation functions for

• the predefined functions ι̂(n)(F/n) : ̂An −→ ̂A,

• the constructors ι̂(n)(c/n) : ̂An −→ ̂A,

• matching ι̂(match) : ̂Pat× ̂A −→ ({Irref,Poss} × Subst(̂A)) ∪ {Fail}

• matching a list of patterns against a value

ι̂(casematch) : ̂Pat
∗
× ̂A −→ P((IN× Subst(̂A)) ∪ Fail),

• matching a list of patterns against a mailbox

ι̂(mbmatch) : ̂Pat
∗
× ̂A∗ −→ P((IN× IN× Subst(̂A)) ∪ Fail),

• and the possible pids a value of ̂A represents ι̂(pid) : ̂A −→ P(Pid ∪ {err}).

Let v ⊂ ̂A× ̂A be a partial order on the abstract domain and α : TC(Pid) −→ ̂A

an abstraction function. Then ̂A = (̂A, ι̂,v, α) is called an abstract interpretation for
Core Erlang programs if it satisfies properties (P1) – (P5) of Figure 4.1.

Again, we write ι̂(f/n) instead of ι̂(n)(f) and f
̂A instead of ι̂(f/n), if n is clear

from the context.
If | ̂A| <∞, then ̂A = (̂A, ι̂,v, α) is called a finite domain abstract interpretation.

�

It is sufficient that the ordering v ⊆ ̂A × ̂A, which describes which values are more
precise than others, is a partial order. A complete lattice as in other frameworks is
not necessary since we will not use fixed-point computations. We just evaluate the
operational semantics and consider the transition system which is reachable from the
initial state (@0,main(),()).

Defintion 4.7 (Abstract Operational Semantics)
The abstract states, processes, mailboxes, and labels are defined analogously to the
concrete case:

̂S tate
̂A := Pfin(̂Proc) ∪ {dead},

̂Proc
̂A := Pid× T (̂A)× ̂Mb

̂A
̂Mb

̂A := ̂A∗

̂Label
̂A := {!v | v ∈ ̂A} ∪ {?v | v ∈ ̂A} ∪ {spawn(f) | f/n ∈ FS(p)} ∪ {ε}

44 4.2. A Framework for Abstract Interpretations

(P1) For all φ/n ∈ Σ ∪ C, v1, . . . , vn ∈ TC(Pid) and ṽi v α(vi), it holds that
φ
̂A(ṽ1, . . . , ṽn) v α(φA(v1, . . . , vn)).

(P2) For all p ∈ Pat, v ∈ TC(Pid) and for all p̃ v α(p), ṽ v α(v), it holds that
a) if match(p, v) = ρ

then there exists ρ̃ v α(ρ) with match
̂A(p̃, ṽ) = (, ρ̃).

b) if match(p, v) = Fail
then match

̂A(p̃, ṽ) ∈ {(Poss,),Fail}.

(P3) For all p1, . . . , pn ∈ Pat, v ∈ TC(Pid) and for all p̃j v α(pj) and ṽ v α(v),
it holds that:
a) if casematch((p1, . . . , pn), v) = (i, ρ),

then there exists ρ̃ v α(ρ) with (i, ρ̃) ∈ casematch
̂A((p̃1, . . . , p̃n), ṽ).

b) if casematch((p1, . . . , pn), v) = Fail,
then Fail ∈ casematch

̂A((p̃1, . . . , p̃n), ṽ).

(P4) For all p1, . . . , pn ∈ Pat, v1, . . . , vu ∈ TC(Pid) and for all p̃j v α(pj) and
ṽk v α(vk), it holds that:
a) if mbmatch((p1, . . . , pn), (v1, . . . , vu)) = (i, j, ρ),

then there exists ρ̃ v α(ρ)
with (i, j, ρ̃) ∈ mbmatch

̂A((p̃1, . . . , p̃n), (ṽ1, . . . , ṽu)).
b) if mbmatch((p1, . . . , pn), (v1, . . . , vu)) = Fail,

then Fail ∈ mbmatch
̂A((p̃1, . . . , p̃n), (ṽ1, . . . , ṽu)).

(P5) a) For all p ∈ Pid, p̃ v α(p), it holds that p ∈ pid
̂A(p̃).

b) For all v /∈ Pid, ṽ v α(v), it holds that err ∈ pid
̂A(ṽ).

Figure 4.1: Properties of an Abstract Interpretation

The abstract operational semantics −→
̂A ⊆ ̂S tate

̂A × ̂Label
̂A × ̂S tate

̂A is defined by
the rules in Figure 4.2. It is defined analogously to =⇒, except that the evaluation
may be non-deterministic at some points. These points result from the abstract
interpretation. Figure 4.2 shows only the differences to =⇒. �

In the motivation of the properties (P1) – (P5) we have argued that an abstraction is
safe. Now we formalize this relationship between =⇒ and −→

̂A and prove that our

framework guarantees safeness. We extend the partial orderv⊆ ̂A× ̂A on Core Erlang
expressions, contexts, mailboxes, processes, states, and labels. In Definition 4.8 the
extension on Core Erlang expressions E(̂A) is defined. We only present this extension.
The others are handled in the same way. An expression is smaller than another
expression iff both have the same structure and all occurring values are smaller.

2For better readability values, substitutions and patterns over the abstract domain ̂A are denoted
with a tilde.

Chapter 4. Abstraction 45

φ/n ∈ F ∪ CF

Π, (π,E[φ(v1, . . . , vn)], µ) −→
̂A Π, (π,E[φ

̂A(v1, . . . , vn)], µ)

−
Π, (π,E[self], µ) −→

̂A Π, (π,E[α(π)], µ)

match
̂A(p, v) = (, ρ)

Π, (π,E[p=v], µ) −→
̂A Π, (π, ρ(E[v]), µ)

match
̂A(p, v) = (Poss,) or match

̂A(p, v) = Fail

Π, (π,E[p=v], µ) −→
̂A error

(i, ρ) ∈ casematch
̂A((p1, . . . , pm), v)

Π, (π,E[case v of p1->e1; . . . ;pm->em end], µ) −→
̂A Π, (π, ρ(E[ei]), µ)

Fail ∈ casematch
̂A((p1, . . . , pm), v)

Π, (π,E[case v of p1->e1; . . . ;pm->em end], µ) −→
̂A error

(i, j, ρ) ∈ mbmatch
̂A((p1, . . . , pm), (v1, . . . , vu))

Π, (π,E[receive p1->e1; . . . ;pm->emend], (v1, . . . , vj, . . . , vu))
?vj−→

̂A Π, (π, ρ(E[ei]), (v1, . . . , vj−1, vj+1, . . . , vu))

π′ ∈ pid
̂A(v1)

Π, (π,E[v1!v2], µ)(π′, e, µ′)
!v2−→

̂A Π, (π,E[v2], µ)(π′, e, µ′ : v2)

err ∈ pid
̂A(v1)

Π, (π,E[v1!v2], µ)
!v2−→

̂A error

Figure 4.2: Abstract Operational Semantics (differences to SOS)

46 4.2. A Framework for Abstract Interpretations

Defintion 4.8 (Ordering on Expressions)

The partial order v3 ⊆ T (̂A)× T (̂A) is the smallest set with:

v1 v v2 iff v1 v v2

φ(e1, . . . , en) v φ(e′1, . . . , e
′
n) iff ei v e′i for all 1 ≤ i ≤ n

X v X
p=e v p′=e′ iff p v p′ and e v e′

self v self

e1,e2 v e′1,e
′
2 iff e1 v e′1 and e2 v e′2

case e of m end v case e′ of m′ end iff e v e′ and m v m′

receive m end v receive m′ end iff m v m′

e1!e2 v e′1!e
′
2 iff e1 v e′1 and e2 v e′2

spawn(f,e) v spawn(f,e′) iff e v e′

p1->e1; . . . ;pn->en v p′1->e
′
1; . . . ;p

′
n->e

′
n iff pi v p′i, ei v e′i ∀1 ≤ i ≤ n �

We also extend the abstraction function α : TC(Pid) −→ ̂A on Core Erlang expres-
sions, contexts, mailboxes, processes, states, and labels in this canonical way. The
abstraction of a state is the state in which all values of TC(Pid) are replaced by their

abstract representation in ̂A.

Lemma 4.9 (Safeness of abstract substitutions)
Let e ∈ E(TC(Pid)) and σ be a finite substitution. If σ̃ v α(σ) and ẽ v α(e) then
σ̃(ẽ) v α(σ(e)).

Proof: The only parts of an expression where a substitution has an effect are the
variables. The rest of the expression does not change and the lemma is satisfied.
This can be checked by a simple induction over the structure of the Core Erlang
expressions. The only cases we have to consider are:
• X ∈ Dom(σ) :

σ(X) = v ∈ TC(Pid) because σ̃ v α(σ) σ̃(X) = ṽ ∈ ̂A with ṽ v α(v).

• X /∈ Dom(σ) :
σ(X) = X and only X v α(X). On the other hand, for all σ̃ v α(σ) also
σ̃(X) = X. 2

Lemma 4.10
Let E ∈ EC(TC(Pid)) be a context and e ∈ E(TC(Pid)) be a Core Erlang expression.

If ˜E v α(E) and ẽ v α(e) then ˜E[ẽ] v α(E[e]).

Proof: A simple induction over the structure of E. 2

Theorem 4.11 (Safeness of −→
̂A)

Let ̂A be an abstract interpretation that satisfies properties (P1) – (P5).

If s
a

=⇒t then, for all s̃ v α(s), there exists ˜t v α(t) and ˜b v α(a) such that s̃
˜b
−→

̂A
˜t.

3We use the same symbol as for the ordering on substitutions to avoid too many different symbols
for the extensions of v. The concrete instance of this overloading will be clear from the context.

Chapter 4. Abstraction 47

Proof: We prove the safeness of the abstraction by induction over the structure of
the possible reducible expressions of the process p in s. These redexes are defined by
the reduction contexts. For the concluding step we always use Lemma 4.10

• s = Π, (π,E[X], µ) =⇒ error:

s̃ v α(s) implies s̃ = ˜Π, (π, ˜E[X], µ̃) with ˜Π v α(Π), ˜E v α(E) and µ̃ v α(µ).
Then also s̃ −→

̂A error.

• s = Π, (π,E[v,e], µ) =⇒ Π, (π,E[e], µ) = t:

s̃ v α(s) implies s̃ = ˜Π, (π, ˜E[ṽ,ẽ], µ̃) with ˜Π v α(Π), ˜E v α(E), ṽ v α(v),

ẽ v α(e), and µ̃ v α(µ). Then also s̃ −→
̂A
˜Π, (π, ˜E[ẽ], µ̃) v α(t).

• s = Π, (π,E[F (v1, . . . , vn)], µ) =⇒ Π, (π,E[FA(v1, . . . , vn)], µ) = t:

s̃ v α(s) implies s̃ = ˜Π, (π, ˜E[F (ṽ1, . . . , ṽn)], µ̃) with ˜Π v α(Π), ˜E v α(E),
ṽi v α(vi) ∀1 ≤ i ≤ n and µ̃ v α(µ).

Then s̃ −→
̂A
˜Π, (π, ˜E[F

̂A(ṽ1, . . . , ṽn)], µ̃) = ˜t. With property (P1) we know that

F
̂A(ṽ1, . . . , ṽn) v α(FA(v1, . . . , vn)) and conclude ˜t v α(t).

• s = Π, (π,E[c(v1, . . . , vn)], µ) =⇒ Π, (π,E[c(v1, . . . , vn)], µ) = t:
The proof can be done in the same way as for E[F (e1, . . . , en)] with the use of
(P1).

• s = Π, (π,E[self], µ) =⇒ Π, (π,E[p], µ) = t:

s̃ v α(s) implies s̃ = ˜Π, (π, ˜E[self], µ̃) with ˜Π v α(Π), ˜E v α(E) and µ̃ v α(µ).

Then also s̃ −→
̂A
˜Π, (π, ˜E[α(π)], µ̃) v α(t).

• s = Π, (π,E[f(v1, . . . , vn)], µ) =⇒ Π, (π,E[e′[X1/v1, . . . , Xn/vn)], µ) = t if
f(X1, . . . , Xn)->e. ∈ Pat and e′ is a variant of e with fresh free variables:

s̃ v α(s) implies s̃ = ˜Π, (π, ˜E[f(ṽ1, . . . , ṽn)], µ̃) with ˜Π v α(Π), ˜E v α(E),
ṽi v α(vi) ∀1 ≤ i ≤ n and µ̃ v α(µ).

Then s̃ −→
̂A
˜Π, (π, ˜E[e′[X1/ṽ1, . . . , Xn/ṽn)], µ̃) = ˜t.

With Lemma 4.9 we conclude ˜t v α(t).

• s = Π, (π,E[p=v], µ):

s̃ v α(s) implies s̃ = ˜Π, (π, ˜E[p̃=ṽ], µ̃) with ˜Π v α(Π), ˜E v α(E), π̃ v α(π),
ṽ v α(v), and µ̃ v α(µ).

– s =⇒ Π, (p, σ(E[v]), µ) = t iff match(p, v) = σ 6= Fail.
With property (P2a) we know that match

̂A(p̃, ṽ) = (, σ̃) with σ̃ v α(σ) and

therefore s̃ −→
̂A
˜Π, (π, σ̃(˜E[ṽ]), µ̃) = ˜t and ˜t v α(t) because of Lemma 4.9.

– s =⇒ error if match(p, v) = Fail.
With property (P2b) match

̂A(p̃, ṽ) = Fail and s̃ −→
̂A error.

• s = Π, (π,E[case v of p1->e1; . . . ;pn->en end], µ):

s̃ v α(s) implies s̃ = ˜Π, (π, ˜E[case ṽ of p̃1->ẽ1; . . . ;p̃n->ẽn end], µ̃) with ˜Π v
α(Π), ˜E v α(E), ṽ v α(v), p̃i v α(pi) and ẽi v α(ei) ∀1 ≤ i ≤ n, and
µ̃ v α(µ).

48 4.2. A Framework for Abstract Interpretations

– s =⇒ Π, (p, σ(E[ei]), µ) = t iff casematch(p, v) = (i, σ).
By (P3a) we know that (i, σ̃) ∈ casematch

̂A((p̃1, . . . , p̃n), ṽ) with σ̃ v
α(σ). Therefore, s̃ −→

̂A
˜Π, (π, σ̃(˜E[ẽi]), µ̃) = ˜t and ˜t v α(t) because

of Lemma 4.9.

– s =⇒ error if casematch(p, v) = Fail.
With property (P3b) Fail ∈ casematch

̂A(p̃, ṽ) and s̃ −→
̂A error.

• s = Π, (π,E[receive p1->e1; . . . ;pn->en end], (v1, . . . , vm)):

s̃ v α(s) implies s̃ = ˜Π, (π, ˜E[receive p̃1->ẽ1; . . . ;p̃n->ẽn end], (ṽ1, . . . , ṽm))

with ˜Π v α(Π), ˜E v α(E), p̃i v α(pi) and ẽi v α(ei) ∀1 ≤ i ≤ n, and
ṽi v α(vi) ∀1 ≤ i ≤ m.

s
?vj
=⇒ Π, (p, σ(E[ei]), (v1, . . . , vj−1, vj+1, . . . , vm)) = t iff mbmatch((p1, . . . , pn),

(v1, . . . , vm)) = (i, j, σ).
By (P4) we know that (i, j, σ̃) ∈ mbmatch

̂A((p̃1, . . . , p̃n), (ṽ1, . . . , ṽm)) with σ̃ v

α(σ). Therefore, s̃
?ṽj−→

̂A
˜Π, (π, σ̃(˜E[ẽi]), (ṽ1, . . . , ṽj−1, ṽj+1, . . . , ṽm)) v α(t) be-

cause of Lemma 4.9.

• s = Π, (π,E[spawn(f,[e1, . . . ,en])], µ):
The proof can be done in the same way as for the function call f(e1, . . . , en).

• s = Π, (π1, e, q1), (π2, E[v1!v2], q2):

s̃ v α(s) implies s̃ = ˜Π, (π1, ẽ, q̃1)(π2, ˜E[ṽ1!ṽ2, q̃2) with ˜Π v α(Π), ẽ v α(e),
˜E v α(E), q̃1/2 v α(q1/2), and ṽ1/2 v α(v1/2).
We distinguish two cases:

– v1 = π1 ∈ Pid and s
!v2
=⇒ Π, (π1, e, q1 : v), (π2, E[v2], q2) = t.

By (P5a) we know that π1 ∈ pid
̂A(ṽ1) and we get s̃

!ṽ2−→ ˜Π, (π1, ẽ, q̃1 :
ṽ), (π2, ṽ, q̃2) v α(t).

– v1 6∈ Pid and s
!v2
=⇒ error.

By (P5b) we know that err ∈ pid
̂A(ṽ1) and also s̃

!ṽ2−→ error v error. 2

Theorem 4.12 (Safeness of the Abstraction)

Let ̂A be an abstract interpretation that satisfies properties (P1) – (P5) and s0 =

(main(), ()). For every path s0

a1
=⇒s1

a2
=⇒ . . .

an
=⇒sn of the operational semantics, there

exists an abstract path s̃0

ã1−→
̂A s̃1

ã2−→
̂A . . .

ãn−→
̂A s̃n with s̃0 = α(s0) = s0 and s̃j v

α(sj), ãj v α(aj) for all 1 ≤ j ≤ n.

Proof: Using Theorem 4.11 the proof is a simple induction over n. 2

Chapter 4. Abstraction 49

4.3 Example Abstractions

In this section, we define two example abstractions: The first abstraction shows the
universal applicability of our framework. It is equivalent to the SOS. The second ab-
straction is a finite domain abstraction. It is particularly designed for the verification
of Erlang programs with model checking and can be used to show many properties of
the communication behavior of Core Erlang programs. We will show this in Chapter 5
where this abstraction is used for the verification of the database example.

4.3.1 The Operational Semantics

The most precise abstract interpretation is the one which evaluates exactly the oper-
ational semantics =⇒:

Defintion 4.13 (The Most Precise Abstract Interpretation ̂Amax)
The abstract interpretation ̂Amax is defined as

̂Amax = (TC(Pid), ι̂,=, id)

with
ι̂(n)(F/n) = ι(F/n)

ι̂(n)(c/n)(v1, . . . , vn) = c(v1, . . . , vn) for all vi ∈ TC(Pid)

ι̂(match)(p, v) =

{

(Irref, σ), if match(p, v) = σ
Fail , if match(p, v) = Fail

ι̂(casematch)(p, v) = {casematch(p, v)}

ι̂(mbmatch)(p, v) = {mbmatch(p, v)}

ι̂(pid)(v) =

{

{v}, if v ∈ Pid
{err}, otherwise

and equality as partial order and the identity as abstraction function. �

Corollary 4.14 (Safeness of ̂Amax)
The abstract interpretation ̂Amax satisfies properties (P1) – (P5).

Lemma 4.15 (Soundness of ̂Amax)
For the abstract interpretation ̂Amax and for all s ∈ States it holds that:

s
a

=⇒ t iff s
a
−→

̂Amax
t

Proof: Trivial, since ̂Amax defines no non-determinism. 2

50 4.3. Example Abstractions

4.3.2 A Finite Domain Abstraction

Erlang is an untyped language. Hence, we cannot use types as abstract values for
our evaluation as in [NN97]. We have to find another finite set on which we can
evaluate and decide some branches of the evaluation. In Erlang programs the use of
constructors is very convenient. For our interests the relevant uses of constructors are
patterns. These patterns only consider a finite part of the possible values. Hence, in
this abstraction we restrict the possible values for the computation to a finite set of
possible tops of the constructor terms. This can be done with respect to a parameter
k ∈ IN for there depth. The restricted domain is a subset of TC({?} ∪ Pid). The
occurring question marks in these constructor terms represent subterms, from which
we have abstracted. E.g., {succ,?} can represent {succ,succ}, {succ,{1,2}}, or
{succ,@0}. To characterize what it means that a representation in TC({?} ∪ Pid) is
more precise than another one, we define a partial order � ⊆ TC({?}∪Pid)×TC({?}∪
Pid).

Defintion 4.16 (Ordering on TC({?} ∪ Pid))

? � v and v � v for all v ∈ TC({?} ∪ Pid)
c(e1, . . . , en) � c(e′1, . . . , e

′
n) iff ei � e′i for all 1 ≤ i ≤ n �

We define a finite subset of TC({?}∪Pid) by restricting the constructor terms to depth
k ∈ IN and only a finite set of atoms. The depth of a constructor term is defined as:

depth(?) = 0
depth(c(v1, . . . , vn)) = max

1≤i≤n
(depth(vi)) + 1

with max(∅) = 0. Hence, for atoms we get depth(a/0) = 1. Depth restricted construc-
tor terms are defined as:

̂T kC ({?} ∪ Pid) := {ṽ ∈ TC({?} ∪ Pid) | depth(ṽ) ≤ k}

This is still an infinite set. There is an arbitrary number of atoms, in particular
containing all natural numbers. Therefore, we must restrict the atoms to a finite
set. In Core Erlang branching is only possible in case and receive expressions. To
decide as many branches as possible, the values corresponding to the patterns should
be considered. In our database example relevant patterns are {allocate,Key,P} and
{lookup,Key,P}. The atoms allocate and lookup are used as flags to distinguish
the received messages. Hence, the abstract domain should contain these atoms. We
scan the program with the function patoms from Figure 4.3 and restrict the possible
atoms to the resulting set. All other atoms are abstracted to ?.

In the example program pdb the extraction of atoms yields:

patoms(pdb) = {allocate, fail, free, value, succ, allocated, lookup}

For constructing abstract constructor terms we only use these extracted atoms. We
obtain the abstract domain ̂T k

̂Cp
({?} ∪ Pid) ⊆ ̂T kC ({?} ∪ Pid) with

̂Cp = {[.|.]/2, []/0} ∪ {{ . . .}/n | n ≤ K} ∪ patoms(p)

Chapter 4. Abstraction 51

patoms(p1 p2) = patoms(p1) ∪ patoms(p2)
patoms(f(X1, . . . , Xn)->e.) = eatoms(e)

eatoms(a/0) = {a}
eatoms(φ(e1, . . . , en)) =

⋃

1≤i≤n
eatoms(ei)

eatoms(X) = ∅
eatoms(p=e) = eatoms(p) ∪ eatoms(e)
eatoms(self) = ∅
eatoms(case e of m end) = eatoms(e) ∪ eatoms(m)
eatoms(spawn(f, e)) = eatoms(e)
eatoms(e1!e2) = eatoms(e1) ∪ eatoms(e2)
eatoms(receive m end) = eatoms(m)
eatoms(e1,e2) = eatoms(e1) ∪ eatoms(e2)
eatoms(p1 -> e1; . . . ;pn -> en) =

⋃

1≤i≤n
(eatoms(pi) ∪ eatoms(ei))

Figure 4.3: Extraction of Atoms

We use a second constant K ∈ IN for the maximal size of tuples. K will depend on the
arity of the tuples occurring in the program, while k is a parameter for the granularity
of the abstraction. Usually, the maximal number of tuple components will be fixed
for the SOS of a program. K can be set to this maximal size. Larger values for K
do not yield more precision in the abstraction. We interpret K as a global constant.
Therefore, it is not added as another index to ̂T k

̂Cp
({?} ∪ Pid).

Remarks

• For every program p is patoms(p) a finite set.

• ̂T k
̂Cp

({?} ∪ Pid) is an infinite set for every k ∈ IN but we will later restrict to

a finite number of pids and so we only use a finite part of ̂T k
̂Cp

({?} ∪ Pid).

Neglecting the pids, the number of the constructor terms in ̂T k
̂Cp

({?}) is finite

for every program p.

• � is a complete partial order on ̂T k
̂Cp

({?} ∪Pid) because only finite chains exist

and ? is the smallest element.

For simplification, we write ̂T k
̂C ({?}∪Pid) instead of ̂T k

̂Cp
({?}∪Pid), if p is clear from

the context.
The terms of TC(Pid) are represented by terms in ̂T k

̂Cp
({?} ∪ Pid) which do have

the same top but the abstracted subparts are replaced by ?. The abstraction function

52 4.3. Example Abstractions

αk : TC(Pid) −→ ̂T k
̂Cp

({?} ∪ Pid) yields the best representation of a term v. That

means the top part of v restricted to depth k:

α0(v) = ?

αk+1(a/0) =

{

a , if a ∈ patoms(p)
? , otherwise

αk+1(c(v1, . . . , vn)) = c(αk(v1), . . . , αk(vn)) for n > 0

We will also need a depth-k-restriction on our abstract values. Hence, we define
an extension of this abstraction function to abstract values:

α̂k : TC({?} ∪ Pid) −→ ̂T k
̂C ({?} ∪ Pid)

α̂0(v) = ?

α̂k+1(c(v1, . . . , vn)) = c(α̂k(v1), . . . , α̂k(vn))
α̂k+1(?) = ?

Now we have defined the abstract domain and have described its connection to
TC(Pid). In the abstract interpretation ι̂k of the predefined functions we have to
consider values with ?. Hence, the application of predefined functions to ? can only
yield ? as well. Only for abstract values which are not abstracted (they also belong
to TC(Pid)) the abstract interpretation of a predefined function yields a value which

is more precise than ?. The result is the largest representation in ̂T k
̂C ({?} ∪ Pid) of

the standard interpretation.

ι̂k(F/n)(v1, . . . , vn) =

{

αk(FA(v1, . . . , vn)) , if vi ∈ TC(Pid) ∀1 ≤ i ≤ n
? , otherwise

The application of a constructor yields the best representation of the result ob-
tained with the free constructor interpretation. In the case that the free interpretation
belongs to ̂T k

̂C ({?} ∪ Pid) we get the free interpretation.

ι̂k(c/n)(v1, . . . , vn) = α̂k(c(v1, . . . , vn))

In the abstract interpretation of matching we have to consider the occurences of
? as well. ? can occur in the values as well as in the patterns because of the dynamic
character of patterns in Erlang. We can define the abstract interpretation of match
with structural induction. In the case of ? our abstract interpretation does not fail
because one of its concrete representations could be a value which matches. However,
it yields only a possible value. In the case that ? occurs in the abstract pattern
the structural induction handles a dynamic part which has no variables. Hence, no
variables must be bound and the abstract match yields the empty substitution. The
other way round, if ? occurs in the value, then all variables of the pattern must be
substituted. Their only possible binding is ?.

In the formalization we first define constants for the two kinds of evaluated sub-
stitutions.

Irref = true and Poss = false

Chapter 4. Abstraction 53

The result of matching a pattern against a constructor term can either fail or, if it
succeeds, be either Irref or Poss in dependence of the cases discussed above.

ι̂k(match) : ̂Pat× ̂A −→ ({Irref,Poss} × Subst(̂A)) ∪ {Fail}
ι̂k(match)(X, v) = (Irref, [X/v])
ι̂k(match)(?, v) = (Poss, [])
ι̂k(match)(c(p1, . . . , pn), ?) = (Poss, [Var(p1, . . . , pn)/?])
ι̂k(match)(c(p1, . . . , pn), c(v1, . . . , vn)) =

⊎

1≤i≤n

′ ι̂k(match)(pi, vi)

ι̂k(match)′(e, e′) = Fail, otherwise

As already mentioned in Section 3.2 we are allowed to use non-linear patterns in
Erlang. This means that a variable may occur more than ones in a pattern. The
pattern matching only succeeds if these variables are bound to the same expression in
every position they occur. Hence, the pattern matching {X,X}={3,4} would fail and
{X,X}={3,3} would succeed with the substitution [X/3]. This leads to a problem in
the abstraction because it could happen that we have abstracted from one of both
values but the other one is still known. Then {X,X}={3,?} could match with the
substitution [X/3] but this is not irrefutable. We get the substitution (Poss, [X/3])
although the subterms yield irrefutable matches. Even if both values are not known
({X,X}={?,?}) we only get the match (Poss, [X/?]). It is also possible that two
terms a variable is matched with are incomparable but a more precise term exists
which can match both. An example is the matching {X,X}={{3,?},{?,3}} which
can match if both times ? is the abstraction of the value 3. So a matching has to yield
the substitution (Poss,[X/{3,3}]). We get the more precise term {3,3} as {?,3} t
{3,?}.

In the standard interpretation we use the function] for the union of substitutions.
To model the abstract interpretation discussed in the last paragraph, we use the
modified union]′ (see Figure 4.4) in the definition of ι̂k(match). For an empty set
of substitutions (tagged with Irref/Poss)

⊎′ is defined as (Irref, []).]′ applied to two

substitutions respects the partial order � on ̂T
̂C({?} ∪ Pid). The result depends on

that parts of the substitutions that overlap (in the definition this is the part of the
substitution on the variables Z1, . . . , Zk). Here, the result is the least upper bound of
the overlapping bindings. The rests of the substitutions ([X/v] := [X1/v1, . . . , Xi/vi]
and [Y/w] := [Y1/v1, . . . , Yj/vj]) are the non-overlapping parts. They are just copied
to the joined substitution.

The abstract interpretation of casematch and mbmatch yields all possible matches
of a pattern with a value. It is not sufficient to consider the first match as in the
concrete semantics because the first match could only be possible in the abstraction

54 4.3. Example Abstractions

]′ : ({Irref,Poss} × Subst(̂A)) ∪ {Fail} −→ ({Irref,Poss} × Subst(̂A)) ∪ {Fail}
(f1, σ1)]′ (f2, σ2) =

(f1 ∧ f2, [X/v, Y/w, Z1/u1, . . . , Zk/uk]), if ul = u′l ∈ TC(Pid) ∀l ≤ k

(Poss, [X/v, Y/w, Z1/û1, . . . , Zk/ûk]) , if ûl = ul t u′l exists ∀l ≤ k
Fail , otherwise

where {Z1, . . . , Zk} = Dom(σ1) ∩ Dom(σ2)

[X/v, Z1/u1, . . . , Zk/uk] = σ1

[Y/w, Z1/u
′
1, . . . , Zk/u

′
k] = σ2

Fail]′ = Fail
]′ Fail = Fail

Figure 4.4: Union of Abstract Substitutions

but fail in a concretization.

ι̂k(casematch)((p̂1, . . . , p̂n), v̂) = {(i, σ) | ι̂k(match)(p̂i, v̂) = (, σ)}

∪
{

{Fail} , if ι̂k(match)(p̂i, v̂) 6= (Irref,) ∀1 ≤ i ≤ n
∅ , otherwise

ι̂k(mbmatch)((p̂1, . . . , p̂n), (v̂1, . . . , v̂m) = {(i, j, σ) | ι̂k(match)(p̂i, v̂j) = (, σ)}

∪
{

{Fail} , if ι̂k(match)(p̂i, v̂j) 6= (Irref,) ∀1 ≤ i ≤ n, 1 ≤ j ≤ m
∅ , otherwise

A Pid is interpreted as itself. ? can represent any value, including all pids. Other
values do not have an interpretation as a pid:

ι̂k(pid)(v) =

{v} , if v ∈ Pid
Pid ∪ {err} , if v = ?
{err} , otherwise

We will use this abstract interpretation for the formal verification of the database
example. Hence, we must prove that the abstract interpretations ̂Ak fulfills the prop-
erties (P1) – (P5).

Lemma 4.17 (̂Ak satisfies (P1))

The abstract interpretation ̂Ak = (̂T k
̂C ({?}∪Pid), ι̂k,�, αk) satisfies property (P1) for

all k ∈ IN:

For all φ/n ∈ F ∪ C, v1, . . . , vn ∈ TC(Pid) and ṽi � α(vi) it holds that
φ
̂A(ṽ1, . . . , ṽn) � α(φA(v1, . . . , vn)).

Chapter 4. Abstraction 55

Proof:

• φ = F/n ∈ F .
We distinguish two cases:

– ṽ1, . . . , ṽn ∈ TC(Pid):
This means αk(vi) = vi for all 1 ≤ i ≤ n.
F
̂Ak(ṽ1, . . . , ṽn) = αk(FA(ṽ1, . . . , ṽn)) = αk(FA(v1, . . . , vn))

– At least one vi /∈ TC(Pid):
Hence, F

̂Ak(ṽ1, . . . , ṽn) = ? and trivially ? � αk(FA(v1, . . . , vn))

• φ = c/n ∈ C.
(P1) is trivially satisfied because it is the definition of ι̂k(c/n). 2

Before we can prove that ̂Ak satisfies (P2), we have to show corresponding properties
for the functions t and]′ which are used in the definition of match′.

Lemma 4.18

Let v ∈ TC(Pid). For all ṽ1, ṽ2 ∈ ̂T k
̂C ({?} ∪ Pid) with ṽ1 � αk(v) and ṽ2 � αk(v) it

holds that ṽ = ṽ1 t ṽ2 exists and ṽ � αk(v).

Proof: We prove this fact by a combined induction on the structure of ṽ1 and k.

• ṽ1 = ?:
Then by Definition 4.16: ṽ1 t ṽ2 = ṽ2 � αk(v).

• ṽ1 = c(w̃1, . . . , w̃n):
Then v = c(w1, . . . , wn) with w̃i � αk−1(wi) ∀1 ≤ i ≤ n and we have two
different cases for ṽ2:

– ṽ2 = ?:
Analogously as ṽ1 = ?.

– ṽ2 = c(w̃′1, . . . , w̃
′
n) with w̃′i � αk−1(wi) ∀1 ≤ i ≤ n:

By induction hypothesis we know that w̃itw̃′i � αk−1(wi) exists ∀1 ≤ i ≤ n.
Hence, ṽ1 t ṽ2 = c(w̃1 t w̃′1, . . . , w̃n t w̃′n) = ṽ exists and ṽ � αk(v). 2

Lemma 4.19
Let σ1, σ2 ∈ Subst(TC(Pid)) with σ1] σ2 = σ 6= Fail. For all σ̃1 � αk(σ1), σ̃2 � αk(σ2)
and all f1, f2 ∈ {Irref,Poss} it holds that (f1, σ̃1)]′ (f2, σ̃2) = (, σ̃) 6= Fail with σ̃ �
αk(σ).

Proof: Follows directly from Lemma 4.18 and the fact that for all i ∈ {1, 2}:
Dom(σ̃i) = Dom(σi) and σ̃i(X) � αk(σi)(X) ∀X ∈ Dom(σi). 2

Lemma 4.20
Let σ1, σ2 ∈ Subst(TC(Pid)) with σ1] σ2 = Fail. For all σ̃1 � αk(σ1), σ̃2 � αk(σ2) and
all f1, f2 ∈ {Irref,Poss} it holds that (f1, σ̃1)]′ (f2, σ̃2) ∈ {(Poss,),Fail}.

56 4.3. Example Abstractions

Proof: (f1, σ̃1)]′ (f2, σ̃2) = (Irref, σ̃) iff f1 = f2 = Irref, the overlapping parts of σ̃1

and σ̃2 are identical and belong to TC(Pid). In this case each of them represent only
one single value which is identical to its abstract value. Then σ1] σ2 6= Fail which is
a contradiction to the assumption. 2

Lemma 4.21 (̂Ak satisfies (P2))

The abstract interpretation ̂Ak = (̂T k
̂C ({?}∪Pid), ι̂k,�, αk) satisfies property (P2) for

all k ∈ IN:

(P2) For all p ∈ Pat, v ∈ TC(Pid) and for all p̃ v α(p), ṽ v α(v) it holds that

a) if match(p, v) = σ
then there exists σ̃ v α(σ) with match

̂A(p̃, ṽ) = (, σ̃).
b) if match(p, v) = Fail

then match
̂A(p̃, ṽ) ∈ {(Poss,),Fail}.

Proof:

a) Let match(p, v) = σ. We prove the property by induction on the structure of p:

• p = X:
Hence, p̃ = X and σ̃ = [X/ṽ] � αk(σ) = [X/v].

• p = c(p1, . . . , pn):
Hence, p̃ = ? or p̃ = c(p̃1, . . . , p̃n):

– p̃ = ?
Then p does not contain any variables and σ must be the empty sub-
stitution. On the other hand, match

̂Ak(p̃, ṽ) = (Poss, []).

– p̃ = c(p̃1, . . . , p̃n) with p̃i � αk(pi) ∀1 ≤ i ≤ n:
By induction hypothesis we know that match(p, v) = σi and
match

̂Ak(p̃i, ṽ) = (, σ̃i) with σ̃i � αk(σi).
From the definitions of match and match

̂Ak we know that σ =
⊎

1≤i≤n
σi

and σ̃ =
⊎

1≤i≤n

′ σ̃i. Hence, with Lemma 4.19 it holds that σ̃ �k (σ).

b) Let match(p, v) = Fail. Again, we prove the property by induction on p:

• p = X:
Hence, match(p, v) = [X/v] 6= Fail.

• p = c(p1, . . . , pn):
Hence, p̃ = ? or p̃ = c(p̃1, . . . , p̃n):

– p̃ = ?:
Hence, match

̂Ak(p̃, ṽ) = (Poss, []) and the lemma is satisfied.

– p̃ = c(p̃1, . . . , p̃n) with p̃i � αk(pi) ∀1 ≤ i ≤ n:
There are two reasons, why match(p, v) = Fail:

∗ v = d(v1, . . . , vm) Hence, ṽ = ? or ṽ = d(ṽ1, . . . , ṽm) with ṽi �
αk(vi) and we have match(p̃, ṽ) = (Poss, [V ars(p̃1, . . . , p̃n)/?]) re-
spectively match(p̃, ṽ) = Fail.

Chapter 4. Abstraction 57

∗ v = c(v1, . . . , vn) Then there exists 1 ≤ i ≤ n with match(pi, vi) =
Fail. In the abstraction we have ṽ = ? or ṽ = c(ṽ1, . . . , ṽn) with
ṽi � αk(vi). The first case is the same as before. In the sec-
ond case we know by induction hypothesis that match

̂Ak(p̃i, ṽi) ∈
{(Poss,),Fail}.
With Lemma 4.20 we conclude:

⊎

1≤j≤n

′ σ̃j ∈ {(Poss,),Fail}.
2

Lemma 4.22 (̂Ak satisfies (P3))

The abstract interpretation ̂Ak = (̂T k
̂C ({?}∪Pid), ι̂k,�, αk) satisfies property (P3) for

all k ∈ IN:

(P3) For all p1, . . . , pn ∈ Pat, v ∈ TC(Pid) and for all p̃j v α(pj) and ṽ v α(v)
it holds that:

a) if casematch((p1, . . . , pn), v) = (i, ρ),
then there exists ρ̃ v α(ρ) with (i, ρ̃) ∈ casematch

̂A((p̃1, . . . , p̃n), ṽ).
b) if casematch((p1, . . . , pn), v) = Fail,

then Fail ∈ casematch
̂A((p̃1, . . . , p̃n), ṽ).

Proof: This is trivial because casematch yields the union of all possible matches.
The successful match of the concrete semantics must be included. Furthermore, we
add Fail, if one of the matchings is not irrefutable. 2

Lemma 4.23 (̂Ak satisfies (P4))

The abstract interpretation ̂Ak = (̂T k
̂C ({?} ∪ Pid), ι̂k,�, αk) satisfies property (P4):

(P4) For all p1, . . . , pn ∈ Pat, v1, . . . , vu ∈ TC(Pid) and for all p̃j v α(pj) and
ṽk v α(vk) it holds that:

a) if mbmatch((p1, . . . , pn), (v1, . . . , vu)) = (i, j, ρ),
then there exists ρ̃ v α(ρ)

with (i, j, ρ̃) ∈ mbmatch
̂A((p̃1, . . . , p̃n), (ṽ1, . . . , ṽu)).

b) if mbmatch((p1, . . . , pn), (v1, . . . , vu)) = Fail,
then Fail ∈ mbmatch

̂A((p̃1, . . . , p̃n), (ṽ1, . . . , ṽu)).

Proof: The proof is as trivial as for (P3). 2

Lemma 4.24 (̂Ak satisfies (P5))

The abstract interpretation ̂Ak = (̂T k
̂C ({?} ∪ Pid), ι̂k,�, αk) satisfies property (P5):

a) For all π ∈ Pid, p̃ v α(p) it holds that π ∈ pid
̂A(p̃).

b) For all v /∈ Pid, ṽ v α(v) it holds that err ∈ pid
̂A(ṽ).

58 4.4. Galois Insertions

Proof: The proof is a trivial case analysis. 2

Theorem 4.25 (Safeness of ̂Ak)
The abstract interpretation ̂Ak = (̂T k

̂C ({?}∪Pid), ι̂k,�, αk) satisfies properties (P1) –
(P5) for all k ∈ IN.

Compared to [NN97] our approach is more general because we are not restricted to one
abstract interpretation, like types. If special values are relevant for the verification we
can also consider these values and add them to our abstract domain. The behavior
analysis in[NN97] is fixed to type inference and cannot easily be extended to other
abstract domains.

4.4 Galois Insertions

As already mentioned in the motivation of our framework, our approach differs from
the approach taken by Cousot and Cousot in [CC77a, CC77b]. They introduce the
notion of a Galois insertion which is a special case of an adjunction in the sense of
category theory. In their framework an abstract interpretation consists of a pair α, γ
of abstraction and concretization functions with types

α : Conc −→ ̂A

γ : ̂A −→ Conc

where Conc is the power set of all concrete values. In our context this would be
Conc = P(TC(Pid). This domain induces the subset relation as a complete lattice
on Conc. In contrast to our framework the Cousot framework additionally requires a
complete lattice on ̂A (instead of a partial order). Furthermore, Cousot and Cousot
impose the following conditions for a Galois insertion:

1. α and γ are monotonic

2. ∀a ∈ ̂A : a = α(γ(a))

3. ∀c ∈ Conc : c ⊆ γ(α(c))

Then property (P1) of our framework could be modified to:

(P1∗) For all f/n ∈ Σ, V1, . . . , Vn ∈ P(TC(Pid)) it holds that

f
̂A(α(V1), . . . , α(Vn)) v α({fA(v1, . . . , vn) | vi ∈ Vi, 1 ≤ i ≤ n})

Similar modifications can be defined for the remaining properties. Alternatively, it is
also possible to define equivalent properties using the concretization function.

Actually, the properties in the Cousot framework are not simpler. For instance, in
property (P1∗) we do not have to prove the connection between abstract and concrete

Chapter 4. Abstraction 59

interpretation for all ṽi v α(vi). Instead, we have to prove the connection for arbitrary
sets of values. This is at least as expensive as the prove of (P1). The same holds for
the corresponding definition of the properties using the concretization function γ.

Furthermore, in the Cousot framework we would have to show the properties
1–3 of the Galois insertion which is an additional effort. Therefore, we think that
our approach without the definition of a Galois insertion is simpler to use in practice.
Finally, we think that it is more natural to define an abstraction function α : A −→ ̂A
instead of α : P(A) −→ ̂A. In the design of the abstract domain it is clearer to define
the abstract representation of a concrete value, instead of arbitrary sets of concrete
values. As an example we once again consider a variation of the even-odd domain:

even odd

num

?

In our framework we can define

α(v) =

even , if ∃n ∈ ZZ : v = 2 ∗ n
odd , if ∃n ∈ ZZ : v = 2 ∗ n+ 1
? , otherwise

In the Cousot framework we would get:

α(V) =

even , if ∀v ∈ V ∃n ∈ ZZ : v = 2 ∗ n
odd , if ∀v ∈ V ∃n ∈ ZZ : v = 2 ∗ n+ 1
num , otherwise and if V ⊆ ZZ
? , otherwise

In our framework the third case can be omitted because all integers are either even
or odd. There exists no value for which the best abstract representation yields num.
A Galois connection must contain this case. In larger abstractions this can be even
more difficult and much more cases must be considered.

The framework in the Cousot style is more pleasant from the theoretical point of
view. For example, it can be shown that the definition of α can be reduced to the
definition of γ and vice versa. Since we do not need these results, we have decided to
define the framework in the presented style.

4.5 Finiteness of Abstract Semantics

In this section we want to characterize a subset of Core Erlang programs, for which the
abstract operational semantics for finite domain abstractions yields finite transition
system.

The abstract semantics −→
̂A is defined for arbitrary abstract states. For every

abstraction ̂A the set of all states ̂S tate
̂A is an infinite set and also the relation −→

̂A

60 4.5. Finiteness of Abstract Semantics

defines an infinite transition system. For the verification, we only consider the part
of this transition system which is reachable from the initial state (@0,main(),()).

In the formal semantics we used renaming of variables, to avoid name conflicts.
This leads to the problem that variables can be renamed arbitrarily in the applica-
tion of a function. We define an equivalence relation for the renaming of variables.
Thereby, the transition system can be constructed with respect to the corresponding
equivalence classes.

4.5.1 Renaming of variables

In the construction of the AOS we want to detect cycles, to get a finite transition
system. Therefore, we need to formalize when two states are equivalent. Inspecting
the rules for the AOS, we see that in the rule for the application of a defined function
variables are renamed. It is not sufficient to define two states as equivalent if they are
syntactically identical. States are also equivalent if they are identical except for the
names of the free variables. This is meaningful since equivalent states can perform
the same actions and also their successors are identical, except for the names of the
occurring variables. For example, the two Core Erlang expressions

Y=1,X=3+Y,X+5 and X=1,Y=3+X,Y+5 should be considered as equivalent.

On the other hand, neither Y=1,Y=3+Y,Y+5 nor X=1,Y=3+X,X+5 are equivalent to one
of them. In the λ-calculus there exists a similar equivalence, called α-equivalence
in which only bound variables can be renamed. Erlang has no scoping and bound
variables do not exist. We define Core Erlang expressions as equivalent if they only
differ in the names of the variables. However, we also call it α-equivalence.

Defintion 4.26 (Renaming)
A mapping ρ : Var −→ Var is called a renaming. �

Two Core Erlang expressions are equivalent, if both of them can be converted into
the other by renaming.

Defintion 4.27 (α-Equivalence)
Two Core Erlang expressions e1, e2 ∈ E(S) are α-Equivalent (∼α) iff there exist two
renamings ρ1, ρ2 : Var −→ Var with

ρ1(e1) = e2 and e1 = ρ2(e2). �

It is not sufficient, to require only a renaming in one direction. For instance, we would
get:

[X/Y,Y/Y](Y=1,X=3+Y,X+5) = Y=1,Y=3+Y,Y+5

which are not equivalent. The reverse renaming is not possible.

Remark 4.28
It can easily be shown that ∼α is an equivalence relation.

Chapter 4. Abstraction 61

The definition of ∼α is very simple but for the use in the AOS we must be able to
decide if two Core Erlang expressions are equivalent or not. The definition of ∼α is
not constructive. However, we can define an algorithm which decides ∼α. We use a
sequence of variables which do not occur in both Core Erlang expressions. Then the
variables in the two expressions are successively renamed to the variables from this
sequence. Thereafter, both expressions must be equal. This algorithm is obviously
correct.

4.5.2 Hierarchical Core Erlang

For verification we can now construct a transition system over the α-equivalence
classes of the states. Furthermore, we restrict to that part of the semantics which is
reachable from the initial state. For simplicity we will omit the α-equivalence and
the restriction to the spawned transition system in the following. If we use the terms
”finite operational semantics“ or ”finite transition system resulting from the AOS“,
then we mean the system of equivalence classes reachable from the initial state.

Unfortunately, also this transition system can be infinite for finite domain abstrac-
tions, as the following example shows:

main() -> f(0).

f(X) -> f(f(X)).

The smallest possible abstract domain only contains the element ? which represents
all possible values. Using this abstract domain the abstract semantics of the program
only contains the infinite path:

(@0, main(), ()) −→ (@0, f(42), ()) −→ (@0, f(?), ())
−→ (@0, f(f(?)), ()) −→ . . . −→ (@0, fn(?), ())
−→ (@0, fn+1(?), ()) . . .

which contains infinitely many different states. The proplem is the non-tail recursive
call f(X).

We want to find a large subclass of Core Erlang programs, for which it is guar-
anteed that the resulting transition system is finite. First, we can think of Core
Erlang programs in which calls are only allowed in tail positions. Here the size of
the expressions in the processes is limited by the sizes of the right-hand sides of the
program.

As already mentioned at the beginning of this chapter, there are two other reasons
why the AOS can yield an infinite transition system. An arbitrary number of processes
can be spawned and mailboxes of processes can grow to arbitrary size. We have not
abstracted from these aspects of a system state. We think that here an abstraction
will damage too much of the behavior of the system. For example, an abstraction of an
arbitrary number of messages to a finite number can never yield the information that
a mailbox is empty. This kind of abstraction would add too much nondeterminism to
the AOS and interesting properties cannot be proven. Another point is the abstraction
of an arbitrary number of processes. Again, one process would have to behave like
several processes and an abstraction would in general be much too coarse.

62 4.5. Finiteness of Abstract Semantics

Under the assumptions that only finitely many processes are spawned and the
processes only use restricted parts of their mailboxes the AOS of Core Erlang with
only tail calls is finite state for finite domain abstract interpretations. In general, these
assumptions are not decidable. Already for CCS it is undecidable, if an arbitrary
number of processes is spawned [Tau89].

In the implementation of the AOS we handle this by restricting them to fixed
sizes and warnings when exceeding these restrictions. An overflow of the mailboxes
often happens on unfair scheduled paths and the warning shows a problem in the
system design which can be a hint to mistakes in the program. E.g., if a process
sends messages much faster than another process can receive them, then its mailbox
can overflow. This can especially happen when distributing processes on different
architectures. Especially for overflows of mailboxes the restriction gives a valuable
hint to the programmer. Synchronization messages can be added which guarantee
that only finite parts of the mailboxes are used. Then the AOS should yield a finite
transition system.

From the practical point of view, the class of Core Erlang programs in which func-
tion calls are only allowed in tail positions is very restricted. Sub-evaluations as the
call of lookup in pdb are not possible. On the other hand, many programs perform-
ing sub-evaluations also yield finite state systems (e.g., pdb) and sub-evaluations are
needed to achieve convenient programming. An elegant description of these programs
can be given by the notion of hierarchical programs. Therefore, we first define the
function calls : E(∅)→ P(FS(p)) which yields the set of functions which can be called
during the evaluation of a Core Erlang expression e ∈ E(∅).

Defintion 4.29 (Function Calls)
Let p be a core Erlang program and e ∈ E(∅). calls(e) is defined as the smallest set
over FS(p) which satisfies the following equations:

calls(f(e1, . . . ,en)) =
n
⋃

i=1

calls(ei) ∪ {f}

calls(φ(e1, . . . ,en)) =
n
⋃

i=1

calls(ei)

calls(X) = ∅
calls(X=e) = calls(e)
calls(self) = ∅
calls(e1,e2) = calls(e1) ∪ calls(e2)
calls(case e of m end) = calls(e) ∪ calls(m)
calls(e1!e2) = calls(e1) ∪ calls(e2)
calls(receive m end) = calls(m)
calls(spawn(f, e)) = calls(e)

calls(p1->e1; . . . ;pn->en) =
n
⋃

i=1

calls(ei)

We extend the function calls to the defined functions:

calls : FS(p) −→ P(FS(p))
calls(f) = calls(ef) for f(X1, . . . , Xn)->ef. in p. �

Chapter 4. Abstraction 63

This definition of the function calls cannot directly be used as a (functional) imple-
mentation. For recursive programs, the recursive calls of the function calls will not
terminate. However, the smallest set of functions fulfilling the equations for calls can
be computed by a fixed-point iteration or an accumulation of already called functions.
The same holds for the function innercalls which only yields the possible non-tail re-
cursive calls of an expression.

Defintion 4.30 (Inner Function Calls)
Let p be a core Erlang program and e ∈ E(∅). innercalls(e) is defined as the smallest
set over FS(p) which satisfies the following equations:

innercalls(f(e1, . . . ,en)) =
n
⋃

i=1

calls(ei)

innercalls(φ(e1, . . . ,en)) =
n
⋃

i=1

calls(ei)

innercalls(X) = ∅
innercalls(X=e) = innercalls(e)
innercalls(self) = ∅
innercalls(e1,e2) = calls(e1) ∪ innercalls(e2)
innercalls(case e of m end) = calls(e) ∪ innercalls(m)
innercalls(e1!e2) = calls(e1) ∪ calls(e2)
innercalls(receive m end) = innercalls(m)
innercalls(spawn(f, e)) = calls(e)

innercalls(p1->e1; . . . ;pn->en) =
n
⋃

i=1

innercalls(ei)

We also extend the function innercalls to the defined functions:

innercalls : FS(p) −→ P(FS(p))
innercalls(f) = innercalls(ef) for f(X1, . . . , Xn)->ef. in p. �

The main difference to calls is that we do not add the function f to the set of innercalls
in the first rule. In the other rules we pick up all calls by the function calls except the
ones which are calls in tail positions.

Remark More than one function can be called in tail positions because of branching.

Lemma 4.31
Let p be a Core Erlang program. For all e ∈ E(∅) holds

innercalls(e) ⊆ calls(e)

Proof: By simple induction on the structure of e. 2

Defintion 4.32 (Hierarchical Core Erlang Programs)
A Core Erlang program p is called hierarchically iff f 6∈ innercalls(f) for all defined
functions f ∈ FS(p). �

64 4.5. Finiteness of Abstract Semantics

For this restricted class we get the following finiteness results:

Lemma 4.33 (Finiteness of Hierarchical Core Erlang Programs)

Let p be a hierarchical Core Erlang Program and ̂A a finite domain abstract interpre-
tation. For the set of all Core Erlang expressions in the AOS holds

|{[e]α | (@0, main(), ()) −→∗
̂A Π, (π, e, q)}| <∞

Theorem 4.34 (Finiteness of Hierarchical Core Erlang Programs)

Let p be a hierarchical Core Erlang program and ̂A a finite domain abstract inter-
pretation. If p spawns only a finite number of processes in its abstract operational
semantics and p uses only finite parts of the mailboxes:

∃k ∈ IN : ∀s with (@0, main(), ()) −→∗
̂A s : |s| ≤ k and

∀q with (@0, main(), ()) −→∗
̂A Π, (π, e, q) : |q| ≤ k

then for the abstract operational semantics of p holds:

|{[s]α | (@0, main(), ()) −→∗
̂A s}| <∞

Intuitively, these results are clear. Infinite recursion with non-empty contexts are not
possible. The proofs can be found in [Huc99a, Huc99b]. We restrict to this intuitive
explanation because we will pick up the problem in Chapter 7. There we define an
abstraction of the recursive calls in non-tail positions and get a safe abstraction of
non-hierarchical Core Erlang programs.

The class of hierarchical Core Erlang Programs is a true sub-class of all Core Erlang
programs which yield a finite transition system for finite domain abstractions. There
also exist non-hierarchical Core Erlang programs which also yield a finite abstract
operational semantics for finite domain abstractions: for example, the functions which
call themselves as inner calls, can be dead code. The AOS can still be finite. However,
these cases are artificial for real programs. The class of hierarchical Core Erlang
programs matches the programs which have a finite AOS for finite domain abstractions
very well.

The class of hierarchical programs is an expressive subclass of Core Erlang. How-
ever, there exist many programs which are not hierarchical. For instance, already the
use of the functions append or length yields non-hierarchical programs.

Using this result it is possible to use model checking for the formal verification
of hierarchical Core Erlang programs. For finite transition systems and temporal
logics like linear time logic (LTL), the model checking problem is decidable. We will
discuss this in Chapter 5. Afore, we discuss another problem which occurs in the
abstraction of receive by means of the abstract interpretation function ι̂(mbmatch)
and the claimed property (P4) b).

Chapter 4. Abstraction 65

4.6 Deadlocks

In the verification of concurrent and distributed systems, a major aspect is the absence
of deadlocks. A system is in a deadlock if no process can perform an action since all
processes are waiting for a message and no process is able to send a message.

A system can also be partially in a deadlock if a subset of processes exists in which
all processes wait for a message from one of these processes. The other processes can
still perform actions and communicate with each other. In Erlang they can even send
messages to the processes in the deadlock. These messages do not match the patterns
of the receive expression, the dead processes have suspended in.

A partial deadlock is more difficult to find because not all processes suspend. These
deadlock states of the system still have successors. In the verification the absence of
partial deadlocks can be proven by the liveness of special processes. A process is alive,
if it can reach a special state. As an example, we will prove the deadlock freeness of
the database process in Chapter 5.

Here we want to discuss the case that the whole system is in a deadlock. No
process can perform any action.

For the verification we will use LTL model checking which is usually only defined
on infinite paths. In a deadlock state we only have a finite path. Usually two different
techniques can be used to make this finite path infinite. The first technique is to add
a cycle for all states which do not have a successor:

s −→ s for all s 6−→ s′

Furthermore, we add a proposition dead to these states. This proposition indicates
that the system is in a deadlock. Then we can verify that the system never reaches a
state containing this proposition. Unfortunately, in combination with our abstraction
this is not possible. A state can have successors but they are only possible successors.
There exists a concretization of the values in which an action can be performed and
another concretization in which no action can be performed. This situation can only
occur in the receive expression. We consider the following example:

Example 4.35

main() -> self!2*20,

receive

42 -> 42

end.

For this example, Figure 4.5 shows the SOS and the AOS using the even-odd abstract
interpretation. The finite concrete path is represented in the abstraction. However, we
cannot recognize that it ends in the abstract state (@0,receive 42->42 end,(even)).
In this state the only successor is (@0, 42, ()). The matching of the pattern 42 and
the abstract value even is only possible and not irrefutable.

A dead state in the SOS can be characterized as follows: all processes have termi-
nated or their redex is a receive expression in which mbmatch yields Fail. If there
still exists a process which can perform another action, then this process can send a

66 4.6. Deadlocks

Concrete Abstract

(@0, main(), ()) (@0, main(), ())
‖⇓5 ↓5

(@0,@0!40, . . . , ()) (@0,@0!even, . . . , ())
‖⇓!40 ↓!even

(@0,40, . . . , (40)) (@0, even, . . . , (40))
‖⇓ ↓

(@0, receive 42-> 42 end, (40)) (@0, receive 42-> 42 end, (even))

6 ‖⇓ ↓?even

(@0, 42, ())

↓
(@0, even, ())

Figure 4.5: SOS and AOS of Example 4.35

message to a suspended process. This message can match one of the patterns of the
receive expression. The process is not dead.

Accordingly, a state in the AOS is a (potentially) dead state if for all processes
(π, ẽ, µ̃) ∈ Π holds

• ẽ ∈ ̂A or

• ẽ = ˜E[receive p̃1->ẽ1; . . . p̃n->ẽn end] and Fail ∈ mbmatch((p̃1, . . . , p̃n), µ̃)

Therefore, using the idea of adding a self-loop to dead states we would add a self-loop
to the state (@0, receive 42 -> 42 end, (even)). Unfortunately, we add too many
paths with this self-loop. The potentially dead state must not be a sink. In our
example, the path in Figure 4.6 would be possible. However, we want to express that
if a process is in a deadlock, then it stays in the deadlock forever. Hence, we add a
special state dead to our abstract states:

̂S tate
̂A := Pfin(̂Proc

̂A) ∪ {dead}

and add a transition into the state dead, for all states which can be dead. In our
example this would be

(@0, receive 42 -> 42 end, (even)) −→ dead

The state dead is a sink indicating that the execution terminates at this point. To
guarantee infinite paths of the transition system we add a self-loop to it. This self-loop
cannot effect impossible paths because it is the only transition of this state.

Chapter 4. Abstraction 67

(@0, main(), ())

↓∗
(@0, receive 42 -> 42 end, (even))

↓
(@0, receive 42 -> 42 end, (even))

↓
(@0, receive 42 -> 42 end, (even))

↓?even
(@0, 42, ())

↓
(@0, even, ())

Figure 4.6: Possible path of Example 4.35

Lemma 4.36 (Terminating paths)

Let ̂A be an abstract interpretation that satisfies properties (P1) – (P5). For every
deadlock state s ∈ States with s 6=⇒ t it holds that for all s̃ v α(s): s̃ 6−→ ˜t or
s̃ −→ dead.

Proof: There are only two cases in which a state does not have a successor state:

• All Core Erlang expressions are values.
Then also the corresponding abstract Core Erlang expressions are values because
of the ordering on Core Erlang expressions and s̃ 6−→ ˜t holds trivially.

• Some processes suspend in a receive expression and the Core Erlang expres-
sions of the others are ground. All functions mbmatch applied to the patterns
and the mailboxes yield Fail. Then with property (P4) b) we know that Fail is
in the abstract interpretation ι̂(mbmatch) applied to arbitrary abstractions of
these values. Exactly for this case we have defined s̃ −→ dead.

2

The paths on which partial deadlocks exist are adequately represented. There always
exists an “unfair” path on which these processes do not perform any action and their
deadlock can be detected by the missing absence of liveness for these processes. This
can be expressed in LTL.

68 4.6. Deadlocks

Chapter 5

Verification of Core Erlang Programs

In the last chapter we have defined a framework for the abstract interpretation of
Core Erlang programs. Now we want to use this framework for the formal verification
by model checking.

5.1 Core Erlang with Propositions

The AOS defines a labelled transition system. We want to prove properties of the
system by model checking. It would be possible to specify properties using labels.
On the other hand, it is more convenient to add propositions to the states of this
transition system. With these propositions, properties can be expressed more easily
in a temporal logic. As names for the propositions we use arbitrary Core Erlang
constructor terms which is very natural for Erlang programmers. This is an infinite
set but with respect to the abstract interpretation these values are usually restricted
to a finite abstract domain. Therefore, we get a finite set of abstract propositions.
This is necessary to get a finite transition system in which model checking is decidable.

We extend the predefined Core Erlang functions by the function prop/1. This
function is only considered to introduce proposition and not to change the semantics of
programs. Therefore, its interpreted as the identity function in operational semantics.

ι(prop)(v) = v for all v ∈ TC(Pid)

Additionally, the state in which prop(v) is evaluated has the proposition v. To
indicate this in the transition system we add a label prop to the transition of its
evaluation:

−

Π, (π,E[prop(v)], µ)
prop
−→

̂AΠ, (π,E[v], µ)

70 5.1. Core Erlang with Propositions

The valid propositions of a process can be evaluated using the function prop.

Defintion 5.1 (Proposition of a Process)
The proposition of a process is defined by the function:

prop
̂A : ̂Proc

̂A −→ {Nothing} ∪ ̂A

prop
̂A((π,E[e], µ)) :=

{

v̂ , if e = prop(v̂) and v̂ ∈ ̂A
Nothing , otherwise

�

The propositions of a state are all propositions of the processes of the state. We
extend the function prop to ̂S tate

̂A.

Defintion 5.2 (Propositions of a State)
The propositions of a state are defined by the function:

prop
̂A : ̂S tate

̂A −→ P(̂A)

prop
̂A(∅) = ∅

prop
̂A(Π, π) =

{

prop
̂A(Π) , if prop

̂A(π) = Nothing
prop

̂A(Π) ∪ prop
̂A(π) , otherwise �

For both functions we use the name prop
̂A. The concrete instance of this overloading

will be clear from the application of prop
̂A. We will also omit abstract interpretation

as an index if it is clear from the context.

Example 5.3
We add the following propositions to the Core Erlang program pdb of Example 3.7:

dataBase(L) -> prop(top),

receive

{allocate,Key,P} ->

prop({allocate,P}),

case lookup(Key,L) of

fail -> P!free,

receive

{value,V,P} ->

prop({value,P}),

dataBase(insert(Key,V,L))

end;

{succ,V} -> P!prop(allocated),

dataBase(L)

end;

{lookup,Key,P} -> prop(lookup),

P!lookup(Key,L),

dataBase(L)

end.

Chapter 5. Verification of Core Erlang Programs 71

In most cases propositions will be added in a sequence, as for example, the proposition
top. However, it is also possible to mark existing (sub-)expressions as propositions.
As an example we use the atom allocated which is sent to a requesting process, as
a proposition.

We have added four propositions to the definition of the database. They have the
following meanings:

top marks the main state of the database process
{allocate,P} marks that the process with the pid P tries to allocate a key
{value,P} marks that the process with the pid P enters a value into

the database
lookup marks a reading access to the database

We will use these propositions to verify the database.

5.2 Linear Time Temporal Logic

The abstract operational semantics defines a transition system. We want to prove
properties of this transition system using model checking. The properties are de-
scribed in a temporal logic. We use linear time temporal logic (LTL) [GPSS80] in
which properties have to hold on every path of a given transition system. From The-
orem 4.12 we know that the abstract semantics has more paths than the standard
operational semantics and we get: if a property ϕ holds in the AOS, then ϕ also holds
for the SOS of the program.

Defintion 5.4 (Syntax of Linear Time Logic (LTL))
Let Props be a set of state propositions. The set of LTL-formulas is defined as the
smallest set with:

• Props ⊆ LTL state propositions

• ϕ, ψ ∈ LTL =⇒ − ¬ϕ ∈ LTL negation

− ϕ ∧ ψ ∈ LTL conjunction

− Xϕ ∈ LTL in the next state ϕ holds

− ϕ U ψ ∈ LTL ϕ holds until ψ holds �

An LTL-formula is interpreted with respect to an infinite path. The propositional
formulas are satisfied, if the first state of a path fulfills them. The next modality Xϕ
holds if ϕ holds in the continuation of the path. Finally, LTL contains a strong until:
If ϕ holds until ψ holds and ψ eventually holds, then ϕ U ψ holds: Formally, the
semantics is defined as follows:

Defintion 5.5 (Path Semantics of LTL)
An infinite word over sets of propositions π = p0p1p2 . . . ∈ P(Props)ω is called a path.
A path π satisfies an LTL-formula ϕ (π |= ϕ) in the following cases:

72 5.2. Linear Time Temporal Logic

p0π |= P iff P ∈ p0

π |= ¬ϕ iff π 6|= ϕ
π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ

p0π |= Xϕ iff π |= ϕ
p0p1 . . . |= ϕ U ψ iff ∃i ∈ IN : pipi+1 . . . |= ψ and ∀j < i : pjpj+1 . . . |= ϕ �

The semantics of ϕUψ is defined by indices directly on the path. An equivalent
definition of the semantics is the unwinding of the fix-point:

π |= ϕ U ψ iff π |= ψ ∨ (ϕ ∧X(ϕ U ψ))

Where ∨ is the disjunction of two formulas. It will be defined in Definition 5.8.
Formulas are not only interpreted with respect to a single path. Their semantics

is extended to Kripke Structures.

Defintion 5.6 (Kripke Structure)
K = (S,Props,−→, τ, s0) where

• S a set of states,

• Props a set of propositions,

• −→⊆ S × S the transition relation,

• τ : S −→ P(Props) a labeling function for the states, and

• s0 ∈ S the initial state

is called a Kripke Structure. Instead of (s, s′) ∈−→ we usually write s −→ s′.
A state path of K is an infinite word s0s1 . . . ∈ Sω where si −→ si+1 and s0 the

initial state of K. If s0s1 . . . is a state path of K and pi = τ(si) for all i ∈ IN, then the
infinite word p0p1 . . . ∈ P(Props)ω is a path of K. �

Defintion 5.7 (Kripke-Structure-Semantics of LTL)
Let K = (S,→, τ, s0) be a Kripke structure. It satisfies an LTL-formula ϕ (K |= ϕ)
iff for all paths π of K: π |= ϕ. �

The technique of model checking automatically decides whether or not a given Kripke
structure satisfies a given formula. For finite Kripke structures and the logic LTL
model checking is decidable [LP85]. Many optimizations of this first model checking
algorithm have been proposed [GPVW95, Var96, Hol96, Wal98, BRS99]. Unfortu-
nately, the complexity of all these optimizations is still exponential in the size of the
formula and linear in the size of the Kripke structure. Also for some classes of infinite
state Kripke structures model checking is decidable. These systems are in some sense
context-free. On top of their finite representation model checking algorithms can be
defined [BE97, BS92, Esp97].

For convenient specification of properties in LTL, we define the following abbrevi-
ations:

Chapter 5. Verification of Core Erlang Programs 73

Defintion 5.8 (Abbreviations in LTL)

ff := ¬P ∧ P 1 the boolean value true
tt := ¬ff the boolean value false

ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) disjunction
ϕ→ ψ := ¬ϕ ∨ ψ implication
F ϕ := tt U ϕ finally ϕ holds
G ϕ := ¬F¬ϕ globally ϕ holds
F∞ϕ := G F ϕ infinitely often ϕ holds
G∞ϕ := F G ϕ only finally often ϕ does not hold

ϕ W ψ := (ϕ U ψ) ∨ (G ϕ) weak until
�

The propositional abbreviations are standard. Fϕ is satisfied if there exists a position
in the path where ϕ holds. If in every position of the path ϕ holds, then Gϕ is
satisfied. The formulas ϕ which have to be satisfied in these positions of the path are
not restricted to propositional formulas. They can express properties of the whole
remaining path. This fact is used in the definition of F∞ϕ and G∞ϕ. The weaker
property F∞ϕ postulates that ϕ holds infinitely often on a path. Whereas G∞ϕ is
satisfied if ϕ is satisfied with only finitely many exceptions. In other words there
exists a position from which ϕ holds forever. Finally, the definition of a weak until
ϕ W ψ can be useful. It is even satisfied if ϕ holds forever.

For the verification of Core Erlang programs we use the AOS of a Core Erlang
program as a Kripke structure. We use the transition system over α-equivalence
classes which is spawned from the initial state (@0,main(),()). For labeling of the
states we use the function prop from the previous section. By means of the technique
presented in Section 4.6 we have already guaranteed infinite paths for states which
represent a deadlock. There is one more state which does not have any successor.
This is the state error. To ensure that all paths are infinite, we add a self-loop to this
state.

5.2.1 Abstraction of Propositions

We want to verify Core Erlang programs by model checking. We have defined a
framework for abstract interpretations of Core Erlang programs. This abstraction
guarantees that every path of the SOS is also represented in the AOS. If the resulting
AOS is finite, then we can use simple model checking algorithms to check if the
property ϕ expressed in LTL holds. If ϕ is holds in the AOS, then ϕ also holds in the
SOS. In the other case model checking yields a counter example which is a path in the
transition system, on which ϕ does not hold. Due to the fact that the AOS contains
more paths than the SOS, the counter example must not be a counter example for
the SOS. The counter path can be a valid path in the abstraction but not in the SOS.
Therefore, in this case it only yields a hint that the chosen abstraction is too coarse
and must be refined.

1We assume that the set of propositions Props is not empty. This assumption is needed anyway.
Otherwise, the set of LTL-formulas would be empty as well. P is an arbitrary element of Props.

74 5.2. Linear Time Temporal Logic

The application of model checking seems to be simple. However, when proving
state propositions some problems appear as the following example shows:

Example 5.9

main() -> prop(42).

A possible property of the program could be F 42. To prove this property we use the
AOS for an abstract interpretation, for instance, the even-odd interpretation. Using
this abstraction the AOS yields the following transition system:

(@0, main(), ()) −→ (@0, prop(42), ()) −→ (@0, prop(even), ())
prop
−→(@0, even, ())

Only the state (@0, prop(even), ()) has a property, namely even. 42 is an even
number, but it is not the only even number. For safeness, this property cannot be
proven. Otherwise, we could also prove the property F 40 which does not hold.

It is only possible to prove properties for which the corresponding abstract value
exclusively represents this value. However, it does not make much sense to abstract
from special values and express properties for these concrete values afterwards. There-
fore, we only use propositions of the abstract domain, like F even. In the AOS the
state (@0,prop(even),()) has the property even. Therefore, the program this prop-
erty holds in the program.

Now we consider a more complicated example:

Example 5.10

main() -> prop(84 div 2).

The property holds in this system as well because (84 ÷ 2) = 42. In the even-odd
abstraction we only get:

(@0,main(),())

↓
(@0,prop(84 div 2),())

↓
(@0,prop(even div 2),())

↓
(@0,prop(even div even),())

↓
(@0,prop(?),())

↓prop
(@0,?,())

where prop((@0,prop(?),()))= {?} and ∅ as propositions of the other states. In a
safe abstraction we cannot be sure that the property F even holds. Hence, model
checking must yield that it does not hold. For instance, for the program

Chapter 5. Verification of Core Erlang Programs 75

main() -> prop(42 div 2).

the AOS is similar but the property does not hold (42 ÷ 2 = 21). Therefore,
a propositional property holds in a state if the proposition of the state is at least
as precise as the expected proposition which can be formalized with the following
conjecture:

p0p1 . . . |= ṽ iff ∃ṽ′ ∈ p0 where ṽ v ṽ′

Unfortunately, this is not correct in all cases, as the following example shows. We
want to prove that the property

ψ = G¬even

holds in the program. Therefore, one point is to check that the state (@0,prop(?),())
models ¬even. Using our conjecture we can conclude

(@0,prop(?),()) 6|= even

and hence,
(@0,prop(?),()) |= ¬even.

Unfortunately, this is wrong because in Example 5.10 the property does not hold. The
SOS has the property 42 which is an even value. The problem is the non-monotonic
operation ¬. Considering abstraction, the equivalence

π |= ¬ϕ iff π 6|= ϕ

does not hold! π 6|= ϕ only means that π |= ϕ is not safe. In other words, there
can be a concretization which satisfies ϕ, but we cannot be sure that it holds for all
concretizations. Therefore, negation has to be handled carefully.

Which value of our abstract domain would fulfill the negated proposition ¬even?
Only the proposition odd does. The values even and odd are incomparable and no
value exists which is more precise than these two abstract values. This connection
can be generalized as follows:

p0p1 . . . |= ¬ṽ if ∀ṽ′ ∈ p0 holds ṽ t ṽ′ does not exist

Note that this is no equivalence anymore. The non-existence of ṽt ṽ′ does only imply
that p0p1 . . . |= ¬ṽ. It does not give any information for the negation p0p1 . . . |= ṽ.
This negation holds if ∃ṽ′ ∈ p0 where ṽ v ṽ′.

On a first sight refuting a proposition seems not to be correct for arbitrary abstract
interpretations. Consider the abstract domain

≤0 ≥0

num

where the abstract values represent the following concrete values

76 5.3. Semantics of Propositions

abstract value represented concrete values

≤0 {0,−1,−2, . . .}
≥0 {0,1,2, . . .}

num ZZ

The represented concrete values of ≤0 and ≥0 overlap. Both represent the value 0.
Therefore, it would be incorrect that a state containing the proposition ≤0 satisfies
the formula ¬≥0.

However, this abstract domain is not possible. The abstraction function α : A −→
̂A can only yield one abstract representation for a concrete value. Without loss of
generality let α(0) = ≥0. Abstract values which represent the concrete value 0 can
only be the result of the use of the abstract interpretation function ι̂. All these
results ṽ must be less precise: ṽ v α(0) = ≥0 because of the properties (P1) – (P5).
Hence, this abstract domain can be defined, but the value ≤0 does only represent
the values {−1,−2, . . .}. The name of the abstract value is not relevant, but for
understandability it should be renamed to <0.

Alternatively the abstract domain can be refinement. The two overlapping ab-
stract values can be distinguished in a more precise abstract value:

<0 0 >0

≤0 ≥0

num

or

0

≤0 ≥0

num

In both cases we must define α(0) = 0. Otherwise, we have the same situation as
before. The concrete value 0 is not represented by both abstract values ≤0 and ≥0.

5.3 Semantics of Propositions

Using the considerations of the previous section, we can now formalize whether a
propositional formula can be proven or refuted respectively. Similar results have been
found in by Clark, Grumberg, and Long [CGL94b] and Knesten and Pnueli [KP98].
The result of Knesten and Pnueli introduces a solution to the problem informally
without any formalization. The paper of Clark et. al. formalizes a solution, but
their framework differs from ours and the result cannot easily be transfered to our
framework.

First we define the concretization of an abstract value. This is the set of all
concrete values which are abstracted to this value or a more precise abstract value.

Defintion 5.11 (Concretization of Abstract Values)

Let ̂A = (̂A, ι,v, α) be an abstract interpretation. The concretization function γ :
̂A −→ P(TC(Pid)) is defined as

γ(ṽ) = {v | ṽ v α(v)}.
�

Chapter 5. Verification of Core Erlang Programs 77

For the last example we get the following concretizations:

γ(0) = {0}
γ(≤0) = {0,−1,−2, . . .}
γ(≥0) = {0,1,2, . . .}
γ(num) = ZZ

The following connections between the abstraction and the concretization function
hold.

Lemma 5.12 (Connections between γ and α)

Let ̂A = (̂A, ι,v, α) be an abstract interpretation and γ the corresponding concretiza-
tion function. Then the following properties hold:

1. ∀v ∈ γ(ṽ) : ṽ v α(v)

2.

⊔

{α(v) | v ∈ γ(ṽ)} = ṽ

Proof:

1. v ∈ γ(ṽ) iff v ∈ {v′ | ṽ v α(v′)} iff ṽ v α(v)

2.

⊔

{α(v) | v ∈ γ(ṽ)} =

⊔

{α(v) | v ∈ {v′ | ṽ v α(v′)}} =

⊔

{α(v) | ṽ v α(v)} = ṽ

2

Using the concretization function we can now define whether a proposition of a state
satisfies a proposition in the formula or refutes it.

Defintion 5.13 (Semantics of a Proposition)

Let ̂A = (̂A, ι,v, α) be an abstract interpretation. A set of abstract state propositions
satisfies or refutes a proposition of a formula in the following cases:

p |= ṽ if ∃ṽ′ ∈ p where γ(ṽ′) ⊆ γ(ṽ)
p 6|= ṽ if ∀ṽ′ ∈ p holds γ(ṽ) ∩ γ(ṽ′) = ∅ �

With these definitions for the concretization we can now formalize corresponding
implications for abstract values. For finite domain abstractions they can be decided
automatically.

Lemma 5.14 (Deciding Propositions in the abstract domain)

Let ̂A = (̂A, ι,v, α) be an abstract interpretation. A set of abstract state propositions
satisfies or refutes a proposition of a formula in the following cases:

p |= ṽ if ∃ṽ′ ∈ p where ṽ v ṽ′

p 6|= ṽ if ∀ṽ′ ∈ p holds ṽ t ṽ′ does not exist

Proof: We show: ṽ v ṽ′ implies γ(ṽ′) ⊆ γ(ṽ) and the non-existence of ṽ′t ṽ′ implies
γ(ṽ) ∩ γ(ṽ′) = ∅:

78 5.4. Proving LTL Formulas

• ṽ v ṽ′

γ(ṽ) = {v | ṽ v α(v)} and γ(ṽ′) = {v | ṽ′ v α(v)}.
(̂A,v) is a partial order. Hence, it is transitive. This implies γ(ṽ′) ⊆ γ(ṽ)

• ṽ t ṽ′ does not exist =⇒ γ(ṽ t ṽ′) = ∅ =⇒ {v | (ṽ t ṽ′) v α(v)} = ∅
=⇒ {v | ṽ′ v α(v) and ṽ v α(v)} = ∅ =⇒ γ(ṽ′) ∩ γ(ṽ) = ∅ 2

Note that we only show an implication. We can define unnatural abstract domains in
which a property holds or is refuted with respect to Definition 5.13. Only using the
abstract domain we cannot show this. We consider the following abstract domain:

0

zero

num

where α(v) =

{

0 if v = 0
num otherwise

The abstract value zero is superfluous because it represents exactly the same values,
as the abstract value 0. However, this abstract domain is valid. Using the definition
of the semantics of a proposition from Definition 5.13 we can show that {zero} |= 0
because γ(zero) = γ(0) = {0}. On the other hand, zero v 0 but we cannot show
that {zero} |= 0 just using the abstract domain.

The same holds for refuting a proposition, as the following example shows:

0

≤0 ≥0

num

where α(v) =

{

≥0 if v ≥ 0
≤0 otherwise

In this domain the abstract value 0 is superfluous. Its concretization is empty. Hence,
γ(≤0) = {−1,−2, . . .} and γ(≥0) = {0,1,2, . . .}. γ(≤0) ∩ γ(≥0) = ∅ and ≤0 |=
¬≥0. In this abstract domain, this proposition cannot be refuted since ≤0t≥0 = 0
exists.

These examples are unnatural because the domains contain superfluous abstract
values. Nobody will define domains like these. Usually, the concretization of an
abstract value is nonempty and differs from the concretizations of all other abstract
values. In this case deciding propositions in the abstract domain is complete with
respect to the semantics of propositions. Although it is not complete in general, it
is safe. If we can prove a property for abstract values, then it is also correct for its
concretizations.

5.4 Proving LTL Formulas

In the last section we have discussed whether a propositional formula can be proven or
refuted. LTL allows negation not only in front of propositions. Arbitrary sub-formulas
can be negated. To solve this problem two different approaches are possible:

Chapter 5. Verification of Core Erlang Programs 79

• All negations can be pushed inside the formula, until they only occur in front
of the propositions. Therefore, we must add a release modality (ϕRψ) to LTL
because there exists no equivalent representation of ¬(ϕUψ) which uses negation
only in front of ϕ and ψ. Release is the dual modality of until:

¬(ϕUψ) ∼ ¬ϕR¬ψ

Therefore, its semantics is defined as

p0p1 . . . |= ϕRψ iff ∀i ∈ IN : pipi+1 . . . |= ψ or ∃j < i : pjpj+1 . . . |= ϕ

There is no intuitive semantics of release except that it can be used for negation
of until. However, it can also be unwinded:

π |= ϕRψ iff π |= ¬ψ ∧ (¬ϕ ∨X¬(ϕUψ))

Therefore, it can also be automatically verified in model checking.

Furthermore, we must add ∨ to LTL and use the following equivalences:

¬¬ϕ ∼ ϕ

¬(ϕ ∧ ψ) ∼ ¬ϕ ∨ ¬ψ
¬(Xϕ) ∼ X¬ϕ

Using these equivalences all negations can be pushed into a formula. The re-
sult is an equivalent formula in which negations only occur directly in front of
propositions. Then these formulas can be used for model checking. Positive and
negative propositions can be checked with respect to Lemma 5.14.

• Standard model checking algorithms use a similar idea though they do not
need the release modality. For example, in [Var96] an alternating automaton is
constructed that represents the maximal model which satisfies a formula. The
states correspond to the possible sub-formulas and their negations. For every
negation in the formula the automaton switches to the corresponding state which
represents the positive respectively negative sub-formula. Using this alternation
the negations are pushed into the automaton representing the formula, like in
the first approach. A proposition has to be valued as a positive proposition if
it is used after an even number of negations. In the other case it is valued as a
negative proposition. It has to be refuted.

We can use the same idea and distinguish two different kinds of propositions.
The number of negations in front of a proposition are counted. In dependency
of an even or an odd number of negations the propositional formula must be
proven or refuted. It is possible that the same property occurs more than ones
in a formula. The different occurrences must be considered separately because
there can be different numbers of negations in front of them.

The advantage of this approach is that the non-intuitive release modality is
not needed. The definition of LTL can be left unchanged. The semantics of
propositions only depends on the number of negations in front of them. In the
following, we will define a simple algorithm for marking all propositions in a
formula with + or −.

80 5.5. Verification of the Database

The number of negations in front of a proposition can easily be computed by the
following algorithm. We define a function mark which accumulates if the number of
negations in front of the actual sub-formula is even (+) or odd (−). If mark reaches a
proposition, then this proposition is annotated with the actual accumulated sign. If a
negation occurs the algorithm flips + and − by the function : {+,−} −→ {+,−}:

+ = − and − = +

All other operators in the formula are just copied without any modification. The
marked formulas LTL{+,−} are defined as LTL-formulas except that we use signed
propositions (Props× {+,−}). We write sP instead of (P, s).

mark : ({+,−} × LTL) −→ LTL{+,−}

mark(s, P) = sP
mark(s,¬ϕ) = ¬mark(s, ϕ)
mark(s, ϕ ∧ ψ) = mark(s, ϕ) ∧mark(s, ψ)
mark(s,Xϕ) = Xmark(s, ϕ)
mark(s, ϕUψ) = mark(s, ϕ)Umark(s, ψ)

With respect to the definitions of the abbreviations we also get:

mark(s, tt) = tt
mark(s, ff) = ff
mark(s, ϕ ∨ ψ) = mark(s, ϕ) ∨mark(s, ψ)
mark(s, ϕ −→ ψ) = mark(s, ϕ) −→ mark(s, ψ)
mark(s, Fϕ) = Fmark(s, ϕ)
mark(s,Gϕ) = Gmark(s, ϕ)
mark(s, F∞ϕ) = F∞mark(s, ϕ)
mark(s,G∞ϕ) = G∞mark(s, ϕ)

In the first call of mark no negations must be considered. Therefore, it is initially
called with the sign +:

mark : LTL −→ LTL{+,−}

mark(ϕ) = mark(+, ϕ)

For the two kinds of propositions we can now define

p0p1 . . . |=+ ṽ if ∃ṽ′ ∈ p0 where ṽ v ṽ′

p0p1 . . . 6|=− ṽ if ∀ṽ′ ∈ p0 holds ṽ t ṽ′ does not exist

5.5 Verification of the Database

In Example 5.3 we have added propositions to our database example. Now we want
to prove some properties of this system. We consider a system which consists of a
database and two client processes. It is started by the following main function:

main() -> spawn(client,[self]),

spawn(client,[self]),

database([]).

For the verification we use the abstract interpretation ̂Ak in which only constructor
terms of depth ≤ k are considered. Abstracted sub-terms are represented by ?.

Chapter 5. Verification of Core Erlang Programs 81

5.5.1 Liveness of the database

First we want to prove that for every request the database again reaches its initial
state in which it can handle new requests. Therefore, we have added the proposition
top. We postulate:

If the database receives an allocation or lookup request, then finally it
reaches the main state in which the proposition top holds.

In LTL this can be specified as

alwaysTop = G(({allocate, ?} ∨ lookup) −→ F top)

We use the abstract value {allocate,?} to express that an arbitrary process sends a
request for the allocation of a new key. This property is a liveness property (finally a
special state can be reached). On the other hand, Erlang is a programming language
and the processes behave deterministically (see Lemma 3.20). Therefore, this property
also shows the absence of deadlocks in the execution of the code between the specified
propositions.

Applying the mark function to this formula we get:

mark(alwaysTop) = G((−{allocate, ?} ∨ −lookup) −→ F +top)

The propositions {allocate,?} and lookup in the requirement of the implication
are marked with −. Therefore, only states with incomparable propositions refute
them. For instance, a state having the proposition {allocate,@0} does not refute
the property −{allocate, ?}. Hence, the right side of the implication F top has to
be satisfied.

The abstract value lookup represents exactly one concrete value (γ(lookup) =
{lookup}). Only lookup satisfies +lookup, while −lookup is not refuted by the
propositions lookup and ?. Finally, top is only satisfied by the abstract state propo-
sition top.

We want to prove this formula using our example abstraction ̂Ak. The abstract
interpretation ̂A1 is too coarse as the path of the AOS in Figure 5.1 shows. State
1 shows the system after the creation of the two client processes (π2 and π3 which
we do not represent in more detail). Furthermore, these two processes have already
sent requests to the database. All flags of these messages are abstracted. Different
messages can only be distinguished with respect to their arity. In State 2 the first
message in the mailbox is interpreted as an allocate message and this branch is
chosen. The proposition {allocate, ?} holds in State3 but no successor state of
this path has the proposition top. The reason is that the matching of the pattern
{value,V,?} against the message {?,?,?} is not irrefutable. Due to this fact the
deadlock sink dead is a successor of this state.

After sending in State 4, the process π2 has changed to π′2 because the message

free is sent to this process. In the abstract domain ̂A1 also the pid of the requesting
process is abstracted to ?. So, the message free can in this abstraction also be sent
to the other client or the database. Furthermore, it can also yield an error because
? can also represent a non-pid. Hence, State 4 also has error as successor and the
formula is not satisfied on this path either.

82 5.5. Verification of the Database

(@0,main(),())

↓∗
(@0,database([]),({?,?,?}:{?,?,?})) ‖ π2 ‖ π3 (1)

↓∗
(@0,prop(top),. . .,({?,?,?}:{?,?,?})) ‖ π2 ‖ π3

↓prop
(@0,top,receive. . ., ({?,?,?}:{?,?,?})) ‖ π2 ‖ π3 (2)

↓∗
(@0,prop({?,?}),case. . ., ({?,?,?}))‖ π2 ‖ π3 (3)

↓prop
(@0,{?,?},case. . .,({?,?,?})) ‖ π2 ‖ π3

↓∗
(@0,?!free,. . .,({?,?,?})) ‖ π2 ‖ π3 (4)

↓!free
(@0,free,receive. . .,({?,?,?})) ‖ π′2 ‖ π3

↓∗
(@0,receive {value,V,?}->. . ., ({?,?,?})) ‖ π′2 ‖ π3

↓
dead

Figure 5.1: Path of the database example in the abstract interpretation ̂A1

ε-Loops

We need more precision in the abstraction. Figure 5.2 shows the same path in the
abstraction ̂A2. We see that all branches which are relevant for the communication
can be decided here. The system does not run into the deadlock state and after the
proposition {allocate,?,@1} finally the proposition top holds. There exists another
path (see Figure 5.3) in which the property does not hold. State 1 in Figure 5.3 does
not falsify the proposition lookup. Therefore, the proposition top should finally hold.
However, this is not true for the presented path. The path contains an ε-loop resulting
from the evaluation of lookup(?,?) in State 2. The reason is that our abstraction is
not designed to decide the termination of a recursive function call. Other techniques
of abstraction exist which can decide termination of recursive function calls. An
integration into our abstraction would be difficult. The definition of an abstraction
which is designed for the verification of protocol properties and the termination of
recursive function definitions would be much more difficult.

We decided to eliminate non-terminating sequential calculations from the transi-
tion system used as a Kripke Structure for model checking. This can be implemented,
by ignoring ε-loops. In our example, this leads non-deterministically to the results
{value,?} and fail for the function application lookup(?,?). Both results are sent

Chapter 5. Verification of Core Erlang Programs 83

(@0,main(),())

↓∗
(@0,database([]), ({allocate,?,@1}:{allocate,?,@2})) ‖ π2 ‖ π3

↓∗
(@0,prop(top),. . ., ({allocate,?,@1}:{allocate,?,@2})) ‖ π2 ‖ π3

↓prop
(@0,top,receive. . ., ({allocate,?,@1}:{allocate,?,@2})) ‖ π2 ‖ π3

↓∗
(@0,prop({allocate,@1}),case. . ., ({allocate,?,@2})) ‖ π2 ‖ π3

↓prop
(@0,{allocate,@1},case. . ., ({allocate,?,@2})) ‖ π2 ‖ π3

↓∗
(@0,@1!free,. . ., ({allocate,?,@2})) ‖ π2 ‖ π3

↓!free
(@0,free,receive. . ., ({allocate,?,@2})) ‖ π′2 ‖ π3

↓∗
(@0,receive {value,V,?}->. . ., ({allocate,?,@2})) ‖ π′2 ‖ π3

↓∗
(@0,receive {value,V,?}->. . ., ({allocate,?,@2}:{value,?,@1})) ‖ π′′2 ‖ π3

↓∗
(@0,prop({value,?}),. . ., ({allocate,?,@2})) ‖ π′′2 ‖ π3

↓prop
(@0,{value,?},. . ., ({allocate,?,@2})) ‖ π′′2 ‖ π3

↓∗
(@0,database(?), ({allocate,?,@2})) ‖ π′′2 ‖ π3

↓∗
(@0,prop(top),. . ., ({allocate,?,@2})) ‖ π′′2 ‖ π3

↓prop
...

Figure 5.2: Path of the database example in the abstract interpretation ̂A2

84 5.5. Verification of the Database

(@0,main(),())

↓∗
(@0,database([{?,?}|?]), ({lookup,?,@1})) ‖ π2 ‖ π3

↓∗
(@0,prop(top),. . ., ({lookup,?,@1})) ‖ π2 ‖ π3

↓prop
(@0,top,. . ., ({lookup,?,@1})) ‖ π2 ‖ π3

↓∗
(@0,prop(lookup),@1!lookup(?,[{?,?}|?]),..., ())) ‖ π2 ‖ π3 (1)

↓prop
(@0,lookup,@1!lookup(?,[{?,?}|?]),. . . , ())) ‖ π2 ‖ π3

↓
(@0,@1!lookup(?,[{?,?}|?]),. . . , ())) ‖ π2 ‖ π3

↓
(@0,@1!case?of. . . ,. . . , ())) ‖ π2 ‖ π3

↓
(@0,@1!lookup(?,?),. . . , ())) ‖ π2 ‖ π3 (2)

↓ ↑
(@0,@1!case?of. . . ,. . . , ())) ‖ π2 ‖ π3

Figure 5.3: ε-loop in the database example in the abstract interpretation ̂A2

to the corresponding client and the database finally reaches its top state. Using this
technique we are able to prove the formula by simple finite state model checking. Our
proof is only correct under the assumption that all sequential calculations terminate.
The termination can be proven by different techniques, like interpretation methods
[BN98], reduction orders [BN98], or critical pairs [AG00]. In practice the termina-
tion of side-effect free functions will usually be omitted because programmers always
assume that functions like append or lookup terminate without any proof.

As already mentioned before, this proof also shows the absence of deadlocks in the
database. In particular, there exists no deadlock between the states specified by the
propositions in the formula. The absence of deadlocks for the whole database process
can be specified by:

noDeadlock = G(top −→ XF top)

From the top state, the database always finally reaches the top state again. As for
liveness, we can prove this property using the abstraction ̂A2.

5.5.2 Mutual exclusion

Another property which can automatically be verified using the abstract interpreta-
tion ̂A2 is mutual exclusion. We want to guarantee that the process which allocates

Chapter 5. Verification of Core Erlang Programs 85

a key also sets the corresponding value:

If a process π allocates a key, then no other process π′ sets a value before
π sets a value, or the key is already allocated.

For the client processes with pids @1 and @2 this can be expressed as the LTL-formula

G({allocate,@1} −→ (¬{value,@2}) U ({value,@1} ∨ allocated))

In our system only a finite number of pids occur. Therefore, we can express this
property in general for all occurring pids:

∧

π∈Pid
π′ 6=π

G ({allocate, π} −→ (¬{value, π′}) U ({value, π} ∨ allocated))

This formula can be translated into a pure LTL-formula as a conjunction of all possible
permutations of possible pids which satisfy the condition. This is

(π, π′) ∈ {(@0,@1), (@0,@2), (@1,@2)}.

Again, this property can automatically be proven by model checking and the finite
domain abstraction ̂A2.

5.5.3 More precise Abstractions

In the verification of distributed systems by model checking usually properties like
the absence of deadlocks, live-locks or mutual exclusion are specified. In our approach
it is also possible to verify more detailed properties. For example, the correct storage
behavior of the database.

We want to prove the following property:

If a special key-value pair {k,v} is inserted, then the lookup of k yields v.

The database can grow arbitrarily. Therefore, we cannot prove this property by means
of a depth-k-abstraction. Instead, we define an abstraction which distinguishes lists
containing the elements {k,v} and list which do not contain these elements. We use
the abstract values:

abstract value concrete representations

kvInList all lists containing the pair {k,v}
kInList all lists containing a pair with the key k
kNotInList all lists containing no pair with the key k
list all lists

the abstract values are ordered as follows:

kvInList

kInList kNotInList

list k v

?

86 5.5. Verification of the Database

Furthermore, we extend the abstract domain to the values of ̂A2 to distinguish the
different allocate, lookup, and value messages which can be sent to the database
process. A presentation of the whole abstract interpretation would go beyond the
scope of this thesis. Therefore, we only sketch the idea of the abstraction.

For the abstract representation of lists we define the semantics of the list construc-
tors as:

ι̂([]) = kNotInlist

ι̂([.|.])(ê,̂l) =

kvInList if ê = {k,v} and list v ̂l
kInList if ê = {k, v̂′} where v̂′ 6= v and list v ̂l
list otherwise and list v ̂l
? otherwise

By means of this interpretation of constructors we extract exactly the information of
the lists which is relevant for the given problem. Now we must be able to recover
this information if the key k is looked up in the database. Therefore, we treat the
function lookup as a predefined function and interpret it as follows:

ι̂(lookup)(k,kvInList) = {succ,v}
ι̂(lookup)(k,kInList) = {succ, ?}
ι̂(lookup)(k,kNotInList) = fail
ι̂(lookup)(k, list) = ?

ι̂(lookup)(̂k,̂l) = ? , for all ̂k 6= k

For this interpretation we have to prove property (P1). This is not difficult but tech-
nical: a structural induction over lists. Proofs like this often occur in the definition
of an abstract interpretation. Therefore, our framework defines a good possibility
for the integration of software verification by theorem proving and model checking.
Theorem provers like Isabelle/HOL [Pau89, Pau93] are very powerful in proving prop-
erties of (structural) inductive functions, like lookup. Especially for these functions
automatisation of proofs is a succesful field of research [Lys94, GG88]. The pro-
posed properties of our framework define a good abstraction layer. They are proven
by a theorem prover. Then the power of model checking is the verification of the
concurrent behavior of the system. The interaction of the processes with respect to
interleaving can be verified automatically by model checking. For these concurrent
parts of the system model checking is more powerful than theorem proving because of
the state space explosion problem. The interleaving semantics yields very large state
spaces which make verification by theorem proving expensive. An automatization is
difficult.

The combination with theorem provers does not belong to the core of this thesis.
Therefore, we just present the idea. The investigation of their integration is possible
future work.

Using the defined abstract interpretation it is now possible to prove the property.
Therefore, we use more precise propositions of the program: value propositions are
extended to actual keys and values and lookup propositions to actual keys. Further-
more, we add a proposition to the client which represents the value received from

Chapter 5. Verification of Core Erlang Programs 87

the database. These propositions make it possible to prove that after allocating the
key k and adding the value v a lookup of k yields the value v. In LTL this can be
formalized as

G ({value,k,v, ?} −→ G ({lookup,k,v} −→ F {succ,v}))

Although this proof is possible, our approach was intentionally not designed to
prove properties like this one. Usually, one will specify properties about the concurrent
behavior of a system, like the absence of deadlocks. However, this example shows that
our approach can also handle these more detailed properties.

5.6 Fairness Properties

So far, we have only considered formulas for simple liveness and safeness properties.
Nevertheless, LTL has more expressive power. It is also possible to express more
complicated properties like fairness in our approach. We motivate the practical use
of fairness in a simpler example. Then we sketch how fairness can be used in our
database example.

Example 5.15
Three processes are executed concurrently. They are connected to each other in a
ring and every process receives a message (a number) and forwards the incremented
message to its successor.

main() -> P1=spawn(loop,[self]),

P2=spawn(loop,[P1]),

P2!42,

loop(P2).

loop(P) -> prop({main,self}),

receive

X -> P!X+1,

loop(p)

end.

We want to prove that the flow of messages in this system guarantees a fair execution:
No process is overtaken infinitely often. To prove this, the function loop contains the
proposition {main,self}. It indicates that a process reaches its main state. To
distinguish which process reaches its main state, the proposition also contains the pid
of the processes. The system behaves fairly if for all processes this main proposition
is valid infinitely often. This can be easily expressed by the LTL formula F∞:

∧

π∈{@0,@1,@2}

F∞ {main,π}

Again we can prove this property using the finite abstract domain ̂A2. However, this
specification of fairness is not fully correct. It could be possible that a process stays in

88 5.6. Fairness Properties

its main state for ever. Then the formula would be satisfied but this is not a fair path
because another process overtakes this process infinitely often. Therefore, we must
refine our specification. We claim that also infinitely often the proposition {main,π}
does not hold.

fair :=
∧

π∈{@0,@1,@2}

(F∞ {main,π}) ∧ (F∞ ¬{main,π})

This formula expresses the fairness of the system and for Example 5.15 it can be
proven using the finite domain abstract ̂A2.

Usually, we do not prove the fairness of a system. Instead we often assume a fair
scheduling. Under this assumption, we want to prove other properties. The unfair
paths of a system which occur in the formal semantics shall not be considered. They
are irrelevant for the execution of the system because all schedulers of the Erlang
runtime systems are fair.

This fairness assumption can easily be expressed in LTL by means of the implica-
tion.

fair −→ ϕ

For unfair paths the formula is trivially satisfied. Only for fair paths ϕ must be
checked. For fairness conditions there also exist more efficient model checking algo-
rithms in which the fairness assumption is already integrated in the model checker.
No fairness condition is needed in the formula. It is even possible to use CTL
model checking extended with fairness for the verification of arbitrary LTL formu-
las [CGH94, CGH97].

As an example for the use of this fairness assumption consider a system consisting
of two databases and a client for each database. The operational semantics of this
system contains paths in which only one database and its client are evaluated. On
this path properties like alwaysTop do not hold for the other database.

For two databases we must modify the proposition top to distinguish the two
databases. The easiest way is to add the pid of the database to the proposition
(prop({top,self})). Then we also distinguish the property alwaysTop with respect
to the pids of the databases. Adding the fairness assumption we only consider the
fair paths. We can prove the property alwaysTop for both databases.

In this section we have defined unconditional fairness. There exist further, more
difficult fairness properties like weak or strong fairness [Eme90]. These fairness prop-
erties can also be integrated in our approach.

Chapter 6

Extensions and Optimizations

6.1 A Simplified Framework

In Chapter 4 we have defined a framework for abstract interpretations of Core Erlang
programs which can be used for the automated verification by model checking. The
abstract interpretation requires five properties which relate the abstract interpretation
to the concrete interpretation. This can make the definition of an abstract interpreta-
tion expensive. The simplest way to fulfill the properties for casematch and mbmatch
is full non-determinism. All possible matches are collected as in the example abstrac-
tion ̂Ak in Section 4.3.2. However, we can be more precise in the abstraction and
avoid too much nondeterminism. Consider the following program and the example
abstraction ̂Ak.

Example 6.1

f(X) -> case X of

{succ,V} -> V;

Y -> fail

end.

We assume that this function is applied to the abstract value {succ,?}. It is ir-
refutable that the first matching succeeds, although we have abstracted from the sec-
ond component of the tuple. Hence, it is superfluous to perform the second matching
in the abstract semantics, as it is the case in ̂Ak.

In the abstraction of matching we have already distinguished two different kinds
of matches:

• Irrefutable matches (e.g., variables match everything): It is not necessary to
consider the subsequent patterns.

90 6.1. A Simplified Framework

• Possible matches (e.g., it is possible that a pattern matches ?): We cannot
decide if the concrete evaluation matches at this point due to our abstraction.
Hence, it is possible that this pattern matches or it does not match and the
subsequent patterns match as well.

Using this information from matching, we can define very precise abstractions for
casematch and mbmatch. If the matching of a pattern against a value is irrefutable,
then all subsequent patterns need not be considered.

Defintion 6.2 (Simplified Abstract Interpretation)

Let ̂A = (̂A, ι̂,v, α) be an abstract interpretation where ι̂ is a family of interpretation
functions for F , C, matching, and the pid representation of a value which fulfills
the properties (P1), (P2), and (P5). Simplified interpretations for casematch and
mbmatch are defined as:

ι̂(casematch)((p1, . . . , pn), v) = {(i, σ) | ι̂(match)(pi, v) = (, σ) and
ι̂(match)(pj, v) 6= (Irref,) ∀j < i}

∪
{

{Fail} , if ι̂(match)(p̂i, v̂) 6= (Irref,) ∀1 ≤ i ≤ n
∅ , otherwise

ι̂(mbmatch)((p1, . . . , pn), (v1, . . . , vm)) =
{(i, j, σ) | ι̂(match)(pi, vj) = (, σ) and

ι̂(match)(pk, vl) 6= (Irref,) ∀1 ≤ k ≤ n, l < j and
ι̂(match)(pk, vj) 6= (Irref,) ∀k < i}

∪
{

{Fail} , if ι̂(match)(p̂i, v̂j) 6= (Irref,) ∀1 ≤ i ≤ n, 1 ≤ j ≤ m
∅ , otherwise �

These simplified abstractions are safe with respect to the SOS. To see this, we have
to prove that they fulfill the properties (P3) and (P4). The safeness with respect to
the SOS follows by Theorem 4.11.

Lemma 6.3

Let ̂A be an abstract interpretation and ι̂(match) fulfills property (P2). Then ̂A also
fulfills the property:

(P2’) For all p̃ ∈̂Pat, ṽ ∈ ̂A it holds that:
if match(p̃, ṽ) = (Irref, σ),
then for all p ∈ Pat where p̃ v α(p) and for all v ∈ TC(Pid) where

ṽ v α(v) is match(p, v) 6= Fail.

Proof: Assume match(p̃, ṽ) = (Irref, σ) and ∃p ∈ Pat with p̃ v α(p) or ∃v ∈ TC(Pid)
with ṽ v α(v) and match(p, v) = Fail. This is a contradiction to (P2b). 2

Lemma 6.4 (The Simplified Abstraction of casematch fulfills (P3))

A simplified abstract interpretation ̂A = (̂A, ι̂,v, α) fulfills the property (P3):

Chapter 6. Extensions and Optimizations 91

(P3) For all p1, . . . , pn ∈ Pat, v ∈ TC(Pid) and for all p̃j v α(pj) and ṽ v α(v)
it holds that:
a) if casematch((p1, . . . , pn), v) = (i, ρ),

then there exists ρ̃ v α(ρ) with (i, ρ̃) ∈ casematch
̂A((p̃1, . . . , p̃n), ṽ).

b) if casematch((p1, . . . , pn), v) = Fail,
then Fail ∈ casematch

̂A((p̃1, . . . , p̃n), ṽ).

Proof:

a) A simple induction over the number of patterns n.

b) Follows directly from Lemma 6.3 and the definition of casematch
̂A. 2

Analogously we can conclude the corresponding lemma for mbmatch
̂A and (P4).

Lemma 6.5 (The Simplified Abstraction of mbmatch fulfills (P4))

A simplified abstract interpretation ̂A = (̂A, ι̂,v, α) fulfills the property (P4):

(P4) For all p1, . . . , pn ∈ Pat, v1, . . . , vu ∈ TC(Pid) and for all p̃j v α(pj) and
ṽk v α(vk) it holds that:
a) if mbmatch((p1, . . . , pn), (v1, . . . , vu)) = (i, j, ρ),

then there exists ρ̃ v α(ρ)
with (i, j, ρ̃) ∈ mbmatch

̂A((p̃1, . . . , p̃n), (ṽ1, . . . , ṽu)).
b) if mbmatch((p1, . . . , pn), (v1, . . . , vu)) = Fail,

then Fail ∈ mbmatch
̂A((p̃1, . . . , p̃n), (ṽ1, . . . , ṽu)).

For many practical applications this simplified framework can be used. On top
of ι̂(match) good and safe abstractions for casematch and mbmatch are predefined.
Therefore, the following question raises: Why didn’t we directly use the abstraction
in our framework? The reason is that there exist situations in which the general
framework can be more precise than this simplified framework. As an example we
consider the following program:

f(X) -> case X of

42 -> 21;

44 -> 22

end.

For the AOS we use the abstract domain:

42 44

42/44

?

The abstract value 42/44 represents exactly the two concrete values 42 and 44. We
apply the function f to this abstract value. Both matches in the case expression are

92 6.2. Reducing the State Space

only possible, because the abstract value represents both numbers. Therefore, in the
simplified abstraction this case expression can also fail. On the other hand, in the
concrete semantics one of both patterns matches. The case expression cannot fail.

Using the general framework, it is possible to define an abstract interpretation
which fulfills the property (P3), but does not yield Fail for this example. To be as
expressive as possible, we have defined the general framework. However, for many
abstractions the simplified framework can be used.

6.2 Reducing the State Space

From the theoretical point of view it is nice to know that model checking is decidable.
Unfortunately, the transition system created for the abstract operational semantics
can be very large. For real applications computers with enormous memory are needed.
The main reason is the explosion of state space in the interleaving semantics. In
addition to the need of much memory, runtime for the construction of the transition
system or the verification of a formula increases. The state space must be constructed
and the costs for the detection of cycles correspond to the absolute number of states.

The sequential parts of the evaluation are less relevant for the verification of the
concurrent system and usually more than half of all transitions are labelled by ε. This
is also shown in the database example. We are not interested in every state of the
evaluation, like stepping through a database while looking up a key. We are only
interested in the communication.

Inspecting our interleaving semantics yields the following observations: We do
not only have the ε-transitions of one process. We have diamonds of ε-transitions of
all processes. As an example we consider three processes which can all perform one
ε-transition.

π1‖π2‖π3

π′1‖π2‖π3 π1‖π′2‖π3 π1‖π2‖π′3

π′1‖π′2‖π3 π′1‖π2‖π′3 π1‖π′2‖π′3

π′1‖π′2‖π′3
The resulting transition system has eight states which will usually not be distinguished
in properties expressed in an LTL-formula. If we consider n processes which can
perform m ε-transitions we get (m+1)n different states. Each of the n process occurs
in m + 1 different ways. To get an impression of the state explosion, we present the
following numbers. For three processes and two ε-transitions we get 27 states and for
eight processes with five ε-transitions per process we get 1679616 states. Unfortunatly,
this degree of non-determinism commonly occurs in the AOS of Core Erlang programs.
Furthermore, these numbers do not represent the whole state space of a system. They
only represent the size of one diamond in the interleaving semantics of one evaluation.
Such diamonds occur in many different places of the AOS. Therefore, a reduction of
the state space is needed.

Chapter 6. Extensions and Optimizations 93

The results of the evaluations can have effects on the communication, because of
branching, but the single steps in the evaluation are irrelevant. So it would be good
to eliminate these sequential transitions like an ε-elimination known from automata
theory [HU79]. We can use this technique here too, but we have to consider the
nonterminating cycles, because they are possible paths of the system and have to be
kept to be safe with respect to the SOS.

The ε-closure of a state can be defined as the smallest set of states fulfilling

ε̂(s) = {s} ∪
⋃

s−→s′
ε̂(s′)

Then the more compact transition system can be defined on the ε-closures of the
states. This reduces the state space, but the states of the transition system are sets
of system states now. These sets of states must be stored to detect cycles. Therefore,
memory does not decrease essentially. All states of the diamond are part of the ε-
closure. Only the ε-transitions in the diamonds can be dropped. We need a more
compact representation of this equivalence class.

The idea is to use only the states at the end of the diamond. We do not need to
store the states in between. Also for the detection of cycles this is not a problem. If
a cycle yields back to one of the eliminated states, then also on the transition system
constructed in the cycle this state is eliminated. We get (maybe several) cycles to the
last states of the ε-closure. In our example, the whole diamond would be reduced to
the state π′1‖π′2‖π′3.

As an alternative, we could also represent the diamond by its first state. However,
this does not match with the state propositions, as we will see later.

Instead of the whole ε-closure we only store the states which can perform side-
effects. These are all states which have a non-ε-transition. This approach yields a
reduction of the state space but it does not yield the supposed reduction:

Example 6.6
Again, we consider three parallel processes. The first process π1 can perform a

send action l and the others only one ε-transition. The AOS contains the following
diamond:

π1‖π2‖π3

π′1‖π2‖π3 π1‖π′2‖π3 π1‖π2‖π′3

π′1‖π′2‖π3 π′1‖π2‖π′3 π1‖π′2‖π′3

π′1‖π′2‖π′3

l

l l

l

Four states can perform a non-ε-transition. They cannot be eliminated. So only the
small sub-diamond

π′1‖π2‖π3

π′1‖π′2‖π3 π′1‖π2‖π′3

π′1‖π′2‖π′3

94 6.2. Reducing the State Space

can be eliminated and we get the reduced transition system:

π1‖π2‖π3

π1‖π′2‖π3 π1‖π2‖π′3

π1‖π′2‖π′3

π′1‖π′2‖π′3

l
l l

l

The state space is not reduced as much, as we supposed. Again, in logical specifica-
tions these states will usually not be distinguished. We would like to represent this
transition system as

π1‖π2‖π3

l
−→ π′1‖π′2‖π′3

This demand is meaningful considering the following lemma.

Lemma 6.7

For every abstract interpretation ̂A and for every state s ∈ ̂S tate
̂A where s −→

̂A t it

holds that if s
a
−→

̂As
′, then there exists t′ ∈ ̂S tate

̂A such that

s

t s′

t′

a

a

Proof: A simple case analysis on −→
̂A. 2

The AOS is locally confluent for ε-transitions. The only reason for the branching is
interleaving. We need not distinguish the two paths. The idea of an optimization is
the following: All possible sequential steps of the system are performed as long as
possible. Only states which do not have any ε-successor are considered in our final
transition system. The only exception are ε-loops which need not be eliminated. To
be safe with respect to the SOS, we keep them to represent this infinite path by pure
evaluations. Using this technique, we can reduce the state space of Example 6.6 and
get

π1‖π2‖π3

l
−→ π′1‖π′2‖π′3

We get an enormous reduction of the state space. All diamonds which contain ε-
transitions are eliminated. In our example program pdb consisting of a database and
two clients the state space is for example reduced from 5063 to 549 states.

However, we can still do better. In partial order reduction [Pel94, CGMP98], this
approach is generalized. The diamonds resulting from the interleaving semantics can
be eliminated for arbitrary independent actions. If we inspect the possible labels of the
semantics in more detail, then we see that only send transitions have side-effects. For
all other labels Lemma 6.7 holds analogously. All the other non-determinism results

Chapter 6. Extensions and Optimizations 95

from the interleaving semantics. It can be eliminated using the same technique. By
this optimization the state space can be further reduced. We only preserve some of
the send transitions and some loops. All other transitions are eliminated.

Furthermore, we must save the states containing different propositions. These
propositions will usually occur in the formula. Hence, they distinguish relevant states
for the verification. These states should not be eliminated. Fortunately, this is no
problem because we can detect these states by means of prop-transitions following
them. The states of the constructed transition system only have send and prop tran-
sitions. If a state can perform other actions, then these actions are performed until
no other actions are possible.

We define the set of independent labels that can be eliminated:

I
̂A = {?v | v ∈ ̂A} ∪ {spawn(f) | f/n ∈ FS(p)} ∪ {ε}

An algorithm for the computation of the successor states can be defined as follows:

succsI
̂A

: P(̂S tate)×P(̂S tate∪{loop})×P(̂S tate) −→ P(̂S tate∪{loop})
succsI

̂A
(S,Res,Acc) = if S ′ = ∅ then

Res′

else
succsI

̂A
(S ′,Res′,Acc ∪ S ′)

where S ′ =
⋃

{t | s ∈ S and s
a−→ t and a ∈ I

̂A} \ Acc

Res′ = Res ∪ {s | s ∈ S and 6 ∃t : s
a−→ t, a ∈ I

̂A}

∪
{

{loop} , if S ′ ∩ Acc 6= ∅
∅ , otherwise

The first argument is the set of states, from which we want to compute the succes-
sors. In the first call this set contains just one state. The second argument contains
all states in which no more side-effect-free transitions can be performed. If all states
are expanded, then this set is the result of the computation. In the third argument we
accumulate all states which are constructed during the computation. This is needed to
detect cycles and to guarantee the termination of the algorithm in this case. Finally,
we add the constant loop to the result, if we detect a cycle.

Using this function, we can construct the reduced transition system. There are
two possibilities where we can compute the successors by succsI

̂A
. Before perform-

ing an action of I
̂A := Label \ I

̂A or after it. As standard in automata theory, we
could compute them before the I

̂A-actions. In this case the initial state of a tran-
sition system need not be handled in a special way. However, this approach does
not compatible with state propositions, as the example in Figure 6.1 shows. We get
succsI

̂A
(s0) = {s2} and then

s0

prop
−→s4

This is not a good strategy to construct the reduced transition system. The state
s2 gets lost. This is wrong since this state contains a proposition (s2 can perform a
prop-action) which could be used for verification purposes.

96 6.2. Reducing the State Space

s0

s1

s2 s3

s4

s5

prop

prop

Figure 6.1: A Possible Transitionsystem

The definition of the semantics of a proposition postulates that the state from
which the prop-transition can be performed fulfills a proposition. In the example
these are the states s1 and s2. However, both states are not represented in the
reduced transition system. Let the proposition P hold in these states. A property
like F P which holds in the AOS would not hold in the reduced transition system.
The elimination of the state s1 is correct because this state is the initial state of an
interleaving diamond. However, we must keep the state s2.

We can obtain this reduction of the transition system, if we compute the I
̂A-

successors after an I
̂A transition. For the initial state we then have to compute them

once and use all states of succsI
̂A
(s0) as states for the further construction of the

transition system. The I
̂A transitions then lead to the I

̂A-successors of the original
successors. In our example we get

s0 −→ s2

prop
−→ s5

The state s2 is represented in the reduced transition system and the property F P is
fulfilled. The reduced transition system can be constructed by means of the following
function:

nextstatesI
̂A

: (̂S tate ∪ {loop})× ̂Label −→ P(̂S tate ∪ {loop})
nextstatesI

̂A
(loop, ε) = {loop}

nextstatesI
̂A
(s, a) = succsI

̂A
(S, ∅, S)

where S =
⋃

{t | s a−→ t}

For cycles without prop or send transitions we add a special sink loop. It only
contains a cycle which is labelled by ε. Although there can exist other labels in the
corresponding loops in the AOS, we do not represent them in the reduced transition
system. They are not relevant for the verification. It is not possible to distinguish
them in LTL, because labelled X-operators are not allowed. We can only distin-
guish states containing different propositions. These states are kept in the reduced
transition system.

Chapter 6. Extensions and Optimizations 97

T1 : s0, ∅

s1, {P} s2, {Q}

s3, ∅ s4, {P,Q} s5, ∅

s6, {Q} s7, {P}

s8, ∅

prop prop

prop prop

prop prop

T2 : s0, ∅

s4, {P,Q}

s6, {P} s7, {P}

s8, ∅

prop prop

prop prop

Figure 6.2: A transition system T1 and its reduced representation T2

This reduction of the AOS is not correct for arbitrary LTL-formulas as the example
in Figure 6.2 shows. The transition system T1 presents the interleaving semantics of
two processes evaluating the proposition P and Q. Its reduced representation is
presented as transition system T2. In the figure, the set of valid propositions is added
to every state.

These two transition systems do not fulfill the same LTL-formulas. The formula
X X (P ∧Q) is fulfilled in T1 and not fulfilled in T2. On the other hand X (P ∧Q) is
fulfilled in T2 and not in T1. However, in the specification of system properties the use
of next is uncommon. Usually, it will be replaced by finally. Therefore, in partial order
reduction LTL is used without next operator (called LTL−X [CGMP98]). However,
that is not sufficient. Also in LTL−X we can distinguish different interleaving paths.
The formula

(F (Q ∧ ¬P ∧ F P)) ∨ (F (Q ∧ ¬P ∧ F P))

is fulfilled in T1. The sub-formula P ∧ ¬Q is only fulfilled in the states s1 and s7.
Q ∧ ¬P only in s2 and s6. All paths of the left branch of T1 fulfill the first part of
the disjunction and all paths of the right branch fulfill the second part. Therefore,
the formula is fulfilled. On the other hand, the formula is not fulfilled in the reduced
transition system. The state s2 is eliminated. Only the state s6 fulfills the sub-
formulas P ∧ ¬Q. This state has no successor which fulfills Q. Hence, the first part
of the disjunction is not fulfilled. Vice versa the same holds for the second part and
the whole formula is not fulfilled.

This example shows that a formula which is fulfilled in the AOS can be invalid in
the reduced transition system. We did not suppose this, but it is not wrong, because
we would stay safe with respect to the SOS. Unfortunately, there also exist formulas
which are fulfilled in the reduced transition system but not in the AOS. An example

98 6.2. Reducing the State Space

is
(¬P) U Q

In T2 all paths start with the propositions ∅, {P,Q}. The proposition Q is already
fulfilled in the second state of the path. The only predecessor states does not contain
the proposition P .

On the other hand, the transition system T1 contains three state paths which begin
with s0s1. In this initial part the formula is already falsified, because P is valid in
s1 and Q is not valid in the states before s4 respectively s6. So the reduction of the
state space can yield wrong results.

There is a large theory about partial order reduction [Pel94] and its application. It
is possible to decide, whether an LTL−X formula is trace invariant. This is a large field
of research and we do not go into details here. We perform the reduction of the state
space, because this is needed to use this approach also for non-trivial programs. Most
specifications of system properties expressed in LTL are trace independent. They can
be checked by LTL model checking on the reduced transition system. We leave it
to the user to show that the specified formula is trace invariant with respect to our
reduction.

Chapter 7

Abstraction of Recursive Function
Calls

In the last chapters we have developed an approach for the formal verification of Core
Erlang. We have defined hierarchical Core Erlang programs, a subclass of Core Erlang
programs for which a finite domain abstraction yields a finite transition system1.
However, many Erlang programs are not hierarchical. As an example, we consider a
more efficient implementation of our database.

Example 7.1
We now use an implementation of the database process by means of sorted lists. The
only modification of the main loop of the database is the call of the function insert

instead of adding the new key/value tuple at the front of the list:

dataBase(L) ->

receive

{allocate,Key,P} ->

case lookup(Key,L) of

fail -> P!free,

receive

{value,V,P} ->

dataBase(insert(Key,V,L))

end;

{succ,V} -> P!allocated,

dataBase(L)

end;

1With the restriction that only finitely many processes may be created and only finite parts of
the mailboxes can be used.

100

{lookup,Key,P} -> P!lookup(Key,L),

dataBase(L)

end.

New elements are inserted into the database with respect to an ordering on the keys:

insert(KN,VN,L) ->

case L of

[] -> [{KN,VN}];

[{K,V}|L1] ->

case K<KN of

true -> [{K,V}|insert(KN,VN,L1)];

false -> [{KN,VN}|L]

end

end.

Then the lookup function can be optimized. Only the elements which are less than
or equal to the key must be compared with the key. In the averaged case, only half of
the list has to be used. Every insertion of a new value also needs a lookup if the new
key already exists. Therefore, together with lookup requests more lookup operations
are performed on the database. The implementation by means of a sorted list is more
efficient.

lookup(K,[{K,V}|R]) -> {value,V};

lookup(K,[(K1,_)|R]) -> case K<K1 of

true -> lookup(K,R);

false -> fail

end;

lookup(Key,[]) -> fail.

A more efficient version could be implemented by (balanced) sorted trees but for our
purpose this implementation suffices.

The problem of this implementation is that this program is not a hierarchical Core
Erlang program. The recursive call in the definition of the function insert is not
a tail recursive call. Also for finite domain abstractions the AOS yields an infinite
transition system. We illustrate this by a simpler example.

Example 7.2
Consider the following Core Erlang program:

main() -> f(42).

f(X) -> f(f(X)).

Chapter 7. Abstraction of Recursive Function Calls 101

The smallest possible abstract domain contains only the element ? which represents
all possible values. Using this abstract domain the abstract semantics of the program
only contains the infinite path:

(@1, main(), ()) −→ (@1, f(42), ()) −→ (@1, f(?), ()) −→ (@1, f(f(?)), ())
−→ . . . −→ (@1, fn(?), ()) −→ (@1, fn+1(?), ()) −→ . . .

which contains infinitely many different states. This abstract semantics is safe with
respect to the operational semantics in the sense that all paths of the SOS are repre-
sented. However, we cannot prove properties for this abstract semantics using simple
model checking algorithms because it has an infinite state space.

Many other function like the append, length, or insert in the database example
produce infinite transition systems for the abstract semantics over a finite domain as
well. The definition of an equivalent hierarchical Core Erlang program is difficult. A
tail recursive version of a function, if it exists, can be very complicated and inefficient.

The source of the problem is the context-free structure of function calls. For special
classes of context-free transition systems it has been shown that model checking is
decidable [BS92, BE97]. It seems that these theoretical results could be used here.
Unfortunately, we do not have just one context-free transition system. We have several
of them in several processes which can communicate with each other. Hence, we have
several stacks which can exchange data. Using two of these stacks it is possible to show
that model checking is undecidable even for very simple finite domain abstractions.

7.1 Simulation of Turing Machines

A process which behaves like a stack can be defined as:

stack(P) -> receive

get -> get;

X -> stack(P),

P!X,

stack(P)

end.

The state of the process is the pid of the process to which it sends the stored values.
If the process receives the message get, then it returns the last element written to
the stack. All other messages are stored in the stack by performing the send action
after recursively behaving like a stack. The stack is implemented by non-tail recursive
calls. No data structures are used to store the values of the stack.

For a convenient modification of the stack we define the operations push and pop.

push(St,V) -> St!V.

pop(St) -> St!get,

receive

X -> X

end.

102 7.1. Simulation of Turing Machines

This stack terminates if a process tries to pop a message from the empty stack. We
want to implement a Turing machine (TM) by means of two stacks to show that model
checking is undecidable for very simple finite domain abstractions. In the semantics
of a TM the tape has to be extended dynamically by blanks. This allows a finite
representation of the configurations during the execution. Therefore, we extend the
stack using a function which yields the atom blank if get is applied to the empty
stack. We use the same technique as for the stack and define it by a non-tail recursive
call.

blankStack(P) -> stack(P),

P!blank,

blankStack(P).

Using two of these stacks we can implement a TM. We add a third process for the
finite control of the TM. This process holds the actually scanned symbol and shifts
symbols from one stack to the other if the TM moves.

Let M = 〈Q,Γ, δ, q0, F 〉 be a deterministic Turing machine with the transition
function δ : Q \ F × Γ −→ Q× Γ× {l, r}. Then we can define the control process of
its implementation as follows:
For all q ∈ F :

q(SL,SR,_) -> 42.

for all q ∈ Q\F where δ(q, a) = (p, b, r):

q(SL,SR,a) -> push(SL,b),
A = pop(SR),

p(SL,SR,A).

and for all q ∈ Q \ F where δ(q, a) = (p, b, l):

q(SL,SR,a) -> push(SR,b),
A = pop(SL),

p(SL,SR,A).

The Turing machine is started by the following function:

start() -> SL=spawn(blankStack,[self()]),

SR=spawn(blankStack,[self()]),

writeInputToStack(SR),
A = pop(SR),

q0(SL,SR,A),

prop(terminated),

outputStack(SR).

The values used by this TM are the alphabet Γ of the TM, the three pids of
the processes, and the atom get. Due to this fact we can define a finite domain
abstraction which exactly consists of these values. However, for this abstraction the
program still simulates the TM.

Chapter 7. Abstraction of Recursive Function Calls 103

We have added the proposition terminated to the program. Using this proposition
we can express the property “Finally the Turing machine terminates” in LTL as

F terminated

An algorithm which decides this formula must decide the termination of the TM. This
is a contradiction to the halting problem.

To decide properties for non-hierarchical Core Erlang programs we need an ab-
straction of the context-free structure to a finite model or a context-free model which
results from only one context-free process. The second possibility seems to be very
complicated for practice and it is not clear from which process the context-free struc-
ture should be kept. Therefore, we abstract a finite model. The abstraction must
contain all paths of the context-free structure because we want to prove properties of
the program by model checking for linear time logic (LTL).

7.2 Graph Semantics

In the semantics of Core Erlang as defined in Chapter 3 we cannot detect which parts
of an Erlang term belong to which function call. If a defined function is applied, then
the right-hand side vanishes in the context in which it is called. We cannot detect
where it ends. We do not have an explicit call stack. To make these calls and the
corresponding returns more visible we move somewhat closer to the implementation.
We split an Erlang term into a stack of Erlang contexts and a term which is actually
evaluated. If a function is called, then its context is stored on the stack. The corre-
sponding right-hand side is the next term which has to be evaluated. If the actual
value is ground (it cannot be evaluated anymore), then the next context is popped
from the stack and the value is put in the hole. The evaluation continues for this
Erlang term. These stack representations of evaluation terms are defined as

SR(S) := E(S)× (FS(p)× EC(S))∗

where S is the set of possible values. The stack also contains the name of the function
which was called when this context was pushed. This is superfluous in the graph
representation but we will later use this information for our abstraction.

This technique could be applied to the Erlang semantics. However, in the seman-
tics of Core Erlang all processes act interleaved and the critical calls and returns of
a process cannot be identified and modified so easily. Here we only represent the
behavior of one process. This simplifies the analysis. We define a pre-compilation
which transforms a Core Erlang function into a transition system which describes the
behavior of a process starting as this function. The idea is that all actions are inter-
preted freely. The arcs in this transition system are labelled by the behavior/actions
the process may perform. The states are labelled by the Erlang terms which have
to be evaluated. The only difference to the SOS is that variables occur in the Core
Erlang terms instead of values. In the semantics they will be bound to values. Hence,
we can handle variables in our free interpretation as values, too. The position where

104 7.2. Graph Semantics

1. (E[a, e],W)
ε−→ (E[e],W)

2. (E[a!b],W)
a!b−−→ (E[b],W)

3. (E[self],W)
Y = self−−−−−−−→ (E[Y],W) where Y /∈ Var(E)

4. (E[p=a],W)
p = a−−−−→ (E[a],W)

5. (E[receive p1->e1; . . . ;pn->en end],W)
(i, ?pi)−−−−−→ (E[ei],W) ∀1 ≤ i ≤ n

6. (E[case a of p1->e1; . . . ;pn->en end],W)
(i, pi = a)
−−−−−−−→ (E[ei],W) ∀1 ≤ i ≤ n

7. (E[φ(a1, . . . , an)],W)
Y = φ(a1, . . . , an)
−−−−−−−−−−−−−→ (E[Y],W) where Y /∈ Var(E)

8. (E[spawn(f, a)],W)
Y = spawn(f, a)
−−−−−−−−−−−−→ (E[Y],W) where Y /∈ Var(E)

9. (f(a),W)
lc:X = a−−−−−−→ (ef ,W) where f(X)->ef. ∈ p

10. (E[f(a)],W)
c:X = a−−−−−−→ (ef , (f, E)W) where f(X)->ef. ∈ p and E 6= []

11. (a, (f, E)W)
r:Y = a−−−−−→ (E[Y],W) where a ∈ TC(V ars) and Y /∈ Var(E)

Figure 7.1: Graph Representation using a Stack

the next evaluation takes place is independent of the concrete variable bindings. The
result is the relation

−→⊆ SR(TC(Var))× Act× SR(TC(Var))

defined in Figure 7.12. The set of all actions Act should be clear from the figure. The
first eight rules just perform the free interpretation of the actions. In the rules for
receive and case we have to consider branching. The correct order of the patterns is
important. Therefore, we number the patterns in the corresponding arcs and preserve
their order. If the result of an action can be used in subsequent states, then we
introduce a new variable Y . The result of the action is bound to Y and the redex is
replaced by Y . The call of a function yields a new stack frame for the context in which
the function is called (10). In the SOS we also have to push the variable bindings to
a runtime stack at this point and proceed using the bindings of the parameters of the

2For this relation we use the same symbol as for the AOS. However, they can easily be distin-
guished because the AOS is always indexed by the abstract interpretation: −→

̂A.

Chapter 7. Abstraction of Recursive Function Calls 105

called function f . This is retained by the transition label c:X = a 3. If a function is
called in an empty context, then we use tail recursion optimization (9). Consider the
function

main() -> main().

In the semantics without stacks, the transition system contains only one state (the
initial state). This shall also be guaranteed in our graph representation using stacks.
Therefore, if a function call has an empty context, then we do not extend the stack.
Instead, we just jump by a last call to the corresponding right-hand side. In the SOS
the old variable bindings are replaced by the new bindings of the parameters of the
function to the arguments that f is applied to.

If we have no evaluation context anymore, in other words, the Core Erlang term
is a constructor term over variables, then we have to return to the last context (11).
We cannot simply copy the value a into the hole because a could contain variables
which also occur in E. In the SOS these variables are usually bound to different
values. Hence, we introduce a new variable Y which does not occur in E and bind
this variable to the result of the evaluation which is a.

The semantics over this graph representation (GOS) can be defined as the AOS
respectively SOS except that we replace the evaluation term by a state in the graph
representation and a corresponding environment representing the variable bindings.
This environment consists of a substitution for the actual variable bindings Subst :
Var −→ ̂A and a stack of substitutions Subst∗ for the frames on the call stack.

;

̂A ⊆ ˜S tate× ̂Label × ˜S tate where

˜S tate := Pfin(˜Proc),
˜Proc := Pid× SR(TC(Var))× ˜Subst× ˜Subst

∗
× ̂Mb

̂Mb := ̂A∗

̂Label := {!ṽ | ṽ ∈ ̂A} ∪ {?ṽ | ṽ ∈ ̂A} ∪
{spawn(f) | f/n ∈ FS(p)} ∪ {ε}

;

̂A is defined in dependence of the labelings of −→. It is defined in Figures 7.2 –
7.5. The rules just bind the actions by means of the abstract interpretation. In the
case of branching we have to consider all successors of s. For their evaluation we use
the function allSuccs : SR(TC(Var)) −→ Pfin(SR(TC(Var))):

allSuccs(s) := {t | s l−→ t}

If a new process is spawned, then this process starts as the initial state of the graph
representation of the spawned function. The function init : FS(p) −→ (SR(TC(Var))×
Var∗) yields this state and also the variables which have to be bound in the function
call:

init(f) := ((ef , ε), X), if f(X)->ef. ∈ p
3 We write X as an abbreviation for X1, . . . , Xn, a for [a1, . . . , an], and X = a for X1 =

a1, . . . , Xn = an. n will be clear from the context.

106 7.2. Graph Semantics

s
ε−→ s′

Π, (π, s, σ,Σ, µ) ;

̂A Π, (π, s′, σ,Σ, µ)

s
Y = φ(a1, . . . , an)
−−−−−−−−−−−−−→ s′

Π, (π, s, σ,Σ, µ) ;

̂A Π, (π, s′, σ[Y/φA(σ(a1), . . . , σ(an))],Σ, µ)

s
Y = self−−−−−−−→ s′

Π, (π, s, σ,Σ, µ) ;

̂A Π′, (π, s′, σ[Y/π],Σ, µ)

Figure 7.2: Graph Semantics – Sequential Evaluation

s
p = a−−−−→ s′ and match

̂A(p, σ(a)) = ρ

Π, (π, s, σ,Σ, µ) ;

̂A Π, (π, s′, σ] ρ,Σ, µ)

allSuccs(s) = {s1, . . . , sm} and s
(1, p1 = a1)
−−−−−−−−→ s1, . . . , s

(m, pm = am)
−−−−−−−−−−→ sm

and (i, ρ) ∈ casematch
̂A((p1, . . . , pm), v)

Π, (π, s, σ,Σ, µ) ;

̂A Π, (π, si, σ] ρ,Σ, µ)

allSuccs(s) = {s1, . . . , sm} and s
(1, ?p1)
−−−−−→ s1, . . . , s

(m, ?pm)
−−−−−−→ sm

and (i, j, ρ) ∈ mbmatch
̂A((p1, . . . , pm), (v1, . . . , vu))

Π, (π, s, σ,Σ, (v1, . . . , vj, . . . , vu))
?vj
;

̂A Π, (π, si, σ] ρ,Σ, (v1, . . . , vj−1, vj+1, . . . , vu))

Figure 7.3: Graph Semantics – Matching

Chapter 7. Abstraction of Recursive Function Calls 107

s
Y = spawn(f, a)
−−−−−−−−−−−−→ s′ and init(f) = (sf , (X1, . . . , Xn)) and σ(a) = [v1, . . . , vn]

Π, (π, s, σ,Σ, µ)
spawn(f)

;

̂AΠ, (π, s′, σ[Y/π′],Σ, µ), (π′, sf , [X1/v1, . . . Xn/vn], ε, ())

s
a!b−−→ s′ and π′ ∈ pid

̂A(σ(a))

Π, (π, s, σ,Σ, µ)(π′, t, σ′,Σ′, µ′)
!σ(b)
;

̂A Π, (π, s′, σ,Σ, µ)(π′, t, σ′,Σ′, µ′ : σ(b))

Figure 7.4: Graph Semantics – Concurrent Evaluation

s
c:X = a−−−−−−→ s′

Π, (π, s, σ,Σ, µ) ;

̂A Π, (π, s′, [X/a], σ : Σ, µ)

s
lc:X = a−−−−−−→ s′

Π, (π, s, σ,Σ, µ) ;

̂A Π, (π, s′, [X/a],Σ, µ)

s
r:Y = a−−−−−→ s′

Π, (π, s, σ, (σ′ : Σ), µ) ;

̂A Π, (π, s′, σ′[Y/a],Σ, µ)

Figure 7.5: Graph Semantics – Function Calls

In the rules for function calls and returns, we push or pop the actual substitution
to/from the stack. This stack has always the same size as the one we use in the graph
representation. It assures the correct scoping of variables. Renaming is superfluous.
We have omitted the rules for runtime errors here. Similarly to Figure 3.4, they can
easily be defined.

The graph semantics and the AOS are equivalent for arbitrary Core Erlang pro-
grams. This is not surprising since our translation corresponds to standard techniques
in compiler construction. We use the stacks similarly to the implementation of pro-
cedure calls. Therefore, the equivalence should be intuitively clear. This equivalence
is not a major point of this thesis. Already the formalization of the equivalence is
technically expensive and would require the introduction of bisimulation. The formal
proof of the equivalence relates to proofs for the correctness of compilers which are
expensive as well. Therefore, we omit the formalization and the proof.

For Core Erlang programs which use recursion only in tail positions the graph
representation is a finite transition system. We will use this graph representation for
our abstraction but we can also use it for a more efficient implementation of abstrac-

108 7.3. Abstracting from the Context-Free Structure

tion and model checking. In the first implementation we used Core Erlang evaluation
terms to identify the states. Constructing the abstract model, it is necessary to detect
cycles. Therefore, the states must be stored. For every new state in the transition
system its successors are computed and compared with the stored states. Only for
new states further successors must be computed. However, the storage of states needs
much space and the comparison of states (although they can be stored in balanced
trees) needs much time. Therefore, a compact representation of a state is desirable.

The graph representation is a transition system where the transitions represent the
behavior of a process. The labels of the states have only been used for its construction
but they are superfluous after that (see Figures 7.2 – 7.5). We can e.g. replace
them by numbers. This can be done as a pre-compilation for all functions which
can be spawned (including main). Then we construct the interleaving transition
system using these numbers as names of the states a process is in. This is a much
more compact representation of a state and allows a faster verification of even larger
systems. Furthermore, we do not have to descend the evaluation context during
the generation of the successors of a state. The successors can be evaluated more
efficiently. Like in compiler construction the correct order of the evaluations can be
defined in a pre-compilation.

For non-hierarchical Core Erlang programs this graph representation is infinite, as
the following example show.

Example 7.3
Consider the following function definition:

f(X) -> case X of

0 -> b;

N -> self!a, f(X-1), self!b

end.

A process executing this function sends X times the atom a to itself and after that
X times b.

The resulting graph representation is sketched in Figure 7.6. For a better distinc-
tion of the commas in the Core Erlang terms and the stacks, we use | to separate the
evaluation term from the stack of contexts.

7.3 Abstracting from the Context-Free Structure

As discussed in Section 7.1 we need abstraction of the context-free structure of Core
Erlang programs. We use the same basic idea as for the abstract interpretation. We
construct a finite abstract graph representation of the program. Its semantics is safe
with respect to the SOS. Furthermore, its semantics defines a finite state transition
system for Core Erlang programs containing non-tail recursive calls.

Our approach is a kind of call-string approach [SP81] on program level and was
presented in [Huc01, Huc02]. The main idea of the abstraction is to replace the calls
and the returns by jumps. For Example 7.3, sending n times an a and after that m

Chapter 7. Abstraction of Recursive Function Calls 109

(f(X) | ε) (case X of . . . | ε) (b | ε) (b | ε)

(self!a,f(X-1),self!b | ε)

(P!a,f(X-1),self!b | ε)

(a, f(X-1),self!b | ε) (P!b | ε)

(f(X-1),self!b | ε) (self!b | ε)

(f(Z),self!b | ε) (Y,self!b | ε)

(case X of . . . | (f, [],self!b)) (b | (f, [],self!b))

(self!a,f(X-1),self!b | (f, [],self!b))

(P!a,f(X-1),self!b | (f, [],self!b))

(a,f(X-1),self!b | (f, [],self!b)) (P!b | (f, [],self!b))

(f(X-1),self!b | (f, [],self!b)) (self!b | (f, [],self!b))

(f(Z),self!b | (f, [],self!b)) (Y,self!b, (f | (f, [],self!b)))

(case X of . . . | (f, [],self!b)(f, [],self!b)) (b | (f, [],self!b)(f, [],self!b)))

(self!a,f(X-1) . . . | (f, [],self!b)(f, [],self!b)) (P!b | (f, [],self!b)(f, [],self!b))
...

...

lc:X = X (1, 0) ε

(2, N)

P = self

P!a

ε

Z = X− 1

c:X = Z
(1, 0)

(2, N)

P = self

P!a

ε

Z = X− 1

c:X = Z
(1, 0)

r:Y = b

(2, N)

ε

P = self

P!b

r:Y = b

ε

P = self

P!b

P!b

Figure 7.6: Graph Representation of Example 7.3

110 7.3. Abstracting from the Context-Free Structure

times a b is a good abstraction. A property like “no a is sent after a b” could then
be proven automatically.

The idea of the abstraction is to replace the calls of f (see Figure 7.6) by jumps to
a predecessor node where f was already called. Hence, we replace the second non-tail
call of f by the following arc:

(f(Z),self!b | (f, [], self!b))

(case X of . . . | (f, [], self!b))

c:X=Z

The states underneath (f(Z),self!b | (f, [], self!b)) in Figure 7.6 need not be con-
sidered anymore.

Now, how can we perform the corresponding return? We know the stack of
the state we jumped to instead of calling f. Hence, the evaluation of this call
will be terminated if the Core Erlang term is evaluated to a value combined the
same stack as the one we jumped to instead of the call. These are all states of the
form (a | (f, [], self!b)) where a ∈ TC(Var). In our example this is only the state
(b | (f, [], self!b)). The destination of this returning jump is defined by the state
where the call was initiated. The result of the call is b:

(b | (f, [], self!b))
r:Y=b−−−−→ (Y,self!b | (f, [], self!b))

We do not pop the top-level context as usually in a return step. The context stack
is not modified. The result is a finite graph representation in which n times an a is
sent and then m times a b. It is presented in Figure 7.7.

Generalizing this technique some problems appear. In general, we do not have only
one function which calls itself recursively. We have several functions. Therefore, we
have extended the call stack to the names of the called functions. We can distinguish
the different function calls. Thus, we only jump back to states which correspond to
the right hand-side of the function we are calling. Another feature of this extension is
that we can detect if a function was already called. If it was not called, then it does
not appear in the stack. A sub-evaluation which terminates and does not recursively
call something outside itself will not be abstracted. In this case the abstract graph
representation is similar to the non-abstract one. No calls are converted into jumps
and no additional paths are added. Only if we detect recursion in a non-tail position,
then we cut off the transition system and jump back.

Example 7.4
Another problem is exposed by a modified version of Example 7.3. We send the value
of the variable X instead of the atom b:

f(X) -> case X of

0 -> b;

N -> self!a, f(X-1), self!X

end.

Chapter 7. Abstraction of Recursive Function Calls 111

(f(X) | ε) (case X of . . . | ε) (b | ε) (b | ε)

(self!a,f(X-1),self!b | ε)

(P!a,f(X-1),self!b | ε)

(a, f(X-1),self!b | ε) (P!b | ε)

(f(X-1),self!b | ε) (self!b | ε)

(f(Z),self!b | ε) (Y,self!b | ε)

(case X of . . . | (f, [],self!b)) (b | (f, [],self!b))

(self!a,f(X-1),self!b | (f, [],self!b))

(P!a,f(X-1),self!b | (f, [],self!b))

(a, f(X-1),self!b | (f, [],self!b)) (P!b | (f, [],self!b))

(f(X-1),self!b | (f, [],self!b)) (self!b | (f, [],self!b))

(f(Z),self!b | (f, [],self!b)) (Y,self!b | (f, [],self!b))

lc:X = X (1, 0) ε

(2, N)

P = self

P!a

ε

Z = X− 1

c:X = Z
(1, 0)

(2, N)

P = self

P!a

ε

Z = X− 1

c:
X

=
Z

r:Y = b

ε

P = self

P!b

r:Y
=

b

ε

P = self

P!b

Figure 7.7: Abstract Graph Representation of Example 7.3

112 7.3. Abstracting from the Context-Free Structure

First, the process sends n times an a to itself and then it sends the numbers
1, . . . , n where n ∈ IN is the value f is applied to initially.

In the abstraction of Example 7.3 we replace the communication by sending n
times a and m times b. What can we do here? In the abstract domain these values
are represented by abstract values which need not be an infinite set (especially in
a finite domain abstraction). Jumping back instead of calling, we cannot know to
which value X is bound. Hence, we bind X to the value ? which represents all values.
We claim that such a least value exists in our abstract domain. Otherwise, we can
always add ? where ? v v ∀v ∈ ̂A. We annotate the label of the return arc by this
substitution:

(b | (f, [], self!X))

r:Y=b
[X/?]
−−−−→ (Y,self!X | (f, [], self!X))

In this abstract return jump we do not remove the top element of the call stack. It is
even possible that we have to add more entries if the recursive call is indirect. This
means that other functions have been called in between. When we return from the
function call we have to reconstruct the call stack to the old stack because in the GOS
these stored contexts still have to be executed. However, using the variable bindings
of these contexts, we have the same problem as using variables in the Core Erlang
term the evaluation returns. We lose the bindings of these contexts in the abstract
call. The solution is to add bindings for the variables of these contexts to ?.

We also have to note these changes of the call stack in the label because in the AOS
we stack the substitutions in the same manner as in the graph representation. Hence,
we annotate the number of stack elements which are removed instead of pushing a
new block in an abstract call. Analogously, we note the number of stack elements
which have to be added in the abstract return jump and add the substitutions to ?
for these stack frames. For corresponding calls and returns these numbers coincide.
In our example it is zero because no functions were called in between

(f(Z),self!X | (f, [], self!X))
c(0): X=Z
−−−−−−−→ (case X of . . . | (f, [], self!X))

and

(b | (f, [], self!X))

r(0): Y=b,
[X/?], ()
−−−−−−−→ (Y,self!X | (f, [], self!X))

An example of indirect recursion over two functions will be presented in Section 7.4.
There, stack elements removed in the abstract call and reconstructed in the corre-
sponding abstract return jump.

So far we bind all variables to ? in an abstract return jump. This is safe but not
necessary. It is sufficient to bind only the variables to ? which are already bound.
Bindings to ? is superfluous for the variables which will later be bound. Due to the
fact that Erlang does not have scoping, we do not know if a variable occurring in

Chapter 7. Abstraction of Recursive Function Calls 113

1. (E[a, e],W)
ε−→ (E[e],W)

2. (E[a!b],W)
a!b−−→ (E[b],W)

3. (E[self],W)
Y = self−−−−−−−→ (E[Y ′],W) where Y /∈ Var(E)

4. (E[p=a],W)
p = a−−−−→ (tag(Var(p), E[a]),W)

5. (E[receive p1->e1; . . . ;pn->en end],W)
(i, ?pi)−−−−−→ (tag(Var(pi), E[ei]),W)

for all 1 ≤ i ≤ n

6. (E[case a of p1->e1; . . . ;pn->en end],W)
(i, pi = a)
−−−−−−−→ (tag(Var(pi), E[ei]),W)

for all 1 ≤ i ≤ n

7. (E[φ(a1, . . . , an)],W)
Y = φ(a1, . . . , an)
−−−−−−−−−−−−−→ (E[Y ′],W) where Y /∈ Var(E)

8. (E[spawn(f, a)],W)
Y = spawn(f, a)
−−−−−−−−−−−−→ (E[Y ′],W) where Y /∈ Var(E)

9. (f(a),W)
lc:X = a−−−−−−→ (tag({X}, ef),W) where f(X)->ef. ∈ p

10. (E[f(a)],W)
c:X = a−−−−−−→ (tag({X}, ef), (f, E)W) where f(X)->ef.∈p and E 6=[]

11. (a, (f, E)W)
r:Y = a−−−−−→ (E[Y ′],W) where a ∈ TC(V ars) and Y /∈ Var(E)

Figure 7.8: Graph Representation using a Stack and Tagging

a sub-term is free or bound. We need an analysis which marks the variables which
are already bound to values. This analysis can be combined with the construction of
the abstract graph representation. Building the graph representation we can detect
when a variable is bound. We mark it by a tag (′). In the abstract return jump we
can bind all tagged variables to ?. The others can be left unchanged. Consider the
following example:

f(X) -> case X of

0 -> b;

N -> self!a, f(X-1), B=b, self!B

end.

The variable B is not bound before the recursive call. We can leave it unchanged:

(b | (f, [],B=b,self!B))
r(0):Y=b,[],()
−−−−−−−−−−−−→ (Y′,B=b,self!B | (f, [], B = b, self!B))

114 7.4. Abstract Graph Representation

7.4 Abstract Graph Representation

In the last section, we have motivated our abstraction in some examples. Now we
present the formal definition and prove its safeness with respect to its use in formal
verification by model checking.

First we define a function tag which tags a set of variables.

tag(V,X) =

{

X ′ if X ∈ V
X otherwise

It is also canonically extended to Core Erlang terms and contexts. The graph repre-
sentation of Core Erlang containing a stack and tagging of bound variables is defined
in Figure 7.8. Every variable which is bound to a value is tagged. This tagging is
just an additional information and tagged variables are treated like un-tagged ones.
In the transition labels we use only the names of the variables and ignore the tags.
They are superfluous for the GOS.

Recursion is abstracted by jumps back to the last call of the same function. It is
detected in the call stack if the same function was already called. The destination
state of this jump has a smaller call stack than the call would yield. To relate call
stacks in the graph representation and their abstract representation, we define an
abstraction function α. This function yields the call stack which is constructed by a
stepwise execution of abstract calls. If the same function was already called, then the
stack decreases.

α(ε) = ε

α((f, E)W) =

(f, E)α(W) if |α(W)|f = 0

(f, E ′)V if α(W) = U(f, E ′)V
where |U |f = |V |f = 0

From the definition it is not directly clear that α is total. Using the following lemma,
we see that always one of the two cases for α((f, E)W) matches. Hence, α is defined
for all call stacks.

Lemma 7.5
|α(W)|f ≤ 1 for all call stacks W and all functions f ∈ FS(p).

Proof: A simple induction on W :

• W = ε. Trivial

• W = (f, E)W ′. By induction hypothesis we know that |α(W ′)|f ≤ 1. We
distinguish two cases:

– |α(W ′)|f = 0. Hence, α(W) = (f, E)α(W ′) and |α(W)|f = 1. And for all
g 6= f |α(W)|g = |α(W ′)|g ≤ 1 by induction hypothesis.

– α(W ′) = U(f, E ′)V where |U |f = |V |f = 0. Then α(W) = (f, E ′)V and
|α(W)|f = 1. Again |α(W)|g = |α(V)|g ≤ 1 by induction hypothesis. 2

Chapter 7. Abstraction of Recursive Function Calls 115

We use this abstraction function for the analysis of a given call stack when calling
a function. The abstract graph representation can be defined using this abstraction
function. It is defined as the relation

−−⇁⊆ SR(TC(Var))×̂Act× SR(TC(Var))

The actions ̂Act contain Act and the actions for abstract calls and returns. −−⇁ is
defined by the rules (1)–(9) and (11) of −→. Instead of call stacks (10) we use their
abstract representation:

(E[f(a)], α(W))
c(n):X = a
−−−−−−−−−−⇁ (tag({X}, ef), α((f, E)W))

where f(X)->ef. ∈ p
E 6= []
n = |α(W)| − |α((f, E ′)W)|

If the function call is not abstracted by a jump, we get n = −1. This means that we
can add the actual context to the call stack as we would do without abstraction. In
this case we will just write c instead of c(-1). Otherwise, we add a jump back. This
means that we detect recursion and |α(W)|f = 1. For all a ∈ TC(Var):

(a, α((f, E)W))

r(n): Y = a
[tagged(E)/?]
(σ1, . . . , σn)

−−−−−−−−−−−−−−−−⇁ (E[Y ′], (W1 . . .Wk))

where Wn+1 . . .Wk = α((f, E)W)
W1 . . .Wn+1 . . .Wk = α(W)
Wi = (fi, Ei)
σi = [tagged(Ei)/?] ∀1 ≤ i ≤ n

Note that still n = |α(W)| − |α((f, E ′)W)| and n ≥ 0 always holds if |α(W)|f = 1.
In this case W1 . . .Wn are the blocks which have to be restored in this return jump.
The bound variables in these blocks and in E cannot be known. We bind them to ?
in the evaluation. The function tagged yields all tagged variables. For these we can
define substitutions which bind them to ?. These are the substitutions [tagged(E)/?]
and (σ1, . . . , σn). We add them to the label.

Example 7.6
Consider the following program in which the functions f and g are defined by mutual
recursion:

f(X) -> case X of

0 -> b;

N -> g(X-1), self!X

end.

g(X) -> f(X-1), self!X.

116 7.4. Abstract Graph Representation

The abstract graph representation of this program is presented in Figure 7.9. The
arcs in this graph are only drawn as a single line but the displayed graph presents the
relation −−⇁. In the abstraction, parts of the call structure of the program are pre-
served. First we have an even number of function calls4 and then also an even number
of times the value X is send. In the AOS over this abstract graph representation X

will be bound to ? with the exception of the first send operation.

Lemma 7.7 (Safeness of the Abstract Graph Representation)

If (e1,W1)
l
−→ (e2,W2) then (e1, α(W1))

˜l
−−⇁ (e2, α(W2)) where ˜l has one of the fol-

lowing forms:
if l = r:Y = a then ˜l = r(n):Y = a, σ, σ

or ˜l = r:Y = a

if l = c:X = a then ˜l = c(n):X = a

otherwise ˜l = l

Proof: We distinguish the cases 1. to 11. from the definition of −→. The cases 1.
to 9. are trivially fulfilled.

10. (E[f(a)],W)
c:X = a−−−−−−→ (ef , (f, E) : W)

and also

(E[f(a)], α(W))
c(n):X = a
−−−−−−−−−−⇁ (ef , α((f, E)W)).

11. (a, (f, E)W)
r:Y = a−−−−−→ (E[Y],W)

We distinguish two cases:

– |α(W)|f = 0
Then α((f, E)W)) = (f, E)α(W) and also

(a, (f, E)W)
r:Y = a
−−−−−−−⇁ (E[Y], α(W)).

– |α(W)|f = 1
Then α((f, E)W)) = (f, E ′)V where α(W) = U(f, E ′)V . Because W is a
stack, we know that there must also be a state where

(E[f(a)],W)
c:X = a−−−−−−→ (ef , (f, E) : W) −→m (a, (f, E)W)

By simple induction over the length m of this derivation we can conclude
that also

(E[f(a)], α(W))
c(n):X = a
−−−−−−−−−−⇁ (ef , α((f, E)W))−−⇁m (a, α((f, E)W))

and (a, α((f, E)W)) = (a, (f, E)V). Hence

(a, α((f, E)W))
r(n):Y = a, σ, σ
−−−−−−−−−−−−⇁ (E[Y], α(W))

where σ and σ are defined as above. 2

4Apart from the initial tail recursive call.

Chapter 7. Abstraction of Recursive Function Calls 117

(f(X′) | ε) (case X′ of . . . | ε) (b | ε)

(g(X′-1),self!X′ | ε)

(g(Z′),self!X′ | ε)

(f(X′-1),self!X′ | (g, [],self!X′))

(f(Z′),self!X′ | (g, [],self!X′))

(case X′ of . . . | (f, [],self!X′)(g, [],self!X′))

(g(X′-1),self!X′ | (f, [],self!X′)(g, [],self!X′))

(g(Z′),self!X′ | (f, [],self!X′)(g, [],self!X′))

(b | (f, [],self!X′)(g, [],self!X′)) (X′ | ε)

(Y′,self!X′ | (g, [],self!X′)) (P!X′ | ε)

(P′!X′ | (g, [],self!X′)) (Y′,self!X′ | ε)

(X′ | (g, [],self!X′))

(Y,self!X′ | (f, [],self!X′)(g, [],self!X′))

(P!X′ | (f, [],self!X′)(g, [],self!X′))

(X′ | (f, [],self!X′)(g, [],self!X′))

lc:X = X (1, 0)

(2, N)

Z = X− 1

c:X = Z

Z = X− 1

c:X = Z

(2, N)

Z = X− 1

c(1):X = Z

(1, 0)

r:Y = b

P = self

P!X

r:Y=X

P = self

P!X

r(1):Y = X
X = ?
([X/?])

P = self

P!X

r:Y = X

Figure 7.9: Abstract Graph Representation (−−⇁) of Example 7.6

118 7.4. Abstract Graph Representation

For a Core Erlang program p we define the complete abstract graph representation
AGp := (S,−−⇁, init) as the transition system which is the restriction of −−⇁ to the states
which can be reached from the state (main(), ε) and the initial states of all functions
which are spawned in p. init : FS(p) −→ S yields the initial state for the spawned
functions and the variables which have to be bound in their calls. It was already
defined in Section 7.2.

Lemma 7.8
The abstract graph representation AGp := (S,−−⇁, init) is finite for every Core Erlang
program p.

Proof: This is easy to see because the stacks can only grow to finite depth and also
only finitely many terms and contexts may occur. They are restricted in size because
we only have a finite set of rules. Furthermore, only finitely many different functions
can be spawned because FS(p) is finite. Therefore, S is a finite set of states and also
−−⇁ can be restricted to this set. 2

It is also possible to define an algorithm to compute AGp. States are successively
added using −−⇁ until no more states can be added. Furthermore, the algorithm
memorizes which abstract calls have been performed. This yields the stacks for which
abstract return jumps must be added. If the construction of AGp reaches a state
containing an evaluated expression, then it adds return jumps to the corresponding
memorized states.

The semantics over this abstract graph representation (↪→) is defined analogously
to the semantics over the graph representation (;). We only have to add the rules
for the abstract calls and returns:

s
c(n):X = a
−−−−−−−−−−⇁ s′ and n ≥ 0

Π, (π, s, σ, (σ1 : . . . : σk), q)
↪→

̂A Π, (π, s′, [X/a], (σn+1 : . . . : σk), q)

s
r(n):Y = a, σ, σ
−−−−−−−−−−−−−−−−⇁ s′

Π, (π, s, σ′,Σ, q) ↪→
̂A Π, (π, s′, σ[Y /a], (σ : Σ), q)

Theorem 7.9 (Safeness of the Abstraction)
Let p be a Core Erlang program, AGp = (S,−−⇁, s0) the corresponding abstract graph

representation, and ̂A = (̂A, ι̂,v, α) an abstract interpretation for Core Erlang pro-

grams with least element ? ∈ ̂A. Then for all s
a
;

̂A t and s̃ � α(s) there exists

ã v α(a) and ˜t v α(t) such that s̃
ã
↪→
′

̂A
˜t.

Proof: Using Lemma 7.7 the proof is a straightforward case analysis on ;. In the
abstract call we lose some variable bindings but in the corresponding return jump
these variables are bound to ?. Therefore, a variable is either bound to the same

Chapter 7. Abstraction of Recursive Function Calls 119

value as in the full graph representation or it is bound to ?. The latter results from
performing an abstracted call in which the variable is abstracted. ? is the least element
of ̂A and the theorem is fulfilled. 2

For practical verification this abstraction is sufficient. However it is possible to precise
the abstraction: instead of jumping back to the state where the same function was
called for the first time we can allow k ∈ IN calls of the same function in between and
also accept an initial part with n ∈ IN calls. We only have to modify the conditions
in the definition of α:

α(ε) = ε

α((f, E)W) =

(f, E)α(W), if |α(W)|f < k + n
(f, E ′)V , if α(W) = U(f, E ′)V

with |V |f = n and |U |f = k

The rest of the control flow abstraction can be left unchanged and we obtain more
precise abstractions. The abstraction presented above is obtained by k = 1 and n = 0.

7.5 Verification

Using the presented technique we can now prove the properties of Section 5.5 for
the optimized implementation of the database from the beginning of this chapter.
In this optimization of the database, the non-tail recursive function insert is used.
We inspect the presented control-flow abstraction of this function call. The function
insert is not spawned. Therefore, its graph representation is not constructed. It
occurs as a subgraph in the abstract graph representation of the database function
which is spawned from the main function. Since the flow-abstraction of insert is
the interesting part of this graph representation, we present it in Figure 7.10. For a
smaller representation we write i instead of insert. The abstract graph represen-
tation contains two loops: The first loop represents the recursive decent through the
list. Respectively, the second (return) loop represents the construction of the resulting
list.

In spite of these loops, the AOS for a finite domain abstraction yields a finite
transition system. The abstract interpretation of list constructors impedes that ar-
bitrary lists are constructed in the evaluation of the loops. However, the AOS will
usually contain ε-loops for both loops. We have already discussed this problem in
Section 5.5. The abstractions used for the verification of the Erlang programs are
usually not designed to prove the termination of sequential evaluations. Therefore,
we ignore these ε-loops in the verification.

Using the presented control flow abstraction in combination with the depth-2
abstraction ̂A2 we can prove all properties from Section 5.5 for the optimized version
of the database example.

Only for the following two cases our approach yields infinite transition systems:

• an infinite number of processes is created

• the mailbox of a process grows infinitely

120 7.5. Verification

(i(KN, VN, L) | ε)

(case L′ of [] − > ...;[{K, V}|L1] − > ... | ε) ([{KN′, VN′}] | ε)

(case K′ < KN′ of true − > ...; false − > ... | ε)

(case Y′ of true − > ...; false − > ... | ε) ([{KN′, VN′}|L] | ε)

([{K′, V′}|i(KN′, VN′, L1′)] | ε) ([{K′, V′}|R] | ε)

(case L′... | (i, [{K′, V′}|[]])) ([{KN′, VN′}] | (i, [{K′, V′}|[]]))

(case K′ < KN′... | (i, [{KN′, VN′}|[]]))

(case Y′... | (i, [{K′, V′}|[]])) ([{KN′,VN′}|L′] | (i, [{K′, V′}|[]]))

([{K′, V′}|i(K′, V′, L1′] | (i, [{K′, V′}|[]])) ([{K′, V′}|R] | ε)

([{K′, V′}|R′] | (i, [{K′, V′}|[]]))

([{K′, V′}|R1′] | ε))

lc:KN = KN, VN = VN, L = L
(1, [] = L)

(2, [{K,V}|L1] = L)

Y = K < KN
(2, false)

(1, true)

c:KN = KN, VN = VN, L = L1
(1, [] = L)

(2, [{K1,V1}|L1] = L)

Y = K < KN
(2, false)

(1, true)

c(
0)

:
:K

N
=

K
N
,V
N

=
V
N
,L

=
L
1

R1 = [{K, V}|R]

r:R = [{KN, VN}]

r:R = [{KN, VN}|L]

r(0): R = [{KN′, VN′}]
[K′/?, V′/?]

r(0): R = [{KN′, VN′}|L′]
[K′/?, V′/?]

r(0):R = [{K′, V′}|R′]
[K′/?, V′/?]

Figure 7.10: Abstract Graph Representation (−−⇁) of the Function insert

Chapter 7. Abstraction of Recursive Function Calls 121

As discussed before, we do not tackle these problems.

122 7.5. Verification

Chapter 8

Towards the Verification of Erlang
Programs

So far we have only considered a core fragment of Erlang in which however the main
concepts of Erlang are considered. In this section we discuss how the other parts of
real Erlang programs can be handled in formal verification.

8.1 The Module System

In Core Erlang we do not consider modules. Usually, Erlang programs consist of
several modules. Functions can be exported and imported. The simplest translation
to Core Erlang joins all modules of an Erlang program. Every function name is
extended by the module name to avoid conflicts in the name space of the functions.
In Section 2.2 we defined a module for a database process. This module can simply
be translated into Core Erlang as follows:

database:start() -> database:database([]).

database:database(L) -> ...

Furthermore, we translate all calls of spawn/3 to spawn/2:

spawn(database,start,[]) ; spawn(database:start,[])

Using this translation, it is possible to eliminate the module system in most Erlang
programs. However, in Erlang it is also possible to generate names of modules or
functions at runtime:

124 8.2. Branching

spawnDynamic() -> {ok,M} = io:read(’Module : ’),

{ok,F} = io:read(’Function :’),

M:F(),

spawn(M,F,[]).

This valid Erlang program reads a module name and a function name from the
keyboard. Then it evaluates the corresponding function of arity zero. Finally, it
spawns a process which executes this function, again of arity zero.

This cannot be translated into Core Erlang. We strictly distinguish values from
program code. Especially the function call M:F() is not allowed in Core Erlang.
Fortunately, this kind of dynamic function calls is not often used in Erlang programs.

8.2 Branching

Branching in Erlang programs is not restricted to case and receive. The program-
mer can also use an if expression which can be translated into a sequence of case
expressions:

if

c1 -> e1;
...

cn -> en
end

;

case c1 of

true -> e1;

false -> case c2 of
. . .

case cn of

true -> en
end

. .
.

end

end

c1, . . . , cn are boolean conditions. They are successively tested. The corresponding ei
of the first fulfilled condition is chosen. The if expression yields a runtime error, if
none of the conditions is fulfilled. Hence, the last case in the translation has no false
pattern.

Another possibility for branching in Erlang is programming by means of several
rules in the function definition. This pattern matching can simply be translated into
a case expression:

f(p11, . . . , p1n) -> e1;
...

f(pm1, . . . , pmn) -> em.

;

f(X1, . . . , Xn) ->

case {X1, . . . , Xn} of

{p11, . . . , p1n} -> e1;
...

{pm1, . . . , pmn} -> em
end.

It is not even necessary to eliminate nested or overlapping pattern matching. The
pattern matching in the case expression of Core Erlang is as expressive as the pattern
matching in function definitions.

Chapter 8. Towards the Verification of Erlang Programs 125

8.3 Higher-Order Functions

In Erlang it is also possible to use higher-order functions. As an example the broadcast
of a message M to a list of pids can be defined by the higher-order function map/2.

map(F,L) -> case L of

[] -> [];

[X|Xs] -> [F(X)|map(F,L)]

end.

broadcast(M,Pids) -> map(fun(P) -> P!M end, Pids).

The first argument of map is applied to all elements of the list in the second argument.
The result is a list of the same size as the argument list.. Here it is applied to an
anonymous function which takes a pid and sends the value of the variable M to this
pid.

We can extend Core Erlang by functional abstraction (λ-abstraction) and appli-
cation:

e ::= ... | fun(X1, . . . ,Xn)->e end | e(e1, . . . , en)

For the semantics we extend the evaluation contexts to

E ::= ... | v(v1, . . . ,vi−1,E,ei+1, . . . ,en) | E(e1, . . . , en)

and handle functions as values. We add a rule similar to β-reduction to the semantics:

{Y1, . . . , Ym} = vars(e) \ {X1, . . . , Xn} and
Z1, . . . , Zm /∈ vars(E) (Zi 6= Zj for i 6= j) and e′ = e[Y1/Z1, . . . , Ym/Zm]

Π, (π,E[fun(X1, . . . ,Xn)->e end(v1, . . . ,vn)], µ)
−→

̂A Π, (π,E[e′[X1/v1, . . . , Xn/vn]], µ)

As in the rule for the application of a defined function, we avoid name conflicts by
renaming all free variables in the body of the anonymous function. Although Erlang
has no scoping in general, it uses scoping in functional abstractions. In other words,
the variables X1, . . . , Xn introduced in fun(X1, . . . ,Xn)->e end are new variables.
They are not identified with variables with the same name in the context. A substi-
tution is not applied to X1, . . . , Xn in e and their bindings resulting from e are not
exported to the context of the functional abstraction.

Using this operational semantics, we can also prove properties of Erlang programs
which use higher-order functions. However, for many programs the AOS will define
an infinite transition system and model checking is not possible. The reason is that
functions are values. This yields an infinite domain and in many cases an infinite
transition system because different functions occur. On the other hand, there also
exist programs for which we get a finite transition system and can prove properties.
As an example we consider the AOS of broadcast applied to the message 42 and the
list only containing the own pid. Again, we consider the example abstract domain ̂A2.

126 8.4. Distributed Systems

(@0, broadcast(42, [self]), ())

↓∗
(@0, map(fun(P)->P!42 end,[@0)]), ())

↓
(@0, case [@0)] of []-> . . . ;[X|Xs]-> . . ., ())

↓
(@0, [fun(P)->P!42 end(@0)|map(. . . ,[])], ())

↓
(@0, [@0!42|map(. . . ,[])], ())

↓
(@0, [@0!42|map(. . . ,[])], ())

↓!42
(@0, [42|map(. . . ,[])], (42))

↓∗
(@0, [42|[]], (42))

The definition of a class, for which the AOS defines a finite transition system is much
more difficult. For example, we could also apply the function broadcast to ?. Then
the termination of the recursion of map cannot be decided. The recursive call of map
is not a tail call. We get an infinite transition system in the AOS.

8.4 Distributed Systems

In our formalization we have only considered concurrent systems. Most Erlang appli-
cations are distributed. However, this is no problem. The process concept of Erlang
with communication via asynchronous message passing guarantees safe communica-
tion via a network. Apart from system failures, distributed communication does not
distinguish from concurrent communication. The semantics of the communication is
independent of the underlying hardware architecture. If we prove a property for a
concurrent system, then this property also holds for any distribution of the defined
processes.

If we want to prove a property of an Erlang system in which processes are spawned
on different nodes, then we can just ignore the node parameters. We translate spawn/4
into spawn/2 for the local creation of processes. Due to this fact, hierarchically cre-
ated, distributed systems can be verified using our approach1. On the other hand,
how can our approach be extended for open systems in which independently started
processes can connect at runtime? Our solution is a translation of these systems into
hierarchical systems. We add a registry process which spawns the independent pro-
cesses and simulates the registration mechanism. Registered pids are stored in a list
of name-pid tuples. If a message is sent to a registered name, then this message is in-

1Here we do not mean hierarchical in the sense of Section 4.5.2. A system is hierarchically created,
if one main process is the ancestor of all other processes.

Chapter 8. Towards the Verification of Erlang Programs 127

stead sent to the registry process. Here the message is forwarded to the corresponding
pid.

We do not have the possibility to define global constants in Core Erlang. The
processes which send a message to a registered process must send this message to the
registry process now. Unfortunately, the pid of the registry process is unknown in
these processes. Therefore, we add another argument to all functions: the pid of the
registry process.

The registry process is a kind of database. It can be defined similarly to the
database process of pdb:

registry(Regs) ->

receive

{register,Name,Pid} ->

case lookup(Name,Regs) of

{succ,P} -> error();

fail -> registry([{Name,Pid}|Regs])

end;

{unregister,Name} -> registry(remove(Name,Regs));

{regSend,Name,Msg} -> lookup(name,Regs)!Msg,

registry(Regs)

end.

error() -> X.

remove(K,L) -> case L of

[] -> [];

[{K,V}|L1] -> remove(K,L1);

[E|L1] -> [E|remove(K,L1)]

end.

The function lookup is defined as in the database. The registration of an already regis-
tered name yields a runtime error. For example, we can create this error by evaluating
error/0 to an unbound variable. The functions register/2 and unregister/1 can
be defined as functions with the pid of the registry process as additional argument.

register(Reg,Name,Pid) -> Reg!{register,Name,Pid}.

unregister(Reg,Name) -> Reg!{unregister,Name}.

We do not formalize the translation here, but as an example we present the translation
of the open version of the distributed database from Section 2.3.2:

main() -> spawn(database:start,[self]),

spawn(client:start,[self]),

spawn(client:start,[self]),

registry([]).

128 8.5. Timeouts

database:start(Reg) -> register(Reg,database,self),

database([]).

client:start(Reg) -> Reg!{regSend,database,{connect,self}},

receive

{connect,DB} -> client(DB)

end.

Again, this translation does not work for arbitrary Erlang programs because sending
to a pid and sending to registered process cannot be distinguished at compile time.
For example, the function

f(X) -> X!42.

can be applied to a pid or a registered name. We only perform the translation of
sending to registered names, if they are safe. We could also add a runtime check
which distinguishes the two kinds of sends. As for dynamic function calls, sending
to registered names is used explicitly in most Erlang programs and the described
translation is sufficient.

8.5 Timeouts

In Erlang it is also possible to program using timeouts. We have not added this
feature to Core Haskell. It is also not possible to translate these programs to Core
Erlang programs as before.

The verification of real-time systems by means of model checking is a growing
field of research [HNSY94, Alu99]. Erlang uses asynchronous communication. In
a distributed setting, this communication is performed via the Internet by TCP/IP
where no times can be guaranteed. Hence, it will be difficult to prove interesting real-
time properties like specifying reliability times. Therefore, we omit real-time aspects
of the verification. We handle the after expression as a non-deterministic branch
and add the following rule to the abstract operational semantics:

−
Π, (π,E[receive p1->e1; . . . ;pm->em after t -> e end], µ) −→

̂A Π, (π,E[e], µ)

We do not distinguish the different possibilities for t. However, this is safe. We could
be a little bit more precise and branch to e only if none of the patterns matches a value
of µ in the first test. However, the timeout case e will usually not be superfluous. It
should be considered in the verification of the formula.

We have defined a more robust version of the database pdb. This database does
not block forever if it waits for the value of an allocated key. Instead it continues
in the main loop after some seconds. Also for this modified database we are able to
prove the properties from Chapter 5 automatically using the abstraction ̂A2 and LTL
model checking.

Chapter 8. Towards the Verification of Erlang Programs 129

8.6 Exception Handling

In Core Erlang we have only defined one error state. If one process produces a
runtime error, then the whole system crashes in our semantics. To simulate exception
handling we must add exceptions to the formal semantics. There has been a lot of
work on formal semantics of exceptions [BBC86, BJ90]. However, an integration of
these approaches into our formal semantics is very expensive.

8.7 Linking

One of the most powerful mechanisms of Erlang is linking. If two processes are
linked with each other and one of them dies, then the other one dies as well or it
receives a special message if it set process flag before. The implementation of linking
is more difficult than the registration of processes and sending messages to registered
processes. Therefore, we cannot define a translation into Core Erlang for linking. We
have to modify the operational semantics.

As a refinement of the SOS, we do not only consider runtime errors on top
level (the system state err). Instead single processes may run into a local error
state. Then we extend every process by a list of linked processes considering that
linking is bidirectional. The behavior of a process in the case that a linked pro-
cess dies depends on the value of the process flag trap_exit. If this flag is set
(process_flag(trap_exit,true)), then the process receives an exit message if the
linked process dies, otherwise it dies, too. We also add this flag to the state of a
process:

Proc := Pid× (E(TC(Pid)) ∪ {error})×Mb× P(Pid)× IB

The process flag is modified by

v ∈ {true, false}
Π, (π,E[process_flag(trap_exit,v)], µ,L, f) =⇒ Π, (π,E[v], µ,L, v)

links are established by

v = π′ ∈ Pid

Π, (π,E[link(v)], µ,L, f)‖(π′, e′, µ′,L′, f ′)
=⇒ Π, (π,E[true], µ,L ∪ {v}, f)‖(π′, e′, µ′,L′ ∪ {π}, f ′)

and removed by

v = π′ ∈ Pid

Π, (π,E[unlink(v)], µ,L, f)‖(π′, e′, µ′,L′, f ′)
=⇒ Π, (π,E[true], µ,L \ {v}, f)‖(π′, e′, µ′,L′ \ {π}, f ′)

The functional result of link and unlink is the boolean value true. The modification
of the rules for error handling are represented in Figure 8.1. Using these rules, the
errors are defined locally. Two new possible errors result from linking. If link and
unlink are applied to a non-pid, then this yields an error.

130 8.7. Linking

F a predefined function and FA(v1, . . . , vn) is not defined

Π, (π,E[F (v1, . . . , vn)], µ,L, f) =⇒ Π, (π, error, µ,L, f)

v1 6∈ Pid

Π, (π,E[v1!v2], µ,L, f)
!v2
=⇒ Π, (π, error, µ,L, f)

X is a variable

Π, (π,E[X], µ,L, f) =⇒ Π, (π, error, µ,L, f)

match(p, v) = Fail

Π, (π,E[p=v], µ,L, f) =⇒ Π, (π, error, µ,L, f)

casematch((p1, . . . , pn), v) = Fail

Π, (π,E[case v of m end], µ,L, f) =⇒ Π, (π, error, µ,L, f)

v 6∈ Pid

Π, (π,E[link(v)], µ,L, f) =⇒ Π, (π, error, µ,L, f)

v 6∈ Pid

Π, (π,E[unlink(v)], µ,L, f) =⇒ Π, (π, error, µ,L, f)

Figure 8.1: Operational Semantics – Runtime Errors and Linking

Chapter 8. Towards the Verification of Erlang Programs 131

We can define the effect of linking by means of some additional transitions. If
a process crashes, then all linked processes are killed or informed with a message
depending on the process flag.

e′ 6= error

Π, (π, error, µ,L] {π′}, f)‖(π′, e′, µ′,L′, false)
=⇒ Π, (π, error, µ,L, f)‖(π′, error, µ′,L′, false)

e′ 6= error

Π, (π, error, µ,L] {π′}, f)‖(π′, e′, µ′,L′, true)
=⇒ Π, (π, error, µ,L, f)‖(π′, e′, µ′ : {′EXIT′, π},L′, true)

In the first case, (the trap_exit flag is false) the linked process is terminated, too.
Otherwise the special ′EXIT′ message is sent to the linked processes. It also contains
the pid of the died process. For sake of simplicity, we ignore the reasons for the
termination here. For the verification of real Erlang applications they are necessary.
On the other hand the technical effort is very large and for many Erlang programs
linking without considering the reason will suffice.

The informed process is eliminated from the set of linked processes. Hence, all
linked processes are successively informed only once. In both cases we first check that
the other process is still alive. This prevents from superfluous interaction between
dead linked processes.

Using this extension, we can now verify Erlang systems with linked processes. At
the moment we can only consider runtime errors which are a result of program errors.
In distributed systems we are more interested in robustness against the crash of some
nodes or the loose of the connection on hardware level. To model this we additionally
define a set D ⊆ Pid of processes which may crash during their execution. We model
the crash of one of these processes by the rule:

π ∈ D
Π, (π, e, µ,L, f) =⇒ Π, (π, error, µ,L, f)

All states in the semantics are considered as possible positions for the crash of pro-
cesses of D. Using this extension, we can also prove properties about the robustness
of the system.

In this section we have extended the SOS by linking. For the formal verification we
need the AOS. However, an extension of the AOS by linking can be defined similarly.
In some cases we must additionally apply the abstraction function to some concrete
values. For instance, for the result of link and unlink or the ′EXIT′ tuple. Further-
more, we must consider values as their pid representation if we expect a pid. Again,
the abstraction can yield some additional non-determinism. However, we do not need
to extend our framework for abstract interpretations. Linking does not request new
properties for the abstract interpretation.

132 8.7. Linking

An Example

As an example for a robust system we have defined a chat: A chat server holds a list
of chat client pids. New clients can connect to the chat and are added to the list.
If a client sends a chat message to the chat server, then the server broadcasts this
message to all chat clients. Finally, chat clients can logout.

To guarantee robustness of the chat server we established a link between the chat
server and every client which connects to the chat. If a client crashes, then the server
removes its pid from the database.

We consider a system of one chat server and two chat clients. For this system, using
the presented approach, we are able to proved that the list of processes is updated if
a client dies. The global state of the database contains all pids of connected clients.
We use this state as a proposition to check that after the crash of a client this client
is not in the list anymore. To prove the property we cannot abstract from the list of
clients. We have two clients. Therefore, a list of two elements for the state of the chat
server is sufficient to check the property. This can be realized using the abstraction
̂A3 in which lists of length two are not abstracted.

Chapter 9

Related Approaches for Software
Verification

There exist some other approaches for the formal verification of concurrent and dis-
tributed systems. They can be divided in approaches which use theorem proving and
approaches which use model checking in combination with abstraction.

9.1 Theorem Provers

For the formal verification of Erlang there exists only the alternative to use the Erlang
Verification Tool (EVT) developed by Mads Dam et. al. [DF98, ADFG98, NFG01].
They implemented a theorem prover which is extended by an operational interleaving
semantics for a core language similar to Core Erlang. They use an extension of the
propositional µ-calculus [KP84] for the specification of properties. State propositions
can be expressed by means of predefined predicates over system states.

EVT supports the verification of program properties by hand. The verification is
guided by the tool. Only correct steps can be performed in the proof. However, there
is no support in finding a proof. The whole structure of the prove has do be developed
by hand. Especially for fixed point formulas like “until” in LTL, this can be difficult
because an ordering has to be defined to cut off infinite proof trees by an induction
rule. Hence, the use of EVT is very difficult to learn. Like our approach, EVT defines
an operational interleaving semantics. Therefore, they obtain the same problems with
state space explosion as we do. Furthermore, they have to prove system properties
for every of these interleaving paths by hand. Due to this fact, proofs in EVT are
very expensive and a practical use seems not to be feasible.

The advantage of this approach is that the proofs are not restricted to concrete
systems. EVT provides variables for sub-systems, processes, mailboxes, and expres-

134 9.2. Model Checkers for other Programming Languages

sions. For example, it is possible to prove properties of subcomponents of arbitrary
systems or processes with arbitrary mailboxes using these variables.

For future work Mads Dam et. al. plan to integrate automatic verification like
model checking in EVT. This is a possible point for the integration of the two ap-
proaches. The tool could first try to use our verification approach. If this does not
succeed, then the property or the system can be simplified by theorem proving. This
can be iterated until the property is fulfilled or the failed proof yields a counter ex-
ample. Another alternative for the integration of theorem proving and our approach
is already discussed in Section 5.5.3: for the proof that an abstract interpretation
fulfills the properties (P1)–(P5) theorem proving is used. Then the correctness of the
concurrent behavior of a system can automatically be proven in our approach. We
think that this is more feasible in practice because the problems resulting from the
state space explosion can be handled automatically in model checking (computers can
handle large system better than humans). On the other hand, creativity is needed
for the design of the abstract interpretation. The prove of the safeness of an abstract
interpretation could be done by a theorem prover which can especially help for the
frequently occurring structural inductions.

As a consequence of the described disadvantages of the theorem prover EVT,
some of the developers started to use model checking, to prove properties of Erlang
programs [AE01, AED02]. They use model checking for the verification of Erlang
programs without any abstraction. This restricts their approach to systems which do
not use arbitrary values. Furthermore, they obtain very large systems which could be
reduced by abstraction. They translate the Erlang programs into the term rewriting
system µ-CRL [GP95], for which a model checking component exists. Considering
other examples, they realize the limitations of their approach and want to integrate
our abstraction techniques into their translations.

9.2 Model Checkers for other Programming Lan-

guages

Erlang is not the only programming language for which the verification by model
checking is investigated. For concurrent Java programs there are two projects for the
formal verification by model checking: Java PathFinder [HP98] and the Bandera Tool
[DP98, HDL98]. Both approaches translate Java source code into other Specification
formalisms: Both translate into Promela, the specification language of SPIN [Hol95].
Additionally, Bandera provides translations to PVS [Rus97] and SMV [CGL94a].
In both approaches, methods can be explicitly abstracted in the source code, by
redefining methods. Their work on the formalization of a framework for abstract
interpretations is poor. For imperative languages abstraction seems to be simpler
because only the connection (P1) of our framework must be guaranteed between
the concrete and the abstract domain. This connection must be proven for every
abstracted method and the resulting abstract transition system is safe with respect
to the concrete semantics. In further works the authors have investigated how the
resulting transition systems can be reduced and how different data structures can be

Chapter 9. Related Approaches for Software Verification 135

abstracted. The approach is restricted to concurrent Java Programs but an extension
to distributed Java programs and communication using Remote Method Invocation
is possible [SL01].

The results cannot be transferred to Erlang because the main mechanism of
branching in Erlang is pattern matching. More complicated techniques like the ones
presented in this thesis are needed to formalize abstraction of Erlang programs. The
idea of a translation to other specification languages can also not be transfered to Er-
lang so easily because the functional language Erlang differs from usually imperative
specification languages like Promela. A translation is much more difficult than for
Java. The opportunity of such a translation is the very efficient implementation of
the underlying model checkers which can handle very large state spaces. In this thesis
we wanted to concentrate on the formalization and understanding of the presented
approach. As future work, we will pursue translations to specification languages of
other model checkers.

Although these model checkers are very well optimized, there are two disadvan-
tages of such a translation: Firstly, the generation of counter examples is difficult. The
model checker yields a counter example in its own specification formalism. This must
be retranslated to an Erlang counter example. Secondly, the reduction of the state
space by means of partial order techniques will probably be less efficient. Though, at
first sight, partial order reduction is implemented in most of these model checkers, this
partial order reduction will not be as efficient as the one we discussed in Section 6.2.
For the application of partial order reduction, it is necessary to know the independent
actions of the transition system. In our reduction these are all actions, except the
sending actions and the prop labels. However, after a translation to another specifi-
cation formalism this independence will probably vanish. Partial order reduction is
less efficient. An investigation of these connections seems to be interesting and will
likely be future work.

136 9.2. Model Checkers for other Programming Languages

Chapter 10

Conclusions

The aim of this thesis was the formal verification of concurrent and, distributed Erlang
systems by model checking. To formalize the verification problem, we first developed
a formal syntax and semantics of a core fragment of Erlang. Respecting the semantics
of Core Erlang, we developed a framework for abstract interpretations of Core Erlang
programs. Using this framework, we defined an abstract operational semantics. The
framework guarantees that the AOS is safe with respect to the SOS: in the AOS all
paths of the SOS are represented. For finite domain abstract interpretations and some
restrictions to Core Erlang programs, the resulting AOS defines a finite transition
system. This finite transition system can be used for the formal verification by model
checking. A property which is fulfilled in the AOS, is also valid in the SOS.

In Chapter 5 we discussed some problems in the application of LTL model check-
ing to the AOS. Considering abstraction we must distinguish, if a proposition must
be fulfilled or refuted. This depends on the number of negations in front of the
proposition. We used our verification technique to verify different properties of the
database example: we proved the absence of deadlocks, a liveness property and used
fairness properties as an assumption for the verification of a system consisting of
several independent databases and clients.

We discussed some extensions and optimizations in Chapter 6: Firstly, we de-
fined a simplified framework for abstract interpretations containing good predefined
abstractions for casematch and mbmatch. Secondly, we discussed the application of
partial order reduction to the AOS. This yields an enormous reduction of the state
space and is needed for the practical use of our approach.

Unfortunatly, the AOS of finite domain abstractions defines a finite transition sys-
tem only for a subclass of Core Erlang programs. If non-tail recursive function calls
are used in the program, then the AOS is infinite and verification by model checking
is not possible. As a solution, we presented an abstraction of the control flow in Chap-
ter 7. Using this abstraction our approach can be used for the verification of a larger

138

class of Core Erlang programs. Although Core Erlang contains the main features of
Erlang, our approach should be applicable to real Erlang programs. In Chapter 8 we
showed how it can be extended to the verification of real Erlang programs.

The presented approach is implemented as a prototype in the programming lan-
guage Haskell. All presented properties of the database and its optimized version
could be automatically be proven using this prototype. Furthermore we verified some
properties of a counter, a locker, and a chat implemented in Core Erlang.

For future work we want to improve the prototype to be able to verify larger
systems and add a graphical user interface. At this, we also want to investigate the
relationship between formulas and partial order reduction in more detail. We hope
to obtain further reductions of the state space. Thereafter, we want to investigate
how our approach can be used in practice and verify larger systems which are used
in larger project within Ericsson. An example is the generic server module [AN01]
which provides process abstractions for client server applications and is widely used in
Erlang systems. In this context it would also be interesting to translate Core Erlang
programs to Promela, the specification language of SPIN [Hol95]. SPIN contains
a very efficient LTL model checker and it could be possible to verify larger Erlang
systems using this translation. On the other hand, Promela is an imperative language
without recursion. Therefore, a translation will not be as straight forward as it was
done for Java. A special problem will be the re-translation of counter examples.

Another point of future work could be the extension of our approach to higher
order functions. Our approach is limited to first order programs which is sufficient for
practice, because most Erlang programs do not use higher order functions. However,
higher-order is possible in Erlang. In Section 8.3 we already discussed a possible
extension but for arbitrary programs we need additional abstraction in this case.
Although, higher order functions are less relevant for the verification in practice,
an extension of our approach to higher-order functions seems interesting from the
theoretical point of view.

Bibliography

[ADFG98] Thomas Arts, Mads Dam, Lars-̊ake Fredlund, and Dilian Gurov. System
description: Verification of distributed Erlang programs. In Proceedings
of the 15th International Conference on Automated Deduction, volume
1421 of Lecture Notes in Computer Sience, pages 38–41, 1998.

[AE01] Thomas Arts and Clara Benac Earle. Development of a verified Erlang
program for resource locking. In Formal Methods in Industrial Critical
Systems, Paris, France, July 2001.

[AED02] Thomas Arts, Clara Benac Earle, and John Derrick. Verifying Erlang code:
a resource locker case-study. In Lars-Henrik Eriksson and Peter Alexan-
der Lindsay, editors, Formal Methods – Getting IT Right, volume 2391
of Lecture Notes in Computer Science, pages 184–203. Springer-Verlag,
2002.

[AG00] Thomas Arts and Jürgen Giesl. Termination of term rewriting using de-
pendency pairs. Theoretical Computer Science, 236(1–2):133–178, April
2000.

[Alu99] R. Alur. Timed automata. In Proc. 11th International Computer Aided
Verification Conference, pages 8–22, 1999.

[AN01] Thomas Arts and Thomas Noll. Verifying generic Erlang client–server
implementations. In Proceedings of the 12th International Workshop
on the Implementation of Functional Languages (IFL’00), volume 2011
of Lecture Notes in Computer Science, pages 37–52. Springer, 2001.

[ANN98] Torben Amtoft, Hanne Rijs Nielson, and Flenning Nielson. Behaviour
analysis and safety conditions: A case study in CML. Lecture Notes in
Computer Sience, 1382:255–269, 1998.

140 Bibliography

[Ast91] Egidio Astesiano. Inductive and operational semantics. In Erich J. Neuhold
and Manfred Paul, editors, Formal Description of Programming Con-
cepts, pages 51–136. Springer, 1991.

[AVWW96]Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams.
Concurrent Programming in Erlang, Second Edition. Prentice-Hall,
1996.

[BBC86] Gilles Bernot, Michel Bidoit, and Christine Choppy. Algebraic semantics
of exception handling. In Bernard Robinet and Reinhard Wilhelm, edi-
tors, Proceedings of the European Symposium on Programming, volume
213 of Lecture Notes in Computer Science, pages 173–186. Springer,
1986.

[BC89] Gerard Boudol and Ilaria Castellani. Permutation of transitions: an event
structure semantics for CCS and SCCS. In J. W. de Bakker, W. P.
de Roever, and G. Rozenberg, editors, REX School and Workshop on
Linear Time, Branching Time and Partial Order in Logics and Models
for Concurrency, volume 354 of Lecture Notes in Computer Sience,
pages 411–427. Springer, 1989.

[BE97] Olaf Burkart and Javier Esparza. More infinite results. Bulletin of the
European Association for Theoretical Computer Science, 62:138–159,
June 1997. Columns: Concurrency.

[BJ90] Jean-Chrysostome Bolot and Pankaj Jalote. Functional semantics of pro-
grams with exceptions. Computer Languages, 15(4):251–265, 1990.

[BJR99] Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Modeling
Language Reference Manual. Addison-Wesley, Reading, Massachusetts,
USA, 1999.

[BL01] Benedikt Bollig and Martin Leucker. Modelling, Specifying, and Verifying
Message Passing Systems. In Claudio Bettini and Angelo Montanari,
editors, Proceedings of the Symposium on Temporal Representation and
Reasoning (TIME’01), pages 240–248. IEEE Computer Society Press,
2001.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, New York, 1998.

[Bro91] Manfred Broy. Towards a formal foundation of the specification and de-
scription language SDL. Formal Aspects of Computing, 3(1):21–57,
1991.

[BRS99] Roderick Bloem, Kavita Ravi, and Fabio Somenzi. Efficient decision pro-
cedures for model checking of linear time logic properties. In Proc. 11th
International Computer Aided Verification Conference, pages 222–235,
1999.

Bibliography 141

[BS92] Olaf Burkart and Bernhard Steffen. Model checking for context-free pro-
cesses. In W. R. Cleaveland, editor, Proceedings of the Third Inter-
national Conference on Concurrency Theory, volume 630 of Lecture
Notes in Computer Science, pages 123–137, Stony Brook, New York,
24–27August 1992. Springer.

[BW91] Jaco W. de Bakker and H. A. Warmerdam. Four domains for concurrency.
Theoretical Computer Science, 90(1):127–149, November 1991.

[BZ82] Jaco W. de Bakker and Jeffery I. Zucker. Denotational semantics of concur-
rency. In Proceedings of the Fourteenth Annual ACM Symposium on
Theory of Computing, pages 153–158, San Francisco, California, 5–7
May 1982.

[CC77a] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction of approx-
imation of fixed points. In Proceedings of the 4th ACM Symposium
on Principles of Programming Languages, Los Angeles, pages 238–252,
New York, NY, 1977. ACM.

[CC77b] Patrick Cousot and Radhia Cousot. Automatic synthesis of optimal invari-
ant assertions: mathematical foundation. In Symposium on Artificial
Intelligence and Programming Languages, volume 12(8) of ACM SIG-
PLAN Not., pages 1–12, August 1977.

[CGH94] Edmund Clarke, Orna Grumberg, and Kiyoharu Hamaguchi. Another look
at LTL model checking. In Proc. 6th International Computer Aided
Verification Conference, pages 415–427, 1994.

[CGH97] Edmund Clarke, Orna Grumberg, and Kiyoharu Hamaguchi. Another look
at LTL model checking. Formal Methods in System Design, 10(1):47–
71, February 1997.

[CGL94a] E. M. Clarke, O. Grumberg, and D. Long. Verification tools for finite-
state concurrent systems. In J. W. de Bakker, W. P. de Roever, and
G. Rozenberg, editors, Proceedings REX School/Symposium: A Decade
of Concurrency, Noordwijkerhout, The Netherlands, June 1993, volume
803 of Lecture Notes in Computer Science, pages 124–175. Springer,
1994.

[CGL94b] Edmund Clarke, Orna Grumberg, and David E. Long. Model checking
and abstraction. ACM Transactions on Programming Languages and
Systems, 16(5):1512–1542, September 1994.

[CGMP98]Edmund M. Clarke, Orna Grumberg, Marius Minea, and Doron Peled.
State space reduction using partial order techniques. Software Tools
for Technology Transfer, 2, 1998.

142 Bibliography

[Che97] Allan Cheng. Petri nets, traces, and local model checking. Theoretical
Computer Science, 183(2):229–251, September 1997.

[CPS90] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concur-
rency workbench. In J. Sifakis, editor, Proceedings of the International
Workshop on Automatic Verification Methods for Finite State Systems,
volume 407 of Lecture Notes in Computer Sience, pages 24–37. Springer,
June 1990.

[Cur63] Haskell B. Curry. Foundations of Mathematical Logic. McGraw-Hill, New
York, 1963.

[DB97] Mourad Debbabi and Dominique Bolignano. A semantic theory for ML
higher-order concurrency primitives. In ML with Concurrency: Design,
Analysis, Implementation and Application, Monographs in Computer
Science, pages 145–184. Springer, 1997.

[DF98] Mads Dam and Lars-̊ake Fredlund. On the verification of open distributed
systems. In Proc. of the ACM Symposium on Applied Computing,
28:532–540, June 1998.

[DP98] Matthew B. Dwyer and Corina S. Pasareanu. Filter-based model check-
ing of partial systems. In Proceedings of the ACM SIGSOFT Sixth
International Symposium on the Foundation of Software Engineering,
November 1998.

[Eme90] E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B: Formal Models
and Semantics, pages 995–1072. Elsevier Science Publishers, Amster-
dam, The Netherlands, 1990.

[Esp97] Javier Esparza. Decidability of model checking for infinite-state concurrent
systems. Acta Informatica, 34(2):85–107, 1997.

[FFKD87] Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce
Duba. A syntactic theory of sequential control. Theoretical Computer
Science, 52(3):205–237, 1987.

[GG88] Stephen J. Garland and John V. Guttag. Inductive methods for reasoning
about abstract data types. In ACM, editor, POPL ’88. Proceedings of
the conference on Principles of programming languages, January 13–
15, 1988, San Diego, CA, pages 219–228, New York, NY, USA, 1988.
ACM Press.

[GP95] J. F. Groote and A. Ponse. The syntax and semantics of µCRL. In
A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of
Communicating Processes ’94, Workshops in Computing Series, pages
26–62. Springer, 1995.

Bibliography 143

[GPSS80] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the
temporal analysis of fairness. In Conference Record of the Seventh An-
nual ACM Symposium on Principles of Programming Languages, pages
163–173. ACM SIGACT and SIGPLAN, ACM Press, 1980.

[GPVW95]Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple on-the-
fly automatic verification of linear temporal logic. In Protocol Speci-
fication Testing and Verification, pages 3–18, Warsaw, Poland, 1995.
Chapman & Hall.

[Gro01] William Grosso. Java RMI – Designing and building distributed applica-
tions. O’Reilly & Associates, Inc., Newton, USA, 2001.

[HDL98] John Hatcliff, Matthew B. Dwyer, and Shawn Laubach. Staging static
analyses using abstraction-based program specialization. In Proceed-
ings of the International Symposium PLILP/ALP 98, volume 1490 of
Lecture Notes in Computer Sience, pages 134–148, 1998.

[HN00] Frank Huch and Ulrich Norbisrath. Distributed programming in Haskell
with ports. In Proceedings of the 12th International Workshop on the
Implementation of Functional Languages, volume 2011 of Lecture Notes
in Computer Science, pages 107–121, 2000.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. Information and Com-
putation, 111(2):193–244, June 1994.

[Hog89] Dieter Hogrefe. Estelle, Lotos und SDL. Springer, Berlin, 1989.

[Hol95] Gerard J. Holzmann. Proving properties of concurrent systems with SPIN.
In Proceedings of the Sixth International Conference on Concurrency
Theory, volume 962, pages 453–455, 1995.

[Hol96] Gerard J. Holzmann. On-the-fly model checking. ACM Computing Surveys,
28(4es):120–120, December 1996.

[HP98] Klaus Havelund and Thomas Pressburger. Model checking Java programs
using Java PathFinder. International Journal on Software Tools for
Technology Transfer, 2(4), April 1998.

[HU79] John E. Hopcroft and Jeffery D. Ullman. Introduction to Automata Theory,
Language, and Computation. Addison–Wesley, Reading, MA, 1979.

[Huc99a] Frank Huch. Verification of Erlang programs using abstract interpretation
and model checking. ACM SIGPLAN Notices, 34(9):261–272, Septem-
ber 1999. Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP ’99).

144 Bibliography

[Huc99b] Frank Huch. Verification of Erlang programs using abstract interpreta-
tion and model checking – extended version. Technical Report 99–02,
RWTH Aachen, 1999.

[Huc01] Frank Huch. Model checking Erlang programs - abstracting the context-
free structure. In Scott D. Stoller and Willem Visser, editors, Pro-
ceedings of the Workshop on Software Model Checking, volume 55–03
of Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 2001.

[Huc02] Frank Huch. Model checking erlang programs - abstracting recursive func-
tion calls. In Michael Hanus, editor, Proceedings of the International
Workshop Functional and (Constraint) Logic Programming, volume 64
of Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 2002.

[J+98] Simon Peyton Jones et al. Haskell 98 report. Technical report, http:

//www.haskell.org, 1998.

[JGF96] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent
Haskell. In Conference Record of POPL ’96: The 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
295–308, St. Petersburg Beach, Florida, 21–24 January 1996.

[JN94] Neil D. Jones and Flemming Nielson. Abstract interpretation: a semantics-
based tool for program analysis. In Handbook of Logic in Computer
Science. Oxford University Press, 1994. 527–629.

[KP84] Dexter Kozen and Rohit Parikh. A decision procedure for the proposi-
tional µ-calculus. In E. Clarke and D. Kozen, editors, Proceedings 2nd
Workshop on Logics of Programs, CMU, Pittsburgh, PA, USA, 6–8
June 1983, volume 164 of Lecture Notes in Computer Science, pages
313–325. Springer, 1984.

[KP98] Yonit Kesten and Amir Pnueli. Modularization and abstraction: The keys
to practical formal verification. In L. Brim, J. Gruska, and J. Zlatuska,
editors, The 23rd International Symposium on Mathematical Founda-
tions of Computer Science (MFCS 1998), volume 1450 of Lecture Notes
in Computer Science, pages 54–71. Springer, 1998.

[LP85] Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent
programs satisfy their linear specification. In Conference Record of the
Twelfth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 97–107, New Orleans, Louisiana, January 13–16, 1985.
ACM SIGACT-SIGPLAN, ACM Press.

[Lys94] Olav Lysne. Heuristics for completion in automatic proofs by structural
induction. Nordic Journal of Computing, 1(1):135–156, Spring 1994.

http://www.haskell.org
http://www.haskell.org

Bibliography 145

[Maz84] Antoni Mazurkiewicz. Traces, histories, graphs: Instances of a process
monoid. In M. P. Chytil et al., editors, Proceedings of the 11th Sympo-
sium on Mathematical Foundations of Computer Science (MFCS’84),
volume 176 of Lecture Notes in Computer Sience, pages 115–133, Berlin,
1984. Springer.

[Mil80] R. Milner. A Calculus of Communicating Systems. Springer, Berlin, first
edition, 1980.

[MTH89] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, Cambridge, MA, 1989.

[NFG01] Thomas Noll, Lars-̊ake Fredlund, and Dilian Gurov. The Erlang verifica-
tion tool. In Proceedings of the 7th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, volume
2031 of Lecture Notes in Computer Science, pages 582–585. Springer,
2001.

[NN92] Hanne Rijs Nielson and Flenning Nielson. Semantics with Applications :
A Formal Introduction. John Wiley & Sons, Chichester, 1992.

[NN97] Hanne Riis Nielson and Flemming Nielson. Communication analysis for
concurrent ML. In ML with Concurrency, Monographs in Computer
Science, pages 185–235. Springer, 1997.

[Nol01] Thomas Noll. A rewriting logic implementation of Erlang. In Mark
van den Brand and Didier Parigot, editors, Proceedings of the First
Workshop on Language Descriptions, Tools and Applications, volume
44–02 of Electronic Notes in Theoretical Computer Science. Elsevier
Science Publishers, 2001.

[Pac97] Peter Pacheco. Parallel Programming with MPI. Morgan Kaufmann,
San Francisco, CA, 1997. http://www.usfca.edu/mpi (source programs
available) and http://www.mkp.com.

[Pau89] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal
of Automated Reasoning, 5(3):363–397, September 1989.

[Pau93] Lawrence C. Paulson. Introduction to Isabelle. Technical Report 280,
University of Cambridge, Computer Laboratory, 1993.

[Pel94] Doron Peled. Combining partial order reductions with on-the-fly model-
checking. In Proceedings of the Sixth Conference on Computer-Aided
Verification, volume 818 of Lecture Notes in Computer Sience, pages
377–390, 1994.

[PR97] Prakash Panangaden and John H. Reppy. The Essence of Concurrent ML.
In F. Nielson, editor, ML with Concurrency: Design, Analysis, Imple-
mentation and Application, Monographs in Computer Science, pages
5–29. Springer, 1997.

146 Bibliography

[Ros84] A. William Roscoe. Denotational semantics for occam. In S. D. Brookes,
A. W. Roscoe, and G. Winskel, editors, Seminar on Concurrency,
volume 197 of Lecture Notes in Computer Science, pages 306–329.
Springer, 1984.

[Rus97] John Rushby. Specification, proof checking, and model checking for proto-
cols and distributed systems with PVS. Tutorial presented at {FORTE
X/PSTV XVII ’97}, November 1997.

[SL01] Scott D. Stoller and Yanhong A. Liu. Transformations for model checking
distributed Java programs. In Proceedings of the 8th International SPIN
Workshop, volume 2057 of Lecture Notes in Computer Sience, pages
192–199. Springer, 2001.

[SP81] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data
flow analysis. In S. S. Muchnick and N. D. Jones, editors, Program
Flow Analysis: Theory and Applications, Prentice-Hall Software Series,
pages 189–233. Prentice-Hall, Englewood Cliffs , NJ , USA, 1981.

[SS94] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press,
Cambridge, Mass., second edition, 1994.

[SS98] David Schmidt and Bernhard Steffen. Program analysis as model checking
of abstract interpretations. In Proceedings of the Fifth International
Statics Analysis Symposium, volume 1503 of Lecture Notes in Computer
Sience, pages 351–380, 1998.

[Tan92] Andrew S. Tannenbaum. Modern Operating Systems. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1992.

[Tau89] Dirk Taubner. Finite representations of CCS and TCSP programs by au-
tomata and Petri nets, volume 369 of Lecture Notes in Computer Sci-
ence. Springer, New York, NY, USA, 1989.

[TLK96] Bent Thomsen, Lone Leth, and Tsung-Min Kuo. A Facile tutorial. In
Ugo Montanari and Vladimiro Sassone, editors, CONCUR ’96: Con-
currency Theory, 7th International Conference, volume 1119 of Lecture
Notes in Computer Science, pages 278–298, Pisa, Italy, 26–29 August
1996. Springer.

[TLK97] Bent Thomsen, Lone Leth, and Tsung-Min Kuo. FACILE — From Toy
to Tool. In F. Nielson, editor, ML with Concurrency: Design, Anal-
ysis, Implementation and Application, Monographs in Computer Sci-
ence, pages 97–144. Springer, 1997.

[Var96] Moshe Y. Vardi. An Automata-Theoretic Approach to Linear Temporal
Logic, volume 1043 of Lecture Notes in Computer Science, pages 238–
266. Springer, New York, NY, USA, 1996.

Bibliography 147

[Wal98] Frank Wallner. Model checking LTL using net unfoldings. In Proceedings
of the 10th Conference on Computer-Aided Verification, volume 1427
of Lecture Notes in Computer Science, pages 207–218, 1998.

[Wei90] William E. Weihl. Remote Procedure Call. In Sape J. Mullender, editor,
Distributed Systems, pages 37–64. ACM Press, 1990.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages. MIT
Press, Cambridge, Massachusetts, 1993.

148 Bibliography

Lebenslauf

Name: Frank Günter Huch

geboren am: 01. August 1969

in: Neuss

Aug. 1975 – Jul. 1979 Grundschule in Neuss-Reuschenberg

Aug. 1979 – Jun. 1988 Humboldt-Gymnasuium in Neuss

Abschluss Abitur

Nov. 1988 – Jun. 1990 Zivildienst

Okt. 1990 – Jul. 1996 Studium der Informatik mit Nebenfach Medizin

an der RWTH Aachen

Abschluss Diplom

Sept. 1996 – Jul. 2001 Wissenschaftlicher Angestellter

am Lehrstuhl für Informatik II der RWTH Aachen

seit Aug. 2001 Wissenschaftlicher Assistent

am Lehrstuhl für Programmiersprachen und

Übersetzerkonstruktion

der Christian-Albrechts-Universität zu Kiel

	Abstract
	Zusammenfassung
	Contents
	Introduction
	The Programming Language Erlang
	Sequential Programming
	Data structures
	Modules

	Concurrent Programming
	Distributed Programming
	Creating Remote Processes
	Open Systems

	Robust Programming
	Exception Handling

	Process Linking

	Core Erlang -- A Fragment of Erlang
	Syntax
	Semantics

	Abstraction
	The Idea of Abstraction
	Abstraction of Constructors
	Abstraction of Matching
	Abstraction of Branching
	Abstraction of receive
	Abstraction of pids

	A Framework for Abstract Interpretations
	Example Abstractions
	The Operational Semantics
	A Finite Domain Abstraction

	Galois Insertions
	Finiteness of Abstract Semantics
	Renaming of variables
	Hierarchical Core Erlang

	Deadlocks

	Verification of Core Erlang Programs
	Core Erlang with Propositions
	Linear Time Temporal Logic
	Abstraction of Propositions

	Semantics of Propositions
	Proving LTL Formulas
	Verification of the Database
	Liveness of the database
	Mutual exclusion
	More precise Abstractions

	Fairness Properties

	Extensions and Optimizations
	A Simplified Framework
	Reducing the State Space

	Abstraction of Recursive Function Calls
	Simulation of Turing Machines
	Graph Semantics
	Abstracting from the Context-Free Structure
	Abstract Graph Representation
	Verification

	Towards the Verification of Erlang Programs
	The Module System
	Branching
	Higher-Order Functions
	Distributed Systems
	Timeouts
	Exception Handling
	Linking

	Related Approaches for Software Verification
	Theorem Provers
	Model Checkers for other Programming Languages

	Conclusions
	Bibliography

